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Abstract Cryptanalysis based on deep learning has become a hotspot in the international cryp-
tography community since it was proposed. The key point of differential cryptanalysis based on
deep learning is to find a neural differential distinguisher with longer rounds or higher probabil-
ity. Therefore it is important to research how to improve the accuracy and the rounds of neural
differential distinguisher. In this paper, we design SAT-based algorithms to find a good input d-
ifference so that the accuracy of the neural distinguisher can be improved as high as possible. As
applications, we search and obtain the neural differential distinguishers of 9-round SIMON32/64,
10-round SIMON48/96 and 11-round SIMON64/128. For SIMON48/96, we choose (0x0, 0x100000)
as the input difference and train 9-round and 10-round neural distinguishers of SIMON48/96. In
addition, with the automatic search based on SAT, we extend the neural 9-round, 10-round dis-
tinguishers to 11-round, 12-round distinguishers by prepending the optimal 2-round differential

transition (0x400000, 0x100001)
2−4

−−→ (0x0, 0x100000). Based on the 11-round and 12-round neu-
ral distinguisher, we complete a 14-round key recovery attack of SIMON48/96. Our attack takes
about 1550s to recover the final subkey. Its average time complexity is no more than 222.21 14-
round encryption of SIMON48/96, and the data complexity is about 212.8. Similar to 14-round key
recovery attack, we perform 13-round key recovery attack for SIMON32/64 with input difference
(0x0, 0x80) with a success rate of more than 90%. It takes about 23s to complete an attack with
the data complexity no more than 212.5 and the time complexity no more than 216.4. It is worth
mentioning that the attacks are practical for 13-round SIMON32/64 and 14-round SIMON48/96.

Keywords Deep Learning · Block Cipher · Neural differential distinguisher · SIMON · SAT/SMT

1 Introduction

As a chosen plaintext attack, differential cryptanalysis is one of the most powerful analysis tech-
niques used in modern block ciphers. It can achieve key recovery attacks utilizing plain-cipher
difference pair, which is expressed in input difference and output difference. The first differential
cryptanalysis [1] was presented to break Data Encryption Standard (DES) successfully in 1991.
Its basic idea is to obtain real key by analyzing the influence of specific plaintext pairs on the
ciphertext pairs. Based on this, Biham and Shamir compleated a differential attack on round-
reduced DES. Since then, differential cryptanalysis is widely used in block ciphers such as AES
[2], PRESENT [3], SIMON [4] et al. In traditional differential cryptanalysis, it is the key to
find the high-probability differential characteristics. Recently there are some tools for automatic
search for the differential characteristics [5,6]. But this still cannot effectively use the differential
characteristics.
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Deep learning (DL) has played an important role in many fields, but its development is bumpy.
In 1943, McCulloch and Pitts [7] proposed the MP neuron model, which was an abstract and
simplified model constructed according to the structure and working principle of biological neurons.
It opened the simulation of the neural network, but adjusting the weights relied heavily on manual
work, very bad for study. In 1958, on the basis of MP neural, Frank Rosenblatt [8] proposed
the single-layer feedforward neural network named single-layer perceptron, which can distinguish
between triangle, square and other basic shape. In 1986, the second generation of neural network
was put forward by Rumelhart [9]. It changed the single fixed feature layer in the first-generation
neural network to multiple hidden layers, using Sigmoid as the activation function. At the same
time, it used the idea of Back Propagation (BP), which effectively solved the problem that the first
generation only can be used in linear classification. When it came to 21st century, shallower neural
network cannot complete the corresponding task with the amount of data increasing. In 2006,
Jeffery Hinton et al. [10] put forward the concept of deep learning for the first time, which played
a huge role. With the development of deep learning, there are diverse neural networks used in
diverse fields. Convolutional Neural Networks (CNN) [11] are good at image processing. However,
Recurrent Neural Networks (RNN) [12] specialize in natural language processing (NLP). At the
same time, Generative Adversarial Networks (GAN) [13] are used to image generation.

Related work: Our work is most closely related to combine deep learning and cryptanalytic
techniques. At the Crypto2019, Gohr [14] show that deep learning can produce very powerful
cryptographic distinguishers and indicated that the neural distinguisher was better than the dis-
tinguisher obtained by traditional approach. He trained a neural distinguisher of Speck32 [4] based
on the deep residual neural networks (ResNet) [15], which can distinguish the ciphertext pairs
from random data roughly five times lower than a distinguisher using the full difference distribution
table. At the same time, he developed a highly selective key search policy based on a variant of
Bayesian optimization by using neural distinguishers. With this policy, Gohr described a practical
key recovery attack on 11-round Speck, and explained that the complexity of the attack based on
deep learning was much lower than the traditional attack. In 2020, Botao Hou et al. [16] pro-
posed a new linear attack based on deep residual network. And they devised and trained neural
networks and achieved efficient key recovery on DES using trained network models. At the same
year, Yi Chen et al. [17] proposed a new neural distinguisher model considering derived features
from multiple ciphertext pairs, which was used to improve the key recovery attack on 11-round
Specck32/64.

Our contribution: In this paper, our contributions are as follows:

– Design an algorithm based on SAT for searching high-accuracy neural differential
distinguisher. In traditional differential cryptanalysis, the input difference directly affects the
probability of the differential characteristic, which is similar to neural differential distinguishers.
We propose a basic algorithm based on SAT to search neural differential distinguisher. With
automatic search based on SAT, we search for the best differential characteristics with prob-
ability Pmax and choose the input differences to train neural differential distinguishers, where
Pmax is the optimal probability. Using the basic algorithm, we search and obtain the neural
differential distinguishers of 9-round SIMON48/96. Considering that some distinguishers are
also effective, which are trained by input difference from some high-probability characteristics,
instead of the optimal characteristics, we improve the basic algorithm to search for more high-
accuracy neural distinguishers. We expand the search space of the distinguishers by expanding
the probability space to

[
2−

n
4 × Pmax, Pmax

]
, where n is the block size. Utilizing the improved

algorithm, we search and obtain the 10-round neural differential distinguishers of SIMON48/96
with the accuracy about 57% for the first time. In addition, we get neural differential distin-
guishers of 11-round SIMON64/128 with the accuracy about 60% and 9-round SIMON32/64
with the accuracy about 60% for the first time. The summary of our algorithms together with
choosing Abed’s [18] input difference is shown in Table 1.
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Table 1: Comparison of neural differential distinguisher. The basic algorithm is shown in Section
3.1 and the improved algorithm is shown in Section 3.2. We train neural differential distinguisher
by choosing Abed’s [18] input difference. The accuracy of neural differential distinguishers is higher
with our algorithm.

