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Abstract. In modern times, data collected from multi-user distributed
applications must be analyzed on a massive scale to support critical
business objectives. While analytics often requires the use of personal
data, it may compromise user privacy expectations if this analysis is
conducted over plaintext data. Private Stream Aggregation (PSA) allows
for the aggregation of time-series data, while still providing strong privacy
guarantees, and is significantly more efficient over a network than related
techniques (e.g. homomorphic encryption, secure multiparty computation,
etc.) due to its asynchronous and efficient protocols. However, PSA
protocols face limitations and can only compute basic functions, such as
sum, average, etc.. We present Cryptonomial, a framework for converting
any PSA scheme amenable to a complex canonical embedding into a
secure computation protocol that can compute any function over time-
series data that can be written as a multivariate polynomial, by combining
PSA and a Trusted Execution Environment. This design allows us to
compute the parallelizable sections of our protocol outside the TEE using
advanced hardware, that can take better advantage of parallelism. We
show that Cryptonomial inherits the security requirements of PSA, and
supports fully malicious security. We implement our scheme, and show
that our techniques enable performance that is orders of magnitude faster
than similar work supporting polynomial calculations.

Keywords: Private Multivariate Polynomial Evaluation · Trusted Exe-
cution Environment · Secure Aggregation

1 Introduction

Third-party analysis on personal records is becoming increasingly important
due to widespread data collection in the modern world. However, this data
often contains private information about users such that its publication could
seriously compromise their privacy, and a number of studies have shown that
significant precautions must be taken to protect such data from malicious actors
[6]. Accordingly, it would be beneficial to have a technology that allows a third-
party aggregator to learn the result of the analysis performed on users’ private
datasets over a network, but nothing else. Many such distributed analyses can
be done by or approximated by multivariate polynomial calculations. Common



machine learning (ML) tasks such as linear regression, support vector machines
(SVMs), activation functions, etc., can be formulated as a multivariate polynomial
function over users’ private inputs. In recent times, the COVID-19 crisis has
led to a renewed interest in applying ML to disease detection and diagnosis,
and a number of highly successful techniques [9, 29] have been developed to
assist medical researchers in combating the virus. For such pressing demands,
we consider the problem of allowing a set of users in S to privately compute a
polynomial function over their collected time-series data such that an untrusted
aggregator only learns the final result, and no individual honest user’s data
is revealed. More formally, we aim at supporting polynomial evaluation over
users’ time-series input data in the following format of a general multivariate
polynomial : f({xi,j}i∈S,j=1,...,z) =

∑z
j=1 cj(

∏
i∈S m

ei,j
i,j,ts), where z is the number

of product terms in the polynomial, cj and ei,j are public parameters, and mi,j,ts

are secret data from the i-th user at time stamp ts.

There are relatively few practical techniques that can be utilized in this
setting, where maintaining the privacy of patients’ medical data is of critical
(and due to HIPPA, legal) importance. Fully Homomorphic Encryption (FHE),
Differential Privacy (DP), Secure Multiparty Computation (MPC), or Oblivious
Polynomial Evaluation (OPE) might be used individually as black boxes to solve
this problem, but each have significant constraints that negatively impact their
practical deployment in the real world. FHE’s high computational overhead leads
to significant slowdown that makes it impractical in large-scale settings. DP adds
noise to the final output of the function, and the resulting accuracy loss can
greatly harm the predictive power of any ML analysis. MPC requires participants
to send multiple messages during protocol execution, which can seriously degrade
overall runtime. OPE also requires multiple messages to be sent, and is focused
on the two party setting, which limits its applicability in large scale data analysis.

Private Stream Aggregation (PSA) is a form of distributed secure computing
that is promising for achieving this functionality. With this technique, users
independently encrypt their input data and send it to an aggregator in a way that
allows the aggregator to efficiently learn the aggregation results of time-series
data without being able to infer individual data. PSA is generally superior to
other types of secure computation paradigms (e.g., MPC, FHE) in large-scale
applications involving time-series data because of its extremely low overhead
and the ease of key management [17,30]. Notably, PSA is non-interactive (i.e.,
users send their time-series data in a “stream” and only one message is sent
per time interval) and asynchronous (i.e., users can leave after submitting their
inputs), making it more efficient in communication than most existing alternative
techniques [36]. Although PSA is a mature field of study, prior work in this
field is mostly limited to simple aggregation (sum, average, etc.). Due to these
limitations, it is challenging for even the most advanced PSA protocols to be
deployed in real-world applications for computing stream polynomial evaluation
over users’ time-series data.

To overcome this limitation with existing works, we developed the Cryptono-
mial framework, which can convert any PSA scheme amenable to a complex canon-
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ical embedding (CCE) [8], an isometric ring homomorphism between complex
numbers and integral polynomials, into a privacy-preserving stream polynomial
evaluation scheme, that supports additional functionality beyond an additive sum,
up to general stream polynomial evaluation. With the use of a Trusted Execution
Environment (TEE), we avoid sacrificing security or performance, and can build
a highly scalable protocol that is capable of computing richer statistics with
high efficiency and throughput. Our framework intelligently combines/tweaks
traditional quantum-secure PSA, the CCE, and a TEE to efficiently support
stream polynomial evaluation without incurring the drawbacks of simply using
a TEE alone or a PSA scheme alone to directly do so. Although it may seem
more efficient to simply send plaintext data to an SGX enclave to be computed
over, it is known that some TEEs (e.g., Intel SGX) have difficulties exploiting
multi-threading [35] due to the lack of common synchronization primitives often
found on traditional operating systems, and leveraging threading within TEEs
can introduce security vulnerabilities [37] which compromise data privacy. Overall
performance can be improved by outsourcing the computationally expensive steps
to an untrusted space in an encrypted form, so we can leverage more robust
forms of parallel computing especially on high performance hardware such as
GPUs, which is not possible with the approaches entirely based on TEEs.

