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Abstract. In the past 30 years, lattice reduction has proved to be one powerful tool of
public-key cryptanalysis. Since the advent of the Hidden Number Problem, there has
been an extensive study on attacks on (EC)DSA with nonce leakage. While lattice
attacks require only a few signatures, it can’t deal with small nonce bias compared
with Bleichenbacher attack. Prior to this work, it is unknown how to utilize more
signatures to improve lattice attacks on (EC)DSA.
In this paper, we propose several approaches to improve lattice attacks. The key
idea is that we can guess some bits of the secret key(or the nonces) and modify the
standard lattice to increase the volume, thus making the lattice attack much easier.
Besides, we observe that by filtering some specific signatures we are able to modify
the lattice, so we can collect a large number of signatures and construct a lattice
that is much easier to attack. With a combination of these techniques, we are able to
improve lattice attacks on (EC)DSA. On the one hand, we are able to attack 160-bit
modulus(and other modulus as well) (EC)DSA with 2-bit leakage within 215 BKZ-30
operations with 90 signatures. On the other hand, with 227 signatures available, we
are able to attack 160-bit (EC)DSA with 2-bit leakage in just one BKZ-30 operation.
As a second contribution, we give an explanation for several questions unexplained in
previous works. It was observed that SVP approaches(Kannan embedding) always
outperform CVP approaches(nearest plane) and lattice attack is very sensitive to the
Kannan Embedding factor, but these questions are not discussed in previous works.
We give an explanation for completeness.
Last, we carry out some experiments on the TPM-Fail dataset. While the original
attack utilizes around 40000 signatures, with a combination of our method, we are
able to recover the secret with only 800 signatures available.
Keywords: HNP · Lattice Reduction · (EC)DSA · Embedding Method · Guessing
Bits

1 Introduction
A lattice is a discrete group in space, which can also be interpreted as all integer combi-
nations of a certain set of vectors b1, · · · , bd known as bases. One lattice has infinitely
many bases, but bases with small norms and orthogonal properties are much more in-
teresting. Finding such kind of bases is a mathematical problem with a long history,
which dates back to the work of mathematicians in the 18th century. However, it was
not until 1982 that Lenstra, Lenstra, Lovász[LLL82] introduced a polynomial time lattice
reduction algorithm that became known as LLL algorithm. Since the advent of LLL, it
has proved to be one powerful cryptanalytic tool: it was used to attack the knapsack-
based cryptosystem[Sha82] and find small roots for polynomial equations[Cop97](known
as Coppersmith’s method).

DSA and ECDSA are well established standards for digital signature based on the
discrete logarithm problem. It is well known that if the same nonce k is used twice, the
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adversary can directly compute the private key due to the linear relation between the
nonce and private key. Even worse, partial information about the nonces can lead to
recovery of the full private key, either via lattice reduction technique or Fourier analysis
technique (called Bleichenbacher’s attack). In this paper, we mainly focus on the lattice
approach. For Fourier analysis approach, we refer to [Ble00], [AFG+14b], [DHMP13],
[TTA18], [ANT+20].

In 1996, the Hidden Number Problem(HNP for short) was originally proposed by
Boneh and Venkatesan[BV96] to prove the bit security of Diffie-Hellman key exchange.
They transformed the HNP into a Closest Vector Problem instance and solved it by LLL
reduction and Babai’s nearest plane algorithm[Bab86]. After that, Howgrave-Graham
and Smart[HGS01], Shparlinski and Nguyen[NS02] used the HNP to attack (EC)DSA if
some bits of the nonces are known. However, when nonce leakage is very small, such as 1
or 2, the attack becomes much more difficult mainly because the hidden lattice vector is
not very close to the target vector. With the development of lattice reduction algorithm,
Chen and Nguyen[CN11] invented the so-called BKZ 2.0 that made several improvements
on the original BKZ[SE94]. In 2013, using BKZ 2.0 combined with pruning techniques
for BDD enumeration, Liu and Nguyen[LN13] were able to attack 160-bit DSA with 2-bit
nonce leakage in a few hours on a workstation. In a very recent work[AH] by Albrecht and
Heninger, they proposed new ways of improving lattice attacks and made new records.

1.1 Our Contribution
We give the following contributions:

• We propose several approaches to improve lattice attacks on EC(DSA).

– Approach 1: in standard lattice attacks, either we find the secret key or get
nothing. Even if we know some information about the secret key, standard
lattice attacks do not utilize it. By guessing some bits of the secret key and
modifying the standard lattice, we are able to construct a lattice that is much
easier to attack. With this approach, we are able to attack 160-bit (EC)DSA
with 2-bit nonce leakage(and other modulus as well) within 215 BKZ-30 oper-
ations on a 90-dimensional lattice.

– Approach 2: in order to make the hidden lattice vector more close to the
target vector, we can also guess some bits of the nonces for some signatures,
thus constructing a hybrid lattice. With this approach, similar result with
approach 1 could be achieved.

– Approach 3: motivated by the Bleichenbacher attack, we are able to filter
some signatures and construct HNP instances with smaller value. By utilizing
such kind of information, we are able to construct a lattice that is much easier
to attack. For instance, with 227 signatures available, we are able to attack
160-bit (EC)DSA with 2-bit nonce leakage within one BKZ-30 operation on a
90-dimensional lattice.

• With these approaches, we are able to quantify the computation cost even for 1-
bit nonce leakage case despite the fact that it still remains difficult in practice.
Besides, our approaches are quite general and actually work for any HNP instance.
Furthermore, our approaches are parallelizable, so the attack can be carried out in
a short time if given a reasonable number of cores.

• There are some phenomenons reported in previous works, such as the fact that
SVP approaches(Kannan Embedding) always outperform CVP approaches(Nearest
Plane), the fact that lattice attack is very sensitive to the Kannan embedding factor.
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These questions remain unexplained in previous works, so we give an explanation
for completeness.

• We carried out experiments on the TPM-FAIL dataset[MSEH20] and apply our ap-
proaches to key recovery. While the original attack requires about 40000 signatures,
with the method of guessing bits, we are able to recover the secret key with only
800 signatures available.