Block Cipher Source of neural differential distinguisher Round Accuracy

SIMON32/64
[18] 9 59.07%

Section 3.2 9 59.77%

SIMON48/96
[18] 9 50.22%

Section 3.1 9 61.60%
Section 3.2 10 57.89%

SIMON64/128
[18] 10 58.61%

Section 3.2 11 59.72%

– Perform practical key recovery attacks on round-reduced SIMON. With our search
algorithm, we choose (0x0, 0x100000) as the input difference and train 9-round and 10-round
neural distinguisher of SIMON48/96. Inspired by Gohr’s attack, we describe the wrong key re-
sponse profile for our 9-round and 10-round neural distinguishers. In addition, we search for the

best 2-round characteristic (0x400000, 0x100001)
2−4

−−→ (0x0, 0x100000) by SAT so that we can
append two additional rounds to the beginning of the 9-round and 10-round neural distinguish-
ers to 11-round and 12-round neural distinguishers. Based on the wrong key response profile
and our neural distinguishers, we complete a 14-round key recovery attack of SIMON48/96
on a workstation configured with Intel i9-10900K and Nvidia TITAN RTX. Our attack takes
about 1550s each time to recover the final subkey. The average time complexity is no more than
222.21 14-round encryption of SIMON48/96, and the average data complexity is about 212.8,
which is much lower than the complexity of traditional differential cryptanalysis. Similar to key
recovery attacks on 14-round SIMON48/96, we perform a key recovery attacks on 13-round
SIMON32/64, with a success rate of more than 90%. Fortunately, our attack is practical on
13-round SIMON32/64 and 14-round SIMON48/96. Summary of our results on SIMON32/64
and SIMON48/96 are shown in Table 2.

Table 2: Summary of our results on SIMON32/64 and SIMON48/96. For SIMON32/64, it is con-
sidered a success if the guess for the last subkey was incorrect in 2 bits. For SIMON32/64, it is
considered a success if the guess for the last subkey was incorrect in 11 bits.

block cipher Round Time(s) Time complexity Data(CP) Success Rate

SIMON32/64 13 23 216.4 212.5 93%
SIMON48/96 14 1550 222.21 212.8 59%

Organisation of the paper: The remaining of this paper is organised as follows. Section 2
gives a brief description of SIMON, illustrates how to use SAT in differential cryptanalysis and
construct a neural distinguisher. In Section 3, we design an algorithm based on SAT to help us
find high-accuracy neural differential distinguishers. Combining with the content of Section 3, we
perform key recovery attacks on 14-round SIMON48/96 and 13-round SIMON32/64 in Section 4.
Conclusions are drawn in Section 5 where we also suggest further work.

2 Preliminaries

Before introducing our architecture, we briefly review SIMON, SAT-Based automatic search for
the differential characteristics and neural differential distinguisher.

2.1 Notations

SIMON2n/mn : SIMON acting on 2n-bit plaintext blocks and using a mn-bit key
⊕ : bitwise XOR
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& : bitwise AND
∨ : bitwise OR
Sj : left circular shift by j bits
K : Master key
ki : i-round subkey

2.2 Brief Description of SIMON

SIMON [4] is a lightweight block cipher proposed by the NSA. The aim of SIMON is to fill the
need for secure, flexible, and analyzable lightweight block ciphers. It is a family of lightweight block
ciphers with block sizes of 32, 48, 64, 96, and 128 bits. The constructions are Feistel ciphers using
a word size n of 16, 24, 32, 48 or 64 bits, respectively. Table 3 makes explicit all parameter choices
for all versions of SIMON.

Table 3: SIMON parameters

block size 2n key size mn word size n rounds T

32 64 16 32

48
72 24 36
96 24 36

64
96 32 42
128 32 44

96
96 48 52
144 48 54

128
128 64 68
192 64 69
256 64 72

For SIMON2n/mn, the key-dependent SIMON2n/mn round function is the map Rki :GF (2)
n×

GF (2)
n → GF (2)

n ×GF (2)
n

defined by

Rki (xi+1, xi) = (xi ⊕ f (xi+1)⊕ ki, xi+1) ,

where f (xi+1) =
(
S1xi+1&S8xi+1

)
⊕ S2xi+1, ki(ki ∈ GF (2)

n
) is the round subkey. This round

function is pictured in Fig. 1.

Fig. 1: Round function of SIMON

As it is out of scope for our purpose, we refer to [4] for the description of the key-scheduling.
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Since the SIMON algorithm was proposed, cryptographers have analyzed its various versions.
The earliest differential attack on SIMON was presented by Farzaneh Abed et al. in [18], which
attacked 18-round SIMON32, 19-round SIMON48 and 26-round SIMON64. They described attacks
on up to slightly more than half the number of rounds. Unfortunately, its complexity is high if we
use their methods to attack low-round SIMON. At the FSE2014, Alex Biryukov et al. [19] applied
automatic search for differential trails and attacked SIMON. At the same time, Wang Q et al. [20]
studied the security of SIMON by using integral, zero-correlation linear and impossible differential
cryptanalysis. In addition, Sun S et al. [21] got a better differential distinguisher by mixed integer
linear programming (MILP). What’s more, Raddum [22] gave efficient algebraic attacks on up to
16 rounds of the largest SIMON variants. Although there are many attacks, the complexity of their
attack is very high. Further, if we want to use their methods for practical attacks, the number of
rounds we can attack is low.

