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Abstract

In this paper I propose a new key agreement scheme applying a well-known
property of powers to a particular couple of elements of the cyclic group
generated by a primitive root of a prime p. The model, whose security
relies on the difficulty of computing discrete logarithms when p is a “safe
prime”, consists of a five-step process providing explicit key authentication.
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1 Introduction

As every element of a cyclic group is a power of a common base, the “product
of powers property” can be applied to the multiplication among them. Based
on this, I have developed a public-key cryptography model to allow the creation
and secure exchange of the two halves of a secret key over an insecure channel.
The scheme is conceived as a process where each party equally contributes to a
sequence of bits able to be used as symmetric key for encryption and decryption
of messages.

2 The property

The “product of powers property” states that when you multiply two powers
with the same base, you keep the base and add the exponents

xm ∗ xn = xm+n

3 The core of the model

Let

� p be a prime

� φ(p) = p− 1 its totient

� g one of its primitive roots

� 〈g〉 the cyclic group generated by g

� gh, gk two generic elements of 〈g〉

Then consider the couple

gφ(p) , gk

as a consequence of the above described property

gφ(p) = gk ∗ gφ(p)−k

multiplying both sides of the equality by gh (and since gφ(p) = 1)

gh = gh ∗ gk ∗ gφ(p)−k

This represents the core of the scheme. It says that multiplying the element gh

by the element gk, it is possible to recover gh if one knows φ(p) and k.
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4 A new key agreement scheme proposal

Alice and Bob share:

� a prime p and consequently its totient φ(p) = p− 1

� g a primitive root of p

� a Klenght in bits

Bob and Alice agree to set up a K − sequence of the shared Klenght composed
of two halves combined together. A five-step process starts where:

� steps 1-2 produce the first half-key

� steps 3-4 produce the second half-key

� in step 5 the two halves are combined together to produce a K−sequence
of the desired lenght

4.1 Step 1: Alice creates her secret and sends it to Bob

Bob generates

� a random key rb1, a public key B = grb1 mod p

Alice generates

� a random key ra1, a public key A = gra1 mod p

� a random key ra2, a secret key sa = gra2 mod p, paying attention that

salenght ≥
Klenght

2

otherwise she tries a different ra2

� a challenge CHa = (sa ∗ B) mod p and sends it to Bob. The challenge
implies the question: “What is my secret?”

4.2 Step 2: Bob retrieves Alice’s secret and sends her a
confirmation

Bob calculates sa′ using φ(p) and rb1

� sa′ = [CHa ∗ (gφ(p)−rb1 mod p)] mod p

and sends a confirmation to Alice, multiplying sa′ by Alice’s public key

� COb = (sa′ ∗A) mod p

Alice verifies Bob’s confirmation calculating

� V a = (sa ∗A) mod p

and then comparing V a with COb

� V a = COb means that sa = sa′. Consequently, Alice is assured that Bob
has correctly received sa and is able to use it
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4.3 Step 3: Bob creates his secret and sends it to Alice

Bob generates

� a random key rb2, a secret key sb = grb2 mod p, paying attention that

sblenght ≥
Klenght

2

otherwise he tries a different rb2

� a challenge CHb = (sb ∗ A) mod p and sends it to Alice. The challenge
implies the question: “What is my secret?”

4.4 Step 4: Alice retrieves Bob’s secret and sends him a
confirmation

Alice calculates sb′ using φ(p) and ra1

� sb′ = [CHb ∗ (gφ(p)−ra1 mod p)] mod p

and sends a confirmation to Bob, multiplying sb′ by Bob’s public key

� COa = (sb′ ∗B) mod p

Bob verifies Alice’s confirmation calculating

� V b = (sb ∗B) mod p

and then comparing V b with COa

� V b = COa means that sb = sb′. Consequently, Bob is assured that Alice
has correctly received sb and is able to use it

4.5 Step 5: The K-sequence is assembled

� Alice and Bob take the first
Klenght

2
bits of sa = sa′: this is the left part

of the K − sequence

� Alice and Bob take the last
Klenght

2
bits of sb′ = sb: this is the right part

of the K − sequence

5 Authentication

5.1 Implicit key authentication

� At the end of step 1 Alice is certain that no one else except Bob can know
her secret

� At the end of step 3 Bob is certain that no one else except Alice can know
his secret
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5.2 Key confirmation

� At the end of step 2 Alice is certain that Bob has correctly received her
secret and can use it

� At the end of step 4 Bob is certain that Alice has correctly received his
secret and can use it

5.3 Explicit key authentication

� At the end of step 4 both Alice and Bob hold implicit key authentication
and confirmation

6 Security

6.1 Direct attack to the secrets

The here described model bases its security on the capacity to keep secret the
four random keys. It would be possible for an attacker to find out the value of
one or more of them, excluding chance, only if able to solve the discrete loga-
rithm problem. Therefore, all the indications of the research findings regarding
the choice of g and p emerged since the publication of the Diffie-Hellman [1]
milestone work are valid. In particular:

� g should be a primitive root of p, so that the generated cyclic group 〈g〉
will have the largest order, i.e. p− 1. On the other hand, a small g does
not facilitate the calculation of the discrete logarithm, due to the Random
Self-Reducibility [2], and therefore it can be chosen, for example, g = 2

� pmust be large and such that p−1 contains a large prime factor to preclude
feasibility of the discrete logarithm algorithm of Pohlig and Hellman [3],
[4]

� p should be a ”safe prime”, i.e. it should have the form p = 2q+ 1, where
q is a Sophie Germain prime [5]

6.2 Man-in-the-middle attack

� Since the scheme provides explicit key authentication, this type of attack
is not effective

7 A very simple example

Let

� p = 701 and consequently φ(p) = 700

� g = 2

� Klenght = 16 bits

Step 1

� rb1 = 10, B = 323
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� ra1 = 17, A = 686

� ra2 = 52, sa = 260, 9 bits > 8 bits

� CHa = 561

Step 2

� sa′ = [561 ∗ (2700−10 mod 701)] mod 701 = 260

� COb = (260 ∗ 686) mod 701 = 306

� V a = 306 = COb

Step 3

� rb2 = 33, sb = 463, 9 bits > 8 bits

� CHb = (463 ∗ 686) mod 701 = 65

Step 4

� sb′ = [65 ∗ (2700−17 mod 701)] mod 701 = 463

� COa = (463 ∗ 323) mod 701 = 236

� V b = 236 = COa

Step 5

� 10000010 is the left part of the K − sequence

� 11001111 is the right part of the K − sequence

� K − sequence : 1000001011001111

8 Conclusions

In this work I describe a new contributory [6] key agreement scheme where an
original use of a well-known property of powers produces, in a five-step process,
a key of the desired length while providing explicit key authentication. The
peculiarity of the proposed model is its simplicity which, together with the
other characteristics illustrated in this paper, make it an ideal candidate for the
development of a new class of protocols.
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