Although we come up with a way of improving lattice attacks with more signatures, it
still requires too many signatures compared with Bleichenbacher Attack. For instance,
for 160-bit (EC)DSA with 2-bit nonce leakage, our method requires 227 signatures, while
the Bleichenbacher attack requires about 215 signatures for 2-bit leakage case and 227

signatures for the one-bit leakage case[ANT+20]. However, the fact that there exists a
way of improving lattice attacks with more signatures might give some ideas for future
work and we hope that lattice attacks on (EC)DSA could be further improved.

2 Preliminaries
2.1 Lattices
In our context, we only consider integral lattices. Let b1, · · · , bm be arbitrary vectors in
Zn. Denote by L(b1, · · · , bm) the set of all integral linear combinations of the vectors
b1, · · · , bm:

L(b1, · · · , bm) = {
i=n∑
i=1

cibi : ci ∈ Z}

We call L(b1, · · · , bm) the lattice generated by b1, · · · , bm. If b1, · · · , bm are linearly
independent, we say that b1, · · · , bm is a basis of this lattice. In this paper, we mainly
focus on full-rank lattice of dimension n.

The Euclidean norm of the shortest non-zero vector in L is called the first minimum
of L and denoted as λ1(L). For 1 ≤ i ≤ n, the i-th minimum λi(L) is defined as the
minimum radius r such that a ball centered at origin with radius r contains i linearly
independent vectors.

It is proved in [Ajt06] that a random n-dimensional lattice satisfies asymptotically
with overwhelming probability

∀1 ≤ i ≤ n, λi(L) ≈
√

n

2πe
vol(L)1/n

There are many computational problems related to lattices. The most famous one is
the shortest vector problem(SVP for short): given a lattice L, find the shortest vector
v ∈ L such that the Euclidean norm |v| = λ1(L). Another problem is the closest vector
problem(CVP for short): given a lattice L and a target vector t, find the vector v ∈ L
such that |v − t| is minimal.

There exists efficient lattice algorithms for solving approximate versions of SVP and
CVP. Algorithms such as LLL[LLL82], BKZ[SE94] output lattice basis [b1, · · · , bn] such
that the approximation factor |b1|

λ1(L) and the hermite factor |b1|
vol(L)1/n are small.

2.2 Hidden Number Problem
The Hidden Number Problem can be described as follows: q and l are fixed numbers, for
many known random t, we have an oracle Oα(t) that on input t computes the l most(or
least) significant bits of (αt mod q), the goal is to recover the hidden secret α. In this



4 Guessing Bits: Improved Lattice Attacks on (EC)DSA

paper, we only consider the oracle that outputs the LSB, but for MSB, it is essentially the
same despite the fact that the result might have slight difference. Suppose that we have
queried the oracle d times and have d pairs (ti, ui)(i = 1, 2, · · · , d) where ui = Oα(ti),
since ui is the l least significant bits of αti, we have |αti − ui|q < q/2l, where |z|q means
the unique integer 0 ≤ x < q such that x ≡ z mod q. Boneh and Venkatesan proposed
a way to transform this into a lattice problem. Construct a lattice L spanned by the
following matrix B:

B =


2lq 0 · · · 0 0
0 2lq · · · 0 0

...
...

0 0 · · · 2lq 0
2lt1 2lt2 · · · 2ltd 1


Since |αti − ui|q < q/2l, there exists some integer ci such that |αti − ui + ciq| < q/2l,
so |2lαti − 2lui + 2lciq| < q, and (2lαt1 + c12lq, 2lαt2 + c22lq, · · · , 2lαtd + cd2lq, α) is
a lattice vector(which we call hidden lattice vector) in L, and set the target vector
v = (2lu1, 2lu2, · · · , 2lud, 0). The distance between the target vector v and the lattice
L is at most q

√
d + 1. Therefore, when l is not too small, the target vector v is a close

vector to the lattice L, so this becomes a CVP instance(or more precisely, BDD instance).
Generally, there are two ways to solve the HNP, the CVP approaches and SVP approaches.
In the original paper by Boneh and Venkatesan, they used LLL algorithm to reduce the
lattice basis and Babai’s nearest plane algorithm to find the hidden lattice vector. The
LLL reduction can be replaced with BKZ. One can also use CVP enumeration instead
of nearest plane algorithm. Besides, another technique, known as Kannan embedding
method[Kan87], transforms the CVP instance into a Shortest Vector Problem by embed-
ding the target point into the original lattice, thus constructing a larger lattice:

C =
(

B 0
v q

)
Then, one can solve SVP by lattice reduction. In this paper, we mainly use the Kannan
embedding method to solve HNP.

2.3 DSA Signature Scheme
DSA is an El Gamal-like signature scheme, which is included in Digital Signature Stan-
dard(DSS) issued by NIST. DSA can be described as follows.

2.3.1 Parameters

The parameters are p, q, g, where p and q are primes satisfying q|(p−1), g ∈ Z∗
p has order

q. Besides, we have a hash function h that maps any arbitrary-length string into Zq. The
signing key α is a uniformly random number in Z∗

q and the public key is y = gα mod p.

2.3.2 Signing Phase

To sign a message m, the nonce k is chosen uniformly at random from Zq, and we compute
r = (gk mod p) mod q, and s = k−1(h(m) + αr) mod q, the signature is the pair (r, s).

2.3.3 Verification Phase

Given a signature pair(r, s) of the message m, if r = (gh(m)s−1
yh(m)s−1 mod p) mod q, the

signature is regarded as valid, otherwise invalid.
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2.4 Lattice Attacks on DSA
From the signing phase of DSA, we have already known that s ≡ k−1(h(m) + αr) mod q,
so

αr ≡ sk − h(m) mod q

Now in our case, we have l-bit leakage, so the l least significant bits of k are zero(actually,
having l-bit leakage means knowing the value of l least significant bits, but it is essentially
the same for the attack), k = 2lb for some integer b ≥ 0, so we have

αr ≡ s2lb − h(m) mod q

⇔ α2−ls−1r ≡ b − 2−ls−1h(m) mod q

Now set

t = 2−ls−1r mod q

and u = −2−ls−1h(m) mod q

so b ≡ αt − u mod q

Note that both t and u can be computed from all the public available information. Since
0 ≤ b < q/2l,

|αt − u|q < q/2l

In this way, we have constructed a HNP instance for DSA. Then we solve the HNP either
by nearest plane algorithm or Kannan embedding method.