2.3 SAT-Based search for the differential characteristics on SIMON

SAT is the Boolean Satisfiability Problem. It is an NPC problem and considers whether there is a
valid assignment to Boolean variables satisfying a given set of Boolean conditions. As the key issue
of computer science and artificial intelligence, SAT solver has gained a lot of attention since it was
proposed. It has great advantages with the open source, good interface, high efficiency and perfect
compatibility. There are many cryptanalysis results based on SAT. In 2013, Mouha et al. [23]
proposed a tool for finding optimal differential characteristics of ARX ciphers, where the tool can
transform the problem of finding optimal differential characteristics of ARX cipher Salsa20 [24]
to SAT model which can be solved by SAT/SMT solver. Later, Song et al. [5] utilized Mouha et
al.’s framework to find differential characteristics of SPECK and LEA by adding a new method for
constructing long characteristics from short. In CRYPTO 2015, Stefan et al. [6] derived efficiently
computable and easily implementable expressions for the exact differential behaviour of SIMON-
like round functions. At the same time, they used those expressions for a computer aided approach
based on SAT/SMT solvers to find both optimal differential characteristics for SIMON. In this
section, we mainly introduce those expressions. Stefan et al. gave a full formula for differentials as
follows:

Theorem 1 [6] Let f (x) = Sa (x) &Sb (x) ⊕ Sc (x), where gcd (n, a− b) = 1, n even, ∨ denotes
the bitwise OR operation, x denotes the bitwise negation of x, wt(x) denotes the Hamming weight
of x, and a > b and let α and β be an input and output difference. Then with


varibits = Sa (α) ∨ Sb (α)

doublebits = Sb (α) &Sa (α)&S2a−b (α)

γ = β ⊕ Sc (α)

(1)

And the probability is given in (2) that difference α goes to difference β.

P (α→ β) =


2−n+1 if α = 1and wt (γ) ≡ 0mod2

2−wt(varibits⊕doublebits)
if α 6= 1and γ &varibits = 0

and
(
γ ⊕ Sa−b (γ)

)
&doublebits = 0

0 else

(2)

More precisely, the round function in SIMON corresponds to (a, b, c) = (8, 1, 2). With Ste-
fan’s expressions, we can construct Algorithm 1 to search for optimal probability and optimal
differential characteristics. The M refers to a SAT model of R-round differential characteristic of
SIMON2n/mn in Algorithm 1.
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Algorithm 1 Search for optimal probability and optimal differential characteristics based on SAT
Input: Rounds R, Cipher SIMON2n/mn, M
Output: Optimal probability, Optimal differential characteristics.

1: Path=[ ]
2: flag=0
3: For p in range(1, 2n) do#Search for optimal R-round probability
4: Flag=SAT(R,p,M) #Use a SAT solver to determine whether M has a solution under R and p. If there is a

solution, return to ’sat’
5: IF Flag == sat THEN
6: flag=1
7: BREAK
8: END IF
9: END For

10: WHILE ((flag==1) and (Flag==sat))do#Search for optimal R-round differential characteristics
11: path,Flag=SATpath(R,p,M ,Path)#Add elements in Path to constraints. Solve feasible solutions
12: Path=Path||path
13: END WHILE
14: RETURN (Path,p)

By Theorem 1, the search for differential characteristics is transformed into SAT/SMT model.
We use the open source solver Z3 [25] to complete the search for the differential characteristics.
Using Z3, if the SAT/SMT model has a solution, it will return ’sat’ and the solution model can be
accessed to obtain the value of the solution; if the problem has no solution, it will return ’unsat’,
indicating that there is no solution under the current constraints. Algorithm 1 gives a special case
of searching for differential characteristics, that is, searching for the optimal differential character-
istics. By Theorem 1, the search for other differential characteristics with lower probability can
also be completed. It is similar to Algorithm 1, so we don’t describe it in detail.

2.4 Brief Description of Neural Differential Distinguisher for SIMON

Gohr convert the distinguisher of ciphertext pairs into a binary classification problem. His method
is not only applicable to Speck, but also applicable to SIMON. With his method, we can construct
a model of neural differential distinguisher for SIMON, which has not been trained. The method
of constructing the data has been explained in [26]. As it is out of scope for our purpose, we refer
to [26] for the description of the method of constructing the data.

There are multiple neural networks available to train neural distinguishers, such as MIP, ResNet
and so on. We choose the ResNet to help train a neural distinguisher. Our networks comprise three
main components: input layer, iteration layer and predict layer. The diagram for our network is
shown in Fig. 2. The n in Fig. 2 refers to the word size of SIMON2n/mn. The input layer receives
training data with fixed length and applies reshape layer into the data. After reshape layer, we
wish to permute input data. At the same time, we transpose and apply Conv1D into input data
followed by batch normalization layer and activation layer so that we can expend the effect of each
bit. After activation layer, data will be sent into iteration layer.

The iteration layer is built by classical residual learning framework and shown in Fig. 2(b). In
each residual block, we use two Conv1D layers, and each Conv1D layers is followed by a batch nor-
malization layer and a activation layer. Each Conv1D consists of 2n filters. The identity shortcuts
can be directly used since the input of the first Conv1D layer and output of the second activation
layer are of the same dimensions. At the end of the second activation layer, a skip connection then
adds the output of the layer to the input of the first Conv1D layer and passes the result to the
next residual block. Iteration layer will repeat 5 residual blocks in our experiments, and then the
output layer will be following.

After flattening data from iteration layer, data will be sent into a fully connected layer. The
fully connected layer consists of a hidden layer and a output unit. The first layer are Dense layers
with 4n units, and followed by a batch normalization layer and a activation layer. The final layer
consists of a single output unit using a sigmoid activation.

In our network, we choose that the kernel size of the first Conv1D layer is 1 and the kernel size
of other Conv1D layer is 3. In addition, the number of filters in each convolutional layer is 2n and
the padding method is ’same’. At last, we train our network based on L2 weights regularization to
avoid overfitting. The other details of the hyper-parameters used are given in Table 4.
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After the neural differential distinguisher is trained, we can use it to distinguish the output of
SIMON with a given input difference from random data, if its accuracy is more than 51% on the test
set. The higher its accuracy on the test set, the better it is to distinguish ciphertext data. In [26],
Hou et al. investigate the influence of input difference on the accuracy of neural distinguisher.
He explores the effect of two kinds of input difference on accuracy of neural distinguishers. But,
unfortunately, he does not give an algorithm for finding the input difference to search for the
high-accuracy neural differential distinguishers.

