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Abstract. In [5] Rahman and Shpilrain proposed a Diffie-Hellman
style key exchange based on a semidirect product of n × n-matrices
over a finite field. We show that, using public information, an adversary
can recover the agreed upon secret key by solving a system of n2 linear
equations.

1. Introduction

Ever since the invention in 1976 of the Diffie-Hellman key exchange [1]
based on the multiplicative group of a finite field, researchers have inves-
tigated other groups and algebraic structures that can be used for simi-
larly constructed key exchanges. A natural candidate was the general linear
groups over the finite field Fq of q elements. However, in 1997 Menezes and
Wu [3] proved that the discrete log problem in the group GL(n, q) of invert-
ible n×n matrices is no more difficult than the discrete log problem in Fqn ;
therefore, a Diffie-Hellman key exchange in GL(n, q) has no advantage over
the original Diffie-Hellman construction.

Despite this result of Menezes-Wu, researchers have continued to look
for ways to use matrix groups and semigroups for Diffie-Hellman style key
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exchange. Many of the specific constructions using such ideas have been
broken, basically by exploiting an underlying linear structure. For example,
Stickel’s nonabelian key exchange [8] was cryptanalyzed by Shpilrain [7]
three years later; and the instantiation of a key exchange based on semidirect
products in [2] was cryptanalyzed shortly after in [4, 6].

The most recent construction of this type is the MAKE key exchange of
Rahman and Shpilrain [5].1 We show that MAKE also succumbs to a linear
algebra attack — an adversary can recover the shared secret key by solving
a system of n2 linear equations. After describing the MAKE key exchange,
we explain how the adversary can obtain such a linear system. We then give
an alternative attack that leads to a system of n4 linear equations that can
be solved to give the entries in an (n2 × n2)-matrix from which the shared
key can immediately be found.

2. MAKE

The MAKE key exchange is based on the semidirect product of the ad-
ditive group Mn of n × n matrices and the product of two multiplicative
semigroups consisting of powers of fixed H1, H2 ∈ Mn. More concretely, the
analog of the k-th power of a matrix M ∈ Mn (here M plays the role of a
generator of F×

q in the classical Diffie-Hellman protocol) is the sum

M +H1MH2 +H2
1MH2

2 + · · ·+Hk−1
1 MHk−1

2 .

In the protocol, Alice chooses a secret positive integer x and Bob likewise
chooses y. Alice can efficiently compute

(1) A = M +H1MH2 +H2
1MH2

2 + · · ·+Hx−1
1 MHx−1

2 ,

and Bob computes the analogous sum B with x replaced by y. The shared
key is then

z = M +H1MH2 +H2
1MH2

2 + · · ·+H
x+y−1

1 MH
x+y−1

2

= A+Hx
1BHx

2

= B +H
y
1AH

y
2 ,

(2)

which Alice and Bob can each compute using their secret key. Here H1, H2,
and M are fixed parameters.

3. Telescoping

Note that although Hx
1BHx

2 is not publicly known, by Equation (1) we
have

(3) M +H1AH2 −A = Hx
1MHx

2 ,

and so the cryptanalyst can immediately compute Hx
1MHx

2 from public
information.

1We refer to the latest posted version of MAKE as of this writing in early April 2021.
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4. Attack using Cayley-Hamilton

If we can find the entries in the matrix Hx
1BHx

2 , we’re done by Equation
(2), because the shared secret key is obtained simply by adding A.

For a matrix H ∈ Mn let Hij denote its ij-entry, 0 ≤ i, j ≤ n − 1. Let
vec(H) denote the column vector of height n2 whose (jn+ i)-th entry is Hij ;
thus, vec(H) is obtained by simply stringing the second column of H under
the first column, the third column under the second column, and so on.

We now regard H1, H2 ∈ Mn and a positive integer x as fixed, and define
a function L(Y ) = LH1,H2,x(Y ) from Mn to Mn2 by setting

(L(Y ))jn+i,hn+g = (Hg
1Y Hh

2 )i,j , 0 ≤ i, j, g, h ≤ n− 1.