2.5 Recentering Technique
In order to further improve the lattice attack on (EC)DSA, there is a well-known technique
in the community called recentering. It works as follows: since

|αt − u|q < q/2l

there exists some integer c such that

0 ≤ αt − u + cq < q/2l

⇔ −q/2l+1 ≤ αt − u − q/2l+1 + cq < q/2l+1

Therefore,

|αt − u − q/2l+1|q ≤ q/2l+1

Now let

v = 2l+1u + q

we have

|αt − v/2l+1|q ≤ q/2l+1

Suppose that now we have d signatures (ri, si)(i = 1, · · · , d) and it is not difficult to
compute the pairs (ti, ui) where ti and ui are defined above. Then construct a lattice L
spanned by the following matrix B:

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1
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For each inequality, there exists some integer ci such that

|α2l+1ti − vi + ci2l+1q| < q

Let the target point v = (v1, · · · , vd, 0) and the hidden lattice point u = (α2l+1t1 +
c12l+1q, · · · , α2l+1td + cd2l+1q, α), Thus the Euclidean distance between the target point
v and the hidden lattice point u is bounded by q

√
d + 1. If we can find the hidden lattice

point, then we attack DSA successfully, since the last coefficient of u is the private key α.
The volume of this lattice L is qd2(l+1)d, according to Gaussian Heuristics, the Euclidean
norm of the shortest vector is roughly

λ1(L) ≈
√

d + 1
2πe

(vol)
1

d+1 ≈
√

d + 1
2πe

2
(l+1)d

d+1 q
d

d+1

Therefore, the requirement is that the distance is much smaller than λ1(L):

q
√

d + 1 <

√
d + 1
2πe

2
(l+1)d

d+1 q
d

d+1

After solving this inequality, we get

d ≥ log2(q)
l − log2(

√
πe/2)

This can be used to estimate the number of signatures needed for the attack to succeed.

2.6 Difficulty When Leakage is Small
First, we give an explanation of why lattice attack against (EC)DSA with small nonce
leakage is difficult. Now we are in the context of 160-bit modulus. With this formula

d ≥ log2(q)
l − log2(

√
πe/2)

and performance in practical experiments, the following table is the typical number of
signatures(the number can be decreased a little bit) needed to perform the lattice attack
on 160-bit (EC)DSA.

leakage: l number of signatures: d
4 50
3 80
2 100
1 200

When the leakage is 3, d = 80, l = 3, and the lattice basis matrix B would be

B =


16q 0 · · · 0 0
0 16q · · · 0 0

...
...

0 0 · · · 16q 0
16t1 16t2 · · · 16td 1


The Euclidean norm of the first vector is 16q, the Euclidean distance between the hid-

den lattice vector u and the target vector v is upper-bounded by q
√

d + 1 = 9q. Therefore,
any linear combination of the first d rows will have significantly larger Euclidean norm
than the distance between the hidden lattice vector and the target vector.
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When the leakage is 2, d = 100, l = 2, and the lattice basis matrix B is

B =


8q 0 · · · 0 0
0 8q · · · 0 0

...
...

0 0 · · · 8q 0
8t1 8t2 · · · 8td 1


The Euclidean norm of the first vector is 8q, the Euclidean distance between the hidden
lattice vector u and the target vector v is upper-bounded by q

√
d + 1 ≈ 10q. To be a bit

more precise, we can compute the expected distance. Each coefficient of the difference
vector between the hidden vector and target vector is uniformly distributed in Zq, thus
the expected norm for one coefficient is√√√√1

q

i=q−1∑
i=0

i2 ≈
√

q2

3

Thus the expected distance is roughly√
100
3

q2 ≈ 6q

When the leakage is 1, d = 200, l = 1, and the lattice basis matrix B is

B =


4q 0 · · · 0 0
0 4q · · · 0 0

...
...

0 0 · · · 4q 0
4t1 4t2 · · · 4td 1


The Euclidean norm of the first vector is 4q, the Euclidean distance between the hidden
lattice vector u and the target vector v is upper-bounded by q

√
d + 1 ≈ 14q. With

similar computation, we can know that the expected distance is around 8q. This means
that many linear combinations of the first d rows will have smaller Euclidean norm than
the difference vector. In other words, there are exponentially many lattice vectors that is
more close to the target vector than the hidden vector, thus making decoding extremely
difficult.

2.7 Projected Lattice
Typically, in the standard lattice attacks, we almost always locate the secret key in the
second row(which we hope to be the first row) of the reduced basis. In order to deal with
this issue, [AH] made a modification to the original lattice. Recall that the matrix that
we construct is

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1


With some linear combinations of the rows, we could know that (0, 0, · · · , 0, q) belongs
to this lattice. The expected Euclidean distance of difference vector between the target
vector and hidden vector is roughly

√
d+1

3 q. With typical parameters such as d = 85, l = 2,
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this Euclidean distance is much larger than q. This means that the difference vector will
never be the shortest vector in practice. In fact, we can project this lattice orthogonal to
(0, · · · , 0, q) and construct a new lattice

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1(td)−1 2l+1t2(td)−1 · · · 2l+1td−1(td)−1 2l+1


In this new lattice, the hidden vector will be (|αtd|q2l+1t1(td)−1+c12l+1q, |αtd|q2l+1t2(td)−1+

c22l+1q · · · , |αtd|q2l+1td−1(td)−1 + cd2l+1q, 2l+1|αtd|q). The important thing is that the
vector (0, 0, · · · , 0, q) does not belong to the new lattice, so we are able to locate the
private key in the first row of the reduced basis.

