
On the Memory-Tightness of Hashed ElGamal�

Ashrujit Ghoshal and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, USA
{ashrujit,tessaro}@cs.washington.edu

Abstract. We study the memory-tightness of security reductions in public-key cryptography, focusing
in particular on Hashed ElGamal. We prove that any straightline (i.e., without rewinding) black-box
reduction needs memory which grows linearly with the number of queries of the adversary it has access
to, as long as this reduction treats the underlying group generically. This makes progress towards
proving a conjecture by Auerbach et al. (CRYPTO 2017), and is also the first lower bound on memory-
tightness for a concrete cryptographic scheme (as opposed to generalized reductions across security
notions). Our proof relies on compression arguments in the generic group model.

Keywords: Public-key cryptography, memory-tightness, lower bounds, generic group model, founda-
tions, compression arguments

1 Introduction

Security proofs rely on reductions, i.e., they show how to transform an adversary A breaking a scheme into
an adversary B solving some underlying assumed-to-be-hard problem. Generally, the reduction ought to be
tight – the resources used by B, as well as the attained advantage, should be as close as possible to those of
A. Indeed, the more resources B needs, or the smaller its advantage, the weaker the reduction becomes.

Auerbach et al. [2] were the first to explicitly point out that memory resources have been ignored in
reductions, and that this leads to a loss of quality in security results. Indeed, it is conceivable that A’s memory
is naturally bounded (say, at most 264 bits), and the underlying problem is very sensitive to memory. For
example, the best-known algorithm for discrete logarithms in a 4096-bit prime field runs in time (roughly) 2156

using memory 280. With less memory, the best algorithm is the generic one, requiring time Θp?pq � 22048.
Therefore, if B also uses memory at most 264, we can infer a larger lower bound on the necessary time
complexity for A to break the scheme, compared to the case where B uses 2100 bits instead.

What can be memory-tight? One should therefore target reductions that are memory-tight, i.e., the
memory usage of B is similar to that of A.1 The work of Auerbach et al. [2], and its follow-up by Wang et
al. [13], pioneered the study of memory-tight reductions. In particular, and most relevant to this work, they
show negative results (i.e., that certain reductions cannot be memory tight) using streaming lower bounds.

Still, these lower bounds are tailored at general notions (e.g., single- to multi-challenge reductions),
and lower bounds follow from a natural connection with classical frequency problems on streams. This paper
tackles the more ambitious question of proving impossibility of memory-tight reductions for concrete schemes,
especially those based on algebraic structures. This was left as an open problem by prior works.

Hashed ElGamal.Motivated by a concrete open question posed in [2], we consider here the CCA-security
of Hashed ElGamal. In its KEM variant, the scheme is based on a cyclic group G � xgy – the secret key
sk is a random element from Z|G|, whereas the public key is pk � gsk. Then, encapsulation produces a
ciphertext-key pair

C Ð gr , K Ð Hppkrq .
for r Ð Z|G| and a hash function H : GÑ t0, 1u`. Decapsulation occurs by computing K Ð HpCskq.
� A preliminary version of this paper appears in the proceedings of EUROCRYPT 2020. This is the full version.
1 Generally, B � RA for a black-box reduction R, and one imposes the slightly stronger requirement that R uses

small memory, independent of that of A.

The CCA-security of Hashed ElGamal in the random-oracle model was proved by Abdalla, Bellare, and
Rogaway [1] based on the Strong Diffie-Hellman (SDH) assumption (also often called GapDH), and we briefly
review the proof.2 First, recall that in the SDH assumption, the attacker is asked to compute guv from gu

and gv, given additionally access to a decision oracle Ov which on input h, y P G, tells us whether hv � y.

The reduction sets the Hashed ElGamal public-key to pk � gv (setting implicitly sk � v), the challenge
ciphertext to be C� � gu, and the corresponding key K� to be a random string. Then, it simulates both
the random oracle and the decapsulation oracle to the adversary A (which is run on inputs pk, C� and K�),
until a random-oracle query for guv is made (this can be detected using the Ov oracle). The challenge is to
simulate both oracles consistently: As the reduction cannot compute discrete logarithms, it uses the oracle
Ov to detect whether a random-oracle query X and a decapsulation query Ci satisfy OvpCi, Xq � true, and,
if this is the case, answers them with the same value.

This reduction requires memory to store all prior decapsulation and random-oracle queries. Unlike other
reductions, the problem here is not to store the random-oracle output values (which could be compressed
using a PRF), but the actual inputs to these queries, which are under adversarial control. This motivates
the conjecture that a reduction using little memory does not exist, but the main challenge is of course to
prove this is indeed the case.

Our result, in summary.We provide a memory lower bound for reductions that are generic with respect to
the underlying group G. Specifically, we show the existence of an (inefficient) adversary A in the generic group
model (GGM) which breaks the CCA security of Hashed ElGamal via Opkq random oracle/decapsulation
queries, but such that no reduction using less than k �λ bits of memory can break the SDH assumption even
with access to A, where λ is the bit-size of the underlying group elements.

Our lower bound is strong in that it shows we do not even have a trade-off between advantage and
memory, i.e., if the memory is smaller than k � λ, then the advantage is very small, as long as the reduction
makes a polynomial number of queries to Ov and to the generic group oracle. It is however also important
to discuss two limitations of our lower bound. The first one is that the reduction – which receives g, gv in
the SDH game – uses pk � gv as the public key to the Hashed ElGamal adversary. The second one is that
the reduction is straightline, i.e., it does not perform any rewinding.

We believe that our impossibility result would extend even when the reduction is not straightline. How-
ever, allowing for rewinding appears to be out of reach of our techniques. Nonetheless, we do conjecture a
lower bound on the memory of Ωpk log kq bits, and discuss the reasoning behind our conjecture in detail in
Appendix C.

We stress that our result applies to reductions in the GGM, but treats the adversary as a black box. This
captures reductions which are black-box in their usage of the group and the adversary. (In particular, the
reduction cannot see generic group queries made by the adversary, as in a GGM security proofs.) Looking at
the GGM reduces the scope of our result. However, it is uncommon for reductions to depend on the specifics
of the group, although our result can be bypassed for specific groups, e.g., if the group has a pairing.

Concurrent related work. Concurrently to our work, Bhattacharyya [4] provides memory-tight reduc-
tions of KEM-CCA security for variants of Hashed ElGamal. At first glance, the results seem to contradict
ours. However, they are entirely complementary – for example, a first result shows a memory tight reduction
for the KEM-CCA security of the “Cramer-Shoup” variant of Hashed ElGamal – this variant differs from the
(classical) Hashed ElGamal we consider here and is less efficient. The second result shows a memory-tight
reduction for the version considered in this paper, but assumes that the underlying group has a pairing. This
is a good example showing our result can be bypassed for specific groups i.e. groups with pairings, but we
also note that typical instantiations of the scheme are on elliptic curves for which no pairing exists.

2 Abdalla et al. [1] do not phrase their paper in terms of the KEM/DEM paradigm [12,6], which was introduced
concurrently – instead, they prove that an intermediate assumption, called Oracle Diffie-Hellman (ODH), follows
from SDH in the ROM. However, the ODH assumption is structurally equivalent to the CCA security of Hashed
ElGamal KEM for one challenge ciphertext.

2

1.1 Our Techniques

We give a high-level overview of our techniques here. We believe some of these to be novel and of broader
interest in providing other impossibility results.

The shuffling game. Our adversary against Hashed ElGamal3 A first attempts to detect whether the
reduction is using a sufficient amount of memory. The adversary A is given as input the public key gv, as
well as gu, as well as a string C� P t0, 1u`, which is either a real encapsulation or a random string. It first
samples k values i1, . . . , ik from Zp. It then:

(1) Asks for decapsulation queries for Cj Ð gij , obtaining values Kj , for j P rks
(2) Picks a random permutation π : rks Ñ rks.
(3) Asks for RO queries for Hj Ð HpVjq for j P rks, where Vj Ð gv�iπpjq .

After this, the adversary checks whether Kj � Hπpjq for all j P rks, and if so, it continues its execution,
breaking the ODH assumption (inefficiently). If not, it just outputs a random guess.

The intuition here is that no reduction using substantially less than k � log p bits succeeds in passing the
above test – in particular, because the inputs Cj and Vj are (pseudo-)random, and thus incompressible. If
the test does not pass, the adversary A is rendered useless, and thus not helpful to break SDH.

Remark 1. The adversary here is described in a way that requires secret randomness, not known to the
reduction, and it is easier to think of A in this way. We will address in the body how to generically make
the adversary deterministic.

Remark 2. We stress that this adversary requires memory – it needs to remember the answers C1, . . . , Ck.
However, recall that we adopt a black-box approach to memory-tightness, where our requirement is that
the reduction itself uses little memory, regardless of the memory used by the adversary. We also argue this
is somewhat necessary – it is not clear how to design a reduction which adapts its memory usage to the
adversary, even if given this information in a non-black-box manner. Also, we conjecture different (and much
harder to analyze) memory-less adversaries exist enabling a separation. An example is multi-round variant,
where each round omits (2), and (3) only asks a single query HpVjq for a random jÐ$ rks, and checks
consistency. Intuitively, the chance of passing each round is roughly k log p{s, but we do not know how to
make this formal.

Introducing the GGM.Our intuition is however false for an arbitrary group. For instance, if the discrete
logarithm (DL) problem is easy in the group, then the reduction can simply simulate the random oracle
via a PRF, as suggested in [2]. Ideally, we could prove that if the DL problem is hard in G, then any PPT
reduction given access to A and with less than k � log p bits of memory fails to break SDH.4 Unfortunately,
it will be hard to capture a single hardness property of G sufficient for our proof to go through. Instead, we
will model the group via the generic group model (GGM) [11,9]: We model a group of prime order p defined
via a random injection σ : Zp Ñ L. An algorithm in the model typically has access to σp1q (in lieu of g) and
an evaluation oracle which on input a,b P L returns σpσ�1paq � σ�1pbqq. (We will keep writing gi instead
of σpiq in the introduction, for better legibility.)

The permutation game. In order to fool A, the reduction can learn information about π via the Ov

oracle. For example, it can try to input Cj � gij and Vj1 � gviπpj1q (both obtained from A’s queries), and
OvpCj , Vj1q � true if and only if πpj1q � j. More generally, the reduction can compute, for any ~a � pa1, . . . , akq
and ~b � pb1, . . . , bkq,

C� � g
°k
j�1 ajij �

k¹
j�1

C
aj
j , V � � g

°k
j�1 bjv�iπpjq �

k¹
j�1

V
bj
j ,

3 The paper will in fact use the cleaner formalization of the ODH assumption, so we stick to Hashed ElGamal only
in the introduction.

4 This statement is somewhat confusing, so note that in general, the existence of a reduction is not a contradiction
with the hardness of DL, as the reduction is meant to break SDH only given access to an adversary breaking the
scheme, and this does not imply the ability to break SDH without access to the adversary.

3

and the query OvpC�, V �q returns true iff bj � aπpjq for all j P rks, which we write as ~b � πp~aq. We abstract
this specific strategy in terms of an information-theoretic game – which we refer to as the permutation game
– which gives the adversary access to an oracle O which takes as inputs pairs of vectors p~a,~bq from Zkp, and

returns true iff ~b � πp~aq for a secret permutation π. The goal of the adversary is to recover π.
Clearly, a strategy can win with Opk2q oracle queries p~ei, ~ejq for all i, j, where ~ei P Zkp is the unit vector

with a 1 in the i-th coordinate, and 0 elsewhere. This strategy requires in particular querying, in its first
component, vectors which have rank k. Our first result will prove that this is necessary – namely, assume
that an adversary makes a sequence of q queries p~x1, ~y1q, . . . , p~xq, ~yqq such that the rank of ~x1, . . . , ~xq is at
most `, then the probability to win the permutation game is of the order Opq`{k!q. We will prove this via a
compression argument.

Note that roughly, this bound tells us that to win with probability ε and q queries to the oracle, the
attacker needs

` � Ω

�
k log k � logp1{εq

logpqq

.

A reduction to the permutation game. We will think of the execution of the reduction against our
adversary as consisting of two stages – we refer to them as R1 and R2. The former learns the decapsulation
queries gi1 , . . . , gik , whereas the latter learns the RO queries giπp1qv, . . . , giπpkqv, and (without loss of gener-
ality) attempts to guess the permutation π. We will lower bound the size of the state φ that R1 passes on
to R2. Both stages can issue Ov and Eval queries.

Note that non-trivial Ov queries (i.e., those revealing some information about the permutation), are
(except with very small probability) issued by R2, since no information about π is ever revealed to R1. As
one of our two key steps, we will provide a reduction from the execution of R1,R2 against A in the GGM to
the permutation game – i.e., we build an adversary D for the latter game simulating the interaction between
R1,R2 and A, and such that R1,R2 “fooling” A results in D guessing the permutation.

Memory vs. rank. The main question, however, is to understand the complexity of D in the permutation
game, and in particular, the rank ` of the first component of its queries – as we have seen above, this affects
its chance of winning the game.

To do this, we will take a slight detour, and specifically consider a set Z � L of labels (i.e., outputs
of σ) that the reduction R2 comes up with (as inputs to either of Eval or Ov) on its own (in the original
execution), i.e., no earlier Eval query of R2 returned them, and that have been previously learnt by R1 as
an output of its Eval queries. (The actual definition of Z is more subtle, and this is due to the ability of the
adversary to come up with labels without knowing the corresponding pre-image.)

Then, we will show two statements about Z:

(i) On the one hand, we show that the rank ` of the oracle queries of the adversary D is upper bound by
|Z| in its own simulation of the execution of R1,R2 with A.

(ii) On the other hand, via a compression argument, we prove that the size of Z is related to the length
of φ, and this will give us our final upper bound.

This latter statement is by itself not very surprising – one can look at the execution of R2, and clearly every
label in Z that appears “magically” in the execution must be the result of storing them into the state φ.
What makes this different from more standard compression arguments is the handling of the generic group
model oracle (which admits non-trivial operations). In particular, our compression argument will compress
the underlying map σ, and we will need to be able to figure out the pre-images of these labels in Z. We give
a very detailed technical overview in the body explaining the main ideas.

Memory-Tight AGM Reduction. The Algebraic Group Model (AGM) was introduced in [8]. AGM re-
ductions make strong extractability assumptions, and the question of their memory-tightness is an interesting
one. In Appendix A we construct a reduction to the discrete logarithm problem that runs an adversary against
the KEM-CCA security of Hashed ElGamal in the AGM such that the reduction is memory-tight but not
tight with respect to advantage. We note that the model of our reduction is different than a (full-fledged)
GGM reduction which is not black-box, in that it can observe the GGM queries made by the adversary. Our

4

result does not imply any impossibility for these. In turn, AGM reductions are weaker, but our results do
not imply anything about them, either.

2 Preliminaries

In this section, we review the formal definition of the generic group model. We also state ODH and SDH as
introduced in [1] in the generic group model.

Notation. Let N � t0, 1, 2, � � � u and, for k P N, let rks � t1, 2, � � � , ku. We denote by InjFuncpS1, S2q the set
of all injective function from S1 to S2.

We also let � denote a wildcard element. For example Dt : pt, �q P T is true if the set T contains an
ordered pair whose first element is t (the type of the wildcard element shall be clear from the context). Let
Sk denote the set of all permutations on rks. We use f : D Ñ R Y tKu to denote a partial function, where
fpxq � K indicates the value of fpxq is undefined. Define in particular Dpfq � td P D : fpdq � Ku and
Rpfq � tr P R : Dd P D : σpdq � ru. Moreover, we let Dpfq � DzDpfq and Rpfq � RzRpfq.

We shall use pseudocode descriptions of games inspired by the code-based framework of [3]. We make
use of pairs of games being identical-until-bad (i.e., the games are identical until a bad flag is set), and apply
the so-called “Fundamental Lemma” to upper bound the difference in the probability of the game outputs
in terms of the probability of bad being set to true in either of the games. The output of a game is denoted
using the symbol ñ. In all games we assume the flag bad is set to false initially. In pseudocode, we denote
random sampling using Ð$, assignment using Ð and equality check using �. In games that output boolean
values, we use the term“winning” the game to mean that the output of the game is true.

We also introduce some linear-algebra notation. Let S be a set vectors with equal number of coordinates.
We denote the rank and the linear span of the vectors by rankpSq and spanpSq respectively. Let ~x, ~y be vectors
of dimension k. We denote ~z of dimension 2k which is the concatenation of ~x, ~y as ~z � p~x, ~yq. We denote the
element at index i of a vector ~x as ~xris.

2.1 Generic Group Model

The generic group model [11] captures algorithms that do not use any special property of the encoding of
the group elements, other than assuming every element of the group has a unique representation, and that
the basic group operations are allowed. This model is useful in proving lower bounds for some problems, but
we use it here to capture reductions that are not specific to the underlying group.

More formally, let the order of the group be a large prime p. Let Zp � t0, 1, 2, � � � , p�1u. Let L � t0, 1u�
be a set of size p, called the set of labels. Let σ be a random injective mapping from Zp to L. The idea is
that now every group element in Zp is represented by a label in L. An algorithm in this model takes as
input σp1q, σpx1q, σpx2q, � � � , σpxnq for some x1, � � � , xn P Zp (and possibly other inputs which are not group
elements). The algorithm also has access to an oracle named Eval which takes as input two labels a,b P L
and returns c � σpσ�1paq � σ�1pbqq. Note that for any d, given σpxiq, σpd � xiq can be computed using
Oplog dq queries to Eval. We denote this operation as Exppσpxiq, dq. We assume that all labels queried by
algorithms in the generic group model are valid i.e. all labels queried by algorithms in the generic group
model are in L.5

Oracle Diffie-Hellman assumption (ODH). We first formalize the Oracle Diffie-Hellman Assumption
(ODH) [1], which we are going to use in lieu of the CCA security of Hashed ElGamal. Suppose, a group
has generator g and order p. The domain of hash function H is all finite strings and range is t0, 1uhLen. The
assumption roughly states for u, vÐ$Zp,W Ð$ t0, 1uhLen, the distributions pgu, gv,Hpguvqq and pgu, gv,W q
are indistinguishable to an adversary who has access to the oracle Hv where Hvpgxq returns Hpgxvq with the
restriction that it is not queried on gu.

5 We stress that we assume a strong version of the model where the adversary knows L.

5

Game GODH-REAL-GG
L,p,hLen pAq :

1 : σ Ð$ InjFuncpZp Ñ Lq
2 : uÐ$Zp;U Ð σpuq

3 : v Ð$Zp;V Ð σpvq

4 : H Ð$ΩhLen

5 : W Ð Hpσpuvqq

6 : bÐ AHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq

7 : return b

Game GODH-RAND-GG
L,p,hLen pAq :

1 : σ Ð$ InjFuncpZp Ñ Lq
2 : uÐ$Zp;U Ð σpuq

3 : v Ð$Zp;V Ð σpvq

4 : H Ð$ΩhLen

5 : W Ð t0, 1uhLen

6 : bÐ AHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq

7 : return b

Oracle Evalpa,bq :

1 : return σpσ�1paq � σ
�1pbqq

Oracle Hvpaq :

1 : if a � U then return K

2 : else return Hpσpσ�1paq � vqq

Game GSDH-GG
L,p,hLenpAq :

1 : σ Ð$ InjFuncpZp Ñ Lq
2 : uÐ$Zp;U Ð σpuq

3 : v Ð$Zp;V Ð σpvq

4 : z Ð AEvalp.,.q,Ovp.,.qpU, V, σp1qq

5 : return pz � σpuvqq

Oracle Ovpa,bq :

1 : return pσ�1paq � v � σ
�1pbqq

Fig. 1. Games for ODH and SDH assumptions

We give a formalization of this assumption in the random-oracle and generic group models. For a fixed
hLen P N, let ΩhLen be the set of hash functions mapping t0, 1u� to t0, 1uhLen. In Figure 1, we formally define
the Games GODH-REAL-GG

L,p,hLen , GODH-RAND-GG
L,p,hLen . The advantage of violating ODH is defined as

AdvODH-GG
L,p,hLenpAq �

��Pr
�
GODH-REAL-GG

L,p,hLen pAq ñ 1
�� Pr

�
GODH-RAND-GG

L,p,hLen pAq ñ 1
��� .

Strong Diffie-Hellman Assumption (SDH).This is a stronger version of the classical CDH assumption.
This assumption roughly states that CDH is hard even in the presence of a DDH-oracle Ov where Ovpgx, gyq
is true if and only if x � v � y.

We formally define the game GSDH-GG in the generic group model in Figure 1. The advantage of violating
SDH is defined as

AdvSDH-GG
L,p,hLenpAq �

��Pr
�
GSDH-GG

L,p,hLenpAq ñ true
��� .

Note in particular that one can upper bound this advantage unconditionally.
We shall drop the L from the subscript of advantages and games henceforth since the set of labels L remains
the same throughout our paper.