Cryptonomial combines additive PSA with a complex canonical embedding
to develop a multivariate polynomial PSA, where single product terms are leaked
to the aggregator in a basic design. This leakage is prevented by integrating
a TEE into the design, where only a small constant amount of computations
are outsourced due to the nature of our design. These techniques allow for
significant performance improvements over the current state-of-the-art protocols
for privacy-preserving polynomial calculations by multiple orders of magnitude. It
is noteworthy that our framework is compatible with state-of-the-art techniques
in computational differential privacy [2,31,36] which prevent adversarial inference
from the outcomes of aggregation. Cryptonomial contributes to the development
of secure ecosystems of collection and analysis involving user-generated datasets,
by increasing the utility of the data gathered for data aggregators, while still
ensuring the privacy of users with a strong set of guarantees. Note that tolerance
of online/offline faults and input poisoning (when malicious users send false
inputs to poison the final function output) are orthogonal problems to our work,
and this paper focuses on expanding the versatility of PSA. Existing solutions
towards these problems [18,20] can be incrementally deployed on top of ours if
either of these properties are needed.

In summary, our contributions are as follows:

– We present a new framework to support for the first time PSA-based general
stream polynomial evaluation.

– We demonstrate the strong provable privacy guarantees of our instantiated
protocol by presenting a formal proof of security.

– We provide an implementation in order to evaluate the performance when
compared to existing work and verify the improved efficiency over existing
work by multiple orders of magnitude. Our implementation is open source and
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available at an anonymous repository https://anonymous.4open.science/

r/ea7619a6-3c77-483f-86c0-2ba60068ea54/.

2 Potential Applications of Cryptonomial

Regression Analysis: Regression analysis (i.e. polynomial regression and ridge
regression) is a statistical process for estimating the relationship among multiple
variables, with numerous applications in finance, medical research, and a number
of other domains [28]. In this type of data analysis each user i ’s data record
is described as a feature vector x and a dependent variable yi, and training a
regression model is to find p which minimizes MSE(p) =

∑
i (yi − pxi)

2
, i.e.,

the linear predictor who predicts users’ dependent variable vector y using their
feature matrix X with minimum mean squared error. Since MSE(p) is convex,
it is minimized if and only if Ap = b where A = XTX and b = XTy, such
that A =

∑
i xix

T
i and b =

∑
i yixi. By using our technique, the aggregator can

obliviously evaluate any polynomial regression model.

Support Vector Machines: This protocol can be useful for modeling/predicting
diseases in individuals, by supporting a variety of privacy-preserving ML tech-
niques, such as support vector machines (SVM). Supervised machine learning
methods have high performance in solving classification problems in many biomed-
ical fields, particularly the SVM [38]. Because the SVM approach is data-driven
and model-free, it has discriminative power for classification, especially in cases
where sample sizes are small and there are large numbers of variables. This tech-
nique has recently been used to develop automated classification and detection
of diseases in the clinical setting [24,33], but in all of these cases, participants’
privacy was not preserved, and participants either forfeited their data or signed
legal agreements that their data would not be shared. In many instances this level
of privacy protection may not be sufficient, and we seek to design a system that
protects the privacy of each individual data point from public health authorities.

3 Related Work

There are six primary techniques that can be leveraged to achieve traditional
secure aggregation or secure polynomial evaluation: 1) FHE, which suffers from
high computational overhead, 2) DP, which introduces noise that negatively
impacts accuracy, 3) MPC, which increases the communication complexity (num-
ber of communication rounds) compared to other techniques, 4) PSA, which
overcomes most of the communication and computational overhead constraints
of the previous approaches, but is limited to computing simple functions, 5) OPE
which supports polynomials but suffers from high communication complexity and
is primarily focused on the two party setting, and 6) Secure/Privacy-preserving
Polynomial Evaluation, which also suffers from high communication complexity
and scalability issues. We discuss these in more detail below:

Fully Homomorphic Encryption: FHE [8] can be applied to evaluate a
multivariate polynomial securely. However, the key management is nontrivial.
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The aggregator must be trusted to not decrypt ciphertexts pre-aggregation, or
the duties of aggregation and decryption should be separated between two servers.
Furthermore, there can be significant computational overhead when using FHE.
For instance, existing work leveraging FHE [21] to construct secure protocols for
aggregation reports an overall computation time of approximately 15 minutes
when computing over only 40 thousand data points. As a result, FHE is often
impractical in large-scale aggregations.