3 Analysis: Modeling Lattice Attacks on (EC)DSA
Following the idea of [AFG14a], we first propose a model that can guide the parameter
setting of lattice attacks on (EC)DSA. In [GN08], it was concluded that given a lattice-
reduction algorithm which we assume to be characterised by a root-Hermite factor δ0 and
a n-dimensional lattice Λ, the algorithm will be successful in disclosing a shortest non-zero
vector with high probability when λ2

λ1
≥ τ · δ0

n, where τ is a constant depending both on
the nature of the lattices involved and lattice reduction algorithm that we use. We assume
that in order to get the same success probability, the gap λ2

λ1
needed keeps the same for

this type of lattice(for attacking (EC)DSA) and the same lattice reduction algorithm.
Although this is a somewhat non-standard assumption, the result is consistent with

the practical experiments and what we want is an intuitive model(not necessarily very
accurate) to guide the parameter setting, so it suffices for our purpose to do this.

3.1 Modeling Lattice Attacks
First we do some experiments to determine the root hermite factor δ0 for BKZ-30 on this
type of lattice:

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 2l+1


After doing several experiments, we determined that δ0 ≈ 1.01 for BKZ-30. Then we set
the desired success probability level to be 20%. In our assumption, τ only depends on the
desired success probability level, the nature of this type of lattice and the lattice reduction
algorithm. Since now everything is fixed, we do some experiments to determine the value
of τ . We set l = 3, d = 57 for 160-bit modulus q, after doing 100000 experiments, we find
that when

λ1(L)
|e|

≈ 0.94(e is the difference vector )

we have about 20% success rate, and compute

τ = 0.94
δ58

0
≈ 0.527
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What we want is a rough estimate for 160-bit (EC)DSA with 2-bit nonce leakage. Typi-
cally, the number of signatures needed d = 85. So we can compute the probability such
that

λ1(L)
|e|

≥ τ · δ86
0

From Gaussian Heuristic,

λ1(L) ≈
√

d + 1
2πe

vol(L)1/(d+1)

The volume

vol(L) = 2(l+1)(d+1) · qd

So the requirement is

|e| <
2.243 · 8 · qd/(d+1)

0.527 · 1.0186

⇔ |e| < 14.47qd/(d+1)

Since q is a 160-bit modulus, q
1

d+1 ≈ (2161)1/86 ≈ 3.66, so

⇔ |e| < 14.47q/3.66 ≈ 3.95q (1)

Each coefficient ei(i = 1, · · · , d + 1) of e is uniformly distributed in (−q, q), e2
i is

uniformly distributed in {0, 1, 4, 9, · · · , q2}(to be precise, the probability at 0 is different,
but this can be ignored). According to some standard results from probability theory in
the appendix of [KL20],
Lemma 1. Let X1, · · · , Xm be pairwise-independent random variables with the same
expectation µ and variance σ2. Then for every δ > 0,

Pr[|
∑m

i=1 Xi

m
− µ| ≥ δ] ≤ σ2

δ2m

The expectation of square of Euclidean norm of difference vector e

E(|e|2) = E(e2
1 + · · · + e2

d+1)
= (d + 1)E(e2

1)

= (d + 1)1
q

i=q∑
i=1

i2 ≈ (d + 1)q2

3

so E(|e|) ≈
√

d + 1
3

q

The variance σ2(e2
1) for one coefficient is

σ2(e2
1) ≈ 1

q

i=q∑
i=1

(i2 − 1
3

q2)2

= 1
q

i=q∑
i=1

(i4 − 2
3

q2i2 + 1
9

q4)

≈ 1
q

(1
5

q5 − 2
3

q2 · 1
3

q3 + 1
9

q5)

= 4
45

q4
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With the tail bound from Lemma 1, and set δ = 1
7 q2, d = 85

Pr[|e2
1 + · · · + e2

d+1 − d + 1
3

q2| ≥ 86
7

q2] ≤ 4 · 49
45 · (d + 1)

so

Pr[|e2
1 + · · · + e2

d+1 − 86
3

q2| ≥ 86
7

q2] ≤ 5%

Then with probability at least 95%, |e|2 will stay in the interval

(16.38q2, 40.95q2)

As previously mentioned in equation 1, in order to gain a 20% success rate, |e| should be
less than 3.95q, so this is unlikely to happen.

3.2 One Intuitive Idea to Improve the Attack
The direct idea is to increase the gap

λ1(L)
|e|

Since

λ1(L) ≈
√

d + 1
2πe

vol(L)1/(d+1)

we could increase the volume of the lattice(which we will explain later) while keeping the
|e| unchanged. Recall that in order to have 20% success rate, we need

λ1(L)
|e|

≥ τ · δ86
0

If we increase the volume of the lattice by 220 times, λ1(L) will increase by (220)1/86 ≈
1.174 times, so the requirement 1 will become

⇔ |e| < 3.95q · 1.174 ≈ 4.64q (2)

we will have greater success probability.

4 Guessing Bits of Secret Key
In our context, the modulus q has 160 bits, the leakage l = 2.(for other modulus, it is
quite similar) In standard lattice attacks, either we find the secret key or get nothing. It
is somewhat believed that making assumptions on the secret key does not help the attack.
However, this is not true. We find that the length of the secret key is closely related to
the difficulty of the attack. Take 160-bit (EC)DSA with 2-bit leakage for instance, if we
assume that the secret key has less than 60 bits, we can modify the original lattice and
make the attack very easy.

Recall that the HNP inequality is |αti − ui|q < q/2l(i = 1, · · · , d) and the lattice we
construct is

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1
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the target vector is (2l+1u1 +q, 2l+1u2 +q, · · · , 2l+1ud +q, 0), and the hidden lattice vector
is (α2l+1t1 + c12l+1q, α2l+1t2 + c22l+1q, · · · α2l+1td + cd2l+1q, α). As we discussed in the
previous section, in order to improve the success rate of lattice attacks, one direct idea
is to increase the volume of the lattice while keeping the difference vector between target
vector and hidden vector unchanged. For instance, we could modify the lattice as

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 2100


In this way, we increase the volume of the lattice by 2100 times, but the problem is that
hidden lattice vector will not be close to the target vector anymore, because the hidden
lattice vector is (α2l+1t1 + c12l+1q, α2l+1t2 + c22l+1q, · · · α2l+1td + cd2l+1q, 2100α), and
the difference in the last coefficient is very large(2100α), thus making the modification
meaningless.