In other words, the (hn + g)-th column of L(Y ) is vec(Hg
1Y Hh

2 ). By the
Cayley-Hamilton theorem, we can write

Hx
1 =

n−1
∑

g=0

pgH
g
1 and Hx

2 =
n−1
∑

h=0

qhH
h
2 .

Define S ∈ Mn by Sij = piqj and set s =vec(S).

Lemma 1. For Y ∈ Mn,

L(Y )s = vec(Hx
1 Y Hx

2 ).

Proof. The proof follows by an elementary computation. �

Remark 1. Of course, the cryptanalyst does not know x, Hx
1 , or Hx

2 , and

so cannot compute s. The purpose of Lemma 1 is to ensure existence of a

solution. The characteristic polynomials of Hx
1 and Hx

2 are used only for

existence. The cryptanalyst does not compute the characteristic polynomial

of any matrix.

Lemma 2. If u is any vector such that

L(Y )u = 0,

then for any positive integer ℓ we also have

L(Hℓ
1Y Hℓ

2)u = 0.

Proof. It follows from the definitions that

L(Hℓ
1Y Hℓ

2)u = vec





n−1
∑

g,h=0

uhn+g(H
g
1 (H

ℓ
1Y Hℓ

2)H
h
2 )





= vec



Hℓ
1





n−1
∑

g,h=0

uhn+g(H
g
1Y Hh

2 )



Hℓ
2





= vec
(

Hℓ
1vec

−1(L(Y )u)Hℓ
2

)

= 0.

�
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The adversary first computes Hx
1MHx

2 by Equation (3) and then solves
the system of n2 linear equations

L(M)t = vec(Hx
1MHx

2 )

for t. By Lemma 1 with Y = M , this system has at least one solution s;
and by Lemma 1 with Y = B, the same vector s also solves the system

(4) L(B)s = vec(Hx
1BHx

2 ).

We claim that the adversary’s vector t also satisfies

L(B)t = vec(Hx
1BHx

2 ).

To see this, we set u = t − s. We apply Lemma 2 with Y = M for ℓ =
0, 1, . . . , y − 1, and add. We find that

0 = L(M)u+ L(H1MH2)u+ · · ·+ L(Hy−1

1 MH
y−1

2 )u

= L(M +H1MH2 + · · ·+H
y−1

1 MH
y−1

2 )u

= L(B)u.

Hence L(B)t = L(B)s + L(B)u = vec(Hx
1BHx

2 ) by Equation (4). From
B and t the adversary can now recover Hx

1BHx
2 and hence the shared key

z = A+Hx
1BHx

2 .

5. Attack by simulating Bob

Recall that the tensor product of an (m1×n1)-matrix X and an (m2×n2)-
matrix Y is the (m1m2 × n1n2)-matrix X ⊗ Y given by











X1,1Y X1,2Y · · · X1,n1
Y

X2,1Y X2,2Y · · · X2,n1
Y

...
...

...
...
...

...
Xm1,1Y Xm1,2Y · · · Xm1,n1

Y











We have the following identity for three matrices X,Y, Z whenever the prod-
uct XY Z is defined:

(5) vec(XY Z) = (ZT ⊗X)vec(Y ).

We also note that (X ⊗ Y )ℓ = Xℓ ⊗ Y ℓ. In particular,

vec(Hℓ
1Y Hℓ

2) = (HT
2 ⊗H1)

ℓvec(Y ).