Differential Privacy: Modified DP has been used in existing works [27, 30] to
achieve O(1) error, while using generic differential privacy techniques alone would
result in at least Ω(N) error. Note, [27] also considers periodic aggregation of the
sum statistic in the presence of an untrusted aggregator. Their work does not
present a formal security definition and requires that the aggregator engage in
an extra round of interaction with the participants to decrypt the sum for every
time interval. While these techniques can be useful, we are interested in better
techniques that do not seriously impact the final accuracy of the aggregation.
High amounts of noise or accuracy loss in the secure aggregation can greatly
harm the predictive power of future data analysis, and we are primarily focused
on the case where users do not apply differentially private noise to their inputs.

Secure Multiparty Computation: MPC protocols allow a set of parties to
securely compute an arbitrary function over their inputs [3]. While it is feasible
to evaluate a polynomial with MPC, MPC protocols require multiple messages be
sent each time interval (round) between users, limiting scalability. All users must
wait on the slowest user, and the runtime of each round is determined by that of the
slowest user. In cases when MPC is conducted over the Internet, communication
round complexity is often the primary bottleneck [3,19], since network latency
slows the delivery of packets necessary for continuing to execute the protocol.
This problem becomes significantly worse when parties are geographically distant
and the communication latency of each message is high.

Private Stream Aggregation: PSA was first studied by Rastogi et al. [27] and
Shi et al. [30]. There have been many papers that build on these works, but the
vast majority focus on sum aggregation, and not on more complicated functions,
such as those based on polynomials. The most extensively studied domain is the
pre-quantum PSA based on the Decisional Diffie-Hellman (DDH) assumption
and/or the Decisional Composite Residuosity (DCR) assumption [16]. These
PSA schemes are vulnerable against quantum computers. Some post-quantum
PSA schemes are superior to pre-quantum PSA schemes in overall throughput
due to the smaller parameters enabled by the quantum-secure constructions and
the various algorithmic optimizations available in quantum-proof cryptography.
Early work in quantum-secure PSA [2] employed existing lattice-based encryption
schemes as black-box building blocks and was disadvantaged in performance due
to complex designs. More recent work in quantum-secure PSA [31] has used a
white-box approach to reduce the complexity and overhead in both computation
and communication, but is still limited to a single additive aggregation.

Oblivious Polynomial Evaluation: OPE is a protocol involving two parties, a
sender whose input is a polynomial P , and a receiver whose input is a value α. At
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Fig. 1. Comparison of Existing Work and Cryptonomial; s is the number of secret
shares, n is the number of users, w is the plaintext modulus, ∆ is the range of inputs,
l is the bit length of the inputs, λ is the security parameter, d is the degree of the
polynomial, x is the number of terms in the polynomial, χ is the bitlength of the safe
prime numbers, t is the minimum threshold of participants in the aggregation, o is
the number of points defined on the polynomial, a is the length of the RSA modulus,
X and Y are sets of elements, D is the sum of the logarithms of the variable degrees
for polynomials consisting of r monomials, b is the number of inputs for each user, α
is the degree of the inputs, and k is a parameter where k ≤ n. Q indicates quantum
security, AO indicates aggregator obliviousness, SH/FM indicates security against
semi-honest and fully malicious adversaries respectively, Sem indicates semantic security,
DP indicates differential privacy and TA indicates a trusted aggregator is required.

the end of the protocol the receiver learns P(α) and the sender learns nothing [25].
There are many interesting applications of this idea, including private comparison
of data, mutually authenticated key exchange, and anonymous coupons. Many
have built on top of this idea, to support operations over floating point numbers
for use training neural networks [7], to allow verifiable outsourcing of polynomial
calculations to enable secure set intersection [14], to have tighter bounds on
computational and/or communication efficiency [34,39].These techniques can be
powerful, but a major drawback is that they only consider the two party setting
and generally require multiple rounds of communication (i.e. multiple messages
must be sent each time-interval).

Secure/Privacy-preserving Stream Polynomial Evaluation: There is ex-
isting work that supports private polynomial calculations [17, 18]. However,
individual product terms are disclosed to the aggregator in some work [17], and
they generally rely on the DDH assumption and are not quantum secure. Also,
existing works have limited scalability, and their polynomial degree is limited
to a constant [13], otherwise the communication overhead is prohibitively large.
Some approaches also suffer from high communication round complexity and low
scalability [10,12,26]. A more general approach exists [4], however it is also an
interactive protocol with high communication round complexity.
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Our work is more general than standard PSA, and can be used to compute
any function that can be written as a polynomial. It avoids the drawbacks of the
previous approaches by combining PSA and a TEE, to maximize efficiency while
supporting polynomial evaluation. We summarize our findings in Figure 1.

4 Preliminaries

PSA Adversary Model: In general, PSA schemes are designed to allow an
untrusted third party (the aggregator) to perform aggregation computation while
providing semantic security to data sent by users. We consider a slightly different
adversary model than what is standard in PSA. The users have the same role as
before, and send ciphertexts to an aggregator, but in our work the aggregator
is equipped with a TEE. We assume that all users may collude with each other
and/or the aggregator, although the TEE is trusted. We want to guarantee that
the aggregator cannot learn any individual input from any honest user (this
implies if an aggregator corrupts or colludes with a user to learn their input, this
does not impact the privacy of the honest users). All the aggregator can learn is
the output of the function. Standard aggregator obliviousness [2,16,18,30], which
states the aggregator and colluders learn only the final aggregation outcome
and what can be inferred from their inputs, is guaranteed. More specifically,
we consider the case of a set of n users and a single aggregator A. Each user
ui ∈ S where 0 < i ≤ n− 1 possesses a piece of data xi,ts, corresponding to some
timestamp ts. The users wish to calculate an aggregation function f over the
private values they send. PSA is formalized as the following 3 algorithms:

– Setup(λ, · · · ): Takes a security parameter λ as input, along with any other
required parameters, e.g. the number of users n and the range of their data.
Returns a set of parameters parms, users’ secret keys si, i ∈ [0, n− 1], and
the aggregation key s′.