Input:
(None,4n)

(None,4n)

(None,4,n)

(None,n,4)

(None,n,2n)

Input Layer

Reshape Permute Conv1D
Batch

Normalization

(None,n,2n)

Activation

(None,n,2n)

(a) Input Layer

(None,n,2n)

(None,n,2n)
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(None,n,2n)

(None,n,2n)
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Batch
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Normalization_

1
Activation_1Flatten

(None,n,2n)
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(None,1)

Output

(c) Output Layer

Fig. 2: Network Architecture
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Table 4: List of Hyper-parameters

Hyper-Parameters Value

Batch Size 10000
Epochs 100
Train size 107

V alidation size 105

Regularization parameter 10−4

Optimizer Adam
Loss function MSE(mean-squared-error)

3 Search for Neural Differential Distinguisher Based on SAT

In traditional differential cryptanalysis, it is a primary task to find a high-probability differen-
tial characteristic, which takes advantage of the unevenness of the differential distribution. The
distribution of output difference is different for different input difference. For neural differential dis-
tinguisher, it is actually to learn the distribution of output difference given a fixed input difference.
Therefore, the input difference directly affects the accuracy of the neural differential distinguisher.

In this section, we will introduce our basic algorithm for search for high-accuracy neural differ-
ential distinguishers by searching for the optimal differential characteristics. With the basic algo-
rithm, we search for the high-accuracy neural differential distinguishers for 9-round SIMON48/96.
In addition, we compare the accuracy of the neural differential distinguisher obtained by using
the input difference of the existing differential characteristic and our algorithm. Considering that
some distinguishers are also effective, even if they are trained by input difference from some high-
probability differential characteristics, instead of the optimal differential characteristics, we improve
the basic algorithm to search for more high-accuracy neural distinguishers. We expand the search
space of the distinguishers by expanding the probability space to

[
2−

n
2 × Pmax, Pmax

]
, where Pmax

is the optimal probability and n is the word size of SIMON. Using the improved algorithm, we
search for the high-accuracy neural differential distinguishers for 9-round SIMON32/64, 10-round
SIMON48/96 and 11-round SIMON64/128.

3.1 Basic algorithm for search for high-accuracy neural differential distinguisher

At present, the input difference of the neural differential distinguisher comes from the existing
optimal differential characteristics, which are used in traditional differential cryptoanalysis. In [17],
Yi Chen et al. choosed the input difference from [18] to train neural differential distinguisher
of Speck32/64. However, these differential characteristics are not dedicated to neural differential
distinguishers, so the neural differential distinguisher with high accuracy for the fixed rounds cannot
be obtained by these input difference from differential characteristics.

Taking into account the unevenness of the distribution of out difference for different input
difference, we decide to use the input difference of optimal differential characteristic as the candidate
difference. We search for optimal differential characteristic by SAT-based automatic search, and
train networks with these input difference of differential characteristics. We design an algorithm
to help us search for neural differential distinguisher with higher accuracy, which is shown in
Algorithm 2.



SAT-based Method to Improve Neural Distinguisher and Applications to SIMON 9

Algorithm 2 Search for neural differential distinguisher based on SAT
Input: Network Architecture Net, Cipher C (SIMON2n/mn), Round R
Output: Neural differential distinguisher ND, Input difference of distinguisher Id
1: Use Algorithm 1 to search for the optimal differential characteristics of C, and save their input difference as
DIFF

2: ND = [ ]
3: Id = [ ]
4: For d in DIFF do
5: S = C(d,R) #Use d to generate data set
6: V = C(d,R) #Use d to generate test set
7: Dd = Net(S)#Pre-training using Net and S
8: accd = Evaluate(Dd,V)#Get the accuracy of the model Dd
9: IF accd > 0.51 THEN

10: ND = ND || Dd
11: Id = Id || d
12: END IF
13: END For
14: RETURN (ND,Id)

The network architecture Net refers to Fig. 2. With Algorithm 2, we can search for a neural
differential distinguisher, which can distinguish random data and ciphertext pairs. At the same
time, in order to save the time of searching distinguisher, we use the hyper-parameters in Table 5
for training and complete quick pre-training by reducing the number of training iterations. In
Algorithm 2, we use d as input difference to train neural distinguisher Dd based on Sect. 2.4.
After this, we evaluate Dd by Keras [27] to filter input difference. It is regarded as a better input
difference if the accuracy of neural differential distinguisher exceeds 51%, which is effective for key
recovery.

Table 5: List of Hyper-parameters for Algorithm 2

Hyper-Parameters Value

Batch Size 10000
Epochs 10
Train size 107

V alidation size 105

Regularization parameter 10−4

Optimizer Adam
Loss function MSE(mean-squared-error)

It is found that the highest probability is 2−24 for 9-round SIMON48/96 by SAT. With the
probability of 2−24, we have a total of 96 input difference using SAT, which come from 9-round
different differential characteristics. The input difference and corresponding accuracy obtained by
our search are shown in Table 6. As we can see, we get 48 neural differential distinguishers with
accuracy over 60%, where the highest accuracy is more than 61%.
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Table 6: 9-round Input difference of SIMON48/96 with Algorithm 2

Input difference Accuracy Input difference Accuracy Input difference Accuracy

(0x40000,0x110000) 0.61598998 (0x2000,0x8800) 0.60943002 (0x8000,0x22000) 0.60773998
(0x1000,0x4400) 0.58849001 (0x400000,0x100001) 0.58247 (0x1,0x400004) 0.58160001

(0x10000,0x44000) 0.58117002 (0x2,0x800008) 0.57898003 (0x800,0x2200) 0.57729
(0x80000,0x220000) 0.57688999 (0x200000,0x880000) 0.57665998 (0x20,0x88) 0.57538998

(0x400,0x1100) 0.57481003 (0x20000,0x88000) 0.57446003 (0x40,0x110) 0.57358998
(0x80,0x220) 0.57339001 (0x100,0x440) 0.57247001 (0x200,0x880) 0.57244003

(0x4000,0x11000) 0.57125002 (0x100000,0x440000) 0.57077003 (0x10,0x44) 0.56976998
(0x8,0x22) 0.56953001 (0x800000,0x200002) 0.56946999 (0x4,0x11) 0.56870002