Black Box reductions in the GGM. We consider black-box reductions in the generic group model.
We will limit ourselves to an informal description, but this can easily be formalized within existing formal
frameworks for reductions (see e.g. [10]). We let the reduction R access an adversary A, and denote by RA

the resulting algorithm – understood here is that R supplies inputs, answers queries, etc. In addition, we
let R and A access the Eval oracle available in the GGM. We stress that the GGM oracle is not under the
reduction’s control here – typically, the reduction itself will break a (hard) problem in the GGM with help
of A. We will allow (for simplicity) A to be run depending on some secret private coins6 not accessible by
R. Reductions can run A several times (with fresh private coins). We call a reduction straigthline if it only
runs A once.

In our case, the reduction R will be playing GSDH-GG
p,hLen . It receives as inputs σp1q, U � σpuq, V � σpvq,

and has access to the Eval, Ov oracles, as well as an adversary A for GODH-REAL-GG
p,hLen or GODH-RAND-GG

p,hLen . The
reduction needs therefore to supply inputs pσp1q, U 1, V 1,W q to A, and to answer its queries to the oracles
Hv, as well as queries to H. We will call such a reduction restricted if it is straightline and V 1 � V .

6 If we want to allow the reduction to control random bits, we model them explicitly as an additional input.

6

2.2 Compression Lemma

In our lower bound proof we use the compression lemma that was formalized in [7] which roughly means
that it is impossible to compress every element in a set with cardinality c to a string less than log c bits long,
even relative to a random string. We state the compression lemma here as a proposition.

Proposition 1. Suppose, there is a (not necessarily efficient) procedure Encode : X � R Ñ Y and a (not
necessarily efficient) decoding procedure Decode : Y �RÑ X such that

Pr
xPX ,rPR

rDecodepEncodepx, rq, rq � xs ¥ ε ,

then log |Y| ¥ log |X | � logp1{εq.

2.3 Polynomials and Schwartz-Zippel Lemma

Let ppX1, � � � , Xnq be a n variate polynomial. We denote by ppx1, � � � , xnq the evaluation of p at the point
px1, � � � , xnq throughout the paper. The polynomial ring in variables X1, � � � , Xn over the field Zp is denoted
by ZprX1, � � � , Xns. We state the Schwartz-Zippel Lemma in Zp which will be useful later.

Proposition 2. Let p be a non-zero n variate polynomial with degree d. Then

Pr
x1,��� ,xn Ð$Zp

rQpx1, � � � , xnq � 0 pmod pqs ¤ d

p
.

2.4 Key Encapsulation Mechanism (KEM)

A key-encapsulation mechanism (KEM) consists of three probabilistic polynomial time (PPT) algorithms
Gen,Encap,Decap. The key generation algorithm Gen is probabilistic and outputs a key-pair ppk, skq. The
encapsulation algorithm Encap is a probabilistic algorithm that takes pk as input and outputs a ciphertext c
and a key K where K P K for some non-empty set K. The decapsulation algorithm Decap is a deterministic
algorithm that takes as input the secret key sk and a ciphertext c outputs a key K P K if psk, cq is a valid
secret key-ciphertext pair and K otherwise. For correctness, it is required that for all pairs ppk, skq output
by Gen, if pK, cq is output by Encapppkq then K is the output of Decappsk, cq.
Single challenge KEM-CCA security. The single challenge CCA security of a KEM is defined by a
pair of games called GKEM-CCA-REAL,GKEM-CCA-RAND. In both games a ppk, skq pair is generated by Gen, and
pc,Kq is output by the encapsulation algorithm Encap on input pk. The adversary is provided with ppk, c,Kq
in GKEM-CCA-REAL and with ppk, c,K 1q in GKEM-CCA-RAND where K 1 is a randomly sampled element of K. The
adversary has access to the decapsulation oracle with sk as the secret key and it can make decapsulation
queries on any ciphertext except the ciphertext c and has to output a bit. We define the advantage of violating
single challenge KEM-CCA security is defined as the absolute value of the difference of probabilities of the
adversary outputting 1 in the two games. A KEM is single challenge CCA-secure if for all non-uniform PPT
adversaries the advantage of violating single challenge KEM-CCA security is negligible.

Single challenge KEM-CCA of Hashed ElGamal. We describe the KEM for Hashed ElGamal in a
group with order p and generator g and a hash function H. The function Gen samples v at random from
Zp, and returns pgv, vq as the ppk, skq pair. The function Encap on input v, samples u at random from
Zp and returns gu as the ciphertext and Hpguvq as the key K. The function Decap on input c, returns
Hpcvq. Note that Decap in KEM of Hashed ElGamal is identical to the Hv function as defined in the ODH
assumption. It follows that the single challenge KEM-CCA security of Hashed ElGamal is equivalent to the
ODH assumption. In particular, in the generic group model when H is modeled as a random oracle, the
single challenge KEM-CCA security of Hashed ElGamal is equivalent to the ODH assumption in the random
oracle and generic group model.

7

3 Memory Lower Bound on the ODH-SDH Reduction

3.1 Result and Proof Outline

In this section, we prove a memory lower bound for restricted black-box reductions from ODH to SDH. We
stress that the restricted reduction has access only to the H,Hv queries of the adversary. As discussed above,
the ODH assumption is equivalent to the single-challenge KEM-CCA security of Hashed ElGamal, this
proves a memory lower-bound for (restricted) black-box reductions of single challenge KEM-CCA security
of Hashed ElGamal to the SDH assumption.

Theorem 1 (Main Theorem). In the generic group model, with group order p, there exists an ODH
adversary A that makes k H queries and k Hv queries (where k is a polynomial in log p), a function ε1pp, hLenq
which is negligible in log p, hLen, and a function ε2ppq which is negligible in log p, such that,

1. AdvODH-GG
p,hLen pAq � 1� ε1pp, hLenq.

2. For all restricted black-box reductions R, with s bits of memory and making a total of q (assuming q ¥ k
and 6q ¤ p� 4k � 4) queries to Ov, Eval,

AdvSDH-GG
p,hLen pRAq ¤ 2 � 2 s2

�
48q3

p

 k
8c
�

1� 6q

p

q
� 4q2 log p� 13q2 � 5q

p
� ε2ppq ,

where c � 4r log qlog k s.

This result implies that if AdvSDH-GG
p,hLen pRAq is non-negligible for a reduction R making q queries where q is a

polynomial in log p, then s � Ωpk log pq i.e. the memory required by any restricted black-box reduction grows
with the number of queries by A. Hence, there does not exist any efficient restricted black-box reduction
from ODH to SDH that is memory-tight.

In Appendix C, we discuss how rewinding can slightly improve the memory complexity to (roughly)
Opk log kq, with heavy computational cost (essentially, one rewinding per oracle query of the adversary). We
conjecture this to be optimal, but a proof seems to evade current techniques.

De-randomization. Before we turn to the proof – which also connects several technical lemmas presented
across the next sections, let us discuss some aspects of the results. As explained above, our model allows
for the adversary A to be run with randomness unknown to R. This aspect may be controversial, but we
note that there is a generic way for A to be made deterministic. Recall that A must be inefficient for the
separation to even hold true. For example, A can use the injection σ from the generic group model to generate
its random coin – say, using σ�1paiq as coins a priori fixed labels a1,a2, It is a standard – albeit tedious
and omitted – argument to show that unless the reduction ends up querying the pre-images (which happens
with negligible probability only), the σ�1paiq’s are good random coins.

Strengthening beyond SDH. We would like to note that our result can be strengthened without much
effort to a reduction between ODH and a more general version of SDH. Informally, we can extend our result
to every problem which is hard in the generic group model in presence of an Ov oracle. For example, this
could be a problem where given g, gu, and gv, the attacker needs to output gfpu,vq, where f is (a fixed)
two-variate polynomial with degree at least 2. We do not include the proof for the strengthened version for
simplicity. However, it appears much harder to extend our result to different types of oracles than Ov, as our
proof is tailored at this oracle.

Proof. Here, we give the overall structure, the key lemmas, and how they are combined – quantitatively –
to obtain the final result.

First off, Lemma 1 establishes that there exists an adversary A such that AdvODH-GG
p,hLen pAq is close to 1,

which we will fix (i.e., when we refer to A, we refer to the one guaranteed to exist by the lemma). The proof
of Lemma 1 is in Section 4.1 and the proof of Lemma 2 is in Section 4.2.

8

Lemma 1. There exists an adversary A and a function ε1pp, hLenq such that is negligible in log p, hLen, and

AdvODH-GG
p,hLen pAq � 1� ε1pp, hLenq .

After that, we introduce a game, called G1 and described in Figure 3 in Section 4.2. Very informally, this
is a game played by a two-stage adversary R1,R2 which can pass a state to each other of size s bits and
have access to the Eval,Ov oracles. The game captures the essence of the reduction R the adversary A of
having a sufficient amount of memory. This is made formal in Lemma 2, where we show that the probability
of the reduction R winning GSDH-GG

p,hLen while running A is bounded by the probability of winning G1.

Lemma 2. For every restricted black box reduction R that runs A while playing GSDH-GG
p,hLen , there exist adver-

saries R1,R2 playing G1, such that the number of queries made by R1,R2 to Eval,Ov is same as the number
of queries made by R to Eval,Ov, the state passed from R1 to R2 is upper bounded by the memory used by
R and,

AdvSDH-GG
p,hLen pRAq ¤ Pr rG1 ñ trues � 4k2plog pq2

p
� 4qk log p� q2

p
.

We introduce Games G2,G3 in Figure 5 in Section 4.2. These games are identical to G1 except for the
condition to output true. The condition to output true in these games are disjoint and the disjunction of
the two conditions is equivalent to the condition to output true in G1. A little more specifically, both games
depend on a parameter l, which can be set arbitrarily, and in G3 and G2 the winning condition of G1 is
strengthened by additional ensuring that a certain set defined during the execution of the game is smaller
or larger than l, respectively. Therefore, tautologically,

Pr rG1 ñ trues � Pr rG2 ñ trues � Pr rG3 ñ trues . (1)

We now prove the following two lemmas below, in Sections 4.3 and 4.4,

Lemma 3. If pR1,R2q make q queries to their oracles in total in the game G2 as defined in Figure 5, then

Pr rG2 ñ trues ¤ ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
� k2 � k � 2

p
.

Lemma 4. If the size of the state φ output by R1 is s bits and pR1,R2q make q queries in total in the game
G3 as defined in Figure 5, then

Pr rG3 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

� k2 � k � 2

p
.

Combining (1) and the result of Lemmas 3 and 4 we get,

Pr rG1 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

�
2pk2 � k � 2q

p
� ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
. (2)

Since
�

1� 6q
p

	 2q�l
2 ¤

�
1� 6q

p

	q
, combining Lemma 2, (2) we get,

AdvSDH-GG
p,hLen pRAq ¤2 � 2 s2

�
8q2p2k � 2� 3qq

p

 l
2
�

1� 6q

p

q
� 2pk2 � k � 2q

p
�

2qp2k � 3q � 2q
p

� 5q

p
� 4k2plog pq2

p
� 4qk log p� q2

p
� ql

k!
.

9

We let,

ε2ppq � ql

k!
� 2pk2 � k � 2q

p
� 4k2plog pq2

p
.

Setting c � r log qlog k s and l � k
4c ,

ql

k! ¤ kk{4

k! . By Sterling’s approximation k! ¥ kk�1{2e�k. Therefore,

kk{4

k!
� kk{4

kk{4
ek

kk{4
1

kk{2�1{2
.

For k ¡ e4 (we can set k ¡ e4), ql

k! ¤ 1
kk{2�1{2 i.e. ql

k! is negligible in log p for k polynomial in log p. Also,
2pk2�k�2q

p � 4k2plog pq2

p is negligible in log p (since k is a polynomial in log p). So, ε2ppq is negligible in log p.
We have that,

AdvSDH-GG
p,hLen pRAq ¤2 � 2 s2

�
8q2p2k � 2� 3qq

p

 k
8c
�

1� 6q

p

q
�

2qp2k � 3q � 2q
p

� 5q

p
� 4qk log p� q2

p
� ε2ppq .

where c � 4r log qlog k s. Assuming q ¥ k (and thus q ¡ e4 ¡ 2), we get,

AdvSDH-GG
p,hLen pRAq ¤ 2 � 2 s2

�
48q3

p

 k
8c
�

1� 6q

p

q
� 4q2 log p� 13q2 � 5q

p
� ε2ppq .

[\

4 Proof of Theorem

4.1 Adversary A against ODH

In this section, we construct the ODH adversary A needed for the proof.

Lemma 1. There exists an adversary A and a function ε1pp, hLenq such that is negligible in log p, hLen, and

AdvODH-GG
p,hLen pAq � 1� ε1pp, hLenq .

Proof. The adversary A is formally defined in Figure 2. Adversary A samples i1, � � � , ik from Zp, and com-
putes σpijq, σpij � vq for all j in rks. It then makes Hv queries on σpijq’s for all j in rks. Adversary A then
samples a permutation π on rks Ñ rks, and then makes H queries on σpiπpjq � vq’s for all j in rks. If an-
swers of all the H queries are distinct and the answers of all the Hv queries are distinct and for all j in rks,
Hvpσpijqq � Hpσpij � vqq, A computes the discrete logarithm of V outputs the correct answer. Otherwise it
returns a bit sampled uniformly at random. Note that A is inefficient, but only if it is satisfied from the
responses it gets from the reduction using it.

First off, we note that adversary A does not use its input W until after the flag honest is set. So,
W does not affect the setting of honest in any way. Since W is the only difference among the inputs of
GODH-REAL-GG
p,hLen pAq and GODH-RAND-GG

p,hLen pAq to A, Pr rhonest � 0s and Pr rhonest � 1s are equal in both games.
The flag honest is set to 0 in the following two cases.

1. for some distinct j, l P rks , ans1rjs � ans1rls or ans2rjs � ans2rlsq. i.e.

Dj, l P rks, j � l : Hpσpijqq � Hpσpilqq _ Hpσpij � vqq � Hpσpil � vqq .
We name this event E1. Note that if for some distinct j, l P rks, ij � il, then the event E1 happens with
probability 1 since Hpijq � Hpilq. We compute the probability of that there exists some distinct j, l P rks,
such that ij � il.

Pr rDj, l P rks, j � l : ij � ils �
ķ

j�1

j � 1

p
� kpk � 1q

p
.

10

Also, note that if v � 0, E1 happens with probability 1 since Hpσpij � 0qq � Hpσp0qq � Hpσpil � 0qq. Since
v is sampled uniformly at random from Zp, Pr rv � 0s � 1

p .

We define the event E2 as follows.

pEj, l P rks, j � l : ij � ilq ^ pv � 0q .
Using the union bound,

Pr r E2s ¤ kpk � 1q
p

� 1

p
.

Since, σ is an injective function, E2 implies

Ej, l P rks, j � l : σpijq � σpilq _ σpij � vq � σpil � vq .
Since H is a random oracle, the collision probability is,

Pr
�
Hprq � Hpsq �� r � s

� � 1

2hLen
.

Therefore, using the union bound we have,

Pr
�
E1

��E2

� ¤ kpk � 1q
2hLen

.

Hence,

Pr rE1s ¤ Pr r E2s � Pr
�
E1

��E2

� ¤ kpk � 1q � 1

p
� kpk � 1q

2hLen
.

2. for some j P rks, ans1rjs � ans2rjs i.e.

Dj P rks : Hvpσpijqq � Hpσpij � vqq .
This is an impossible event in GODH-REAL-GG

p,hLen pAq and GODH-RAND-GG
p,hLen pAq by the definition of Hv.

Therefore,

Pr rhonest � 0s � Pr rE1s ¤ kpk � 1q � 1

p
� kpk � 1q

2hLen
.

In GODH-REAL-GG
p,hLen pAq, if honest � 1, the output of GODH-REAL-GG

p,hLen pAq will always be 1 because W � Hpσpuvqq �
Hpinpq �W 1. Therefore,

Pr
�
GODH-REAL-GG
p,hLen pAq ñ 1

� ¥ Pr rhonest � 1s ¥ 1�
�
kpk � 1q � 1

p
� kpk � 1q

2hLen

.

In GODH-RAND-GG
p,hLen pAq, if honest � 1, the probability that W � W 1 is at most 1

2hLen because W is sampled

uniformly at random from the range of H in GODH-RAND-GG
p,hLen . So we have,

Pr
�
GODH-RAND-GG
p,hLen pAq ñ 1

� ¤ Pr rhonest � 0s � 1

2
� Pr rhonest � 1s � 1

2hLen

¤ kpk � 1q � 1

2p
� kpk � 1q

2hLen�1
� 1

2hLen

�
1� kpk � 1q � 1

p
� kpk � 1q

2hLen

.

Hence,

Pr
�
GODH-REAL-GG
p,hLen pAq ñ 1

�� Pr
�
GODH-RAND-GG
p,hLen pAq ñ 1

�
¥ 1�

��
3kpk � 1q � 1

2p
� 3kpk � 1q

2hLen�1

� 1

2hLen

�
1� kpk � 1q � 1

p
� kpk � 1q

2hLen

�
.

We let, ε1pp, hLenq �
�

3kpk�1q�1
2p � 3kpk�1q

2hLen�1

	
� 1

2hLen

�
1� kpk�1q�1

p � kpk�1q
2hLen

	
. Since k is polynomial in log p,

ε1pp, hLenq is negligible in log p, hLen. Therefore,

AdvODH-GG
p,hLen pAq ¥ 1� ε1pp, hLenq .

[\

11

Adversary AHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq :

1 : i1, � � � , ik Ð$Zp
2 : foreach j P rks do

3 : Q1rjs Ð Exppσp1q, ijq;Q2rjs Ð ExppV, ijq

4 : honest Ð 1

5 : foreach j P rks do

6 : ans1rjs Ð HvpQ1rjsq

7 : π Ð$Sk
8 : foreach j P rks do

9 : ans2rπpjqs Ð HpQ2rπpjqsq

10 : if Dj, l P rks, j � l : pans1rjs � ans1rls _ ans2rjs � ans2rlsq then honest Ð 0

11 : if Dj P rks : ans1rjs � ans2rjs then honest Ð 0

12 : if honest � 1 then

13 : temp Ð σp1q; v Ð 1

14 : while ptemp � V q

15 : temp Ð Evalptemp, σp1qq; v Ð v � 1

16 : inp Ð ExppU, vq;W 1 Ð Hpinpq; bÐ pW 1 � W q

17 : else bÐ$ t0, 1u

18 : return b

Fig. 2. The adversary A

4.2 The Shuffling Games

The Game G1.We first introduce the two-stage game G1 played by a pair of adversaries R1 and R2. (With
some foresight, these are going to be two stages of the reduction.) It is formally described in Figure 3. Game
G1 involves sampling σ, i1, � � � , ik, v from Zp, then running R1, followed by sampling permutation π from Sk
and then running R2. The first stage R1 has inputs σpi1q, � � � , σpikq and it outputs a state φ of s bits along
with k strings in t0, 1uhLen. The second stage R2 has inputs φ, σpiπp1q � vq, � � � , σpiπpkq � vq and it outputs

k strings in t0, 1uhLen. Both the stages R1,R2 have access to oracles Eval,Ov. Game G1 outputs true if all
the k strings output by R1 are distinct, and if all the k strings output by R2 are distinct, and if for all
j P rks, the jth string output by R2 is identical to the πpjqth string output by R1. Additionally, G1 involves
some bookkeeping. The Eval,Ov oracles in G1 take an extra parameter named from as input which indicates
whether the query was from R1 or R2.

We introduce the phrase “seen by” before describing the bookkeeping. A label has been “seen by” R1 if it
was an input to R1, queried by R1 or an answer to a previously made Evalp., ., 1q query. A label has been
“seen by” R2 if it was an input to R2, queried by R2 or an answer to a previously made Evalp., ., 2q query.
We describe the sets X ,Y1,Y2,Z which are used for bookkeeping in G1.

– The labels in X are answers to Evalp., ., 1q queries such that it has not yet been “seen by” R1 before the
query.

– Y1 contains all the labels that are input to R1, queried by R1 or answers to Evalp., ., 1q queries i.e. it is
the set of labels “seen by” R1.

– Y2 contains all the labels that are input to R2, queried by R1 or answers to Evalp., ., 2q queries i.e. it is
the set of labels “seen by” R2.

– All labels in Z are queried by R2 and have not been “seen by” R2 before the query and are in X

The following lemma tells us that we can (somewhat straightforwardly) take a reduction as in the theorem
statement, and transform it into an equivalent pair R1,R2 of adversaries for G1. The point here is that the
reduction is very unlikely to succeed in breaking the SDH assumption without doing an effort equivalent to
winning G1 to get A’s help – otherwise, it is left with breaking SDH directly in the generic group model,
which is hard.

12

Game G1 :

1 : σ Ð$ InjFuncpZp,Lq; i1, � � � , ik, v Ð$Zp
2 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

3 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

4 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

5 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

6 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

7 : return win

Oracle Evalpa,b, fromq :

1 : c Ð σpσ�1paq � σ
�1pbqq

2 : if from � 1 then

3 : if c R Y1 then X Y
ÐÝ tcu

4 : Y1
Y
ÐÝ ta,b, cu

5 : if from � 2 then

6 : if a P X zY2 then Z Y
ÐÝ tau

7 : if b P X zY2 then Z Y
ÐÝ tbu

8 : Y2
Y
ÐÝ ta,b, cu

9 : return c

Oracle Ovpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

6 : return pv � σ�1paq � σ
�1pbqq

Fig. 3. Game G1. We use the phrase R1,R2 win G1 to mean G1 ñ true. We shall use this convention for all games
in the paper that output boolean values.