However, if we assume that the secret key has less than 60 bits, then 2100α is still
bounded by 2160 ≈ q, so this means the distance between the hidden vector and the
target vector almost keeps unchanged, and we have increased the volume of lattice by
2100 times, thus making the success probability significantly better. We carried out some
simulation experiments and find that if the secret key only has 60 bits for 160-bit (EC)DSA
with 2-bit nonce leakage, after modifying the lattice as

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 2100


we can recover the secret key in just one BKZ-20 operation with 100% success rate, so
this becomes almost trivial.

This observation leads to the following attack. First write the secret key in the follow-
ing format:

α = α1 ∗ 2c + α2(0 ≤ α2 < 2c)

where c is any arbitrary predetermined integer between 1 and 160. So α1 is the (160 − c)
most significant bits of α and α2 is the remaining c bits of α. Suppose that we have
constructed d HNP inequalities with leakage l:

|α ∗ ti − ui|q < q/2l (i = 1, 2, · · · d)

Then substitute α with α1 ∗ 2c + α2

|α1 ∗ 2c ∗ ti + α2 ∗ ti − ui|q < q/2l(i = 1, 2, · · · d)

and set

t′
i = 2c ∗ ti

u′
i = −α2 ∗ ti + ui

so we have new HNP inequalities for t′
i and u′

i

|α1 ∗ t′
i − u′

i|q < q/2l (i = 1, 2, · · · d)



12 Guessing Bits: Improved Lattice Attacks on (EC)DSA

Then construct the lattice as

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t′
1 2l+1t′

2 · · · 2l+1t′
d 2c


The hidden vector is (α12l+1t′

1 + c12l+1q, α12l+1t′
2 + c22l+1q, · · · α12l+1t′

d + cd2l+1q, α12c)
and the target vector is (2l+1u′

1 + q, 2l+1u′
2 + q, · · · , 2l+1u′

d + q, 0). Now we have increased
the volume of the lattice by 2c times while keeping the Euclidean norm of the difference
vector almost unchanged. Of course we don’t know the value of α2, but we can enumerate
α2 from 0 to 2c, so this is a trade-off: we increase the volume of the lattice by 2c times(thus
making the attack easier) at the cost of 2c enumerations. We formalize the attack as the
following steps:

• Step 1: Determine the integer constant c.(It depends on how much enumeration cost
we want to pay)

• Step 2: Collect d signatures and construct ti, ui as previously defined.(i = 1, 2, · · · , d).

• Step 3: Enumerate α2 from 0 to 2c:

– Construct the corresponding HNP instance for α1.
– Solve the new HNP instance by Kannan embedding.

With this method, we are able to attack 160-bit (EC)DSA with 2-bit nonce leakage, 256-
bit (EC)DSA with 3-bit nonce leakage, 384-bit (EC)DSA with 4-bit nonce leakage. See
the section of experimental results.

5 Guessing Bits of Nonce: Hybrid Attack
Another similar approach could be done to increase the volume of the lattice. Again in
our context, the modulus q has 160 bits, the leakage l = 2. For other modulus, it is
essentially the same, so we will not discuss it again.

Suppose that now we have d 160-bit (EC)DSA signatures(ri, si)(i = 1, · · · , d) with
2-bit leakage and computed ti = |r · 2−2s−1|q, ui = | − h(m) · 2−2s−1|q as in the previous
sections, so the nonce ki = 22bi where bi is some integer. We can guess the third least
significant bit of the nonce, thus constructing a HNP inequality with 3-bit leakage with
probability 1

2 .
If the third bit is zero, then

ki = 23b′
i

and set

t′
i = |r · 2−3s−1|q

and u′
i = | − h(m) · 2−3s−1|q

If the third bit is 1, then

ki = 23b′
i + 22

⇔ αrs−1 ≡ 23b′
i + 22 − h(m)s−1 mod q

⇔ αrs−12−3 ≡ b′
i + 2−1 − h(m)s−12−3 mod q
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And then set

t′
i = |r · 2−3s−1|q

and u′
i = |2−1 − h(m) · 2−3s−1|q

Note that here 2−1 means the inverse of 2 mod q, not the fractional number 1
2 . Although

we do not know whether the third least significant bit is 0 or 1, by trying this two new
settings of t′

i and u′
i, we are essentially guessing the third bit and construct t′

i and u′
i with

3-bit leakage, of which the success probability is 1
2 . Recall that typically, for 2-bit leakage,

we need about 90 signatures to perform the attack, thus the lattice basis matrix is:

B =


8q 0 · · · 0 0
0 8q · · · 0 0

...
...

0 0 · · · 8q 0
8t1 8t2 · · · 8t90 1


By guessing bits for all the signatures, we can construct a new matrix with all the inequal-
ities having 3-bit leakage:

B =


16q 0 · · · 0 0
0 16q · · · 0 0

...
...

0 0 · · · 16q 0
16t′

1 16t′
2 · · · 16t′

90 1


Of course, with this new matrix, we could attack 160-bit (EC)DSA easily, since we know
that for 3-bit leakage, standard lattice attack works well. However, we are paying a price
of 290 of guessing one more bit for all the signatures, which is unacceptable. In order to
avoid the huge computation, instead of guessing one more bit for all the signatures, we
could guess one more bit for part of the signatures, thus constructing a hybrid lattice. For
instance, we can guess one more bit for 20 out of the 90 signatures and keep the other 70
signatures unchanged as follows:

B =



16q · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0

... 16q 0
...

...
0 · · · 0 8q · · · 0 0

0 · · · 0
... · · ·

...
...

16t′
1 · · · 16t′

20 8t21 · · · 8t90 1


Now we have increased the volume of the lattice by 220 times and then we perform the
lattice attacks on the new matrix at the cost of 220 operations for guessing bits.

To make everything clear, our approach can be summarised as the following steps:

• Step 1: Collect d signatures (ri, si)(i = 1, · · · , d), and construct ti and ui with the
original 2-bit leakage.

• Step 2: For k of them, guess and enumerate the third least significant bit of nonces
and construct t′

i and u′
i with 3-bit leakage. For all the other signatures, keep ti and

ui unchanged.