(0x440000,0x1) 0.53143001 (0x22000,0x80000) 0.52972001 (0x11000,0x40000) 0.52842999
(0x200002,0x8) 0.52833998 (0x220,0x800) 0.52802002 (0x100001,0x4) 0.52728999

(0x110000,0x400000) 0.52667999 (0x220000,0x800000) 0.52667999 (0x110,0x400) 0.52596998
(0x4400,0x10000) 0.52525997 (0x400004,0x10) 0.52519 (0x88,0x200) 0.52478999

(0x88000,0x200000) 0.52468997 (0x800008,0x20) 0.52456999 (0x2200,0x8000) 0.52432001
(0x880,0x2000) 0.52342999 (0x11,0x40) 0.52337003 (0x1100,0x4000) 0.52332997
(0x880000,0x2) 0.52280003 (0x440,0x1000) 0.52270001 (0x22,0x80) 0.52197999

(0x8800,0x20000) 0.52187002 (0x44,0x100) 0.52144003 (0x44000,0x100000) 0.52140999
(0x200020,0x80088) 0.50421 (0x8880,0x20200) 0.50367999 (0x444,0x1010) 0.50345999
(0x440004,0x100010) 0.50344002 (0x80800,0x220200) 0.50329 (0x88800,0x202000) 0.50326997

(0x8080,0x22020) 0.50325 (0x808,0x2202) 0.50307 (0x2020,0x8808) 0.50297999
(0x880008,0x200020) 0.50292999 (0x888000,0x20002) 0.50287002 (0x10100,0x44040) 0.50265998
(0x110001,0x40004) 0.50261998 (0x404000,0x101001) 0.50261003 (0x111,0x404) 0.50260001
(0x11100,0x40400) 0.50248998 (0x20200,0x88080) 0.50247997 (0x404,0x1101) 0.50234002
(0x800088,0x202) 0.50230998 (0x222000,0x808000) 0.50226003 (0x800080,0x200220) 0.50222999

(0x40400,0x110100) 0.50208002 (0x20002,0x808008) 0.50199997 (0x444000,0x10001) 0.50199002
(0x1010,0x4404) 0.50193 (0x220002,0x80008) 0.50187999 (0x22200,0x80800) 0.50185001

(0x10001,0x404004) 0.50185001 (0x1110,0x4040) 0.50182998 (0x44400,0x101000) 0.50165999
(0x111000,0x404000) 0.50164998 (0x101000,0x440400) 0.50159001 (0x202,0x800880) 0.50156999

(0x222,0x808) 0.50155997 (0x888,0x2020) 0.50151998 (0x400044,0x101) 0.50150001
(0x400040,0x100110) 0.50147998 (0x200022,0x800080) 0.50142998 (0x808000,0x202002) 0.50138003

(0x4040,0x11010) 0.50129998 (0x100011,0x400040) 0.50125998 (0x80008,0x20022) 0.50111997
(0x101,0x400440) 0.50107998 (0x2220,0x8080) 0.50094998 (0x202000,0x880800) 0.50089997

(0x100010,0x40044) 0.50055999 (0x4440,0x10100) 0.50044 (0x40004,0x10011) 0.50041997

In order to show that Algorithm 2 is effective for searching for distinguishers with distinguishing
effect, we use the input difference of the optimal differential characteristic in [18] to train the neural
differential distinguisher with the same rounds. For SIMON48/96, we choose (0x10100, 0x44040)
in [18] as input difference to train 9-round neural distinguisher. The comparison between the input
difference in Algorithm 2 and in [18] is shown in Fig. 3. Therefore, Algorithm 2 is effective in
searching for neural differential distinguishers. Although both methods select the best character-
istics, Algorithm 2 selects the rounds of the differential characteristics according to the rounds of
neural differential distinguisher, however, the rounds of the existing optimal differential character-
istics are longer than that of neural differential distinguisher. In other words, input difference from
the existing optimal differential characteristics is not suitable for lower-round neural differential
distinguisher.

0 20 40 60 80 100
epoch

0.50

0.55

0.60

input difference from [18]
input difference from Algorithm 2

(a) Validation accuracy by epoch

0 20 40 60 80 100
epoch

0.20

0.25

0.30

0.35

0.40
input difference from [18]
input difference from Algorithm 2

(b) Validation loss by epoch

Fig. 3: Comparison between the input difference from Algorithm 2 and from [18]
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Table 7: Comparison between using input difference in Algorithm 2 and [18]

Block Cipher Source of input difference Round Input difference Accuracy

SIMON48/96
[18] 9 (0x10100,0x44040) 50.22%

Algorithm 2 9 (0x40000,0x110000) 61.60%

Similarly, we also try to use Algorithm 2 to construct neural distinguishers of SIMON48/96 with
more rounds. We have a total of 48 input difference shown in Table 8, which come from ten-round
different differential characteristics. With the hight accuracy, we choose (0x111000, 0x404000) to
train 10-round neural distinguishers, which is shown in Fig. 4. With accuracy over 50.1%, the
ten-round distinguisher is effective to distinguish the output of SIMON48/96 with a given input
difference from random data. But, unfortunately, the accuracy is not high enough to complete the
key recovery. With the comparison of Table 6 and Table 8, we can see that the accuracy of the
10-round distinguisher is lower than the accuracy of the 9-round distinguisher. This shows that
it is more difficult to search for high-accuracy neural distinguishers as the rounds increases. This
is related to the weaker and weaker non-random features of the ciphertext pairs as the rounds
increases.