Adversary BHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq :

1 : i1, � � � , ik Ð$Zp
2 : foreach j P rks do

3 : Q1rjs Ð Exppσp1q, ijq;Q2rjs Ð ExppV, ijq

4 : honest Ð 1

5 : foreach j P rks do

6 : ans1rjs Ð HvpQ1rjsq

7 : π Ð$Sk
8 : foreach j P rks do

9 : ans2rπpjqs Ð HpQ2rπpjqsq

10 : if Dj, l P rks, j � l : pans1rjs � ans1rls _ ans2rjs � ans2rlsq then honest Ð 0

11 : if Dj P rks, j � l : ans1rjs � ans2rjs then honest Ð 0

12 : bÐ$ t0, 1u

13 : return b

Fig. 4. Adversary B

Proof. We introduce the adversary B which is identical to A till setting of honest (line 11) and then returns
a bit uniformly at random. It is formally defined in Figure 4. Since the value honest does not change after
line 11 in either A or B, the value of honest will be identical in A,B. Also, observe that if honest is set to 0
in A, A’s output is identical to that of B.

Consider any restricted black-box reduction R from ODH to SDH in the random oracle and generic group
model that has oracle access to A. During the execution of RA if honest � 0 in A, then it has the same
output as B. So, Therefore,

Pr
�
GSDH-GG
p,hLen pRAq ñ true

� ¤ Pr
�
GSDH-GG
p,hLen pRBq ñ true

��Pr
�
honest � 1 in A during the execution of RA� .

(3)

13

The adversary RB makes at most 2k log p� q queries to its oracles. From the hardness of SDH in the generic
group model [1], it follows

AdvSDH-GG
p,hLen pRBq ¤ 4k2plog pq2

p
� 4qk log p� q2

p
. (4)

We show that if honest � 1 in A when R runs A, R � pR1,R2q can run R and win G1 . We next describe

how R1,R2 run and simulate A, GSDH-GG
p,hLen to R.

Recall that R1 has inputs σp1q, σpvq, σpi1q, � � � , σpikq. First off, R1 samples u uniformly at random from
Zp and computes σpuq � Exppσp1q, uq. It then starts running R with inputs σp1q, σpuq, σpvq and simulates
the oracles Eval,Ov to R. For every Evalpa,bq query made by R, R1 makes an Evalpa,b, 1q query to its own
oracle and forwards the answer to R. For every Ovpa,bq query made by R, R1 makes an Ovpa,b, 1q query
to its own oracle and forwards the answer to R. R1 makes Hv queries to R on σpi1q, � � � , σpikq and receives
responses s1, � � � , sk. R1 stops the execution of R after making the Hv queries, records the local state st of
R. Finally, R1 outputs st along with s1, � � � , sk. Recall that R2 has inputs st, σpiπp1q � vq, � � � , σpiπpkq � vq.
First, R2 restarts R from state st. For every Evalpa,bq query made by R, R2 makes an Evalpa,b, 2q query to
its own oracle and forwards the answer to R. For every Ovpa,bq query made by R, R2 makes an Ovpa,b, 2q
query to its own oracle and forwards the answer to R. R2 makes H queries to R on σpiπp1q �vq, � � � , σpiπpkq �vq
and receives responses s11, � � � , s1k. Finally, R2 outputs s11, � � � , s1k.

Observe that σ, u, v are sampled identically in GSDH-GG
p,hLen pRAq,G1, i1, � � � , ik, π are sampled identically in

A,G1 and R1,R2 make the same queries to R as A does in the same order. It follows that R1,R2 perfectly
simulate A, GSDH-GG

p,hLen to R. Also note that the number of queries made by R1,R2 to Eval,Ov is same as
the number of queries made by R to Eval,Ov and the state passed from R1 to R2 is upper bounded by the
memory used by R because φ is the local state st of R at a certain point in its execution.

Next we relate the probabilities of honest � 1 in A and G1 ñ true. If honest � 1 in A we have the
following.

1. There does not exist distinct j, l P rks such that ans1rjs � ans1rls. The equivalent condition in G1 is
@j, l P rks : j � l ùñ sj � sl .

2. There does not exist distinct j, l P rks such that ans2rjs � ans2rls. The equivalent condition in G1 is
@j, l P rks : j � l ùñ s1j � s1l .

3. For all j P rks, ans1rjs � ans2rjs. The equivalent condition in G1 is @j P rks : sπpjq � s1j .

It follows that whenever honest � 1 in A, G1 ñ true. Hence,

Pr
�
honest � 1 in A during the execution of RA� ¤ Pr rG1 ñ trues . (5)

From (3) and (5), it follows that,

AdvSDH-GG
p,hLen pRAq ¤ AdvSDH-GG

p,hLen pRBq � Pr rG1 ñ trues . (6)

Combining (4) and (6), we have,

AdvSDH-GG
p,hLen pRAq ¤ Pr rG1 ñ trues � 4k2plog pq2

p
� 4qk log p� q2

p
. (7)

[\
Lemma 2. For every restricted black box reduction R that runs A while playing GSDH-GG

p,hLen , there exist adver-
saries R1,R2 playing G1, such that the number of queries made by R1,R2 to Eval,Ov is same as the number
of queries made by R to Eval,Ov, the state passed from R1 to R2 is upper bounded by the memory used by
R and,

AdvSDH-GG
p,hLen pRAq ¤ Pr rG1 ñ trues � 4k2plog pq2

p
� 4qk log p� q2

p
.

14

Game G2 , G3 :

1 : σ Ð$ InjFuncpZp,Lq; i1, � � � , ik, v Ð$Zp
2 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

3 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

4 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

5 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

6 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

7 : return pwin ^ |Z| lq return pwin ^ |Z| ¥ lq

Fig. 5. Games G2,G3. The Eval,Ov oracles in G2,G3 are identical to those in G1 and hence we do not rewrite it here.
The newly introduced changes compared to G1 are highlighted. The statement within the thinner box is present only
in G3 and the statement within the thicker box is present only in G2.

Game PGpAq :

1 : π Ð$Sk

2 : π
1 Ð AOp.,.q

3 : return pπ � π
1q

Oracle Op~x, ~yq : // ~x P Zkp, ~y P Zkp

1 : return p@i P rks : ~xrπpiqs � ~yrisq

Fig. 6. The permutation game PG being played by adversary A is denoted by PGpAq

The Games G2 and G3. In Figure 5 we define G2,G3 which have an added check on the cardinality of Z
to output true. Everything else remains unchanged (in particular Eval,Ov are unchanged from G1 and we
do not specify them again here). The statement within the thinner box is present only in G3 and statement
within the thicker box is present only in G2. The changes from G1 have been highlighted. We shall follow
these conventions of using boxes and highlighting throughout the paper.

The games G2,G3 are identical to G1 except for the condition to output true. Since this disjunction of
the conditions to output true in G2,G3 is equivalent to the condition to output true in G1, and the conditions
to output true in G2,G3 are disjoint, we have,

Pr rG1 ñ trues � Pr rG2 ñ trues � Pr rG3 ñ trues .

4.3 Proof of Lemma 3

Recall we are going to prove the following lemma.

Lemma 3. If pR1,R2q make q queries to their oracles in total in the game G2 as defined in Figure 5, then

Pr rG2 ñ trues ¤ ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
� k2 � k � 2

p
.

Proof. We introduce a new game – called the permutation game and denoted PG – in order to upper bound
Pr rG2 ñ trues. In the rest of this proof, we are going to first define the game, and upper bound the winning
probability of an adversary. Then, we are going to reduce an adversary for G2 to one for PG.

The Permutation Game. In Game PG, an adversary has to guess a randomly sampled permutation π
over rks. The adversary has access to an oracle that takes as input two vectors of length k and returns true
if the elements of the first vector, when permuted using π, results in the second vector and false otherwise.
Figure 6 formally describes the game PG.

In the following, we say an adversary playing PG is a pq, lq-query adversary if it makes at most q queries
to O, and the rank of the vectors that were the first argument to the O queries returning true is at most l.

The following lemma – which we prove via a compression argument – yields an upper bound on the
probability of winning the game for a pq, lq-query adversary.

15

Procedure Encodepπq :

1 : cÐ 0

2 : S Ð H

3 : enc Ð H

4 : π
1 Ð AOp.,.q

5 : return enc

Oracle Op~x, ~yq :

1 : cÐ c� 1

2 : if pDi P rks : ~xrπpiqs � ~yrisq then

3 : return false

4 : else

5 : if ~x R spanpSq then

6 : S Ð S Y t~xu

7 : enc Ð enc Y tcu

8 : return true

Procedure Decodepencq :

1 : cÐ 0

2 : S
1 Ð H

3 : π
1 Ð AOp.,.q

4 : return π
1

Oracle Op~x, ~yq :

1 : cÐ c� 1

2 : if c P enc then

3 : S
1 Ð S

1 Y tp~x, ~yqu

4 : return true

5 : return pp~x, ~yq P spanpS1qq

Fig. 7. Encoding and decoding π using A

Lemma 5. For a pq, lq-query adversary A playing PG the following is true.

Pr rPGpAq ñ trues ¤ ql

k!
.

Proof. We construct an encoding of π by running adversary A. In order to run A, all the O queries need to
be correctly answered. This can be naively done by storing the sequence number of queries whose answers
are true. In fact, of all such queries, we need to just store the sequence number of just those whose first
argument is not in the linear span of vectors which were the first argument of previous such queries i.e. we
store the sequence number of only those O queries returning true whose first argument form a basis of the
first argument of all O queries returning true. This approach works because for every vector ~x, there is only a
unique vector ~y such that Op~x, ~yq � 1. The random tape of the adversary can be derived using the common
randomness of Encode,Decode and hence the adversary produces identical queries and output. For simplicity,
we do not specify this explicitly in the algorithms and treat A as deterministic. The formal description of
the algorithms Encode,Decode are in Figure 7.

Observe that S is a basis of vectors ~x such that Op~x, ~yq � true. Note that for an Op~x, ~yq query returning
true, if ~x P S then the sequence number of the query is stored in enc. Therefore, p~x, ~yq P S1 in Decode. Again,
for an Op~x, ~yq query returning true, if ~x R S then the sequence number of the query is not stored in enc and
therefore p~x, ~yq R S1. So, for an Op~x, ~yq query returning true, p~x, ~yq P S1 iff ~x P S. Since, for all p~x, ~yq such
that Op~x, ~yq � true we have that for all i P rks, ~yris � ~xrπ�1piqs, it follows that S1 forms a basis of vectors
p~x, ~yq such that Op~x, ~yq � true.

In Decodepencq, the simulation of Op~x, ~yq is perfect because

– If c is in enc, then ~x P S in Encode. From the definition of S in Encode, it follows that Op~x, ~yq should
return true.

– Otherwise we check if p~x, ~yq P spanpS1q and return true if the check succeeds, false otherwise. This is
correct since in S1 is a basis of vectors p~x, ~yq such that Op~x, ~yq � true.

The encoding is a set of |S| query sequence numbers. Since there are at most q queries, the encoding
space is at most

�
q
|S|

�
. Using X to be the set Sk, Y to be the set of all possible encodings, R to be the set of

random tapes of A, it follows from Proposition 1 that,

Pr rDecoding is sucessfuls ¤
�
q
|S|

�
k!

.

16

Procedure PopulateSetsEvalpa,b, c, fromq :

1 : if from � 1 then

2 : if c R Y1 then X Y
ÐÝ tcu

3 : Y1
Y
ÐÝ ta,b, cu

4 : if from � 2 then

5 : if a P X z Y2 then Z Y
ÐÝ tau

6 : if b P X zY2 then Z Y
ÐÝ tbu

7 : Y2
Y
ÐÝ ta,b, cu

Procedure PopulateSetsOvpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

Fig. 8. Subroutines PopulateSetsEval,PopulateSetsOv

Since the simulation of Op~x, ~yq is perfect in Decode, decoding is successful if PGpAq ñ true. Therefore,

Pr rPGpAq ñ trues ¤
�
q
|S|

�
k!

¤ q|S|

k!
.

Since A is a pq, lq-query adversary, |S| ¤ l. Thus, we have,

Pr rPGpAq ñ trues ¤ ql

k!
(8)
[\

Reduction to PG. We next show that the Pr rG2 ñ trues is upper bounded in terms of the probability of
a pq, lq-query adversary winning the game PG.

Lemma 6. There exists a pq, lq-query adversary D against the permutation game PG such that

Pr rG2 ñ trues ¤ Pr rPGpDq ñ trues � 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
.

Proof. We transform R1,R2 playing G2 to an adversary D playing the game PG through a sequence of
intermediate games and use the upper bound on the probability of winning the game PG established previ-
ously to prove an upper bound on Pr rG2 ñ trues. In order to make the pseudocode for subsequent games
compact we define the two subroutines PopulateSetsEval,PopulateSetsOv and invoke them from Eval,Ov. The
subroutines PopulateSetsEval,PopulateSetsOv are formally described in Figure 8.

The game G4.We next describe game G4 where we introduce some additional bookkeeping. In G4, every
valid label that is an input to R1,R2 or queried by R1,R2 or an answer to a query of R1,R2, is mapped
to a polynomial in ZprI1, � � � , Ik, V, T1, � � � , T2qs where q is the total number of Eval,Ov queries made by
R1,R2. The polynomial associated with label a is denoted by pa. Similarly, we define Λ to be a mapping
from polynomials to labels. For all labels a P L, Λppaq � a. The mapping from labels to polynomials is done
such that for every label a mapped to pa,

σ�1paq � papi1, � � � , ik, v, t1, � � � , t2qq .
For compactness, let us denote pi1, � � � , ik, v, t1, � � � , t2qq by~i. Prior to running R1, polynomials 1, V, I1, � � � , Ik,
I1V, � � � , IkV are assigned to pσp1q, pσpvq, pσpi1q, � � � , pσpikq, pσpi1�vq, � � � , pσpik�vq respectively and for all other
labels a P L, pa � K. The function Λ is defined accordingly. For labels a queried by R1,R2 that have not
been previously mapped to any polynomial (i.e. pa � K), pa is assigned Tnew (new starting from 1 and being
incremented for every such label queried), the variable tnew is assigned the pre-image of the label and ΛpTnewq
is assigned a. Since there are q queries (each with two inputs), there can be at most 2q labels that had not
previously been mapped to any polynomial. Hence, the polynomials have variables I1, � � � , Ik, V, T1, � � � , T2q.

For an Evalpa,b, .q query where c � σpσ�1paq � σ�1pbqq, let p1 � pa � pb. From the definition of p, we
have that p1p~iq � σ�1paq � σ�1pbq. If Λpp1q � K, then by definition of Λ, we have Λpp1q � c. If Λpp1q � K,
then exactly one of the following two must be true.

17

Game G4 :

1 : σ Ð$ InjFuncpZp,Lq; foreach a P L do pa Ð K

2 : foreach p1 P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λpp
1q Ð K

3 : i1, � � � , ik, v Ð$Zp; pσp1q Ð 1;Λp1q Ð σp1q

4 : if pσpvq � K then pσpvq Ð V

5 : ΛpV q Ð σpvq

6 : foreach j P rks do

7 : if pσpijq � K then pσpijq Ð Ij

8 : ΛpIjq Ð σpijq

9 : if pσpv�ijq � K then pσpv�ijq Ð V Ij

10 : ΛpV Ijq Ð σpv � ijq

11 : new Ð 0;X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

12 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

13 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

14 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

15 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

16 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : p1 Ð pa � pb

6 : if Λpp1q � K then

7 : if Dc1 P L : pc1 p~iq � p1p~iq then

8 : Λpp1q Ð c1

9 : else

10 : Λpp1q Ð σpσ�1paq � σ�1pbqq;

11 : pΛpp1q Ð p1

12 : PopulateSetsEvalpa,b, Λpp1q, fromq

13 : return Λpp1q

Oracle Ovpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : ans Ð pV pa � pbq

6 : if pvpap~iq � pbp~iqq � ans then

7 : ans Ð pvpap~iq � pbp~iqq

8 : PopulateSetsOvpa,b, fromq

9 : return ans

Procedure AssignPolyp`q :

1 : new Ð new � 1; tnew Ð σ
�1p`q; p` Ð Tnew;ΛpTnewq Ð `

Fig. 9. G4 introduces additional bookkeeping. The newly introduced changes compared to G2 are highlighted.

1. The label c has been mapped to a polynomial which is different from p1. In this case pcp~iq � p1p~iq and
Λpp1q is assigned c.

2. The label c has not been mapped to any polynomial. In this case, pc is assigned p1 and Λpp1q is assigned
c.

The label Λpp1q is returned as the answer of the Eval query. Note that the output of Eval is c � σpσ�1paq �
σ�1pbqq in all cases, i.e. it is the same as the output of Eval in G2.

For an Ovpa,b, .q query, we first assign the boolean value V pa � pb to ans. Note that if ans is true, then
v � σ�1paq � σ�1pbq. However, we might have that v � σ�1paq � σ�1pbq and V pa � pb. When this happens,
the boolean value vppap~iq � pbp~iqq is assigned to ans. Oracle Ov returns ans. From the definition of p, it
follows that the value returned by Ov in G4 is pv � σ�1paq � σ�1pbqq i.e. it is the same as the output of Ov

in G2.

18

Game G5 :

1 : foreach i P Zp do σpiq Ð K; foreach a P L do pa Ð K

2 : foreach p1 P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λpp
1q Ð K

3 : i1, � � � , ik, v Ð$Zp;σp1q Ð$L; pσp1q Ð 1;Λp1q Ð σp1q

4 : if pσpvq � K then σpvq Ð$Rpσq; pσpvq Ð V

5 : ΛpV q Ð σpvq

6 : foreach j P rks do

7 : if pσpijq � K then σpijq Ð$Rpσq; pσpijq Ð Ij

8 : ΛpIjq Ð σpijq

9 : if pσpv�ijq � K then σpv � ijq Ð$Rpσq; pσpv�ijq Ð V Ij

10 : ΛpV Ijq Ð σpv � ijq

11 : new Ð 0;X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

12 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

13 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

14 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

15 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

16 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : p1 Ð pa � pb

6 : if Λpp1q � K then

7 : if Dc1 P L : pc1 p~iq � p1p~iq then

8 : Λpp1q Ð c
1

9 : else

10 : σpp1p~iqq Ð$Rpσq;Λpp1q Ð σpp1p~iqq

11 : pΛpp1q Ð p1

12 : PopulateSetsEvalpa,b, Λpp1q, fromq

13 : return Λpp1q

Oracle Ovpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : ans Ð pV pa � pbq

6 : if pvpap~iq � pbp~iqq � ans then

7 : ans Ð pvpap~iq � pbp~iqq

8 : PopulateSetsOvpa,b, fromq

9 : return ans

Procedure AssignPolyp`q :

1 : new Ð new � 1; tnew Ð$Dpσq;σptnewq Ð `; p` Ð Tnew;ΛpTnewq Ð `

Fig. 10. G5 lazily samples σ. The newly introduced changes compared to G4 are highlighted.

Figure 9 formally describes G4. The changes in G4 compared to G2 have been highlighted. We have
already pointed out that the outputs of Ov,Eval in G4 are identical to those in G2. Since the other changes
involve only additional bookkeeping, the outputs of G2,G4 are identical. Therefore

Pr rG4 ñ trues � Pr rG2 ñ trues . (9)

The game G5.We define G5 in Figure 10 where σ is lazily sampled. Since σ is lazily sampled, it is a partial
function and we use previously defined notations Dpσq, Rpσq, Dpσq, Rpσq. There are no other changes in G5

compared to G4.
In G4, σ is sampled uniformly at random from InjFuncpZp,Lq. In G5, if σpiq is previously not defined,

it is sampled uniformly from the values in the range that do not have a pre-image and similarly if σ�1pxq
is previously not defined, it is sampled uniformly from the values in the domain that do not have a image.
Therefore, the distribution of σ on the points in Dpσq in G5 is identical to the distribution of σ on the

19

Game G6 ,G7 :

Procedure AssignPolyp`q :

1 : new Ð new � 1; tnew Ð$Zp

2 : if σptnewq � K then bad Ð true; tnew Ð$Dpσq

3 : σptnewq Ð `; p` Ð Tnew;ΛpTnewq Ð `

Fig. 11. In G7 we remove the restriction on tj ’s. The main procedure of G6,G7 are identical to G5 and the only
changes in the oracles are the AssignPoly procedure, hence we write only the AssignPoly procedure. The changes in
the procedure from that in G5 have been highlighted. The boxed statement is present only in G6.

points in Dpσq if σ was sampled from InjFuncpZp,Lq. So, in G5, the distribution of σ on the points in Dpσq
is identical to that of G4. Since σ is never evaluated on points outside Dpσq in either games and there are
no other changes in G5, the outputs of G4,G5 are identical.