• Step 3: Construct the hybrid lattice, then use Kannan’s embedding method to find
the private key(for lattice reduction we use BKZ-30), if failed, go back to step 2.



14 Guessing Bits: Improved Lattice Attacks on (EC)DSA

Under worst circumstances, we have to perform 2k times step 2 and 3, since there are
2k possibilities of the third bits of the nonces. With this method, we are able to attack
160-bit (EC)DSA with 2-bit nonce leakage, 256-bit (EC)DSA with 3-bit nonce leakage,
384-bit (EC)DSA with 4-bit nonce leakage. See the section of experimental results.

6 Utilizing More Data to Improve Lattice Attacks
In 2000, Bleichenbacher presented a purely statistical attack technique against biased
nonces at the IEEE P1363 meeting. The main idea of Bleichenbacher attack is to define
a bias function and search for a candidate value that is near the secret key, thus finding
many MSBs of the secret key. An advantage of Bleichenbacher attack is that it can deal
with small biases in principle at the cost of using many signatures as input. There is a
question that whether we can improve lattice attacks with more signatures when leakage
is small. We give an answer to this question. Again we are in the context of 160-bit
modulus with 2-bit leakage, and for other modulus it is the same.

6.1 From Bleichenbacher to Lattice
Motivated by the Bleichenbacher attack, similar ideas could be applied to lattice attacks.
Suppose that we have d HNP samples with l-bit leakage

|αti − ui|q < q/2l(i = 1, 2, · · · d)

Of course, α is the best candidate for those d inequalities, but there are also many numbers
β that satisfy all(or most) of the d inequalities. Those candidates scatter around (0, q).
From the view of lattice reduction, when leakage is large, α outperforms other candidates
significantly, so it is easy to find α. But when leakage is small, lattice reduction will find
one of those candidates. All of the candidates have some internal relation with α, but we
don’t know how to express it.

Suppose that β is a number near α(let’s say sharing c MSBs with α and differ in (160
- c) LSBs), and if ti(i = 1, 2, · · · , d) is small, then the value of

(α − β)ti(i = 1, 2, · · · d)

is a very small perturbation compared with q/2l, so this means that with high probability,
β will satisfy all the d inequalities. The advantage we get here is that all the 2160−c

numbers that share c MSBs with α will be a good candidate for lattice reduction. Recall
that the original lattice we construct is

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1


and (α2l+1t1 + c12l+1q, · · · , α2l+1td + cd2l+1q, α) is the hidden lattice vector. The advan-
tage is that now we have 2160−c hidden lattice vectors (β2l+1t1 + c12l+1q, · · · , β2l+1td +
cd2l+1q, β), where β is any arbitrary integer in Zq such that β shares the c MSBs with
α. All the hidden vectors are close to the target vectors and carry information about α(c
MSBs of α) as well. In this way, the success rate of lattice attack will increase significantly,
since we have exponentially many number of hidden vectors. Once we recover one of those
candidates, we get c MSBs of the secret key α. As soon as sufficiently many bits of α are
known, Pollards lambda method [Pol00] can be used to derive the remaining bits. Besides,
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we can also construct new HNP instance for the remaining bits. As we discussed in the
previous section, when the length of the secret key is small, lattice attacks become much
easier.

6.2 Formalizing the Attack
As mentioned before, we have d HNP inequalities with l-bit leakage

|α · ti − ui|q < q/2l(i = 1, 2, · · · d)

and write the secret key α as

α = α1 · 2c + α2(0 ≤ α2 < 2c)

Where α1 is the c MSBs of α and α2 is the remaining LSBs. If ti(i = 1, 2, · · · d) is small
enough, α2 · ti(i = 1, 2, · · · d) will be a very small perturbation compared with q/2l. This
means that with high probability, α1 · 2c will satisfy all the d inequalities. And then
construct the lattice as:

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2c · 2l+1t1 2c · 2l+1t2 · · · 2c · 2l+1td 2c


Then (α12c · 2l+1t1 + c12l+1q, α12c · 2l+1t2 + c22l+1q · · · , α12c · 2l+1td + cd2l+1q, α12c) will
be the hidden lattice vector. The advantage that we get is that the volume of the lattice
is increased by 2c times, while the Euclidean norm of the difference vector almost keeps
unchanged, thus making the attack much easier. This attack can be summarised as the
following steps.

• Step 1: Collect signatures (r, s) and construct

t = 2−ls−1r mod q

u = −2−ls−1h(m) mod q

If t is small enough(smaller than some predetermined bound), then keep the (t, u)
pairs, otherwise throw it.

• Step 2: Keep doing step 1 until we get d pairs (ti, ui)(i = 1, · · · , d).

• Step 3: Construct the above lattice and use Kannan embedding to do lattice attacks.

• Step 4: Find α1 which is the c MSBs of α.

• Step 5: Find the remaining bits of α.

As we previously discussed, once we have recovered many MSBs of α, recovering the
remaining bits becomes pretty easy. With this method, we are able to attack 160-bit
(EC)DSA with 2-bit nonce leakage, 256-bit (EC)DSA with 3-bit nonce leakage, 384-bit
(EC)DSA with 4-bit nonce leakage. See the section of experimental results.



16 Guessing Bits: Improved Lattice Attacks on (EC)DSA

7 Batch SVP and Kannan Embedding Factor
7.1 Batch SVP
In section 4 and section 5, we have to do 2c(typically we set c = 15, 20) BKZ-30 operations
on the following matrices:

C =



2l+1q 0 · · · 0 0 0
0 2l+1q · · · 0 0 0

...
...

0 0 · · · 2l+1q 0 0
2l+1t1 2l+1t2 · · · 2l+1td 1 0

v1 v2 · · · vd 0 q


Write C as

C =
(

B 0
v q

)
Each time we perform BKZ operations, only the last row of matrix C is changed and B
is fixed. Since one BKZ-30 operation on a 90-dimensional lattice typically takes about
3 minutes with fplll[dt20] library on Sagemath[The20]. If c = 215, the time complexity
will be 215 · 3 minutes without using multiple cores. Although this is practical time, we
could further improve the time complexity. We use LLL as an example here, for BKZ it
is similar. In LLL algorithm[LLL82], there is an index k starting from 1, which represents
the row currently being reduced. Besides, there is an exchange condition, and if it satisfies,
two adjacent rows will be exchanged. After exchanging rows and recomputing the Gram-
Schmidt norm, size reduction will be performed.