Table 8: 10-round Input difference of SIMON48/96 with Algorithm 2

Input difference Accuracy Input difference Accuracy Input difference Accuracy

(0x200,0x888) 0.50138998 (0x222,0x808) 0.50040001 (0x440004,0x100010) 0.50282001
(0x111000,0x404000) 0.50476003 (0x444000,0x10001) 0.50373 (0x222000,0x808000) 0.50134999
(0x22200,0x80800) 0.50221997 (0x8880,0x20200) 0.50119001 (0x888000,0x20002) 0.50145
(0x11100,0x40400) 0.50388002 (0x2220,0x8080) 0.50050002 (0x444,0x1010) 0.50121999

(0x880008,0x200020) 0.50186998 (0x220002,0x80008) 0.50277001 (0x8000,0x22200) 0.50234997
(0x200022,0x800080) 0.50199997 (0x110001,0x40004) 0.50186002 (0x40,0x111) 0.50303
(0x20000,0x88800) 0.50208002 (0x2000,0x8880) 0.50193 (0x4000,0x11100) 0.50182003

(0x111,0x404) 0.50283998 (0x20,0x800088) 0.50111997 (0x2,0x880008) 0.50285
(0x800000,0x220002) 0.50111002 (0x200000,0x888000) 0.50077999 (0x888,0x2020) 0.50146002

(0x100,0x444) 0.50186998 (0x800088,0x202) 0.50106001 (0x10000,0x44400) 0.50095999
(0x44400,0x101000) 0.50285 (0x40000,0x111000) 0.50351 (0x100011,0x400040) 0.50136

(0x80,0x222) 0.50139999 (0x80000,0x222000) 0.50213999 (0x400044,0x101) 0.50246
(0x88800,0x202000) 0.50186002 (0x1110,0x4040) 0.50193 (0x1,0x440004) 0.50256997
(0x4440,0x10100) 0.50173998 (0x400000,0x110001) 0.50203001 (0x1000,0x4440) 0.50244999
(0x800,0x2220) 0.50322002 (0x8,0x200022) 0.50234997 (0x4,0x100011) 0.50209999
(0x400,0x1110) 0.50410002 (0x10,0x400044) 0.50117999 (0x100000,0x444000) 0.50111997

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
epoch
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Fig. 4: 10-round neural differential distinguisher of SIMON48/96 with Algorithm 2
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3.2 Improved algorithm for search for high-accuracy neural differential distinguisher

In our experiment, we find that some distinguishers are also effective, even if they are trained
by input difference from some high-probability differential characteristics, instead of the optimal
differential characteristics for fixed rounds. In other words, the accuracy from input difference of
high-probability differential characteristics may be higher than the distinguisher from the optimal
differential characteristics. In order to find a higher-accuracy distinguisher, we improved Algorith-
m 2 to Algorithm 3.

Algorithm 3 Improved search for neural differential distinguisher based on SAT
Input: Network Architecture Net, Cipher C (SIMON2n/mn), Round R
Output: Neural differential distinguisher ND, Input difference of distinguisher Id
1: Search for the optimal probability as Pmax

2: Search for the differential characteristics with probability in
[
2−

n
2 × Pmax, Pmax

]
, and save their input difference

as DIFF
3: ND = [ ]
4: Id = [ ]
5: For d in DIFF do
6: S = C(d,R) #Use d to generate data set
7: V = C(d,R) #Use d to generate test set
8: Dd = Net(S)#Pre-training using Net and S
9: accd = Evaluate(Dd,V)#Get the accuracy of the model Dd

10: IF accd > 0.51 THEN
11: ND = ND || Dd
12: Id = Id || d
13: END IF
14: END For
15: RETURN (ND,Id)

In Algorithm 3, we expand the search space of input difference by expanding the range of the
probability. We choose 2−

n
2×Pmax as the lower bound of the probability, which is from experience. If

differential probability is lower than 2−
n
2 ×Pmax, there is almost no neural differential distinguisher

with distinguishing effect. Although Algorithm 3 increases the time, it expands the search space
when the time allows, and it will be possible to search for a neural distinguishers with higher
accuracy. By Algorithm 3, we searched for 10-round neural distinguisher of SIMON48/96 with
accuracy about 57.89%, which shows that the improved algorithm is more effective in searching
for high-accuracy neural distinguisher than the basic algorithm.

With Algorithm 3, we get the neural differential distinguishers of SIMON32/64, SIMON48/96
and SIMON64/128 in 9, 10 and 11 rounds respectively. This is the first time that there is a neural
distinguisher of 11-round SIMON64/128. The results of the neural differential distinguishers are
shown in Table 9.

Table 9: Results of neural differential distinguishers with three methods

Block Cipher Source of neural differential distinguisher Round Input difference Accuracy

SIMON32/64
[18] 9 (0x0,0x40) 59.07%

Algorithm 3 9 (0x0,0x80) 59.77%

SIMON48/96
[18] 9 (0x10100,0x44040) 50.22%

Algorithm 2 9 (0x40000,0x110000) 61.60%
Algorithm 3 10 (0x0,0x100000) 57.89%

SIMON64/128
[18] 10 (0x100,0x440) 58.61%

Algorithm 3 11 (0x0,0x10) 59.72%

In Table 9, we show the comparison of the accuracy from three methods of selecting the input
difference. In Table 9, we select the high-accuracy neural differential distinguishers and their input
difference obtained under three methods of searching for neural differential distinguishers. As we
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can see, compared with selecting the input difference in [18] and Algorithm 2, the neural distin-
guisher obtained by Algorithm 3 has higher accuracy. For SIMON32/64, the accuracy of input
difference from Algorithm 3 is higher than from [18]. For SIMON48/96 and SIMON64/128, we get
longer-round neural differential distinguishers, which helps us perform longer-round key recovery
attack.

We also try to search for neural differential distinguisher with longer rounds. Unfortunately, as
the rounds increases, the non-random features of the ciphertext pairs become weaker and weaker.
So it is difficult for us to find a neural differential distinguisher with a higher round, even if using
Algorithm 3. In addition, the higher the Hamming weight of the input difference, the more likely
the output difference is to be evenly distributed in traditional differential cryptanalysis. So we can
first search for input differences with lower Hamming weight for Algorithm 3, if time limit.

4 Practical key recovery attack of round-reduced SIMON

Using Algorithm 3, we choose (0x0, 0x100000) as the input difference to train 9-round and 10-
round neural differential distinguisher. With the automatic searches based on SAT, we extend our
9-round and 10-round distinguisher to a 11-round and 12-round distinguisher by prepending the

2-round differential characteristic (0x400000, 0x100001)
2−4

−−→ (0x0, 0x100000). Using 11-round and
12-round distinguisher, we complete practical 14-round key recovery attack of SIMON48/96 on
a workstation configured with Intel i9-10900K and Nvidia TITAN RTX. It takes about 1550s to
recover the final subkey each time. Our attack only needs no more than 222.21 14-round encryption
and the data complexity does not exceed 212.8. With the traditional differential attack in [18],
it requires 235 plaintext pairs at least with the optimal 12-round optimal probability 235 [28]. In
addition, we perform key recovery attack of 13-round SIMON32/64 with a success rate of more
than 93%. Therefore the data complexity and time complexity based on deep learning is far lower
than that of the traditional differential cryptanalysis.