Pr rG4 ñ trues � Pr rG5 ñ trues . (10)

The Games G6 and G7. Next, we define Games G6,G7. The changes introduced in G6 from G5 have been
highlighted (as before). In G7 we want to sample tj ’s from Zp instead of Dpσq. So in G6 we first sample them
from Zp and define a bad event if σptjq � K i.e. tj P Dpσq. If this bad event happens, then we resample tj
from Dpσq. We then remove this resampling in G7. The main procedure of G6,G7 are identical to G5 and
the only changes in the oracles are the AssignPoly procedure, hence we rewrite only the AssignPoly procedure
in Figure 11.

Observe from the pseudocode that outputs of G5,G6 are identical. Therefore,

Pr rG6 ñ trues � Pr rG5 ñ trues . (11)

After σp1q, σpvq, σpi1q, � � � , σpikq, σpi1 � vq, � � � , σpik � vq are sampled, the size of Dpσq is at most 2k � 2. For
every query Dpσq can grow by size at most 3 (in case of Eval queries). Therefore, the size of Dpσq is at most
2k � 3q � 2. Since bad is set only when an element from Dpσq is sampled,

Pr rbad � true in G7s ¤ 2qp2k � 3q � 2q
p

.

It is evident from their pseudocodes that G6,G7 are identical-until-bad. From the Fundamental Lemma
Game Playing we get,

Pr rG6 ñ trues ¤ Pr rG7 ñ trues � 2qp2k � 3q � 2q
p

. (12)

In G7, note that Rpσq � RpΛq and Dpσq is not used anywhere. Also the condition pσpjq � K is equivalent

to the condition that there exists some p such that Λppq � K and pp~iq � j and the condition there exists
c1 P L such that pc1p~iq � p1p~iq is equivalent to the condition there exists some p such that Λppq � K and
pp~iq � p1p~iq. Hence, G7 can be rewritten without σ.

The Games G8 and G9. Next, we introduce games G8,G9. In G8 we remove σ (we had previously pointed
out G7 can be rewritten without σ), remove some redundant code and the bad event in G7 and add new bad
events when there is some p such that Λppq � K and pp~iq � p1p~iq in Eval and pvpap~iq � pbp~iqq � ans in Ov.
Hence outputs of G7,G8 are identical.

Pr rG7 ñ trues � Pr rG8 ñ trues . (13)

Since ~i affects only the setting of bad in Eval,Ov we see that ~i may well have been sampled at the very
end of G9 and it can be checked if any of the Eval,Ov queries would have set bad to true. The degree of any

20

Game G8 ,G9 :

1 : foreach a P L do pa Ð K; foreach p1 P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λpp
1q Ð K

2 : i1, � � � , ik, v Ð$Zp;Λp1q Ð$L; pΛp1q Ð 1

3 : if Dp : Λppq � K ^ pp~iq � v then ΛpV q Ð Λppq

4 : else ΛpV q Ð$RpΛq; pΛppq Ð V

5 : foreach j P rks do

6 : if Dp : Λppq � K ^ pp~iq � ij then ΛpIjq Ð Λppq

7 : else ΛpIjq Ð$RpΛq; pΛpIjq Ð Ij

8 : if Dp : Λppq � K ^ pp~iq � ij � v then ΛpV Ijq Ð Λppq

9 : else ΛpV Ijq Ð$RpΛq; pΛpV Ijq Ð V Ij

10 : new Ð 0;X Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu;Y1 Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu

11 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqq

12 : π Ð$Sk;Y2 Ð tΛp1q, ΛpV q, ΛpV I1q, � � � , ΛpV Ikqu;Z Ð H

13 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ,Λp1q, ΛpV q, ΛpIπp1q � V q, � � � , ΛpIπpkq � V qq

14 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

15 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : p1 Ð pa � pb

6 : if Λpp1q � K then

7 : if Dp : Λppq � K ^ pp~iq � p1p~iq then

8 : bad Ð true

9 : Λpp1q Ð Λppq

10 : else Λpp1q Ð$RpΛq; pΛpp1q Ð p1

11 : PopulateSetsEvalpa,b, Λpp1q, fromq

12 : return Λpp1q

Oracle Ovpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : ans Ð pV pa � pbq

6 : if pvpap~iq � pbp~iqq � ans then

7 : bad Ð true

8 : ans Ð pvpap~iq � pbp~iqq

9 : PopulateSetsOvpa,b, fromq

10 : return ans

Procedure AssignPolyp`q :

1 : new Ð new � 1; tnew Ð$Zp; p` Ð Tnew;ΛpTnewq Ð `

Fig. 12. Games G8,G9 introduce new bad events. We remove σ from these games. The changes from G7 have been
highlighted. The boxed statements are present only in G8.

polynomial is at most 2 since every polynomial has monomials only of the form Ij , V Ij , Tj , V and constants.
We compute the probability of badÐ true in G9 in Eval,Ov.

In Eval, bad is set to true if Λpp1q � K and for some label c1 pc1p~iq � p1p~iq. From the definition of Λ,
it follows that Λpp1q � K implies pc1 � p1. We therefore have p1p~iq � pc1p~iq � 0. Note that p1 � pc1 is not
identically zero since Λpp1q � K and the degree of p1 � pc1 is at most 2. Observe that the elements of ~i are
sampled from Zp and could have been sampled at the very end of G9 because ~i does not affect anything

other than setting bad. So, the probability p1p~iq � pc1p~iq � 0 is bounded by 2
p by Proposition 2. Since there

are at most q Eval queries, the probability that bad is set to true due to this condition in any of the Eval
queries in G9 is bounded by 2q

p using the union bound.

In Ov, bad is set to true is when pvpap~iq � pbp~iqq, pV pa � pbq are different boolean values. Note that
when pV pa � pbq � true then pvpap~iq � pbp~iqq. The only case when the two boolean values differ is when
pV pa � pbq � false and vpap~iq � pbp~iq i.e. pV pa�pbq is not identically zero but vpap~iq�pbp~iq � 0. Note that

21

the degree of pV pa�pbq is at most 3 (since V pa can have degree at most 3) . Like the previous analysis since
the elements of ~i are sampled from Zp and could have been sampled at the very end of G9, the probability

vpap~iq � pbp~iq � 0 is bounded by 3
p by Proposition 2. Since there are at most q Ov queries, the probability

that bad is set to true due to this condition in any of the Ov queries in G9 is bounded by 3q
p using the union

bound. Therefore,

Pr rbad � true in G9s ¤ 5q

p
.

Note that G8 and G9 are identical-until-bad. Therefore, using the Fundamental Lemma of Game Playing we
get,

Pr rG8 ñ trues ¤ Pr rG9 ñ trues � 5q

p
. (14)

We note that in G9, Λ becomes an injective function since for p � p1, Λppq � Λpp1q. Therefore, Λ�1 is well
defined. This means that for all labels `, p` can be replaced by Λ�1p`q throughout G9. Also,pV pa � pbq is
always returned from Ov and hence the check on ans can be omitted. The bad events can be removed from
G9 because it does not affect its execution in any way. That in turn implies tj ’s do not affect the execution
of G9 and can also be removed. Since G10 only introduces a new bad event compared to G9 and the bad
event does not affect the output,

Pr rG9 ñ trues � Pr rG10 ñ trues . (15)

We need to compute the probability that bad is set to true in procedure RestrictedSample of G10. First we
compute the probability that v P t0, 1u,

Pr
v Ð$Zp

rv P t0, 1us � 2

p
.

Note that just before ij sampled in G10 the size of S Y S 1 is at most 2j. We compute the probability that
ij P S Y S 1 for some j P rks,

Pr
ij Ð$Zp

�
ij P S Y S 1

� ¤ 2j

p
.

In G10, since bad can be set to true only in RestrictedSample, the probability that bad is set to true. Therefore,
using the union bound,

Pr rbad � true in G10s ¤ 2

p
�

ķ

j�1

2j

p
¤ k2 � k � 2

p
.

Note that G10 and G11 are identical-until-bad. Therefore, using the Fundamental Lemma of Game Playing
we get,

Pr rG10 ñ trues ¤ Pr rG11 ñ trues � k2 � k � 2

p
. (16)

The Games G10 and G11.We introduce a procedure named RestrictedSample in order to sample i1, � � � , ik, v
instead of sampling them uniformly at random, replace p by Λ�1, remove tj ’s and the bad events in G9.
In G11, RestrictedSample sets bad to true if v P t0, 1u or if the cardinality of the set t1, v, i1, � � � , ik, i1 �
v, � � � , ik � vu is less than 2k � 2. In G11, RestrictedSample samples these values with the restriction that
|t1, v, i1, � � � , ik, i1 � v, � � � , ik � vu| � 2k � 2.

We note that since i1, � � � , ik, v sampled in G11 satisfy |1, v, i1, � � � , ik, i1 � v, � � � , ik � v| � 2k � 2, the if
statements in lines 3, 6, 8 will always evaluate to true. Since i1, � � � , ik, v do not affect the execution of G11

at any other point, the sampling of i1, � � � , ik, v and the if statements in lines 3, 6, 8 can be omitted from
G11. Therefore, G11 can be rewritten as shown in Figure 14. We next upper bound Pr rG4 ñ trues in terms
of Pr rG11 ñ trues in Lemma 7.

22

Game G10, G11 :

1 : foreach p P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λppq Ð K

2 : i1, � � � , ik, v Ð RestrictedSamplepq;Λp1q Ð$L

3 : if Dp : Λppq � K ^ pp~iq � v then ΛpV q Ð Λppq

4 : else ΛpV q Ð$RpΛq

5 : foreach j P rks do

6 : if Dp : Λppq � K ^ pp~iq � ij then ΛpIjq Ð Λppq

7 : else ΛpIjq Ð$RpΛq

8 : if Dp : Λppq � K ^ pp~iq � ij � v then ΛpV Ijq Ð Λppq

9 : else ΛpV Ijq Ð$RpΛq

10 : new Ð 0;X Ð Λp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu;Y1 Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu

11 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqq

12 : π Ð$Sk;Y2 Ð tΛp1q, ΛpV q, ΛpV I1q, � � � , ΛpV Ikqu;Z Ð H

13 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ,Λp1q, ΛpV q, ΛpIπp1q � V q, � � � , ΛpIπpkq � V qq

14 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

15 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if Λ�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : p Ð Λ�1paq � Λ�1pbq

6 : if Λppq � K then

7 : Λppq Ð$RpΛq

8 : PopulateSetsEvalpa,b, Λppq, fromq

9 : return Λppq

Oracle Ovpa,b, fromq :

1 : if Λ�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : PopulateSetsOvpa,b, fromq

6 : return pV Λ�1paq � Λ�1pbqq

Procedure RestrictedSamplepq :

1 : v Ð$Zp; if v P t0, 1u then bad Ð true; v Ð$Zpzt0, 1u

2 : S Ð t1u;S1 Ð tv�1u

3 : foreach j P rks do

4 : ij Ð$Zp; if ij P S Y S1
then bad Ð true; ij Ð$ZpzpS Y S1q

5 : S Y
ÐÝ tiju;S1 Y

ÐÝ tv�1 � iju

6 : return i1, � � � , ik, v

Fig. 13. In games G10,G11 pa has been replaced by Λ�1paq for labels a and tj ’s are removed. The procedure AssignPoly
is no longer written separately, its code is written inline instead. In G11, ij ’s, v are sampled with the restriction that
the set t1, v, i1, � � � , ik, i1 �v, � � � , ik �vu has cardinality 2k�2. The changes from G9 have been highlighted. The boxed
statements are present only in G11.

Lemma 7. For the games G4,G11, we have,

Pr rG4 ñ trues ¤ Pr rG11 ñ trues � 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
.

Proof. Combining (10) to (16) we get,

Pr rG4 ñ trues ¤ Pr rG11 ñ trues � 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
.

[\

23

Game G11 :

1 : foreach p P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λppq Ð K;Λp1q Ð$L

2 : ΛpV q Ð$RpΛq

3 : foreach j P rks do

4 : ΛpIjq Ð$RpΛq;ΛpV Ijq Ð$RpΛq

5 : new Ð 0;X Ð Λp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu;Y1 Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu

6 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqq

7 : π Ð$Sk;Y2 Ð tΛp1q, ΛpV q, ΛpV I1q, � � � , ΛpV Ikqu;Z Ð H

8 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ,Λp1q, ΛpV q, ΛpIπp1q � V q, � � � , ΛpIπpkq � V qq

9 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

10 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : p Ð Λ
�1paq � Λ

�1pbq

6 : if Λppq � K then

7 : Λppq Ð$RpΛq

8 : PopulateSetsEvalpa,b, Λppq, fromq

9 : return Λppq

Oracle Ovpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : PopulateSetsOvpa,b, fromq

6 : return pV Λ�1paq � Λ
�1pbqq

Fig. 14. Game G11 has been written more compactly than the one in Figure 13 by removing redundant code.

Procedure PolyMultCheckppa, pbq :

1 : if Dj : pcoefficientppa, Tjq � 0_ coefficientppa, V Ijq � 0q then return false

2 : if Dj : pcoefficientppb, Tjq � 0_ coefficientppb, Ijq � 0q then return false

3 : if coefficientppb, V q � coefficientppa, 1q then return false

4 : foreach j P rks do ~xrjs Ð coefficientppa, Ijq; ~yrjs Ð coefficientppb, V Ijq

5 : if Op~x, ~yq � true then

6 : if ~x R spanpSq then S
Y
ÐÝ t~xu;Z1 Y

ÐÝ tau

7 : if |S| � l then ABORT

8 : return true

9 : else return false

Fig. 15. Subroutine PolyMultCheck for simulating Ov. In particular, coefficientpp,Mq returns the coefficient of
the monomial M in the polynomial p. The sets S and Z 1 have no effect on the behavior, and are only used in the
analysis of D. The symbol ABORT indicates that D aborts and outputs K.

The Adversary D.Next, we construct the adversary D that plays PG by simulating G11 to R1,R2, where
the permutation π is the secret permutation from PG. As we will discuss below, the core of the adversary
D will boil down to properly simulating the Ov oracle using the O oracle from PG and simulating the labels
σpiπpjqq (and the associated polynomials) correctly without knowing π. After a correct simulation, D will
simply extract the permutation π.

To see how this can be done, let us first have a closer look at G11. Let us introduce the shorthand
Kj � V Iπpjq for j P rks. With this notation, every polynomial input to or output from Eval is a linear
combination of the monomials 1, I1, . . . , Ik, V,K1, . . . ,Kk, T1, T2, Now, it is convenient to slightly rethink
the check of whether V pa � pb within Ov with this notation. First off, we observe that if either of the
polynomial contains a monomial of the form Ti, the check fails. In fact, it is immediately clear that the check
can only possibly succeed is if pa is a linear combination of 1 and the Ij ’s and pb is a linear combination of

24

Adversary D :

1 : foreach p P ZprI1, � � � , Ik, V,K1, � � � , Kk, T1, � � � , T2qs do Λppq Ð K

2 : Λp1q Ð$L;ΛpV q Ð$RpΛq

3 : foreach j P rks do

4 : ΛpIjq Ð$RpΛq;ΛpKjq Ð$RpΛq

5 : new Ð 0;X Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu;Y1 Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu

6 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqq

7 : Y2 Ð tΛp1q, ΛpV q, ΛpK1q, � � � , ΛpKkqu;Z Ð H;Z1 Ð H;S Ð H

8 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ,Λp1q, ΛpV q, ΛpK1q, � � � , ΛpKkqq

9 : win1 Ð pts1, � � � , slu � ts11, � � � , s
1
luq ^ p@j, l P rks : j � l ùñ sj � sl ^ s1j � s1lq

10 : if win1 � true then

11 : foreach i, j P rks do if si � s1j then πpiq � j

12 : return π

13 : else return K

Oracle Evalpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : p Ð pa � pb

6 : if Λppq � K then Λppq Ð$RpΛq

7 : PopulateSetsEvalpa,b, Λppq, fromq

8 : return Λppq

Oracle Ovpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : PopulateSetsOvpa,b, fromq

6 : PolyMultCheckppa, pbq

Procedure PopulateSetsEvalpa,b, c, fromq :

1 : if from � 1 then

2 : if c R Y1 then X Y
ÐÝ tcu

3 : Y1
Y
ÐÝ ta,b, cu

4 : if from � 2 then

5 : if a P X zY2 then Z Y
ÐÝ tau

6 : if b P X zY2 then Z Y
ÐÝ tbu

7 : Y2
Y
ÐÝ ta,b, cu

Procedure PopulateSetsOvpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

Fig. 16. Adversary D which plays the permutation game PG. The changes in D compared to G11 have been high-
lighted.

V and the Kj ’s. Now, assume that

papI1, . . . , Ikq � a0 �
ķ

j�1

~xrjs � Ij ,

pbpV,K1, . . .Kkq � b0 � V �
ķ

j�1

~yrjs �Kj .

Then, V � pa � pb if and only if a0 � b0 and ~yrjs � ~xrπpjqs for all j P rks. If we are now in Game PG, and π
is the chosen permutation, then this is equivalent to Op~x, ~yq � true and a0 � b0.

This leads naturally to the adversary D, which we formally describe in Figure 16. The adversary will
simply sample labels f1, . . . , fk for σpv � iπp1qq, . . . , σpv � iπpkqq, and associate with them polynomials in the
variablesK1, . . . ,Kj . Other than that, it simulates the game G11, with the exception that the check V �pa � pb
is not implemented using the above approach – summarized in Figure 15. Note that D aborts when |S| � l

25

and makes at most q queries to O. Thus D is a pq, lq-query adversary against PG. If D does not abort, then
its simulation of G11 is perfect. If G11 ñ true and D does not abort, then win1 shall be true and D will output
the correct π.

The rest of the proof will now require proving that whenever G11 outputs true our adversary D will never
abort due to the check |S| � l. Since G11 ñ true only if |Z| l, the following lemma implies that D does
not abort if G11 ñ true.

Lemma 8. Let p~x1, ~y1q, � � � , p~xu, ~yuq be the queries made by D to O which return true. Then,

rankp~x1, � � � , ~xuq ¤ |Z| .
Proof. We introduce an operator projppq which maps a polynomial to a vector in Zkp consisting of the
coefficients of the monomials I1, . . . , Ik. We will show below that for all i P rus, there exists a set Zi � Z
such that ~xi P spanpprojpΛ�1pZiqqq. From this, the claim is immediate, because

rankp~x1, � � � , ~xuq ¤ rank

�
u¤
i�1

projpΛ�1pZiqq
�

¤
∣∣∣∣∣ u¤
i�1

projpΛ�1pZiqq
∣∣∣∣∣ ¤

∣∣∣∣∣ u¤
i�1

Zi

∣∣∣∣∣ ¤ |Z| .

First off, note that every non-zero query p~xi, ~yiq that returns true is made during the simulation of the
execution of R2. This is because such a query requires the polynomial associated with ~yi to contain a
monomial in Kj for at least some j P rks, and such polynomials can only occur in the execution of R2.
Also note that every vector ~xi is associated with a polynomial pi. This polynomial must have form a0 �°k
j�1 ~xirjs � Ij , as discussed before.

Let us look at an execution of D after-the-fact, and more specifically, the simulated execution of R1,R2

within D. Let ai be the label associated with the polynomial pi. If it has not been output by an Eval query
ever, then it must be that ai � ΛpIjq for some j P rks. Because ai P X , then ai P Z, and thus Zi � taiu.
Similarly, assume that a was output last by an Eval query of R1. Then, it must be that ai has been added
to X , because every output of an Eval query by R1 is aded to X , unless the string ai was associated earlier
with one of the Tz monomials. But this label would not lead the oracle query to output 1. Therefore, ai is
added to Z upon R2’s corresponding Ov query, and we can set Zi � taiu.

We are left with the harder case that ai is the output of an Eval query of R2. Note that because of this,
it is not hard to see that we can write

pi �
ŗ

j�1

γj � Λ�1pbjq ,

where b1, . . . ,bj are inputs to Eval queries made by R2. This in turn implies that

~xi � projppiq �
ŗ

j�1

γj � projpΛ�1pbjqq .

We now claim that if projpΛ�1pbjqq � ~0, then it must be that bj P X , and therefore it is added to Z. (Either
within the Eval query, or in an earlier Ov query using it.)

Note that if projpΛ�1pbjqq � 0, then bj is not a fresh label input to an Eval query by either of R1 or R2 (as
it would have been associated with Tz, for some z), and it is not one of the labels Λp1q, ΛpV q, ΛpK1q, . . . , ΛpKkq
input to R2. So, bj is either ΛpI1q, . . . , ΛpIkq, or the output of an Eval query by R1 which is added to X . In
both cases, bj P X . Hence, we can now define

Zi �
!
bj : j P rks , projpΛ�1pbjqq � ~0

)
.

This concludes the proof. [\

26

We have established that if G11 outputs true, then D will not abort and hence D simulates G11 to R1,R2

perfectly. If win � true in G11, the checks by D succeed and D outputs the correct permutation and wins
PG. Therefore, D is a pq, lq-query adversary such that PGpDq ñ true if G11 ñ true. Hence,

Pr rG11 ñ trues ¤ Pr rPGpDq ñ trues . (17)

Combining Lemma 7 and (9),(17) we get,

Pr rG2 ñ trues ¤ Pr rPGpDq ñ trues � 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
. (18)

[\
Combining (8) and (18) we get,

Pr rG2 ñ trues ¤ ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
� k2 � k � 2

p
.