If we consider the process of LLL reduction on the matrix C, essentially it will first
reduce the submatrix B and in the last round, it will reduce the whole matrix C. So every
time the reduction on B is repeated, which is not necessary. We come up with a simple
solution:

• Step 1: BKZ-reduce the submatrix B.(preprocessing)

• Step 2: Do Kannan embedding and construct the matrix C.

• Step 3: Do BKZ on the matrix C again.
This actually means that we preprocess the submatrix B. In this way, we saved a lot of
computation. With this method, one BKZ-30 operation typically takes several seconds,
while the original one takes about 3 minutes.

7.2 Kannan Embedding Factor
In our experiments, we observe that lattice attacks on (EC)DSA are very sensitive to the
Kannan embedding factor. As we can see from this table, if the coefficient is either too
small or too large, the success rate becomes very low.

Table 1: Kannan Embedding factor test

modulus leakage signatures Kannan Embedding factor success rate
160-bit 3 80 q 93/100
160-bit 3 80 (q − 1)/2 97/100
160-bit 3 80 q2 5/100
160-bit 3 80 1 0/100

Here we give an explanation why this happens. Denote the Kannan embedding factor
as γ. For simplicity, we analyze LLL reduction, but for BKZ, it is quite similar.
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7.2.1 Case 1: Kannan embedding factor is too large

Recall that the embedded matrix C is

C =
(

B 0
v γ

)
The Gram-Schmidt norm of the last row is γ, if γ is too large, after LLL reduction on the
submatrix B, the exchange condition will not satisfy, then only one round of size reduction
will be performed(reduce the last row from the first (d + 1) rows). By contrast, if γ is
properly valued, the exchange condition will satisfy and the last row will be exchanged
to some other row. Then Gram-Schmidt norm will be recomputed and one round of size
reduction will be performed. Typically, the exchange will happen many times, so many
rounds of size reduction will be performed. Therefore, if γ is too large, the lattice will get
much less reduced.

In order to make this clear, we illustrate the idea by a simple example. In this example,
modulus q = 89, leakage l = 4. The matrix B

B =


2848 0 0 0

0 2848 0 0
0 0 2848 0

416 1600 96 1


the target vector is v = (761, 601, 2393, 0). Now we set the Kannan embedding factor
γ = q2 = 7921 and the embedded matrix C is

C =


2848 0 0 0 0

0 2848 0 0 0
0 0 2848 0 0

416 1600 96 1 0
761 601 2393 0 7921


Now let us consider the process of LLL-reduction on C. After many rounds of reduction,
the matrix becomes

C =


0 0 0 89 0
96 −288 −416 −34 0

−160 480 −256 27 0
832 352 192 2 0
761 601 2393 0 7921


Note that up to now, the last row still remains unchanged. Now the index k for LLL
becomes 5, which means reducing the fifth row. First, LLL algorithm checks whether the
exchange condition satisfies, since the Kannan embedding factor γ is large, the exchange
does not happen. After that, LLL algorithm does one round of size reduction, which
means

• Reduce the fifth row from the fourth row.

• Reduce the fifth row from the third row.

• Reduce the fifth row from the second row.

• Reduce the fifth row from the first row.

and the algorithm terminates.
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By contrast, if we set the Kannan embedding factor γ = q = 89 and consider LLL-
reduction, at some point, it will reach the same state

C =


0 0 0 89 0
96 −288 −416 −34 0

−160 480 −256 27 0
832 352 192 2 0
761 601 2393 0 89


Now the Gram-Schmidt norm of the last row is not so large, and the exchange condition
will satisfy, so the target vector v goes to the fourth row.

Then a recomputation of Gram-Schdimt norm takes place and one round of size re-
duction happens.

C =


0 0 0 89 0
96 −288 −416 −34 0

−160 480 −256 27 0
−391 1209 1689 52 89
832 352 192 2 0


Then LLL algorithm checks exchange condition again and the targe vector v goes to the
third row. Again, a recomputation of Gram-Schdimt norm takes place and one round of
size reduction happens:

C =


0 0 0 89 0
96 −288 −416 −34 0
−7 57 25 −84 89

−160 480 −256 27 0
832 352 192 2 0


Then LLL algorithm checks exchange condition again and the targe vector v goes to the
second row. Again, a recomputation of Gram-Schdimt norm takes place and one round
of size reduction happens:

C =


0 0 0 89 0

−7 57 25 5 89
82 −174 −366 −24 178

−146 366 −306 17 −178
846 238 142 −8 −178


As we can see from this process, when γ = q, three rounds of size reduction happen, so
this means that the target vector v gets more reduced.

7.2.2 Case 2: Kannan Embedding factor is too small

Since the Gram-Schmidt norm of the last row is γ, if the Kannan embedding factor is too
small, the Gram-Schmidt norm of the last row will be very small. After exchanging rows,
size reduction will be performed. Since the Gram-Schmidt norm is small, when performing
size reduction on other rows, many multiples of the target vector will be added to other
rows. However, since

B =


2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1
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what we want is α · (2l+1t1, 2l+1t2, · · · , 2l+1td, 1) − v, so we do not want to use the target
vector v to reduce other vectors. If γ is too small, we will find that all the vectors in the
reduced basis will have a very large coefficient of v, which is not our goal.

8 Gap between CVP and SVP Approaches
As mentioned in [JSSS20], we also observed a certain gap between the nearest plane
algorithm and Kannan’s embedding method. In this attack, Kannan’s embedding always
outperforms nearest plane algorithm to some extent.

Table 2: A comparison of CVP and SVP approach

modulus leakage nearest plane Kannan Embedding
160 4 37/100 100/100
160 3 0/100 91/100

As we can see from the table, for 160-bit (EC)DSA with 4-bit nonce leakage, both
CVP approach and SVP approach work well. However, CVP approach seldom succeeds
for 3-bit leakage, while Kannan’s embedding method works quite well.