– Enc(parms, xi,ts, si, ts, · · · ): Takes the scheme’s parameters, and a user’s
secret key si and time-series input xi,ts, along with a timestamp ts. Returns
an encryption ci of the user’s noisy input under their secret key.

– Agg(parms, s′, ts, c0,ts, · · · cn−1,ts): Takes the scheme’s parameters, the ag-
gregation key, a timestamp ts, and the n time-series ciphertexts from the
users (with timestamp ts). Returns yts = x0,ts + x1,ts + · · ·+ xn−1,ts.

Users will run Enc on their data, and send their results ci,ts to the aggregator.
Then the aggregator calls Agg on the ciphertexts c0,ts, · · · cn−1,ts it has collected
to learn the aggregation result yts. Note we sometimes omit the timestamp
notation moving forward for clarity when the context is clear. In PSA schemes,
the algorithm Setup is run in a trusted manner [2], via the use of an additional
trusted third party, secure hardware, or secure multiparty computation. Infor-
mally, we wish to require that an adversary able to compromise the aggregator
and any number of other users is unable to learn any new information about
uncompromised users’ data. This idea is known as aggregator obliviousness, and
the standard definition [2, 30] is stated below:
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Definition 1. Suppose we have a set of n users, who wish to compute an aggre-
gation at a time point specified by the timestamp ts. An aggregation scheme π is
aggregator oblivious [2,30] if no polynomially bounded adversary has an advantage
greater than negligible in the security parameter λ in winning the following game:

The challenger runs the Setup algorithm which returns the public parameters
parms to the adversary. Then the adversary will guess which of two unknown
inputs was a users’ data, by performing the following queries:

Encrypt: The adversary argues (i, xi,ts, ri,ts) to the challenger and receives back
Enc(parms, ski, ts, xi,ts, ri,ts) to the adversary.

Compromise: The adversary argues i ∈ [0, n)∪{ζ}. If i = ζ, the challenger gives
the aggregator’s decryption key s′ to the adversary. Otherwise, the challenger
returns the ith user’s secret key si to the adversary.

Challenge: The adversary may only make this query once. The adversary argues
a set of participants S ⊂ [0, n), with i ∈ S not previously compromised. For each
user i ∈ S, the adversary chooses two plaintext-noise pairs (xi,ts, ri,ts), (x̃i,ts, r̃i,ts)
and sends them to the challenger. The challenger then chooses a random bit b. If
b = 0, the challenger computes ci,ts = Enc(parms, si, ts, xi,ts, ri,ts) for every i ∈
S. If b = 1, the challenger computes ci,ts = NoisyEnc(parms, si, ts, x̃i,ts, r̃i,ts)
for every i ∈ S. The challenger returns the ciphertexts {ci,ts}i∈S to the adversary.
The adversary wins if they can correctly guess bit b chosen during the Challenge.

Trusted Execution Environment: Note that our framework can work with
any form of Trusted Execution Environment (TEE), but we chose the Intel SGX
for our concrete instantiation. Intel SGX is a set of new CPU instructions that
can be used by applications to set aside private regions of code and data. It allows
developers to (among other things) protect sensitive data from unauthorized
access or modification by malicious software that may be running at superior
privilege levels. To do this, the CPU protects an isolated region of memory called
Processor Reserved Memory (PRM) against other non-enclave memory accesses,
including the kernel, hypervisor, etc.. Sensitive code and data is encrypted and
stored as 4KB pages in the Enclave Page Cache (EPC), a region inside the PRM.
Even though EPC pages are allocated and mapped to frames by the OS kernel,
page-level encryption guarantees confidentiality and integrity. In addition, to
provide access protection to the EPC pages, the CPU maintains an Enclave Page
Cache Map (EPCM) that stores security attributes and metadata associated with
EPC pages. This allows for strong privacy and integrity guarantees if applications
can be written in a two part model [11,20].

Applications must be split into a secure part and a non-secure part. The
application can then launch an enclave, which is placed in protected memory,
that allows user-level code to define private segments of memory, whose contents
are protected and unable to be read or saved by any process outside the en-
clave. Enclave entry points are defined during compilation. The secure execution
environment is part of the host process, and the application contains its own
code, data, and the enclave, but the enclave contains its own code and data too.
An enclave can access its application’s memory, but not vice versa, due to a
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combination of software and hardware cryptographic primitives. Only the code
within the enclave can access its data, and external accesses are always denied.
The enclave is decrypted “on the fly” only within the CPU itself, and only for
code and data running from within the enclave itself. This is supported by an
autonomous piece of hardware called the Memory Encryption Engine (MEE)
that protects the confidentiality and integrity of the CPU-DRAM traffic over a
specified memory range. Code running within the enclave is therefore protected
from being “spied on” by other code. Although the enclave is trusted, no process
outside it needs to be trusted, including the operating system [11,20]. Before per-
forming computation on a remote platform, a user can verify the authenticity of
the trusted environment. By using the attestation mechanism, users can establish
that software is running on an Intel SGX enabled device inside an enclave.