[\

4.4 Memory Lower Bound when |Z| ¥ l (Proof of Lemma 4)

Recall that we need to prove the following lemma, which we do by using a compression argument.

Lemma 4. If the size of the state φ output by R1 is s bits and pR1,R2q make q queries in total in the game
G3 as defined in Figure 5, then

Pr rG3 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

� k2 � k � 2

p
.

Proof. Our proof does initial game hopping, with easy transitions. It first introduces a new game, G12 whose
minor difference from game G3 is that it samples i1, � � � , ik, v using RestrictedSample which was previously
used in game G11. It adds a bad flag while sampling i1, � � � , ik, v which is set to true if v is in t0, 1u or if
|1, v, i1, � � � , ik, i1 �v, � � � , ik �v| 2k�2. The bad event does not affect the output of G12 in any way. Observe
that even though the sampling of i1, � � � , ik, v is written in a different manner in G12, it is identical to that
in G3. In all other respects these two games are identical.

Pr rG3 ñ trues � Pr rG12 ñ trues . (19)

Games G12,G13 differ in the procedure RestrictedSample and the condition to return true. Note that the
conditions of bad being set to true is identical in G12,G13 and given that bad is not set to true, G13 returns
true whenever G12 returns true. Therefore, using the Fundamental Lemma of Game Playing

Pr rG12 ñ trues ¤ Pr rG13 ñ trues � Pr rbad � true in G13s .
From our analysis in the proof of Lemma 7, we have established that the probability of bad being set to true

in RestrictedSample is at most k2�k�2
p . Since in G13 bad is set only in RestrictedSample, the probability of

bad being set to true is the same. Hence, we get,

Pr rG12 ñ trues ¤ Pr rG13 ñ trues � k2 � k � 2

p
. (20)

The compression argument. We assume Pr rG13 ñ trues � 2ε. We say a σ is “good” in G13 if

Pr
�
G13 ñ true

��σ was sampled in G13

� ¥ ε . (21)

It follows from Markov’s inequality that at least ε fraction of σ’s are “good”. The following lemma captures
the essence of our compression argument.

27

Game G12 , G13 :

1 : σ Ð$ InjFuncpZp,Lq; i1, � � � , ik, v Ð RestrictedSamplepq

2 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

3 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

4 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

5 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

6 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

7 : return p win^ |Z| ¥ lq

Procedure RestrictedSamplepq :

1 : v Ð$Zp; if v P t0, 1u then bad Ð true; v Ð$Zpzt0, 1u

2 : S Ð t1u;S1 Ð tv�1u

3 : foreach j P rks do

4 : ij Ð$Zp; if ij P S Y S1
then bad Ð true; ij Ð$ZpzpS Y S1q

5 : S Y
ÐÝ tiju;S1 Y

ÐÝ tv�1 � iju

6 : return i1, � � � , ik, v

Oracle Evalpa,b, fromq :

1 : c Ð σpσ�1paq � σ
�1pbqq

2 : if from � 1 then

3 : if c R Y1 then X Y
ÐÝ tcu

4 : Y1
Y
ÐÝ ta,b, cu

5 : if from � 2 then

6 : if a P X zY2 then Z Y
ÐÝ tau

7 : if b P X zY2 then Z Y
ÐÝ tbu

8 : Y2
Y
ÐÝ ta,b, cu

9 : return c

Oracle Ovpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

6 : return pv � σ�1paq � σ
�1pbqq

Fig. 17. Games G12,G13. The statement within the thinner box is present only in G12 and the statement within the
thicker box is present only in G13. The newly introduced changes compared to G3 are highlighted.

Lemma 9. If the state output by R1 in G13 has size s bits, all the “good” σ’s can be encoded such that the
size of the encoding space is at most

2sp!

�
1� 6q

p

p2q�lq�
p

8q2p2k � 2� 3qq

�l

,

and decoded correctly with probability at least ε.

We first give some intuition regarding how we achieve compression and show how Lemma 9 leads to an
upper bound on Pr rG3 ñ 1s. We defer the proof of Lemma 9 to Section 4.5.

Intuition regarding compression. Observe in G13, the labels in Z were queried by R2 (these labels
were not seen by R2 before they were queried) and were answers to R1 and were not seen by R1 before the
query. The core idea is that for all a P LzZ, we store exactly one of a or its pre-image in the encoding and
for all labels in Z, we store neither the label nor its pre-image. Since R2 queries all the labels in Z, these
labels can be found by running R2 while decoding. Since all the labels in Z are answers to queries of R1

and were not seen by R1 before the query, their pre-images can be figured out while running R1.

High level outlines of Encode, Decode. In Encode, we simulate the steps of G13 to R1,R2, including
bookkeeping and then run R1 again assuming the particular σ we are compressing is sampled in G13. In
Decode, we run R2 and then R1 to recover σ. We treat the values i1, � � � , ik, v, π as part of the common

28

randomness provided to Encode,Decode (we assume they are sampled from the same distribution they are
sampled from in G13). The random tapes of R1,R2 can also be derived from the common randomness
of Encode,Decode. For simplicity, we do not specify this explicitly in the algorithms and treat R1,R2 as
deterministic.

Running R2. First off, we assume that R1 queries labels that it has “seen” before and R2 queries labels
that R1 has “seen” or it has “seen” before. We shall relax this assumption later. Ideally, we would want to
just store only φ, the inputs labels to R2 and the labels that are answers to R2’s queries. We append the
input labels of R2 and labels that are answers to its Eval queries that it has not “seen” before to a list named
Lbls. However, it is easy to see that this information is not enough to answer Ov queries during decoding,
as answering Ov queries inherently requires knowledge about pre-images of R2. This naturally leads to the
idea of maintaining a mapping of all the labels “seen by” R2 to their pre-images.

The mapping T of labels to pre-image expressions. The pre-images of input labels and the labels
that were results of sequence of Eval queries on its input labels by R2, are known. However, R2 might query
labels which were neither an input to it nor an answer to one of its Eval queries. Such a label is in Z since
we have assumed that all labels queried by R2 were “seen by” R1 or “seen by” R2 before. We represent the
pre-images of labels in Z using a placeholder variable Xn where n is incremented for every such label. Note
that the pre-image of every label seen by R2 can be expressed as a linear polynomial in the Xn’s (these
linear polynomials are referred to as pre-image expressions from hereon). Therefore we maintain a mapping
of all labels “seen by” and their pre-image expressions in a list of tuples named T. Our approach is inspired
by a similar technique used by Corrigan-Gibbs and Kogan in [5]. Like in [5], we stress that the mapping T
is not a part of the encoding.

For Eval queries, we can check if there is a tuple in T whose pre-image expression is the sum of the
pre-image expressions of the input labels. If that is the case, we return the label of such a tuple. Otherwise,
we append the answer label to Lbls. For Ov queries, we can return true if the pre-image expression of the first
input label multiplied by v gives the pre-image expression of the second input label. Otherwise we return
false.

Surprises. There is a caveat, however. There might arise a situation that the label which is the answer to
the Eval query is present in T but its pre-image expression is not the sum of the pre-image expressions of
the input labels. We call such a situation a “surprise” and we call the answer label in that case a “surprise
label”. For Ov queries, there might be a surprise when the answer of the Ov query is true but the pre-image
expression of the first input label multiplied by v is different pre-image expression of the second input label.
In this case we call the second input label the surprise label. We assign a sequence number to each query
made by R2, starting from 1 and an index to each tuple in T, with the indices being assigned to tuples
in the order they were appended to T. To detect the query where the surprise happens, we maintain a set
named Srps1 that contains tuples of query sequence numbers and indices of the surprise label in T. This set
Srps1 is a part of the encoding. Note that whenever there is a surprise, it means that two different pre-image
expressions evaluate to the same value. Since these two pre-image expressions are linear polynomials, at least
one variable can be eliminated from T by equating the two pre-image expressions.

Running R1.Now that we have enough information in the encoding to run R2, we consider the information
we need to add to the encoding to run R1 after R2 is run. First, we need to provide R1 its input labels.
Our initial attempt would be to append the input labels of R1 (except σp1q, σpvq, which are already present)
to Lbls. However, some of these input labels to R1 might have already been “seen by” R2. Since all labels
“seen by” R2 are in T, we need a way to figure out which of σpijq’s are in T. Note that such a label was
either queried by R2 or an answer to a query of R2 (cannot have been an input to R2 given the restrictions
on i1, � � � , ik, v). Suppose q was the sequence number of the query in which σpijq was queried or an answer.
The tuple pq, b, jq is added to the set Inputs where b can take values t1, 2, 3u depending on whether σpijq
was the first input label, the second input label or the answer label respectively. This set Inputs is a part of
the encoding. The rest of the labels σpijq, which do not appear in T, are added to T with their pre-images
and the labels are appended to Lbls. Note that for all queries of R1, it follows from our assumption that the
input labels will be in T. For every surprise, we add a tuple of sequence number and an index in T to the
set Srps2.

29

Relaxing the assumption. When we allow R2 to query labels it has not seen before or R1 has not seen,
there are two issues. First, we need to add a tuple for the label in T (since T, by definition contains a tuple
for all labels queried by R2). We solve this issue by adding the tuple made of the label and its pre-image.
We have no hope of recovering the pre-image later, hence, we append the pre-image to a list named Vals.
This list needs to be a part of the encoding since the pre-image of the label needs to be figured out to be
added to T during decoding. For queries of R1, if the input label is not present in T, we do the same thing.
The second issue that comes up when we relax the assumption is that we need to distinguish whether an
input label was in Z or not. We solve this issue by maintaining a set of tuples named Free. For all labels in
Z that are not an input label to R1, we add the tuple consisting of the sequence number of the query of R2

and b to Free where b set to 1 indicates it was the first input label and b set to 2 indicates it was the second
input label.

The final steps. The labels the are absent in T are appended to a list named RLbls. If |Z| l, a fixed
encoding D (the output of Encode for some fixed σ when |Z| ¥ l) is returned. Otherwise the encoding of σ
consisting of Lbls, RLbls, Vals, Inputs, Srps1, Srps2, Free, φ is returned.

Wrapping up. The set of all “good” σ’s has size at least εp! (where we have used that the total number of
injective functions from Zp Ñ L is p!). Using X to be the set of the “good” σ’s, Y to be the set of encodings,
R to be the set of cartesian product of the domains of i1, � � � , ik, v, π, the set of all random tapes of R1 the
set of all random tapes of R2 and L, it follows from Lemma 9 and Proposition 1 that

log pPr rDecoding is correctsq ¤s� p2q � lq log

�
1� 6q

p

� l log

�
p

8q2p2k � 2� 3qq

� log ε .

We have from Lemma 9 that Pr rDecoding is corrects ¥ ε. Therefore,

2 log ε ¤ s� p2q � lq log

�
1� 6q

p

� l log

�
p

8q2p2k � 2� 3qq

.

Since Pr rG13 ñ trues � 2ε, using (19) and (20) we have,

Pr rG3 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

� k2 � k � 2

p
.

[\

4.5 Proof of Lemma 9

We provided the intuition behind our compression of σ in Section 4.4. We formally define the Encode,Decode
algorithms here and then analyze the size of the encoding space for “good” σ’s.

The Encode procedure. As we have previously mentioned Encode simulates G13 to R1,R2 and then runs
R1 again. The Encode procedure has been formally defined in Figure 18. We shall next explain the pseudocode
in detail and relate it to the intuition we provided in Section 4.4. In order to understand the pseudocode of
Encode, initially ignore the code involving T, Lbls,Vals,RLbls,Free,Srps1,Srps2.

First off, note that the oracles Evalp., ., 1q,Evalp., ., 2q,Evalp., ., 3q have identical outputs to the oracle
Evalp., .q in G13 and the oracles Ovp., ., 1q,Ovp., ., 2q,Ovp., ., 3q have identical outputs to the oracle Ovp., .q in
G13. As mentioned previously the randomness input to Encode i.e. i1, � � � , iv, v, π are distributed according to
the distribution of these values in G13. Observe that till line 7, Encode perfectly simulates G13 to R1,R2. Then
in line 10, R1 is run again. Recall that we treat R1,R2 as deterministic without loss of generality (alterna-
tively we could have specified the random tape of these adversaries as an input to Encode,Decode). Therefore,
R1 shall make the same queries when it is run the second time as it did in its first run since it receives iden-
tical answers to its queries (we have previously argued that the outputs of oracles Evalp., ., 1q,Evalp., ., 3q are
identical and the outputs of oracles Ovp., ., 1q,Ovp., ., 3q are identical on same inputs).

30

Procedure Encodepσ, pi1, � � � , ik, v, πqq :

1 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

2 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

3 : Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

4 : T Ð rs; T.appendppσp1q, 1, 1qq; T.appendppσpvq, v, 1qq

5 : foreach j P rks do T.appendpσpij � vq, ij � v, 1qq

6 : Free Ð H; Srps1 Ð H; Srps2 Ð H;nÐ 0; Inputs Ð H; c1 Ð 0; c2 Ð 0

7 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

8 : foreach j P rks do

9 : if pσpijq,�,�q R T then T.appendppσpijq, ij , 1qq;

10 : φ, s1, � � � , sk Ð REvalp.,.,3q,Ovp.,.,3q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

11 : Lbls Ð rs; Vals Ð rs; RLbls Ð rs

12 : foreach j P r|T|s do

13 : ps,m, fq Ð Trjs

14 : if f � 1 then Lbls.appendpsq

15 : if f � 2 then Vals.appendpmq

16 : foreach j P rps do

17 : if pσpjq,�,�q R T then RLbls.appendpσpjqq

18 : if |Z| l then return D

19 : else return pLbls,RLbls,Vals, Srps1, Srps2, Inputs, Free, φq

Oracle Evalpa,b, 2q :

1 : c1 Ð c1 � 1

2 : c Ð σpσ�1paq � σ
�1pbqq

3 : if a R Y2 then

4 : AddToTablepa, c1, 1q;Y2
Y
ÐÝ tau

5 : if b R Y2 then

6 : AddToTablepb, c1, 2q;Y2
Y
ÐÝ tbu

7 : if pc,�,�q R T then

8 : T.appendpc,Tpaq � Tpbq, 1q

9 : Y2
Y
ÐÝ tcu

10 : if Dj P rks : c � σpijq then

11 : Inputs
Y
ÐÝ tpc1, 3, jqu

12 : VarReducepT,Tpaq � Tpbq, ijq

13 : else

14 : if Tpcq � Tpaq � Tpbq then

15 : Srps1
Y
ÐÝ tpc1,T.indexpcqqu

16 : VarReducepT,Tpaq � Tpbq,Tpcqq

17 : return c

Oracle Evalpa,b, 1q :

1 : c Ð σpσ�1paq � σ
�1pbqq

2 : if c R Y1 then X Y
ÐÝ tcu

3 : Y1
Y
ÐÝ ta,b, cu

4 : return c

Oracle Ovpa,b, 1q :

1 : c � σpv � σ�1paqq

2 : Y1
Y
ÐÝ ta,bu

3 : return pb � cq

Procedure AddToTablep`, c, bq :

1 : if ` P X then

2 : Z Y
ÐÝ t`u;

3 : if Dj P rks : ` � σpijq then Inputs
Y
ÐÝ tpc, b, jqu; T.appendp`, ij , 0q

4 : else Free
Y
ÐÝ tpc, bqu;nÐ n� 1; T.appendp`, Xn, 0q

5 : else T.appendp`, σ�1p`q, 2q

Oracle Ovpa,b, 2q :

1 : c1 Ð c1 � 1

2 : c Ð σpv � σ�1paqq

3 : if a R Y2 then

4 : AddToTablepa, c1, 1q;Y2
Y
ÐÝ tau

5 : if b R Y2 then

6 : AddToTablepb, c1, 2q;Y2
Y
ÐÝ tbu

7 : if pc,�,�q R T then

8 : return false

9 : else

10 : if Tpcq � vTpaq then

11 : Srps1
Y
ÐÝ tpc1,T.indexpcqqu

12 : VarReducepT, vTpaq,Tpcqq

13 : return pb � cq

Oracle Evalpa,b, 3q :

1 : c2 Ð c2 � 1

2 : c Ð σpσ�1paq � σ
�1pbqq

3 : if pa,�,�q R T then

4 : T.appendp`, σ�1paq, 2q

5 : if pb,�,�q R T then

6 : T.appendp`, σ�1pbq, 2q

7 : if pc,�,�q R T then

8 : T.appendpc,Tpaq � Tpbq, 1q

9 : else

10 : if Tpcq � Tpaq � Tpbq then

11 : Srps2
Y
ÐÝ tpc2,T.indexpcqqu

12 : VarReducepT,Tpaq � Tpbq,Tpcqq

13 : return c

Oracle Ovpa,b, 3q :

1 : c2 Ð c2 � 1

2 : c Ð σpv � σ�1paqq

3 : if pa,�,�q R T then

4 : T.appendp`, σ�1paq, 2q

5 : if pb,�,�q R T then

6 : T.appendp`, σ�1pbq, 2q

7 : if pc,�,�q R T then

8 : return false

9 : else

10 : if Tpcq � vTpaq

11 : Srps2
Y
ÐÝ tpc2,T.indexpcqqu

12 : VarReducepT, vTpaq,Tpcqq

13 : return pb � cq

Fig. 18. The Encode procedure. If |Z| l, a fixed encoding D (the output of Encode for some fixed σ when |Z| ¥ l)
is returned. The function T.appendptupleq appends tuple into T. The first inserted tuple has index 1 and the index
increases by 1 for every subsequent insertion. Tris returns the tuple at index i in T. The function Tpaq returns
pre-image expression A such that pa, A, �q P T. The function VarReducepT, C, C 1q equates expressions C and C 1,
expresses the variable with highest subscript in the equation (say Xj) in terms of other variables, and substitutes Xj

throughout T.

Now that we have explained the high-level structure of Encode and related it to the intuition provided
before, we shall delve into the details of its book-keeping. Recall that we say that a label has been seen by

31

Procedure DecodeppLbls,RLbls,Vals, Srps1, Srps2, Inputs,Free, φq, pi1, � � � , ik, v, πqq :

1 : foreach j P Zp do σpjq Ð K; z1 Ð 1; z2 Ð 1; z3 Ð 1; T Ð rs

2 : σp1q Ð Lblsrz1s; z1 Ð z1 � 1; T.appendppσp1q, 1, 1qq

3 : σpvq Ð Lblsrz1s; z1 Ð z1 � 1; T.appendppσpvq, v, 1qq

4 : foreach j P rks do

5 : σpij � vq Ð Lblsrz1s; z1 Ð z1 � 1; T.appendppσpij � vq, ij � v, 1qq

6 : nÐ 0; c1 Ð 0; c2 Ð 0

7 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

8 : foreach j P rks do

9 : if σpijq � K then

10 : σpijq Ð Lblsrz1s; z1 Ð z1 � 1

11 : φ, s1, � � � , sk Ð REvalp.,.,3q,Ovp.,.,3q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

12 : foreach j P r|T|s do

13 : ps,m, fq Ð Trjs

14 : σpmq Ð s

15 : foreach j P rps do

16 : if σpjq � K then

17 : σpjq Ð RLblsrz3s; z3 Ð z3 � 1

18 : return σ

Oracle Ovpa,b, 2q :

1 : c1 Ð c1 � 1

2 : if pa,�,�q R T then

3 : AddToTablepa, c1, 1q

4 : if pb,�,�q R T then

5 : AddToTablepb, c1, 2q

6 : if Dc1 : pc1, vTpaq,�q P T then

7 : c Ð c
1

8 : elseif Di : pc1, iq P Srps1 then

9 : pc,Tpcq, fq Ð Tris

10 : VarReducepT, vTpaq,Tpcqq

11 : else return false

12 : return pb � cq

Oracle Evalpa,b, 2q :

1 : c1 Ð c1 � 1

2 : if pa,�,�q R T then

3 : AddToTablepa, c1, 1q

4 : if pb,�,�q R T then

5 : AddToTablepb, c1, 2q

6 : if Dc1 : pc1,Tpaq � Tpbq,�q P T then

7 : c Ð c
1

8 : elseif Di : pc1, iq P Srps1 then

9 : pc,Tpcq, fq Ð Tris

10 : VarReducepT,Tpaq � Tpbq,Tpcqq

11 : else

12 : c Ð Lblsrz1s; z1 Ð z1 � 1

13 : T.appendpc,Tpaq � Tpbq, 1q

14 : if Dj P rks : pc1, 3, jq P Inputs then

15 : σpijq Ð c

16 : VarReducepT,Tpaq � Tpbq, ijq

17 : return c

Oracle Evalpa,b, 3q :

1 : c2 Ð c2 � 1

2 : if pa,�,�q R T then

3 : T.appendpa,Valsrz2s, 2q; z2 Ð z2 � 1

4 : if pb,�,�q R T then

5 : T.appendpa,Valsrz2s, 2q; z2 Ð z2 � 1

6 : if Dc1 : pc1,Tpaq � Tpbq,�q P T then

7 : c Ð c
1

8 : elseif Di : pc2, iq P Srps2 then

9 : pc,Tpcq, fq Ð Tris

10 : VarReducepT,Tpaq � Tpbq,Tpcqq

11 : else

12 : c Ð Lblsrz1s; z1 Ð z1 � 1

13 : T.appendpc, Cq

14 : return c

Oracle Ovpa,b, 3q :

1 : c2 Ð c2 � 1

2 : if pa,�,�q R T then

3 : T.appendpa,Valsrz2s, 2q; z2 Ð z2 � 1

4 : if pb,�,�q R T then

5 : T.appendpa,Valsrz2s, 2q; z2 Ð z2 � 1

6 : if Dc1 : pc1, vTpaq,�q P T then

7 : c Ð c
1

8 : elseif Di : pc2, iq P Srps2 then

9 : pc,Tpcq, fq Ð Tris

10 : VarReducepT, vTpaq,Tpcq

11 : else return false

12 : return pb � cq

Procedure AddToTablep`, c, bq :

1 : if Dj P rks : pc, b, jq P Inputs then σpijq Ð `; T.appendp`, ij , 0q

2 : if pc, bq P Free then nÐ n� 1; T.appendp`, Xn, 0q

3 : if p`,�,�q R T then T.appendp`,Valsrz2s, 2q; z2 Ð z2 � 1

Fig. 19. The Decode function. The function T.appendptupleq appends tuple into T. The first inserted tuple has index
1 and the index increases by 1 for every subsequent insertion. Tris returns the tuple at index i in T. The function
T.indexpaq returns the index of the tuple of the form pa, �, �q in T and the function Tpaq returns pre-image expression
A such that pa, A, �q P T. The function VarReducepT, C, C 1q equates expressions C and C 1, expresses the variable with
highest subscript in the equation (say Xj) in terms of other variables, and substitutes Xj throughout T.