8.1 Reason for the Gap
Essentially, nearest plane algorithm can be regarded as one round of size reduction in the
embedded lattice. Again, we illustrate the idea by the same simple example as in the
previous section. In this example, modulus q = 89, leakage l = 4. The matrix B

B =


2848 0 0 0

0 2848 0 0
0 0 2848 0

416 1600 96 1


the target vector is v = (761, 601, 2393, 0). Now we set the Kannan Embedding factor
γ = q2 = 7921 and the embedded matrix C is

C =


2848 0 0 0 0

0 2848 0 0 0
0 0 2848 0 0

416 1600 96 1 0
761 601 2393 0 7921


Recall the process in the previous section, if the Kannan embedding factor is large enough,
nearest plane algorithm will be the same as Kannan embedding, because for the last row
of the embedded lattice, the exchange condition will not satisfy and only one round of
size reduction takes place, which is essentially the same as nearest plane. However, if
the Kannan embedding factor is properly valued, many exchanges will happen. After
one exchange, one round of size reduction will take place, which means that Kannan
embedding will make the target vector more reduced compared with nearest plane.

9 Experimental Result
In this section, we show the result of our practical experiments. All the experiments
are carried out on AMD Ryzen 3970x with Sagemath[The20] and fplll[dt20] library. For
lattice reduction algorithms, we are using BKZ-30.
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9.1 Guessing Bits of Secret Key

In this table, the column "bits guessed" means the number of bits of the secret key that
we try to guess and enumerate. As we can see in the table, for 160-bit (EC)DSA with
2-bit nonce leakage, if we guess 15 bits for the secret key, we succeed in recovering the
secret key 12 times among 200 experiments. Since we enumerate 15 bits of the secret key,
the time complexity is upper bounded by 215 BKZ-30 operations(the expected number
is 214). In this way, we are able to quantify the complexity in terms of BKZ operations.
Instead of directly using real-time, the advantage is that quantification in terms of BKZ
operations gives us a clear impression of the time complexity and this is independent of
the machine being used. Besides, it is pretty easy to estimate the practical attack time.
For instance, with a 32-cores machine available and batch SVP technique described in
section 7, one BKZ-30 operation on a 90-dimensional lattice typically takes 40 seconds,
so the expected time is 214·40s

32 ≈ 10200s, which is several hours.

Table 3: Guessing Bits of Secret key

modulus leakage signatures bits guessed success rate
160 2 90 40 147/200
160 2 90 30 78/200
160 2 90 20 24/200
160 2 90 15 12/200
256 3 100 40 187/200
256 3 100 30 135/200
256 3 100 20 68/200
256 3 100 10 15/200
384 4 100 40 83/200
384 4 100 30 30/200
384 4 100 20 14/200

9.2 Guessing Bits of Nonce

Similarly, the column "nonce guessed" means the number of nonces that we guess and
enumerate for 1 more bit. For 160-bit (EC)DSA with 2-bit nonce leakage, if guessing 1
more bit for 20 of the 90 signatures, we succeed in recovering the secret key 14 times out
of 200 experiments, so the time complexity is 220 BKZ-30 operations. Actually, we could
even estimate the time complexity for 1-bit nonce leakage. What we could do is to guess 2
more bits for 20 of the signatures and guess 1 more bit for the other 70 signatures, so the
time complexity is 420 ·270 = 2110 BKZ-30 operations. Although this is not practical(thus
not so meaningful), it is an estimate of computation cost for 1-bit leakage.



Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 21

Table 4: Guessing Bits of Nonce

modulus leakage signatures nonce guessed success rate
160 2 90 40 83/200
160 2 90 30 30/200
160 2 90 20 14/200
256 3 100 40 133/200
256 3 100 30 64/200
256 3 100 20 13/200
256 3 100 10 1/200
384 4 100 40 105/200
384 4 100 30 41/200
384 4 100 20 11/200
384 4 100 10 2/200

9.3 Improving Lattice Attacks with More Data
Recall that in the section 6, we discussed that for one HNP inequality |αt − u|q < q/2l,
if we get small t, then we can construct a lattice that has larger volume. In our experi-
ments, we find that for 160, 256, 384-bit modulus q, if t has less than 140, 226, 344 bits
respectively, we can perform the attack. Take 160-bit modulus for example, in order to
get 90 inequalities where all the t ≤ 2140, we have to sample 220 · 90 ≈ 227 signatures.
This may seems too many in practical setting, but the advantage is that we could recover
about 140 MSBs of the secret key in just one BKZ-30 operation.

Table 5: Utilizing More Data to Improve Lattice Attacks

modulus leakage upperbound for t signatures time complexity success rate
160 2 2140 227 1 BKZ-30 30/200
256 3 2226 237 1 BKZ-30 27/200
384 4 2344 247 1 BKZ-30 62/200

9.4 Experiments on the TPM-Fail Dataset
We also carried out experiments on the TPM-Fail[MSEH20] dataset(256-bit ECDSA). The
first row of the dataset contains the public key and the message being signed. Each of
the other rows contains (r, s) and t, where (r, s) is the signature and t is the signing time.
One typical way to perform the attack is:

• Collect N signatures.

• Choose d out of the N signatures, whose signing time is the fastest.

• For each of the d signatures, assign leakage l.

• Construct HNP inequalities and perform lattice attacks.

For 256-bit modulus, if setting l = 3, typically d ≈ 90. In [MSEH20], the authors used
about 40000 signatures and in [JSSS20], a new technique of geometric assignment of
leakage was proposed: assign half of the d signatures with leakage l = 3, one fourth of
them having leakage l = 4, and so on. In our experiments, we combine these techniques
with our method of guessing bits of the secret key and come up with the following attack:

• Randomly collect 800 signatures.
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• Choose 90 out of the 800 signatures, whose signing time is the fastest.

• Geometrically assign the leakage l.

• Guess and enumerate 20 LSBs of the secret key and perform lattice attacks described
in section 4.

We did 100 experiments and succeeded 3 times. In this way, with only 800 signatures
available, we are able to recover the secret key for TPM-Fail dataset.
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