Lattice-Based Cryptography: Our framework utilizes the complex canonical
embedding (CCE) [8], to support privacy-preserving polynomial evaluation on
floating-point data. The CCE and the inverse of it allows one to map a polynomial
ring element to a vector of complex numbers and vice versa, and this mapping is
an isometric ring homomorphism, making it possible to encode complex numbers
into a quotient ring of polynomials. Thus, it is frequently used in the lattice-based
cryptography using polynomial rings, as complex-number inputs can be encrypted
with the CCE. As such, we anticipate our framework will be most useful in con-
junction with lattice-based PSA schemes. In general, lattice-based cryptography
has recently generated significant interest among cryptography researchers, as it
is quantum secure and generally faster than more traditional approaches (RSA,
etc.) due to its shorter operands and other recent optimizations. With large
coefficients, Residue Number System (RNS) representations can be used to break
large numbers down into smaller components. Using Single Instruction Multiple
Data (SIMD) optimizations allows multiple plaintexts to be encoded into a single
ciphertext. Large polynomial degrees can make polynomial multiplication very
expensive, and to mitigate this the Number-Theoretic Transform (NTT) can be
used to decrease the theoretical complexity [8, 31]. Full-RNS variants of lattice-
based cryptosystems reduce the complexity of the cryptosystems’ most expensive
operations to the complexity of the NTT [8]. The Ring Learning with Errors
(RLWE) problem is frequently used as a hardness assumption when designing
lattice-based cryptosystems, and we give an overview of it below. Note that we
use boldface lowercase letters to denote elements of rings. Consider two coprime
numbers q, p, with q � p, and let s be a random element of Rq with coefficients
bounded by b (b is often 1), where R is the quotient ring of Z[X]/Φ(X), and
Φ(X) is the M = 2N -th cyclotomic polynomial with degree N = 2d for some
positive integer d, such that Rt = Zt[X]/Φ(X), is the ring with all coefficients
in Zt. We let [x]t be the centered modular reduction of x mod t, such that
[x]t = x− bxt e · t ∈ Zt, where Zt = [−t2 ,

t
2 )∩Z; when centered modular reduction

is applied coefficientwise to ring elements we write [a]t ∈ Rt. Let ai, ei be a
polynomially bounded number of elements of Rq, with ai chosen randomly and
ei random and also b-bounded.
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Fig. 2. The Framework for Complex-Number PSA

An adversary is given the set of pairs (ai,bi) ∈ R2
q . Unknown to the adversary

is whether (ai,bi) are RLWE terms, i.e. bi = [ai · si + p′ei]q with p′ ∈ {1, p},
or if bi was randomly chosen from Rq. The decisional RLWE problem is then
to determine whether the terms bi are RLWE terms or random elements of Rq,
without any knowledge of si or ei. The RLWE problem is believed to be intractable
for quantum computers; its difficulty comes from reduction to the Shortest Vector
Problem [22]. The difficulty of the RLWE problem is parameterized by q and
N . Larger values of q provide more utility for RLWE-based cryptosystems, but
decreases the difficulty of the RLWE problem. Note increasing N also increases
the difficulty of the RLWE problem and thus the overall security.

5 Our Framework

We enable the stream polynomial evaluation via a composition of additive
PSA and CCE, and address its partial leakages with a TEE. It is extremely
challenging to apply an approach that uses RLWE terms as the computationally
indistinguishable random elements to design multiplicative PSA with exact
aggregation [2,31]. One reason among others is that the RLWE term is inherently
additive, i.e., the error term ei,ts is added instead of multiplied in the term
atssi+ei,ts, making it challenging to cancel out the random terms if the ciphertexts
are multiplied together at the aggregator’s side. It should be said that traditional
PSA schemes are defined over integers, but by leveraging the CCE [8] we can
transform any PSA taking quotient rings of polynomials as the plaintext space
(e.g. any lattice-based PSA schemes based on the RLWE problem [2, 23, 31])
into PSA defined over floating point numbers. We summarize our framework for
transforming any PSA scheme operating over integers to operate over floating
point numbers in Figure 2.

The nature of PSA makes it possible to execute only a small constant amount
of computations inside a TEE, which minimizes the performance impact. We
achieve PSA for the multivariate polynomial f by composing the additive PSA
with a TEE so that each user i provides a ciphertext corresponding to their private
data {mei,j

i,j,ts}zj=1 and the aggregator can multiply each product term
∏

i∈S m
ei,j
i,j,ts
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<latexit sha1_base64="Y9jvwv6Wkkkj1b7JkNEUnq8+V9s=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lIRY8FLx4r2A9ol5JNs21sNlmSrFiW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/w3jaL1f8qj8HWiU4JxXI0eiXv3oDRdOYSUsFMaaL/cQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ05ZYAipV1Ji+bq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigVyCo0ex0NuGbUiokjhGrubkV0RDSh1gVUciHg5ZdXSeuiimvVy7tape7ncRThBE7hHDBcQR1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zBz5njt0=</latexit>