R1 if it was an input to R1, queried by R1 or an answer to a previously made Evalp., ., 1q query and a label
has been seen by R2 if it was an input to R2, queried by R2 or an answer to a previously made Evalp., ., 2q
query. To begin with we note that the sets Z,X ,Y1,Y2 are never updated after line 7 in Encode and hence
are identical to what they would have been in G13 if the σ input to Encode was sampled.

32

The ordered first-in first-out (FIFO) list Lbls first contains the input labels of R2, then the labels that
are answers to the Eval queries of R2 and had not been seen before by R2 (these labels are ordered in the
order of the queries). Next, it contains labels that are input to R1 that were not queried by R2 during its
run (ordered in the order of inputs of R1). Finally, it contains labels that are answers to the Eval queries of
R1 during its second run that had not been seen by it before (during the second run) and are not among
labels seen by R2 during its run (again ordered in the order of the queries).

The ordered (FIFO) list Vals first contains the pre-image of the labels (i.e. values in Zp) that were queried
by R2 that it had not seen before (these pre-images are ordered in the order of the queries). It also contains
the pre-image of the labels that queried by R1 during its second run that had not been seen by it before
(during the second run) and are not among labels seen by R2 during its run (again ordered in the order of
the queries).

The set Inputs is used to keep track of the labels that are inputs to R1 that R2 makes a query on or is
an answer to R2’s Eval query. Each element of the set is a tuple that consists of the sequence number of
the query, a flag indicating whether the label was the first or the second label of a query or the output of a
query and the j such that the label is σpijq.

The data structure T is an ordered list of tuples with each tuple consisting of a label, its pre-image
expression (as defined in Section 4.4) and a flag which takes value 0, 1, 2. The flag set to 1 indicates that the
label in the tuple needs to be written to the list Lbls and the flag set to 2 indicates that the pre-image of the
label in the tuple needs to be written to the list Vals. The tuples containing the input labels of R2 are first
added to T with the pre-image of the labels being the pre-image expression. For every unique label seen by
R2 a tuple containing the label is added to T when the label is queried or is an answer to a query. When R2

queries a label, there might already be a tuple containing the label- in that case, no new tuple containing
the label is added to T. In case there was no tuple in T containing the queried label, the label might either
have been (a) an input to R1 or (b) a label that was an answer to R1’s Eval query and had not been seen
by R1 before the query or (c) neither of (a), (b). For case (a) and (c) the pre-image expression for the
label is its actual pre-image. For case (b), the pre-image expression of the label is a placeholder variable Xn

(with n incremented every time for a new placeholder). In this case, a tuple that consists of the sequence
number of the query, whether the label was the first or the second label of the query is added to the set
Free. Other than the input labels and the labels queried by R2, the only labels seen by R2 are the answers
to the Eval queries. Consider an Eval query by R2 on labels a,b. Let c � σpσ�1paq � σ�1pbqq. Suppose no
tuple in T contains c, in that case a tuple containing the label c and the pre-image expression the sum of the
pre-image expressions of labels a and b is added to T. On the other hand if T contains c but its pre-image
expression differs from the sum of the pre-image expressions of labels a and b, then c is a surprise label as
defined in Section 4.4. The two pre-image expressions are equated and the variable with highest subscript in
the equation (say Xj) is expressed in terms of other variables, and then Xj is substituted throughout T (we
name this the VarReduce procedure). A tuple that consists of the sequence number of the query, the index of
the tuple containing the label c is added to the set Srps1. As mentioned previously, a surprise label may arise
even for a Ov query by R2. Suppose an Ov query was made on labels a,b. In this case b is a surprise label
if there is a tuple containing b such that the pre-image expression is different from the pre-image expression
of the a by v. Again, in this case in a similar fashion, one variable is substituted throughout T using the
VarReduce procedure and a tuple that consists of the sequence number of the query, the index of the tuple
containing the label b is added to the set Srps1.

After R2 finishes running, tuples containing input labels of R1 that R2 did not see are added to T with
the pre-image expression being the actual pre-images (this ensures that all labels input to R1 are in T).
Next, when R1 is run, for every unique label seen by R1 by that is not contained in a tuple in T, a tuple
containing the label is added to T in the way similar to while running R2 with the only major differences
being (a) no placeholder variables are introduced in this run i.e. for input labels that were previously not
in T, the pre-image expression is the pre-image of the label itself (b) surprises are kept track of in the set
Srps2 in this case.

After R1 is run for the second time, the sets Lbls,Vals are populated based on the entries in T. All the
labels that are not in T are inserted into the list RLbls in lexicographical order of the pre-images. Finally if

33

|Z| ¤ l, the encoding D for some fixed σ for which |Z| ¤ l is returned. Otherwise Lbls,RLbls,Vals,Srps1,Srps2,
Inputs,Free along with φ, the state output by R1 is returned by Encode.

The Decode procedure. The Decode procedure, as mentioned previously runs R2 and then R1. It starts
running R2 using the state φ and the first k � 2 labels in Lbls. It maintains the data structure T just like
Encode. It inserts tuples containing the input labels of R2 into T with the pre-image expressions being the
pre-images (which it gets from the input randomness). On an Eval or Ov query on labels a,b, it first checks
if a tuple containing a is in T. If not it checks if a tuple containing the sequence number of the query, 1 and
some j P rks is present in Inputs- if that is the case, the pre-image expression of a is ij . It then checks whether
a tuple containing the sequence number of the query and 1 is present in Free- in that case the pre-image
expression of a is a new placeholder variable Xn (n is incremented). Otherwise, it reads the next value of
Vals and assigns it to the pre-image expression of a. For the other input label b, the same steps are followed.

In order to find the answer label for an Eval query, it first checks whether there is a tuple in Srps1 with
the first entry being the sequence number of the query and some i- if that is the case the label in the ith tuple
of T is returned as answer and the pre-image expression of the ith tuple of T and the sum of the pre-image
expressions of the two inputs are equated and one variable is substituted throughout T using the VarReduce
procedure. Otherwise, it returns removes the top label from the list Lbls and returns it. It also adds a tuple
containing the label to T. The Ov queries are answered in an analogous fashion. Also note that for every label
queried by R2 and every label that is an answer to R2’s Eval query, the Decode procedure checks whether it
is an input label to R1 using the Inputs set.

After running R2, some of the inputs to R1 might have been figured out using the set Inputs during R2’s
query. The rest are obtained by removing the elements of the list Lbls and assigning them to unassigned
inputs of R1. For each such label, a tuple containing the label is inserted to T. Then Decode runs R1 with
the state φ and its input labels. The queries of R1 are answered in a similar fashion like the queries of R2.

After R1 has finished running, for every tuple in T, Decode assigns the labels to the pre-image expression
(we shall argue that if the input to Decode was a valid encoding i.e. not D, then after the execution of R1

all the pre-image expressions in T are actual pre-images i.e. there are no more placeholders in T). Finally,
the values in Zp that have not been assigned images are assigned images using the labels in RLbls.

We say that the output of Encode is a valid encoding if the output was produced after the check |Z| ¥ l
succeeded in Encode. We claim that Decode produces the correct σ whenever it receives a valid encoding as
input. The main observation here is that T is identically populated in Encode,Decode. From the pseudocode
and description above of Encode,Decode, it is not very difficult to infer correctness. Nonetheless, we provide
a proof sketch of correctness of decoding to Appendix B.

Next we shall relate the probability of Encode returns a valid encoding to the probability of R1,R2

winning G13. We have already argued that the outputs of Evalp., ., 1q,Ovp., ., 1q,Evalp., ., 2q,Ovp., ., 2q and the
sets Z,Y1,Y2 are identical in G13 and Encode and the outputs of Evalp., ., 3q,Ovp., ., 3q of Encode are identical
to the outputs of Evalp., ., 1q,Ovp., ., 1q of G13 respectively.

Therefore, G13 ñ true implies that |Z| ¥ l in Encode. So, for good σ’s, the probability that Encode
produces a valid encoding (i.e. does not output D) is ε.

Since, Encode produces a valid encoding whenever |Z| ¥ l, i.e. whenever G13 outputs true given that σ
was sampled in G13 we have,

Pr rDecoding is corrects ¥ ε . (22)

At the end of execution of Encode, let |Lbls| � b1, |RLbls| � b2, |Vals| � o, |Free| � f, |Inputs| � i, |Srps1| �
s1, |Srps2| � s2, |T| � t. Let the size of the internal state output by R1 be s. We make the following
observations about the outputs of Encode.

– For every i P Zp, exactly one of the following is true.

 i is present in Vals.
 σpiq is present in Lbls.
 σpiq is present in RLbls.
 σpiq was queried by R2 and an entry was added to Inputs.
 σpiq was queried by R2 and an entry was added to Free.

34

Therefore, |Lbls| � |RLbls| � |Vals| � |Free| � |Inputs| � p i.e. b1 � b2 � o� f � i � p. Also note that every
label that is not present in T is added to RLbls, so b2 � p� t and b1 � t� o� pi� fq

– Since a placeholder Xi is introduced only when an entry is added to Free and at least one placeholder
is removed from T whenever an entry is added to Srps1 or Srps2, we have |Srps1| � |Srps2| ¤ |Free| i.e.
s1 � s2 ¤ f .

– |Free| � |Inputs| ¥ |Z| because every entry in Z is in one of Free, Inputs. We also have that |Z| ¥ l (for
any encoding that is output, including D). It follows that |Free| � |Inputs| ¥ l i.e. f � i ¥ l.

Claim. If σ is “good” then the size of the encoding space is at most

2sp!

�
1� 6q

p

p2q�lq�
p

8q2p2k � 2� 3qq

�l

.

Proof. Below, we establish upper bounds on the number of possibilities of various components present in the
encoding.

– Each entry in Free is a tuple where the first element is in rqs and the second element is in r2s. There are
f entries in total. Therefore, the number of possibilities of Free is p2qqf .

– Since each entry in Srps1 consists of triple whose first element is in rqs, second element is in rts (an index
of T). Therefore, the number of possibilities of Srps1 is p2tqqs1 .

– Since each entry in Srps2 consists of triple whose first element is in rqs, second element is in rts. Therefore,
the number of possibilities of Srps2 is p2tqqs2 .

– Each entry of Inputs consists of a tuple whose first element is in rqs and the second element is in r3s and
the third element is in rks. Since there are i entries in total, there are at most p3qkqi possibilities.

– The list values has o entries. Since 2k�2 values are already known to not be in Vals (as 1, v, i1, � � � , ik, i1 �
v, � � � , ik � � � v will never be in Vals) and all the entries are distinct and are in Zp, there are

�
p�2k�2

o

�
o!

possibilities.
– The list Lbls has b1 � t � o � pi � fq distinct labels each of which are in L (a set of size p). Hence, the

total number of possibilities are at most
�

p
t�o�pi�fq

�pt� o� pi� fqq! .

– Since the labels being added to the list RLbls are the only ones absent in T, and T is fully populated in
Decode before RLbls is used, it suffices to remember their lexicographical ordering. There are p� t known
distinct labels in RLbls. The number of possibilities are pp� tq! .

– The state output by R1 is s bits, hence the number of possibilities are 2s.

The encoding space is at most the product of the number of possibilities of all the components. Hence, the
size of the encoding space is upper bounded by

2sp2qqf p2tqqps1�s2qp3qkqi
�
p� 2k � 2

o

o!

�
p

t� o� pi� fq

pt� o� pi� fqq!pp� tq! .

Since s1 � s2 ¤ f , and 4t ¡ 3k (since t ¥ 2k � 2), the size of the encoding space is at most

2sp4tq2qpf�iq
�
p� 2k � 2

o

o!

�
p

t� o� pi� fq

pt� o� pi� fqq!pp� tq! .

Since o ¤ 2q� |Z| ¤ 2q� l (as Vals,Z are populated only for labels on which queries are made), we have�
p

t� o� pi� fq

pt� o� pi� fqq!

�
p� 2k � 2

o

o!pp� tq! ¤ p!

� pp� 2k � 2q!
pp� 2k � 2� pi� fqq!

pp� tq!
pp� t� o� i� fq!

¤ p!

� pp� 2k � 2qo
pp� tqo�i�f

¤ p!

�
p� 2k � 2

p� t

2q�l

pp� tq�pi�fq .

35

Since t ¤ 2k � 2 � 3q (size of T can increase by at most 3 on every query), i � f ¥ l, o ¤ 2q � l, and
p� 2k � 2� 3q ¥ p

2 (because 6q ¤ p� 4k � 4) we have the size of the encoding space is at most

2sp!

�
1� 6q

p

p2q�lq�
p

8q2p2k � 2� 3qq

�l

.

This concludes the proof.
[\

5 Conclusions

Despite a clear restriction of our result to straightline reductions, we believe the main contribution of this
work is the introduction of novel techniques for proving lower bounds on the memory of reductions that will
find wider applicability. In particular, we clearly departed from the framework of prior works [2,13] tailored
at the usage of lower bounds for streaming algorithms, and provided the first lower bound for “algebraic”
proofs in the public-key domain. The idea of a problem-specific proof of memory could be helpful elsewhere.

Of course, there are several open problems. It seems very hard to study the role of rewinding for such
reductions. In particular, the natural approach is to resort to techniques from communication complexity
(and their incarnation as streaming lower bounds), as they are amenable to the multi-pass case. The simple
combinatorial nature of these lower bounds however is at odds with the heavily structured oracles we en-
counter in the generic group model. Another problem we failed to solve is to give an adversary A in our proof
which uses little memory – we discuss a candidate in the body, but analyzing it seems to give us difficulties
similar to those of rewinding.

This latter point makes a clear distinction, not discussed by prior works, between the way in which we
prove memory-tightness (via reductions using small memory), and its most general interpretation, as defined
in [2], which would allow the reduction to adapt its memory usage to that of A.

Acknowledgements

We thank the anonymous reviewers of EUROCRYPT 2020 for helpful comments. This work was partially
supported by NSF grants CNS-1930117 (CAREER), CNS-1926324, and by a Sloan Research Fellowship.

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an analysis of
DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages 143–158. Springer, Heidelberg,
April 2001.

2. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight reductions. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 101–132. Springer, Heidelberg,
August 2017.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
Heidelberg, May / June 2006.

4. Rishiraj Bhattacharyya. Memory-tight reductions for practical key encapsulation mechanisms. In PKC 2020.
5. Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing. In Jesper Buus

Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 415–447.
Springer, Heidelberg, April / May 2018.

6. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

7. Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against one-way functions
and PRGs. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer, Heidelberg,
August 2010.

36

8. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

9. Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P. Smart, editor,
10th IMA International Conference on Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

10. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryptographic primitives.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 1–20. Springer, Heidelberg, February 2004.

11. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

12. Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report
2001/112, 2001. http://eprint.iacr.org/2001/112.

13. Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory lower bounds of reductions
revisited. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 61–90. Springer, Heidelberg, April / May 2018.

A Memory-Tight Reduction in the AGM

In the algebraic group model (AGM) [8], the adversary is assumed to only produce new group elements by
applying the group operation to received group elements. In particular, for every group element X that the
adversary outputs, it also sends a representation ~x of X with respect to the group elements it received as
inputs. For example, let G be a group of order p. Suppose an adversary that outputs one group element
received group elements U, V as inputs. It shall output rXs~x where X is a group element and ~x � x1, x2 P Zp
such that X � Ux1V x2 .

Before giving the memory-tight reduction to the discrete logarithm problem in the AGM, we shall first
describe the discrete-logarithm problem, re-formulate the ODH assumption in the random oracle model
and AGM, and formally introduce PRFs (pseudorandom functions)- a tool which shall be required for our
memory-tight reduction.

Figure 20 formally defines the game for the discrete logarithm problem in a group G. The adversary is
given as input a generator and a random element of a group G. The game outputs true if the adversary
can successfully output the discrete log of the random group element with respect to the generator. The
advantage of an adversary against the discrete logarithm problem in a group G is defined as

AdvDL
G pAq � Pr

�
GDL
G pAq ñ true

�
.

We have previously formalized the ODH assumption in the random oracle and the generic group models.
Here, we give a formalization of this assumption in the random-oracle and algebraic group models. Let G be
a group of order p. For a fixed hLen P N, let ΩhLen be the set of hash functions mapping t0, 1u� to t0, 1uhLen.
In Figure 21, we formally define the games GODH-REAL-AGM

G,hLen , GODH-RAND-AGM
G,hLen . The difference here from the

previous definition is that for every H,Hv query the adversary makes, it also sends over a representation
of the group element with respect to its input group elements i.e. g, U, V . (Also, compared to the previous
definition, the generic group oracle is absent here because we are no more in the generic group model). The
advantage of violating ODH is defined as

AdvODH-AGM
G,hLen pAq � ��Pr

�
GODH-REAL-AGM
G,hLen pAq ñ 1

�� Pr
�
GODH-RAND-AGM
G,hLen pAq ñ 1

��� .
We now briefly introduce the notion of PRF security. Let F : K �D Ñ R be an efficiently computable

keyed function. Let RFD,R be a random function mapping elements of D to R. Consider the games in Figure
20. The advantage of an adversary A against the PRF security of F is defined as,

AdvPRF
F pAq � ��Pr

�
GPRF-REAL
F pAq ñ 1

�� Pr
�
GPRF-RAND
F pAq ñ 1

��� .
37

http://eprint.iacr.org/2001/112

Game GDL
G pAq :

1 : g Ð$G
�

2 : hÐ$G

3 : v Ð Apg, hq

4 : return ph � g
vq

Game GPRF-REAL
F pAq :

1 : k Ð$K

2 : bÐ AF pk,.q

3 : return b

Game GPRF-RAND
F pAq :

1 : bÐ ARFD,Rp.q

2 : return b

Fig. 20. Left:Game for the discrete logarithm problem in a group G of prime order p where G� � Gzt0u is the set
of generators. Right:Games for PRF security

Game GODH-RAND-AGM
G,hLen :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : H Ð$ΩhLen

4 : W Ð t0, 1uhLen

5 : bÐ AHvp.q,Hp.qpg, U, V,W q

6 : return b

Game GODH-REAL-AGM
G,hLen :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : H Ð$ΩhLen

4 : W Ð Hpguvq

5 : bÐ AHvp.q,Hp.qpg, U, V,W q

6 : return b

Oracle HprXs~x�x1x2x3q : // X � gx1Ux2V x3

1 : return HpXq

Oracle HvprY s~y�y1y2y3q : // Y � gy1Uy2V y3

1 : if Y � U then return K

2 : return HpY vq

Fig. 21. Games for ODH assumption in the AGM.

Memory-tight AGM reduction. In the following theorem (Theorem 2), we show that for all adversaries
in the AGM against ODH, there exist adversaries against DL and PRF security of keyed functions that use
additional memory that grows at most logarithmically in the number of queries of the ODH adversary i.e.
the reductions are memory-tight.

Theorem 2. Let F1 : KF1 � Z3
p Ñ t0, 1uhLen, F2 : KF2 � G Ñ t0, 1uhLen be keyed functions. For all ODH

adversaries A in the Algebraic Group Model, making a total of q queries to H,Hv, there exist adversaries
B, C,D, E ,F ,G such that

AdvODH-AGM
G,hLen pAq ¤ AdvDL

G pBq � q2AdvDL
G pCq � AdvDL

G pDq � AdvPRF
F1
pEq � q2AdvPRF

F1
pFq � AdvPRF

F2
pGq .

Adversaries B, C,D, E ,F ,G are nearly as efficient as A in terms of time complexity. Moreover, adversaries
B, E use at most 8 log p� log |KF1 | � 2hLen bits of memory in addition to the memory used by A, adversaries
C,F use at most 15 log p� log |KF1 | � 2hLen� 4 log q bits of memory in addition to the memory used by A,
and adversaries D,G use at most 8 log p� log |KF2

| � 2hLen bits of memory in addition to the memory used
by A.