4.1 Gohr’s Attack Scheme

The R-round neural differential distinguisher is applied to a key recovery attack on (R+ 1)-round
Speck32/64. In attack, using the R-round neural differential distinguisher, the key candidate can
be scored. A key guess is returned if its score exceeds threshold t. The key rank score is formulated
as

vk =

n∑
i=1

log2

(
Zki

1− Zki

)
,

where k is the key candidate, and Zki is the ith (R+ 1)-round ciphertext pair’s output signal given
by the R-round neural differential distinguisher.

Since the time of scoring all k (0 6 k < 216) and selecting the key with the largest score is huge,
Gohr search for high-scoring candidate keys by iterative method. In order to generate new candidate
keys in iterations, Gohr exploited the uneven distribution of the output signal corresponding to
the wrong key. For (R+1)-round Speck32/64, let C0 and C

′

0 are a pair of (R+1)-round ciphertext

whose input difference is α, and k is the real (R+ 1)th subkey. For δ ∈ GF (2)
16

, there is k
′

= k⊕δ.
Use k

′
as a subkey to decrypt the ciphertext pair, and get the output signals of R-round neural

distinguisher as

Rδ

(
C0, C

′

0

)
= NR

(
E−1
k′

(
C0, C

′

0

))
.

Then Rδ

(
C0, C

′

0

)
can be regarded as a random variable related to δ, which follows a normal

distribution with mean µδ and standard deviation σδ. Using the difference in the distribution of
the wrong key, the guessed key can be generated. The iteration ends, if the score of a candidate
key exceeds threshold t.

In the attack scheme above, Gohr’s attack is shown as Algorithm 4.
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Algorithm 4 Gohr’s Key Research for (R+ 1)-round Speck32/64

Input: Ciphertext pairs set C = {C0, C1, ..., Cn−1}, R-round neural differential distinguisher D, number of candi-
dates to be generated t, number of iterations l
Output:Key set L

1: S ← {k0, k1, ..., kt−1}, ki 6= kj if i 6= j;
2: L← {};
3: Forj ∈ {0, 1, ..., l − 1} do
4: Pi,k ← Decrypt1 (Ci, k) for all i ∈ {0, 1, ..., n− 1} and k ∈ S
5: vi,k ← D

(
Pi,k

)
for all i ∈ {0, 1, ..., n− 1} and k ∈ S

6: wi,k ← log2

(
vi,k

1−vi,k

)
for all i ∈ {0, 1, ..., n− 1} and k ∈ S

7: L← L||[(k,
∑n−1
i=0 wi,k) for k ∈ S]

8: mk ←
∑n−1
i=0 wi,k/n for k ∈ S

9: λk ←
∑t−1
i=0

(
mki

−µki⊕k

σki⊕k

)2

for k ∈
{

0, 1, ..., 224 − 1
}

10: S ← argsortk (λ) [0 : t− 1]
11: end for;
12: return L;

In addition, Gohr found that the output signal from R-round neural differential distinguisher
will be rather weak. He therefore boost it by using k neutral bits to create from each plaintext
pair a plaintext structure consisting of 2k plaintext pairs that are expected to pass R-round neural
differential distinguisher. Given k ciphertext structures, his algorithm is first tried on each struc-
ture. Then select the ciphertext structure, that can enhance output signal from R-round neural
differential distinguisher, to perform the key recovery.

4.2 Key recovery attack of 14-round SIMON48/96

4.2.1 Overview

With over 57.5% accuracy, we choose (0x0, 0x100000) as the input difference and train 9-round
and 10-round neural distinguisher of SIMON48/96. With the automatic searches based on SAT,
we extend our neural 9-round distinguisher to 11-round and 12-round distinguishers by prepend-

ing the 2-round differential characteristic (0x400000, 0x100001)
2−4

−−→ (0x0, 0x100000). Due to the
round function of the SIMON48/96, the key-addition occurs after the non-linear operation, we can
construct 14-round key-recovery attack by adding 1 round before and after 12-round distinguisher.

Attack Pattern If the final subkey is correctly guessed, the probability that the intermediate
state obtained by the correct last subkey and the correct second-to-last subkey passs through the
11-round distinguisher is the highest. That is to say, the response of the 11-round distinguisher is
the highest if 2-round subkey are guessed correctly. This is due to the fact that the intermediate
state decrypted by the error key is a random sequence for distinguisher given by the fixed difference,
that is, the distinguisher will returns a value of approximately 0.5 if the guessed key is wrong. This
can help us develop the key recovery attack of 14-round SIMON48/96. We guess possible keys
in the last round, we use the guessed subkey to perform 1-round decryption, and use 12-round
distinguisher to score and sort the guessed subkeys. If the score of a key exceeds the threshold
t1, we use the key to decrypt one round. At the same time, guess the second-to-last subkey, and
similarly, score and sort them. If the score exceeds the threshold t2, the last guessed subkey will
be returned as the result.

We use Gohr’s attack scheme to perform a practical key recovery attack on 14-round SI-
MON48/96. Our attack parameters are shown in Table 10.
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Table 10: Attack parameters for 14-round SIMON48/96

Parameter Value

Initial difference (0x400000,0x110001)
t1 20
t2 35

Neutral bit [44,47,21,39,3,28]
Number of iterations 60

Experimental configuration Intel i9-10900K, Nvidia TITAN RTX

4.2.2 Wrong Key Randomization of the 10-round neural distinguisher

Let C0 and C
′

0 are a pair of ciphertext whose input difference is (0x0, 0x100000), and k is the real

subkey of the last round. For δ ∈ GF (2)
24

, there is k
′

= k ⊕ δ. Use k
′

as a subkey to decrypt

the ciphertext pair, and get the response as Rδ

(
C0, C

′

0

)
= N10

(
E−1
k′

(
C0, C

′

0

))
, where N10 is

the 10-round neural distinguisher. Then Rδ

(
C0, C

′

0

)
can be regarded as a random variable related

to δ. We can assume that Rδ

(
C0, C

′

0

)
follows a normal distribution with mean µδ and standard

deviation σδ.