ln x11 + · · · + ln x1n

<latexit sha1_base64="vMlDvyeMHbok5lCmTjzVICndcXU=">AAACBXicbVDLSsNAFJ34rPUVdamLwSIIhZJIRZcFNy4r2Ae0IUwmk3boZCbMTMQSsnHjr7hxoYhb/8Gdf+O0jaCtBy4czrmXe+8JEkaVdpwva2l5ZXVtvbRR3tza3tm19/bbSqQSkxYWTMhugBRhlJOWppqRbiIJigNGOsHoauJ37ohUVPBbPU6IF6MBpxHFSBvJt4/6jMN7P3PdvNrHodCq+qPw3LcrTs2ZAi4StyAVUKDp25/9UOA0JlxjhpTquU6ivQxJTTEjebmfKpIgPEID0jOUo5goL5t+kcMTo4QwEtIU13Cq/p7IUKzUOA5MZ4z0UM17E/E/r5fq6NLLKE9STTieLYpSBrWAk0hgSCXBmo0NQVhScyvEQyQR1ia4sgnBnX95kbTPam69dn5TrzScIo4SOATH4BS44AI0wDVoghbA4AE8gRfwaj1az9ab9T5rXbKKmQPwB9bHN2Pml9M=</latexit>

x11 ⇥ · · · ⇥ x1n

<latexit sha1_base64="AvJOiQydXnGEahBlxq2DtYe6Z4o=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVQkqgrESC2OR6ENqo8pxndaq40T2DaKKMrPwKywMIMTKF7DxNzhtBmg5kuXjc+7V9T1+LLgGx/m2Siura+sb5c3K1vbO7p69f9DWUaIoa9FIRKrrE80El6wFHATrxoqR0Bes40+uc79zz5TmkbyDacy8kIwkDzglYKSBffwwSF036wMPmcZ9OozAXPNXbslsYFedmjMDXiZuQaqoQHNgf/WHEU1CJoEKonXPdWLwUqKAU8GySj/RLCZ0QkasZ6gkZpaXzlbJ8KlRhjiIlDkS8Ez93ZGSUOtp6JvKkMBYL3q5+J/XSyC48lIu4wSYpPNBQSIwRDjPBQ+5YhTE1BBCFTd/xXRMFKFg0quYENzFlZdJ+7zm1msXt/VqwyniKKMjdILOkIsuUQPdoCZqIYoe0TN6RW/Wk/VivVsf89KSVfQcoj+wPn8A72KaXw==</latexit>
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Fig. 3. The Framework of Polynomial Evaluation with Complex-Number PSA
(using the Framework for PSA of Complex Numbers, Figure 2, as a building block)

for j = 1 to z. Note that, due to the SIMD technique, each user can pack all z input
values for the z product terms into one plaintext polynomial, and the aggregator
only needs to perform one multiplicative aggregation to get the outcome of z
individual products. More specifically, we rely on the following technique to build
our multiplicative PSA: For each input mi,j,ts ∈ C of i-th user, let the user
calculate the natural logarithm of the input and encode it into a polynomial as
m′i,ts = CCE(ln(mi,j,ts)) using the complex canonical embedding [8]. Then, the
nearly-exact additive PSA is leveraged to let the aggregator compute

∑
i∈S m′i,ts

with negligible error terms. We then undo the complex canonical embedding to
recover

∑
i∈S ln(mi,j,ts) = ln(

∏
i∈S mi,j,ts), and a natural exponential function

can be computed to get
∏

i∈S mi,j,ts. Due to the limitation of the multiplicative
PSA, we are limited to nearly-exact aggregation only, i.e., the outcome is exact
up to the pre-defined precision only. Then, the aggregator can locally calculate
f({mi,j,ts}i∈S,j=1,...,z) using the public parameters cj , where S is the set of users
whose ciphertexts are received by the aggregator. Such an approach guarantees
correct aggregation up to the precision of the outcome, however, the aggregator
learns all individual product terms which may not be acceptable especially when
the product terms are correlated.

Although such additional knowledge does not always lead to complete dis-
closure of individuals’ inputs, the search space can be reduced by leveraging
such knowledge. Thus, the proposed PSA above fails to achieve the aggregator
obliviousness [2, 30] that states the aggregator should learn only the final output.
To address this, we adopt the idea of a one-time program [15] that leverages
trusted hardware implementations to prevent the leakages similar to the one
above. Namely, we let the aggregator deploy a TEE, e.g,. Intel SGX and leverage
its secure functionality to prevent the aggregator from receiving more information
than the final result. The memory encryption and isolation of the TEE guarantees
that operating systems cannot view or change the program/data within the TEE.
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A näıve way to prevent the aforementioned leakages is to let the aggregator
perform the aggregation within the TEE. Then, even though the multiple ag-
gregation results are calculated for many different subsets, the final outcome
resides inside the TEE only, and the program running in it (which is verified
by all users through remote attestation) can decide to output the appropriate
result(s) to the outside of the TEE, i.e., the aggregator. In the case of stream
polynomial evaluation, the outcome of the multiplicative aggregation, i.e., the
individual product terms, resides in the TEE, and the remotely verified program
running in the TEE computes and returns only the sum of the product terms to
the aggregator. Though being secure, such a method is more complicated. One
can simply let users set up secure communication channels with the aggregator’s
TEE (by exchanging the keys) and let users send their input data to the TEE
who performs arbitrary aggregation within the TEE securely.