Proof. Before diving into the details of the proof, we shall provide some intuition. For a memory-tight
reduction, the H,Hv oracles have to be simulated with low memory. The reason it is non-trivial is because
the adversary can make a Hv query on Y and a H query on X � Y v, and the reduction must reply with the
same answers for both queries. In the AGM, however, the adversary would need to send over ~x � x1x2x3 and
~y � y1y2y3, the representation of X and Y respectively i.e. X � gx1Ux2V x3 and Y � gy1Uy2V y3 . We shall
next outline a strategy for a reduction to the discrete logarithm problem, point out flaws in the strategy and
fix them.

The reduction to the discrete logarithm problem gets as input pg, V q. It would sample u from Zp and
sample W at random and run the ODH adversary A. For every H query on X with representation x1x2x3, the
reduction would associate a polynomial mX � x1� ux2� x3S in the variable S. Observe that the reduction
is supposed to respond with Hpgx1�ux2�x3vq i.e. HpgmXpvqq. For every Hv query on Y with representation
y1y2y3, the reduction would associate a polynomial mY v � y1S � uy2S � y3S2. Observe that the reduction
is supposed to respond with Hpgy1v�uy2v�y3v2q i.e. HpgmY v pvqq. Essentially the reduction could associate a

38

univariate polynomial of degree at most two for every query. Since a univariate polynomial of degree at most
two has at most three coeffecients, the reduction could respond with the output of a PRF that takes three
elements of Zp as input and returns a value in t0, 1uhLen. Finally when the adversary makes a H query on
guv (this can be checked by the reduction by checking if the queried value equals V u), the reduction could
solve for v from the representation of guv, i.e. suppose the representation was x1x2x3 then the reduction
could output px1 � ux2qpx3 � uq�1 if x3 � u. (Also it is easy to show that the adversary cannot have any
advantage against ODH if it does not make a H query on guv).

This strategy however has two flaws. The first flaw is that the adversary could potentially come up with
different representations for the same group element. In this case the strategy we described would yield
different answers to the two queries. An even more contrived case would be when the reduction makes Hv

query on Y with representation y1y2y3 and a H query on X � Y v with representation x1x2x3 and not all
of y3, x1, x2 are zero and y1 � uy2 � x3. In this case again our strategy would yield different answers. The
second flaw is that when the the adversary makes a H query on guv with representation x1x2x3 such that
x3 � u. We first will talk about how to handle the second flaw because it is simpler.

The second flaw can be done away with by giving a separate reduction to discrete logarithm that sets
U to be its discrete logarithm instance input. This reduction would be simpler because it picks its own v
and can simulate H,Hv queries by using a PRF that takes as input a group element and outputs a string in
t0, 1uhLen.

In order to handle the first flaw, we give another reduction to the discrete logarithm problem that
answers queries similar to the first one but computes its output differently. This reduction randomly chooses
two values in t1, � � � , qu where q is the total number of H,Hv queries the adversary makes and remembers
the polynomial associated with these two indices. After running the adversary to completion the reduction
equates the two remembered polynomial, finds solutions and checks if any of the solutions is the correct
discrete logarithm. Note that if the adversary is indeed able to engineer a scenario that we described in the
first flaw, then at least two of the q polynomials are distinct but equal when evaluated at v (because they are
different representations of the same group element). So, with probability 1

q2 this reduction would choose the
right polynomials if the scenario related to the first flaw happens. If it chooses the right polynomials, it can
successfully compute the discrete logarithm. Note that for this reduction there is a multiplicative advantage
loss of factor q2. Now, we shall start with the formal proof.

First off, we define two games G0,G1 in Figure 22. Observe that G0 perfectly simulates GODH-REAL-AGM
G,hLen

to A. The only difference in G0 from GODH-REAL-AGM
G,hLen is that the random oracle H is lazily sampled in G0 and

there is some extra bookkeeping. The lazy sampling and bookkeeping does not affect the view of A in any
way, and the output of G0 is identical to that of GODH-REAL-AGM

G,hLen when interacting with A. Hence we have
that

Pr
�
GODH-REAL-AGM
G,hLen pAq ñ 1

� � Pr rG0 ñ 1s .
Similarly, G1 perfectly simulates GODH-RAND-AGM

G,hLen to A and the output of G1 is identical to that of GODH-RAND-AGM
G,hLen

when interacting with A. Thus

Pr
�
GODH-RAND-AGM
G,hLen pAq ñ 1

� � Pr rG1 ñ 1s .

Therefore we have that

AdvODH-AGM
G,hLen pAq � |Pr rG0 ñ 1s � Pr rG1 ñ 1s| . (23)

Now, observe that G0,G1 are identical if the flag ASKA is not set to true in both of them. Using the
Fundamental Lemma of Game Playing, we have

|Pr rG0 ñ 1s � Pr rG1 ñ 1s| ¤ Pr rASKA � true in G1s .

Therefore it follows from (23) that

AdvODH-AGM
G,hLen pAq ¤ Pr rASKA � true in G1s . (24)

39

Game G0 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : foreach X P G do HpXq Ð K

4 : Hpguvq Ð$ t0, 1uhLen

5 : W Ð Hpguvq

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : return b

Game G1 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : foreach X P G do HpXq Ð K

4 : W Ð t0, 1uhLen

5 : bÐ AHvp.q,Hp.qpg, U, V,W q

6 : return b

Game G2 ,Game G3 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : foreach X P G do HpXq Ð K

4 : W Ð$ t0, 1uhLen

5 : bÐ AHvp.q,Hp.qpg, U, V,W q

6 : return ASKA ^ bad1 bad1

Oracle HprXs~x�x1x2x3q : // X � gx1Ux2V x3

1 : if V u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K then

7 : HpXq Ð$ t0, 1uhLen

8 : return HpXq

Oracle HvprY s~y�y1y2y3q : // Y � gy1Uy2V y3

1 : if Y � U then return K

2 : if HpY vq � K then

3 : HpY vq Ð$ t0, 1uhLen

4 : return HpY vq

Fig. 22. Games G0,G1,G2,G3. The differences of G0 from GODH-REAL-AGM
G,hLen have been highlighted. The differences of

G1 from GODH-RAND-AGM
G,hLen have been highlighted. In G2, G3 the code in the thinner box is present only in G2 and the

code in the thicker box is present only in G3. The differences in G2,G3 from G1 have been highlighted. The H,Hv

oracles have not been specified for G2,G3 because they are identical as that in G1.

Next, we introduce two games G2, G3 in Figure 22. The code in the thinner box is present only in G2 and
the code in the thicker box is present only in G3. We shall use this convention throughout this proof. Note
that, since G2 is identical to G1 except for the return value and returns ASKA^ bad1, we have that

Pr
�
ASKA^ bad1 � true in G1

� � Pr rG2 ñ trues .
Similarly since G3 is identical to G1 except for the return value and returns bad1, we have that

Pr rbad1 � true in G1s � Pr rG3 ñ trues .
Since

Pr rASKA � true in G1s ¤ Pr
�
ASKA^ bad1 � true in G1

�� Pr rbad1 � true in G1s ,
it follows that

Pr rASKA � true in G1s � Pr rG2 ñ trues � Pr rG3 ñ trues .
Combining with (24) we get

AdvODH-AGM
G,hLen pAq ¤ Pr rG2 ñ trues � Pr rG3 ñ trues . (25)

Next we introduce G4 in Figure 23 that is identical to G2 with some additional bookkeeping. It additionally
defines a mapping m on points where H is defined that maps group elements to polynomials in ZprSs. All
group elements X on which to H query was made is mapped to x1 � ux2 � Sx3 where px1, x2, x3q is the
representation of X. Group elements Y v such that a Hv query was made on Y is mapped to y1S�uy2S�y3S2

where py1, y2, y3q is the representation of Y . The mapping of a group element X is denoted by mX . Observe
that for all X if mX is defined then X � gmXpvq. Since, G4 involves only additional bookkeeping compared
to G1 and the additional bookkeeping in no way affects the flag ASKA

Pr rG2 ñ trues � Pr rG4 ñ trues . (26)

40

Game G4 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : foreach X P G do

4 : HpXq Ð K; mX Ð K

5 : W Ð$ t0, 1uhLen

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : return ASKA ^ bad1

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K then

7 : mX Ð x1 � ux2 � Sx3

8 : HpXq Ð$ t0, 1uhLen

9 : return HpXq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : if HpY vq � K then

3 : mY v Ð y1S � uy2S � y3S
2

4 : HpY vq Ð$ t0, 1uhLen

5 : return HpY vq

Game G5,Game G6 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : foreach X P G do

4 : HpXq Ð K; mX Ð K

5 : W Ð$ t0, 1uhLen

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : return ASKA ^ bad1

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K then

7 : if mX � x1 � ux2 � x3S then

8 : bad2 Ð true

9 : mX Ð x1 � ux2 � x3S

10 : HpXq Ð$ t0, 1uhLen

11 : if HpXq � K then

12 : mX Ð x1 � ux2 � x3S

13 : HpXq Ð$ t0, 1uhLen

14 : return HpXq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : if HpY vq � K then

3 : if mY v � y1S � uy2S � y3S
2 then

4 : bad2 Ð true

5 : mY v Ð y1S � uy2S � y3S
2

6 : HpY vq Ð$ t0, 1uhLen

7 : if HpY vq � K then

8 : mY v Ð y1S � uy2S � y3S
2

9 : HpY vq Ð$ t0, 1uhLen

10 : return HpY vq

Fig. 23. Games G4,G5,G6. The differences of G4 from G2 have been highlighted. The differences of G5,G6 from G4

have been highlighted. In G5, G6 the code in the box is present only in G6.

Game G5 in Figure 23 introduces a bad2 event compared to G4. The bad2 event happens during a H query
on X with representation x1, x2, x3 if mX is previously defined but is not equal to x1 � ux2 � x3S. In case
this event happens mX is reassigned to x1 � ux2 � x3S. The bad2 event happens during a Hv query on Y
with representation y1, y2, y3 if mY v is previously defined but is not equal to y1S�uy2S� y3S2. In case this
event happens mY v is reassigned to y1S � uy2S � y3S

2. Observe that even though mX is reassigned, it is
still true that if mX is defined then X � gmXpvq (same for Y v). This bad2 event does not affect anything in
G5, hence

Pr rG4 ñ trues � Pr rG5 ñ trues . (27)

Next, we introduce game G6 in Figure 23. It differs from G5 only when bad2 is set to true. Whenever bad2
happens in G6 during a H query on X, HpXq is re-sampled and whenever bad2 happens in G6 during a Hv

query on Y , HpY vq is re-sampled. Note that G5,G6 are identical if the bad2 flag is not set in either of them.
Using the Fundamental Lemma of Game Playing we have

Pr rG5 ñ trues ¤ Pr rG6 ñ trues � Pr rbad2 � true in G6s . (28)

Observe that in G6, for all group elements X, HpXq is sampled uniformly at random from t0, 1uhLen if and
only if mX is updated in the previous step. Moreover, since gmXpvq � X, mX1 � mX2 if X1 � X2. In G7,
therefore instead of randomly sampling the value of HpXq, we can assign it the output of a random function
that takes as input the coefficients of mX and returns a value in t0, 1uhLen. Let RFZ3

p,t0,1u
hLen be a random

function mapping Z3
p to t0, 1uhLen. So, G7 remains identical to G6 and we have the following.

Pr rG6 ñ trues � Pr rG7 ñ trues . (29)

41

Game G7,Game G8 ,Game G9 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : k Ð$KF1

4 : foreach X P G do HpXq Ð K; mX Ð K

5 : W Ð$ t0, 1uhLen

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : return bad2

8 : return ASKA ^ bad1

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K ^ mX � x1 � ux2 � x3S then

7 : bad2 Ð true

8 : mX Ð x1 � ux2 � x3S

9 : HpXq Ð RFZ3p,t0,1u
hLen ppx1 � ux2, x3, 0qq

10 : HpXq Ð F1pk, px1 � ux2, x3, 0qq

11 : if HpXq � K then

12 : mX Ð x1 � ux2 � x3S

13 : HpXq Ð RFZ3p,t0,1u
hLen ppx1 � ux2, x3, 0qq

14 : HpXq Ð F1pk, px1 � ux2, x3, 0qq

15 : return HpXq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : if HpY vq � K ^ mY v � y1S � uy2S � y3S
2
then

3 : bad2 Ð true

4 : mY v Ð y1S � uy2S � y3S
2

5 : HpY vq Ð RFZ3p,t0,1u
hLen pp0, y1 � uy2, y3qq

6 : HpY vq Ð F1pk, p0, y1 � uy2, y3qq

7 : if HpY vq � K then

8 : HpY vq Ð RFZ3p,t0,1u
hLen pp0, y1 � uy2, y3qq

9 : HpY vq Ð F1pk, p0, y1 � uy2, y3qq

10 : return HpY vq

Fig. 24. Games G7,G8,G9.The differences of these games from G6 have been highlighted. The code in the thinner
box is present only in G8 and the code in the thicker box is present only in G9.

Pr rbad2 � true in G6s � Pr rbad2 � true in G7s . (30)

Next, we replace the random function RFZ3
p,t0,1u

hLen with a keyed function F1 : Z3
p �KF1

Ñ t0, 1uhLen in G8

(Figure 24). Consider adversary E in Figure 25. It is easy to see that E simulates G7 to A when interacting
with GPRF-RAND

F1
i.e. when it can query O � RFZ3

p,t0,1u
hLenp.q and returns 1 if and only G7 returns true. It

simulates G8 to A when interacting with GPRF-REAL
F1

i.e. when it can query O � F1pk, .q and returns 1 if and
only G8 returns true. Therefore,

Pr rG7 ñ trues ¤ Pr rG8 ñ trues � AdvPRF
F1
pEq . (31)

It can be verified from the pseudocode that adversary E uses at most 8 log p� log |KF1
| � 2hLen bits of

memory in addition to the memory used by A and is nearly as efficient as A.
We can simplify G8 and re-write it as shown in Figure 26. We next introduce G9 in Figure 24 that is

identical to G7 except that it returns the value of bad2. So we have

Pr rbad2 � true in G7s � Pr rG9 ñ trues . (32)

Next we introduce G10 which is identical to G8 except that it returns the boolean value pv1 � vq instead of
ASKA^ bad1. Suppose the query for which the flag ASKA is set in G10 is on rXs~x�x1x2x3

. Since ASKA is set

42

Adversary EO :// O : Z3
p Ñ t0, 1uhLen

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : W Ð$ t0, 1uhLen

4 : bÐ AHvp.q,Hp.qpg, U, V,W q

5 : if ASKA ^ bad1 � true then return 1

6 : return 0

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : return W

5 : return Oppx1 � ux2, x3, 0qq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : return Opp0, y1 � uy2, y3qq

Adversary FO :// O : Z3
p Ñ t0, 1uhLen

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : q1 Ð$ rqs; q2 Ð$ rqszq1

4 : p1 Ð K, p2 Ð K

5 : k Ð$KF1
; v2 Ð 0

6 : W Ð$ t0, 1uhLen

7 : q
1 Ð 0

8 : bÐ AHvp.q,Hp.qpg, U, V,W q

9 : v21, v22 Ð solutions obtained from equating p1, p2

10 : if g
v21 � V then v2 Ð v21

11 : else v2 Ð v22

12 : return pv2 � vq

Oracle HprXs~x�x1x2x3q :

1 : q
1 Ð q

1 � 1

2 : if V
u � X then

3 : return W

4 : if q
1 � q1 then p1 Ð x1 � ux2 � x3S

5 : if q
1 � q2 then p2 Ð x1 � ux2 � x3S

6 : return Oppx1 � ux2, x3, 0qq

Oracle HvprY s~y�y1y2y3q :

1 : q
1 Ð q

1 � 1

2 : if Y � U then return K

3 : if q
1 � q1 then p1 Ð y1S � uy2S � y3S

2

4 : if q
1 � q2 then p2 Ð y1S � uy2S � y3S

2

5 : return Opp0, y1 � uy2, y3qq

Fig. 25. Adversaries E , F . It is easy to see that E simulates G7 to A when interacting with GPRF-RAND
F and simulates

G8 to A when interacting with GPRF-REAL
F . Adversary F simulates G11 to A when interacting with GPRF-RAND

F and
simulates G12 to A when interacting with GPRF-REAL

F .

for this query, X � guv. If bad1 is not set to true in G10, then v1 is indeed equal to v. Therefore

Pr rG8 ñ trues ¤ Pr rG10 ñ trues . (33)

Now, consider adversary B against the discrete logarithm problem in Figure 27. Observe that it simulates
G10 perfectly to A and outputs v1. Since G10 outputs true if and only if v1 is the discrete logarithm of V , it
follows that

Pr rG10 ñ trues � AdvDL
G pBq . (34)

Observe that B is nearly as efficient as A. It requires memory to store U, V,W, u, k, v1, the current query and
the return value. These can be stored in at most 8 log p� log |KF1

| � 2hLen bits.
Next we introduce G11 which is similar to G9 with a few modifications. First, it keeps a counter for the

total number of queries that A makes. It randomly picks two distinct numbers q1 and q2 from 1 through q
where q is the total number of queries A makes to H,Hv. It stores the polynomial defined for the qst1 query in
p1 and the polynomial defined for the qnd2 query in p2. After the execution of A, it equates p1, p2 to obtain
solutions v21, v22. If v21 is the discrete logarithm of V , it assigns v21 to v2 and otherwise assigns v22 to v2.
(Note that if the equation has only one solution v22 is assigned 0 by default). It then returns the boolean

43

Game G8 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : k Ð$KF1

4 : foreach X P G do HpXq Ð K; mX Ð K

5 : W Ð$ t0, 1uhLen

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : return ASKA ^ bad1

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K ^ mX � x1 � ux2 � x3S then

7 : bad2 Ð true

8 : mX Ð x1 � ux2 � x3S

9 : HpXq Ð F1pk, px1 � ux2, x3, 0qq

10 : return F1pk, px1 � ux2, x3, 0qq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : if HpY vq � K ^ mY v � y1S � uy2S � y3S
2
then

3 : bad2 Ð true

4 : mY v Ð y1S � uy2S � y3S
2

5 : HpY vq Ð F1pk, p0, y1 � uy2, y3qq

6 : return F1pk, p0, y1 � uy2, y3qq

Fig. 26. Game G8 simplified. Game G8 has just been re-written in an equivalent form by removing some redundant
code.

value pv2 � vq. So, G11 has some additional book-keeping compared to G9 and differs only in the return
value. In particular, we have

Pr rbad2 � true in G9s � Pr rbad2 � true in G11s ,
i.e.

Pr rG9 ñ trues � Pr rbad2 � true in G11s .
Now if the flag bad2 is set to true in G11, it means that either for some X with representation x1x2x3 on
which a H query was made mX had previously been defined but was different from x1 � ux2 � Sx3 or for
some Y with representation y1y2y3 on which a Hv query was made mY v had previously been defined but was
different from y1S�uy2S� y3S2. Since mgxpvq � x by the definition of m, if bad2 is set to true in G11, there
are at least 2 queries by A such that the polynomial defined to answer the two queries were distinct but
gave the same result when evaluated at v. Since p1, p2 are chosen randomly from the q polynomials defined
to answer the queries, with probability at least 1

q2 , p1, p2 are the two distinct but gave the same result when
evaluated at v. Now, since p1, p2 can be of degree at most 2, equating them will yield at most two solutions
v21, v22. It follows that v2 � v if the right polynomials p1, p2 are picked, which happens with probability 1

q2 .
So

Pr rG11 ñ trues ¥ 1

q2
Pr rbad2 � true in G11s .

Hence we have
Pr rG9 ñ trues ¤ q2 Pr rG11 ñ trues . (35)

Next, we replace the random function RFZ3
p,t0,1u

hLen with a keyed function F1 : Z3
p �KF1

Ñ t0, 1uhLen in G12

(Figure 28). Consider adversary F in Figure 25. It is easy to see that F simulates G11 to A when interacting
with GPRF-RAND

F1
i.e. when it can query O � RFZ3

p,t0,1u
hLenp.q and returns 1 if and only G11 returns true. It

simulates G12 to A when interacting with GPRF-REAL
F1

i.e. when it can query O � F1pk, .q and returns 1 if and
only G12 returns true. Therefore,

Pr rG11 ñ trues ¤ Pr rG12 ñ trues � AdvPRF
F1
pFq . (36)

44

Game G10 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : k Ð$KF1
; v1 Ð 0

4 : foreach X P G do HpXq Ð K; mX Ð K

5 : W Ð$ t0, 1uhLen

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : return pv1 � vq

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : ASKA Ð true

3 : if u � x3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K ^ mX � x1 � ux2 � x3S then

7 : bad2 Ð true

8 : mX Ð x1 � ux2 � x3S

9 : HpXq Ð F1pk, px1 � ux2, x3, 0qq

10 : return F1pk, px1 � ux2, x3, 0qq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : if HpY vq � K ^ mY v � y1S � uy2S � y3S
2
then

3 : bad2 Ð true

4 : mY v Ð y1S � uy2S � y3S
2

5 : HpY vq Ð F1pk, p0, y1 � uy2, y3qq

6 : return F1pk, p0, y1 � uy2, y3qq

Adversary Bpg, V q :

1 : uÐ$Zp;U Ð g
u

2 : k Ð$KF1
; v1 Ð 0

3 : W Ð$ t0, 1uhLen

4 : bÐ AHvp.q,Hp.qpg, U, V,W q

5 : return v1

Oracle HprXs~x�x1x2x3q :

1 : if V
u � X then

2 : v1 Ð px1 � ux2qpu� x3q
�1

3 : return W

4 : return F1pk, px1 � ux2, x3, 0qq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : return F1pk, p0, y1 � uy2, y3qq

Fig. 27. Game G10, reduction B. The differences of G10 from G8 have been highlighted.