In order to compare the influence of wrong keys on the response of the neural distinguisher,
we calculated the wrong key response profile for our 10-round distinguishers for SIMON48/96. For

δ ∈ GF (2)
24

and a random master key K, we generate 1 ciphertext pair
(
C0, C

′

0

)
whose input

difference is (0x0, 0x100000) and save its last real subkey rk. Calculate k
′

= rk ⊕ δ and use k
′

to

decrypt
(
C0, C

′

0

)
for one round, we get the response value of the 10-round distinguisher. We repeat

the above steps 224 times and calculate the mean value and standard deviation of the response
values. The part of wrong key response profile for ten rounds is shown in Fig.5. A lot of non-random
structure is evident. The shape of the curves for σδ and for eight rounds is similar.
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0 6553 13106 19659 26212 32765 39318 45871 52424 58977 65530
difference to real key

(a) Mean response for 10-round distinguisher

0 6553 13106 19659 26212 32765 39318 45871 52424 58977 65530
difference to real key

(b) Standard deviation for 10-round distinguisher

Fig. 5: Wrong key response profile for 10-round distinguisher

It can be seen from the figure above that, the mean value and standard deviation are larger
when there are fewer error bits. This is a similar distribution for standard deviation σδ. This regular
change helps recover the last key. Similar to 10-round neural distinguisher, we can get wrong key
response profile for 9-round neural distinguisher.

4.2.3 Result and complexity analysis

Our attack only needs no more than 1550s each time, which does not exceed 222.21 14-round
encryption. At the same time, the data complexity does not exceed 212.8. With complexity analysis,
we can see that this is a practical attack. Our result in 100 trials is shown in Table 11.

Table 11: Result of 14-round SIMON48/96

The number of error bits 0-2 3-5 6-8 9-11

Number of experiments 12 15 8 24
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To show that the neural differential distinguisher has advantages in key recovery attacks, we
use the traditional cryptanalysis to perform the recovery attacks for last key on 14-round SI-
MON48/96. Due to the round function of the SIMON48/96, the key-addition occurs after the
non-linear operation, we can construct 14-round attack by adding one round before and after 12-
round optimal differential characteristics with probability 2−35 [28]. With the traditional method,
the time complexity is more than 235 14-round encryption, and the data complexity is 235.

4.3 Key recovery attack of 13-round SIMON32/64

Similar to the key recovery attack of 14-round SIMON48/96, we choose (0x0, 0x80) as the input dif-
ference to train 8-round and 9-round neural differential distinguisher. With the automatic searches
based on SAT, we extend our 8-round and 9-round distinguisher to a 10-round and 11-round dis-

tinguisher by prepending the 2-round differential characteristic (0x200, 0x880)
2−4

−−→ (0x0, 0x80).
Using 10-round and 11-round distinguisher, we complete practical 13-round key recovery attack of
SIMON32/64. With the help of Gohr’method, the key recovery attack using our neural distinguish-
er is performed 100 times. Our attack parameters are shown in Table 12. In one hundred trials,
the last subkey is correctly guessed in 60 cases and there are 24 cases that the guess for the last
subkey was incorrect in one bit. There are only 9 cases where there is a difference of 2 bits from
the correct last subkey. It takes about 23s each time to recover the final subkey, with a success rate
of more than 90%. Our attack only needs no more than 216.4 13-round encryption and the data
complexity does not exceed 212.5.

Table 12: Attack parameters for 13-round SIMON32/64

Parameter Value

Initial difference (0x200, 0x880)
t1 10
t2 10

Neutral bit [21, 30, 26, 5, 14, 18]
Number of iterations 100

Experimental configuration Intel i9-10900K, Nvidia TITAN RTX

Using our algorithm, we choose input differences to train neural distinguishers. With our neural
distinguishers, we perform key recovery attack on round-reduced SIMON32/64 and SIMON48/96.
By comparing traditional differential cryptanalysis with differential cryptanalysis based on deep
learning, we find that differential cryptanalysis based on deep learning have advantages in key
recovery attacks. In traditional differential cryptanalysis, the traditional distinguisher uses a dif-
ferential characteristic or multiple characteristics with given input difference and output difference.
In contrast, the neural distinguisher only uses given input difference, which considers more the out-
put differences effect under the same input difference. This makes the neural distinguisher to be
more powerful in differential cryptanalysis.

5 Conclusion and future work

This paper investigates how to search for a neural differential distinguisher and performs key
recovery attack on 13-round SIMON32/64 and 14-round SIMON48/96. We design an algorithm
based on SAT to help us search for a good input difference so that the accuracy of the neural
distinguisher can be as high as possible. We search and obtain the neural differential distinguishers
of 9-round SIMON32/64, 10-round SIMON48/96 and aa-round SIMON64/128. For SIMON48/96,
we train 9-round and 10-round neural distinguisher with (0x0, 0x100000) as the input difference. In

addition, we search for the best 2-round characteristic (0x400000, 0x100001)
2−4

−−→ (0x0, 0x100000)
to extend our neural 9-round and 10-round distinguishers to a 11-round and 12-round distinguishers
by prepending the 2-round characteristic. With Gohr’s attack scheme, we complete practical 14-
round key recovery attack. Our attack only needs no more than 1550s each time, which does not
exceed 222.21 14-round encryption. At the same time, the data complexity does not exceed 212.8.
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Our complexity is lower than traditional differential cryptanalysis. Similar to the key recovery
attack of 14-round SIMON48/96, we perform 13-round key recovery attack of SIMON32/64. Our
attack only needs no more than 23s each time, which does not exceed 216.4 13-round encryption.
At the same time, the data complexity does not exceed 212.5. To our surprise, the success rate
for 13-round SIMON32/64 is more than 90%. Due to the similarity between SIMON48/72 and
SIMON48/96, our work is also used to perform key recovery attack of 14-round SIMON48/72.

It is found that the choice of neutral bit directly affects the success rate of key recovery attack.
We will research how to quickly select neutral bits to improve the success rate of key recovery
attack. At the same time, it time is huge to get wrong key response profile for long-size block
cipher. We will explore how to attack long-size block cipher.
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