We design a method to integrate the TEE into the PSA such that users benefit
from the security guarantees of TEE while the overhead at the aggregator’s end is
much smaller than the overhead of the entire raw data being sent to the TEE and
aggregated inside the TEE. Note that if only one or a few constant number of user
ciphertexts are sent to the TEE and the rest, which are sent to the aggregator,
are aggregated outside the TEE, the aggregator only observes the incomplete
aggregation results which are indistinguishable from random elements due to
the security of the PSA (e.g., randomness of the RLWE terms [2, 31]). After
the aggregation of the ciphertexts outside the TEE is finished, the aggregator
can send the aggregated incomplete results into the TEE who continues the
aggregation inside the TEE, at which point only a constant number of operations
need to be performed since only a few operations are needed inside the TEE.
Considering that the TEE introduces the extra overhead of memory encryption
for every communication between the CPU and the DRAM, the PSA with
our optimization has higher throughput than the plain aggregation performed
entirely within the TEE especially when the scale of the aggregation is large.
Recall it is known that some TEEs (e.g., Intel SGX) have difficulties exploiting
multi-threading [35] due to the lack of common synchronization primitives, and
leveraging threading within TEEs can introduce security vulnerabilities [37].
Also, TEEs have been shown to run common functionalities over an order of
magnitude slower than what can be achieved on comparable untrusted hardware,
due to the overhead of computing within the enclave [35], and performing a large
number of context switches to send each user’s data into the TEE can add serious
overhead, especially in a big data setting. Overall performance can be improved
if we minimize the number of context switches and outsource computationally
expensive steps to an untrusted space that can better leverage parallel computing.
More specifically, we aggregate all of the users’ ciphertexts outside the enclave,
and only perform a single context switch to send this intermediate result into the
enclave, where we add the aggregator’s secret key to recover the product terms of
the polynomial. We later calculate the sum of the calculated products, so we learn
the final output inside the TEE. We summarize the data flow in our framework
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for transforming any PSA scheme into a secure stream polynomial evaluation
scheme in Figure 3, and we formalize it with the following 3 algorithms:

– Cryptonomial.Setup(λ, · · · ): All users perform attestation on the aggrega-
tor’s TEE, and input to the TEE a security parameter λ as input, along with
any other required parameters, e.g. the number of users n and the range of
their data. The TEE returns a set of parameters parms, users’ secret keys
ki, i ∈ [0, n) (over a secure channel), and the aggregation key k′.

– Cryptonomial.Enc(parms,mi,ts, ki, ts, · · · ): Takes the scheme’s parameters,
and a user’s secret key ki and vector of time-series input mi,j,ts, along with
a timestamp ts. Returns ci,ts, an additively homomorphic encryption of
CCE(ln(mi,j,ts)), the natural logarithm of the user’s vector of noisy inputs
encrypted under their secret key, where the natural log is taken component-
wise over the vector, and CCE is the complex canonical embedding function.

– Cryptonomial.Agg(parms, k′, ts, c0,ts, · · · cn−1,ts): Takes the scheme’s pa-
rameters, the aggregation key, a timestamp, and the n time-series cipher-
texts from the users (with timestamp ts). In the untrusted space com-

pute yts =
∑n−1

i=0 ci,ts via homomorphic addition. Then send yts into
the TEE and add in the aggregation key k′ as appropriate based on the
underlying PSA scheme. Then within the TEE take the inverse of the
CCE of this as

∑n−1
i=0 CCE−1(CCE(ln(mi,j,ts))) =

∑n−1
i=0 ln(mi,j,ts) =

ln(
∏n−1

i=0 mi,j,ts). They then take the exponential to recover
∏n−1

i=0 mi,j,ts

and recover
∑z

j=1 cj(
∏n−1

i=0 m
ei,j
i,j,ts), where z is the number of product terms

in the polynomial, and cj ’s and ei,j ’s are public parameters.

6 Framework Instantiation with Existing PSA

PSA chosen for instantiation: Our scheme can leverage any PSA amenable
to a complex canonical embedding as a building block. There are several such
schemes [1,2], but we chose the noise-scaled variant of SLAP (i.e. SLAPNS , [31])
as a building block for its simplicity and open-source implementation. Before
describing our protocol, we review the SLAP protocol below. Note, in the scheme
operands are ring elements, not matrices or vectors. We denote the plaintext
domain as the ring Rt and the ciphertext domain as the ring Rq, with q � t
and an appropriate value of the polynomial modulus degree N to allow for the
necessary security. Secret keys and error terms are drawn from distributions χ, ζ
(1-bounded in practice) on Rq. The scheme is defined as follows:

– SLAPNS .Setup(λ, t, n): Takes in the security parameter λ, the plaintext
modulus t, and the number of users n. Choose q such that log2(3) + log2(n) +
log2(t) < log2(q) and q, t are coprime. Choose the polynomial modulus N
such that λ bits of security are provided for the RLWE problem with ring
polynomial coefficients in Zq. Choose a set of public keys {ats} uniformly
at random, or a method of generating keys indistinguishable from such.
Choose users’ secret keys s0 · · · sn−1 from χ. Construct the aggregator’s key
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as s′ = −[
∑n−1

i=0 si]q. Return parms = (Rq, t, n, {ats}), the users’ secret keys
si, and the aggregation key s′.