It can be verified from the pseudocode that adversary F uses at most 15 log p� log |KF1
| � 2hLen� 4 log q

bits of memory in addition to the memory used by A and is nearly as efficient as A.
Now, consider adversary C against the discrete logarithm problem in Figure 27. Observe that it simulates

G12 perfectly to A and outputs v2. Since G12 outputs true if and only if v2 is the discrete logarithm of V , it
follows that

Pr rG12 ñ trues � AdvDL
G pCq . (37)

Observe that C is nearly as efficient as A. It requires memory to store U, V,W, u, k, , v21, v22, V, q, q1, q2, q
1, p1, p2,

the current query and the return value. These can be stored in at most 15 log p� log |KF1 | � 2hLen� 4 log q
bits.

Combining (26) to (37) we have

Pr rG2 ñ trues ¤ AdvDL
G pBq � q2AdvDL

G pCq � AdvPRF
F1
pEq � q2AdvPRF

F1
pFq . (38)

Now that we have upper bounded Pr rG2 ñ trues, we need to upper bound Pr rG3 ñ trues to get an up-
per bound on AdvODH-AGM

G,hLen pAq. Here, again we shall construct an adversary against the discrete logarithm
problem.

We introduce G13 in Figure 29 next. It is easy to verify that it is identical to G3 (G13 replaces the
random oracle H with a random function RFG,t0,1uhLen and changes a couple of equality checks to a different
but equivalent form). Hence we have

Pr rG13 ñ trues � Pr rG3 ñ trues . (39)

45

Game G11, Game G12 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : q1 Ð$ rqs; q2 Ð$ rqszq1

4 : p1 Ð K, p2 Ð K

5 : k Ð$KF1
; v2 Ð 0

6 : foreach X P G do HpXq Ð K; mX Ð K

7 : W Ð$ t0, 1uhLen

8 : q1 Ð 0

9 : bÐ AHvp.q,Hp.qpg, U, V,W q

10 : v21, v22 Ð solutions obtained from equating p1, p2

11 : if gv21 � V then v2 Ð v21

12 : else v2 Ð v22

13 : return pv2 � vq

Oracle HprXs~x�x1x2x3q :

1 : q1 Ð q1 � 1

2 : if V
u � X then

3 : return W

4 : if HpXq � K ^ mX � x1 � ux2 � x3S then

5 : bad2 Ð true

6 : mX Ð x1 � ux2 � x3S

7 : if q1 � q1 then p1 Ð x1 � ux2 � x3S

8 : if q1 � q2 then p2 Ð x1 � ux2 � x3S

9 : HpXq Ð RFZ3p,t0,1u
hLen ppx1 � ux2, x3, 0qq

10 : HpXq Ð F1pk, px1 � ux2, x3, 0qq

11 : return HpXq

Oracle HvprY s~y�y1y2y3q :

1 : q1 Ð q1 � 1

2 : if Y � U then return K

3 : if HpY vq � K ^ mY v � y1S � uy2S � y3S
2
then

4 : bad2 Ð true

5 : mY v Ð y1S � uy2S � y3S
2

6 : if q1 � q1 then p1 Ð y1S � uy2S � y3S
2

7 : if q1 � q2 then p2 Ð y1S � uy2S � y3S
2

8 : HpY vq Ð RFZ3p,t0,1u
hLen pp0, y1 � uy2, y3qq

9 : HpY vq Ð F1pk, p0, y1 � uy2, y3qq

10 : return HpY vq

Adversary Cpg, V q :

1 : uÐ$Zp;U Ð g
u

2 : q1 Ð$ rqs; q2 Ð$ rqs

3 : p1 Ð K, p2 Ð K

4 : W Ð$ t0, 1uhLen

5 : q
1 Ð 0

6 : bÐ AHvp.q,Hp.qpg, U, V,W q

7 : v21, v22 Ð solutions obtained from equating p1, p2

8 : if g
v21 � V then v2 Ð v21

9 : else v2 Ð v22

10 : return v2

Oracle HprXs~x�x1x2x3q :

1 : q
1 Ð q

1 � 1

2 : if V
u � X then

3 : return W

4 : if q
1 � q1 then p1 Ð x1 � ux2 � x3S

5 : if q
1 � q2 then p2 Ð x1 � ux2 � x3S

6 : return F1pk, px1 � ux2, x3, 0qq

Oracle HvprY s~y�y1y2y3q :

1 : q
1 Ð q

1 � 1

2 : if Y � U then return K

3 : if q
1 � q1 then p1 Ð y1S � uy2S � y3S

2

4 : if q
1 � q2 then p2 Ð y1S � uy2S � y3S

2

5 : return F1pk, p0, y1 � uy2, y3qq

Fig. 28. Game G11, adversary C. The differences of G11 from G9 have been highlighted.

Next, we introduce game G14 where the only change from G13 is that the random function is replaced by a
keyed function F2 : KF2

�GÑ t0, 1uhLen.
Consider adversary G in Figure 29. It is easy to see that G simulates G13 to A when interacting with

GPRF-RAND
F2

i.e. when it can query O � RFG,t0,1uhLenp.q, and returns 1 if and only G13 returns true. It simulates

46

Game G13 ,Game G14 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : k Ð$KF2

4 : foreach X P G do HpXq Ð K

5 : Hpguvq Ð RF
G,t0,1uhLen pg

uvq

6 : Hpguvq Ð F2pg
uvq

7 : W Ð$ t0, 1uhLen

8 : bÐ AHvp.q,Hp.qpg, U, V,W q

9 : return bad1

Oracle HprXs~x�x1x2x3q :

1 : if Uv � 1 then

2 : ASKA Ð true

3 : if U � gx3 then bad1 Ð true

4 : else v1 Ð px1 � ux2qpu� x3q
�1

5 : return W

6 : if HpXq � K then

7 : HpXq Ð RF
G,t0,1uhLen pXq

8 : HpXq Ð F2pk,Xq

9 : return HpXq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : if HpY vq � K then

3 : HpY vq Ð RF
G,t0,1uhLen pY

vq

4 : HpY vq Ð F2pk, Y
vq

5 : return HpY vq

Adversary GO :// O : GÑ t0, 1uhLen

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : W Ð$ t0, 1uhLen

4 : bÐ AHvp.q,Hp.qpg, U, V,W q

5 : return bad1

Oracle HprXs~x�x1x2x3q :

1 : if U
v � 1 then

2 : if U � g
x3 then bad1 Ð true

3 : else v1 Ð px1 � ux2qpu� x3q
�1

4 : return W

5 : return OpXq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : return OpY vq

Fig. 29. Games G13, G14, adversary G. The differences of G13,G14 from G3 have been highlighted. In G13, G14 the
code in the thinner box is present only in G13 and the code in the thicker box is present only in G14.

G14 to A when interacting with GPRF-REAL
F2

i.e. when it can query O � F2pk, .q, and returns 1 if and only G14

returns true. Therefore,
Pr rG13 ñ trues ¤ Pr rG14 ñ trues � AdvPRF

F2
pGq . (40)

It can be verified from the pseudocode that adversary G uses at most 8 log p� log |KF2 | � 2hLen bits of
memory in addition to the memory used by A and is nearly as efficient as A.

Next, we introduce game G15 that is identical to G14 in all respects except that it returns pu1 � uq
instead of bad1. It is easy to see that

Pr rG14 ñ trues ¤ Pr rG15 ñ trues . (41)

Now, consider the adversary D against the discrete logarithm problem in Figure 30. Observe that it simulates
G15 perfectly to A and outputs u1. Since G15 outputs true if and only if u1 is the discrete logarithm of U ,
it follows that

Pr rG15 ñ trues � AdvDL
G pDq . (42)

Observe that D is nearly as efficient as A. It requires memory to store U, V,W, u, k, u1, the current query
and the return value. These can be stored in at most 8 log p� log |KF2 | � 2hLen bits. Combining (39) to (42)
we get

Pr rG3 ñ trues ¤ AdvDL
G pDq � AdvPRF

F2
pGq .

47

Game G15 :

1 : uÐ$Zp;U Ð g
u

2 : v Ð$Zp;V Ð g
v

3 : u1 Ð 0; k Ð$KF2

4 : foreach X P G do HpXq Ð K

5 : W Ð$ t0, 1uhLen

6 : W Ð Hpguvq

7 : bÐ AHvp.q,Hp.qpg, U, V,W q

8 : return pu1 � uq

Oracle HprXs~x�x1x2x3q :

1 : if U
v � 1 then

2 : if U � g
x3 then

3 : bad1 Ð true

4 : u1 Ð x3

5 : return W

6 : return F2pk,Xq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : return F2pk, Y
vq

Adversary Dpg, Uq :

1 : v Ð$Zp;V Ð g
v

2 : k Ð$KF2

3 : W Ð$ t0, 1uhLen

4 : bÐ AHvp.q,Hp.qpg, U, V,W q

5 : return u1

Oracle HprXs~x�x1x2x3q :

1 : if U
v � 1 then

2 : if U � g
x3 then

3 : u1 Ð x3

4 : return W

5 : return F2pk,Xq

Oracle HvprY s~y�y1y2y3q :

1 : if Y � U then return K

2 : return F2pk, Y
vq

Fig. 30. Game G15, adversary D. The differences of G15 from G14 have been highlighted.

Combining this with (25) and (38) we have

AdvODH-AGM
G,hLen pAq ¤ AdvDL

G pBq � q2AdvDL
G pCq � AdvDL

G pDq � AdvPRF
F1
pEq � q2AdvPRF

F1
pFq � AdvPRF

F2
pGq .

[\

B Proof Sketch of Correctness of Decoding in Section 4.5

We shall argue that Decode produces the correct σ whenever it receives a valid encoding as input. So we
assume throughout that the input to Decode is a valid encoding.

We shall show that T is identically populated in Encode,Decode and the answers to the queries of R2,R1

are identical in Encode,Decode. This would mean that the runs of R2,R1 would be identical in Encode,
Decode since answers to every query is identical in Encode,Decode. In Encode, after running R1, note that
T does not have any placeholder variables remaining because all the elements were Z were answers to R1

and would have had the placeholder variables for their pre-images removed by the time R1 finishes. So,
all the tuples of T are triples of labels, pre-images and the flag after running R1. Since Encode returns a
valid encoding (i.e. the check |Z| ¥ l succeeds), the labels in RLbls are the ones absent in T appended in
the lexicographical order of their pre-images. Now we shall use the fact that T is identical in Decode after
running R1 i.e. ll the tuples of T are triples of labels, pre-images and the flag after running R1. Note that
in Decode, the labels in T are correctly assigned to their pre-images and all unassigned pre-images in Zp
are assigned the labels in RLbls sequentially i.e. for all x P Zp, σpxq is recovered correctly. Therefore Decode
produces the correct σ. So all we need to show now is that T is identically populated in Encode,Decode and
answers to every query is identical in Encode,Decode.

T is identically populated and queries are answered identically in Encode,Decode. In Encode,
since T is created after R1 is run for the first time, T is not affected by the first run of R1. Now, observe that
the first k � 2 tuples appended to T are pσp1q, 1, 1q, pσpvq, v, 1q, pσpi1 � vq, i1 � v, 1q, � � � , pσpik � vq, ik � v, 1q in

48

Encode. It follows that σp1q, σpvq, � � � , σpi1 � vq, � � � , σpik � vq are the first k� 2 labels appended to Lbls. This
means that in Decode, σp1q, σpvq, σpij � vq’s are correctly assigned using the first k� 2 labels in Lbls and the
first k�2 tuples in T are the same as that in Encode. This means the first k�2 tuples are identically populated
in T in Encode,Decode. Next, we sketch a proof that T is identically populated in Encode,Decode on every
query made by R2,R1. We shall also show that the answers to the queries are identical in Encode,Decode.
Note that T is modified only by the append and VarReduce operations. We shall be using the phrase “a label
` is not in T” to mean p`, �, �q R T throughout this proof sketch.

We shall first show that T is identical in Encode,Decode after an Evalp., ., 2q query if it was identical
in Encode,Decode before the query and that the answer to the query is identical in Encode,Decode. We
can prove a similar statement about Ovp., ., 2q queries analogously. We shall then show T is identical in
Encode,Decode after before R1 is run in both of them for the last time. Then we shall that T is identical in
Encode,Decode after an Evalp., ., 3q or Ovp., ., 3q query if it was identical in Encode,Decode before the query
and that the answers to the queries are identical in Encode,Decode. This would conclude our proof that T
is identically populated in Encode,Decode and that the queries of R2 and R1 are answered identically.

Assuming that T is identical in Encode,Decode before an Evalp., ., 2q query, we show that T is identical
after the query in Encode,Decode and the answer to the query is identical in Encode,Decode. In Encode, when
an Evalp., ., 2q query (assume the query sequence number is c1) is made by R2, AddToTable is invoked on the
input labels if they are not present in T (the input label not being in Y2 is equivalent to it not being in T).
Suppose ` is such an input label that is not present in T in Encode- this also means that ` is not present in
T in Decode from our assumption. Therefore, AddToTablep`, c, bq would be invoked in both Encode,Decode.
There are three possibilities.

1. In Encode, ` P X and for some j P rks, ` � σpijq. In this case, observe that pc, b, jq is added to Inputs.
Since, this is the only point where tuples of the form p�, 1, �q, p�, 2, �q are added to Inputs in Encode, the
equivalent condition in Decode is that there exists some j P rks such that pc, b, jq P Inputs. Note that the
same tuple is appended to T in Encode,Decode when these equivalent conditions are true.

2. In Encode, ` P X and for no j P rks, ` � σpijq. In this case, observe that pc, bq is added to Free. Since,
this is the only point where tuples are added to Free in Encode, the equivalent condition in Decode is
pc, bq P Free. Again, note that the same tuple is appended to T in Encode,Decode when these equivalent
conditions are true.

3. In Encode, neither of the previous two conditions are true. In Decode, note that when AddToTable was
invoked, ` was not present in T and if either of the preceding two conditions were true, then a tuple
containing ` was appended to T. Therefore, ` is not in T if and only if neither of the preceding conditions
are true. Since the two preceding conditions are equivalent in Encode,Decode, the complement of the
disjunction of the two conditions are also equivalent in Encode,Decode. Since the tuple p`, σ�1p`q, 2q is
added to T in Encode, it is easy to see that σ�1p`q is the element popped out to the list Vals. Therefore,
again the same tuple is appended to T in Encode,Decode.

Therefore, after the invocation of AddToTable function, T is identical in Encode,Decode.
Note that the condition that c is in T and Tpcq � Tpaq � Tpbq in Encode implies that there does not

exist c1 such that pc1,Tpaq � Tpbq, �q P T. Also a tuple of the form pc1, �q is added to Srps1 in Encode if
and only if c is in T and Tpcq � Tpaq � Tpbq. Therefore, the condition c is in T and Tpcq � Tpaq � Tpbq
is equivalent to the condition that there does not exist c1 such that pc1,Tpaq � Tpbq, �q P T and there is
some i such that pc1, iq P Srps1 in Decode. Since T is identical up until this point, the operation VarReduce
is identical in Encode,Decode.

The only other point when tuples are appended to T in Encode on an Evalpa,b, 2q query is when a
tuple containing c (the answer of the Eval query) is added. Note that a tuple containing c is added to T in
Encode if c is not in T. If c is not in T, then p�,Tpaq � Tpbq, �q R T which in turn implies that no tuple
of the form of pc1, �q was added to Srps1. Therefore the equivalent condition in Decode is that for no c1,
pc1,Tpaq�Tpbq, �q P T and for no i, pc1, iq P Srps1. It is easy to see that c is the label popped from the list Lbls
in Decode when the condition is true. Therefore, again, the same tuple is appended to T in Encode,Decode.
Also, the same label is the answer to the Eval query in Encode,Decode. Again, the condition c is not in T and

49

for some j P rks, c � σpijq in Encode is equivalent to the condition that for no c1, pc1,Tpaq�Tpbq, �q P T and
for no i, pc1, iq P Srps1 and for some j P rks, pc1, 3, jq P Inputs because a tuple of the form pc1, 3, �q is added
to Inputs if and only if c is not in T and for some j P rks : c � σpijq in Encode. Therefore, the VarReduce
operation is identical in Encode,Decode. Also, in this case the same label σpijq is returned in Encode,Decode.
In Encode, the condition c is in T and Tpcq � Tpaq �Tpbq is equivalent to the condition there exists c1 such
that pc1,Tpaq � Tpbq, �q P T. Since, T is identical up until this point in Encode,Decode, the condition c is
in T and Tpcq � Tpaq � Tpbq in Encode is equivalent condition pc,Tpaq � Tpbq, �q P T in Decode. Note that
for this equivalent condition, no changes are made to T in Encode,Decode and the same label is returned in
both procedures.

Thus, we have argued that the changes to T and the answer is identical in Encode, Decode on an Evalp., ., 2q
query. Therefore, if T was identical in Encode,Decode before an Evalp., ., 2q query, it remains identical after
the query too and the answer of the Evalp., ., 2q query is identical in Encode,Decode.

Using very similar arguments we can prove that if T was identical in Encode, Decode before an Ovp., ., 2q
query, it remains identical after the query too and the answer of the Ovp., ., 2q query is identical in Encode,Decode.
We omit the proof since it is very similar to the previous one.

Since T was identical before running R2 in Encode,Decode, it remains identical after running R2 since
the changes made on each Evalp., ., 2q,Ovp., ., 2q query are identical in Encode,Decode and all the answers to
queries of R2 are identical in Encode,Decode. In Encode, the condition σpijq is not in T is equivalent to the
condition σpijq � K in Decode because whenever a tuple of containing σpijq was appended to T in Decode,
the value of σpijq was set and for σpijq’s not in T, the value of σpijq is K. Therefore, T remains identical in
Encode,Decode till before running R1 in Encode,Decode.

Just like we argued that T remains identical after running R2 and all the answers to queries of R2 are
identical in Encode,Decode, we can use very similar arguments to prove the T remains identical after running
R1 in Encode,Decode and all the answers to queries of R1 are identical in Encode, Decode. We omit the
proof since it is very similar to the proof before.

There are no other changes to T after running R1 in Encode,Decode. Therefore, T is identical in
Encode,Decode and all the answers to queries of R2,R1 are identical in Encode,Decode.

C Rewinding: Conjecture and Obstacles

We briefly discuss the barriers in extending our result to consider rewinding.

A reduction.First off, we informally describe a reduction R that does rewind the adversary A and answers
all the H,Hv queries using Opk log k � log pq bits of memory where k is the total number of H and Hv query
A makes. To simulate the random oracle in a memory-efficient way, the reduction R uses a PRF with key
kf whose domain is L and range is t0, 1uhLen and a list L. It keeps a counter on the number of queries by
A and increments it by 1 on each H and Hv query. The reduction R samples a key kf (assume kf can be
expressed in r bits) for the PRF and initializes L to empty before running A.

For the first query made by A (H or Hv), R responds with PRFpkf , 1q and appends 1 to L. If the ith query
by A is a Hv query on a, R records a, rewinds A to its beginning, and checks if A had made a Hv query on
a before the ith query or if A had made a H query on b such that Ovpa,bq � 1 before the ith query. If A
does find either of these to be true on the jth query, R appends Lrjs to L. Similarly, if the ith query by A is
a H query on a, R records a, rewinds A to its beginning, and checks if A had made a H query on a before
the ith query or if A had made a Hv query on b such that Ovpb,aq � 1 before the ith query. If A does find
either of these to be true on the jth query, R appends Lrjs to L. While rewinding, R answers the tth query
(t i) by PRFpkf , Lrtsq. Clearly, using this strategy, R simulates the answers to the queries of A correctly.
Note that kf can be expressed in r bits, L can be expressed in at most k log k bits, a can be expressed in at
most log p bits and the query sequence number can be expressed in at most log k bits. Therefore, R uses at
most r � k log k � log p� log k � Opk log k � log pq bits of memory.

Remarks.Note that even if R rewinds A, R needs to answer the queries of A from its beginning to the point
where R rewound it, again. Therefore, it seems unavoidable that R needs to remember some information
about each query of A. Since there are k queries, this information would take at least log k bits for each

50

query (since answer to each query could be unique) and k log k bits in total. Hence, we conjecture a lower
bound of Ωpk log kq bits even when R rewinds A.

We are not aware of any techniques that could help us establish this bound, and this appears a much
harder problem than the straightline case.

51

	On the Memory-Tightness of Hashed ElGamal