From this and Equation (2) it follows that, if we can determine the unknown
(n2×n2)-matrixH = (HT

2 ⊗H1)
x, we just have to computeHvec(B)+vec(A)

to get the shared private key.
We find the n4 unknown entries of H by obtaining n4 independent linear

equations that they satisfy. We do this in two ways: (1) by using a general
commutativity property, and (2) by simulating Bob with various choices of
his secret y.
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(1) The first method for finding equations uses only the parametersH1, H2

and not the values A,B of a particular exchange of keys. Let In denote the
n× n identity matrix. The commutation relations

(In ⊗H1)(H
T
2 ⊗H1)

x(In2) = (In2)(HT
2 ⊗H1)

x(In ⊗H1)

(HT
2 ⊗ In)(H

T
2 ⊗H1)

x(In2) = (In2)(HT
2 ⊗H1)

x(HT
2 ⊗ In)

give us Equations (6) below, where we again let H = (HT
2 ⊗ H1)

x denote
our unknown (n2 × n2)-matrix and apply Equation (5):

(In2 ⊗ (In ⊗H1)− (In ⊗HT
1 )⊗ In2)vec(H) = 0

(In2 ⊗ (HT
2 ⊗ In)− (H2 ⊗ In)⊗ In2)vec(H) = 0

(6)

In numerical experiments with randomly chosen rank-(n − 1) matrices H1

and H2, these give n2(n2 − 1) independent equations for the n4 entries of
H, that is, just n2 fewer than we need.

(2) Perhaps the simplest identity satisfied by H is: HM = Hx
1MHx

2 ,
where the right side is publicly known by Equation (3). This gives n2 linear
equations for the entries of H. We can regard this as the case y = 0 of the
key exchange, that is, B = 0, z = A. For any integer y ≥ 0, we can write
the equation

H(Hy
1MH

y
2 ) = H

x+y
1 MH

x+y
2 ,

where the adversary, simulating Bob, chooses arbitrary2 y and then knows
both sides except for the entries of H. If the value y = 0 does not give
n2 independent equations that are also independent of the n2(n2 − 1) equa-
tions from the commutation relations, then the adversary continues with
y = 1, 2, 3, . . . until they get the required number of independent equations.
Numerical experiments indicate that a very few small values of y are suffi-
cient.

Remark 2. In §4 our first method was proved to give a system of linear

equations any of whose solutions leads to the secret key. In §5 we have

heuristics and numerical evidence, but no proof, to support the belief that

the method quickly leads to the required number of independent equations.

6. Conclusion

The MAKE key exchange is insecure; the shared key can be recovered
by linear algebra in polynomial time. This shows once again that even
a matrix-based protocol that seems much more complicated than a stan-
dard Diffie-Hellman key exchange may have an essential linearity that makes
it vulnerable. Caution seems to be especially necessary when considering
matrix-based cryptosystems.

2In the actual protocol, Bob chooses a very large integer y, but in the cryptanalysis
algorithm y can be very small.



6 CRYPTANALYSIS OF ‘MAKE’

Acknowledgment

We thank Vladimir Shpilrain for helpful correspondence.

References

[1] Diffie, W., and M. Hellman, New Directions in Cryptography, IEEE Transactions on
Information Theory, IT-22 (1976), 644-654.

[2] Habeeb, M., D. Kahrobaei, C. Koupparis, and V. Shpilrain, Public key exchange
using semidirect product of (semi)groups, ACNS 2013, LNCS 7954 (2013) , 475-486.

[3] Menezes, A. J., and Y.-H. Wu, The discrete logarithm problem in GL(n, q), Ars
Combinatoria, 47 (1997), 23-32.

[4] Myasnikov, A. G., and V. Roman’kov, A linear decomposition attack, Groups, Com-
plexity, Cryptology, 7 (2015), 81-94.

[5] Rahman, N., and V. Shpilrain, MAKE: a Matrix Action Key Exchange, https://
eprint.iacr.org/2021/116.pdf.

[6] Roman’kov, V., Linear decomposition attack on public key exchange protocols using
semidirect products of (semi)groups, http://arxiv.org/abs/1501.01152.

[7] Shpilrain, V., Cryptanalysis of Stickel’s key exchange scheme, Computer Science in
Russia 2008, LNCS 5010 (2008), 283-288.

[8] Stickel, E., A New Method for Exchanging Secret Keys, Proc. Third Intern. Conf. on
Information Technology and Applications (ICITA 05), Contemp. Math. 2 (2005), 426-
430.