– SLAPNS .Enc(parms, si,mi,ts ∈ Rt, ts): Choose the user’s error ei,ts from ζ.
Return the user’s ciphertext ci,ts = [ats · si + tei,ts + mi,ts]q (based upon the
secret key, the user’s input, a small random error, and the timestamp ts).

– SLAPNS .Agg(parms, s′, ts, c0,ts · · · cn−1,ts): If any of c0,ts · · · cn−1,ts are ab-
sent or not well-formed (i.e., an element of Rq), then abort. Otherwise,

compute and return yts = [[ats · s′ +
∑n−1

i=0 ci,ts]q]t

Our Instantiated Protocol (τ): We now present the concrete instantiation
of our scheme. Let CCE be the complex canonical embedding described in [8],
which is an isometric ring homomorphism that preserves the magnitude of the
elements, to encode complex numbers into polynomials. We assume the set
of users ui perform remote attestation with the aggregator A’s TEE, and the
polynomial function is agreed upon beforehand. We model our system in Figure 3.
The protocol instantiated with our framework and the building block SLAP is
denoted as τ and defined as follows:

– τSetup(λ, t, n): Inside the TEE, call SLAPNS .Setup(λ, t, n). The secret keys
k0 · · ·kn−1 and the relevant parameters are then distributed to their owners
over secure channels, and the aggregator’s key k′ remains inside the TEE.

– τEnc(parms,ki,mi,j,ts, ts): Note in this functionality each user determines
their private values mi,j,ts ∈ Rt they wish to send for a given time stamp ts,
and encrypt it as follows: First, take the natural logarithm of their inputs as
ln(mi,j,ts), and apply the complex canonical embedding over this as m′i,ts =
CCE(ln(mi,j,ts)). Finally they encrypt this as ci,ts = SLAPNS .Enc(parms,
si,m

′
i,ts, ts). Then each ui sends their ci,ts to A.

– τAgg(parms,k′, ts, ci,ts · · · cn−1,ts): In the untrusted space A computes yts =

[
∑n−1

i=0 ci,ts]q. Then they send yts into the TEE, and inside they compute

[[yts + ats · k′]q]t =
∑n−1

i=0 CCE(ln(mi,j,ts)). Then within the TEE they

take the inverse of the CCE of this as
∑n−1

i=0 CCE−1(CCE(ln(mi,j,ts))) =∑n−1
i=0 ln(mi,j,ts) = ln(

∏n−1
i=0 mi,j,ts). They then take the exponential to

recover
∏n−1

i=0 mi,j,ts and compute
∑z

j=1 cj(
∏n−1

i=0 m
ei,j
i,j,ts), where z is the

number of product terms in the polynomial, and cj ’s and ei,j ’s are public
parameters.

Correctness: This protocol is correct, since we know that when adding n cipher-
texts ci,ts, we find [ats · k′ +

∑n−1
i=0 ci,ts]q = [

∑n−1
i=0 (tei,ts + CCE(ln(mi,j,ts)))]q.

The magnitude of the sum of the errors is bounded by n · t, and the magni-
tude of the sum of the inputs is bounded by n · t

2 . Then as long as 3·n·t
2 < q

2 ,∑n−1
i=0 (tei,ts + CCE(ln(mi,j,ts))) does not overflow modulo q, guaranteeing cor-

rectness. Then reducing
∑n−1

i=0 (tei,ts + mi,j,ts) modulo t removes the error terms,

leaving us with the sum of the users’ inputs modulo t. Note
∑n−1

i=0 ln(mi,j,ts) =

ln(
∏n−1

i=0 mi,j,ts), so exponentiating recovers
∏n−1

i=0 mi,j,ts.
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Security: Although a formal proof of aggregator obliviousness is in the appendix
for completeness, note by the underlying security of SLAP [31], the RLWE
problem [22], and the TEE, the protocol is secure. Even if the untrusted aggregator
colludes with some malicious users, although they can learn the individual inputs
of the malicious users, since they only receive the aggregated function output
as a final result, they cannot learn which honest user inputted which value,
provided there is more than one honest user. Similarly, since each term in the
polynomial is calculated inside the TEE, there is no partial leakage. Post-quantum
security follows from SLAP [31], and from the underlying post-quantum security
of AES encryption [11], which is used by the Intel SGX to encrypt data in the
enclave. Note we assume quantum secure signatures are used during attestation,
a forthcoming future feature of Intel SGX [5]. We can easily guarantee differential
privacy for our protocol using existing techniques if necessary [2, 31].

Parallel-Friendliness: Note that the computation of the product terms is
perfectly parallelizable (except for one operation, adding the aggregator’s secret
key, which must be done inside the enclave) and thus can be outsourced to
many-core hardware. Existing work [32] notes the DDR4 specification gives a
peak data transfer rate of 25,600 MB/s, which gives 70µs seconds per ciphertext
transfer time from DRAM to the hardware used for parallelization. In practice,
the overhead from data transfer can be significantly less, due to pipelining and
interleaving of execution and data transfer. They estimate 21.2µs seconds per
ciphertext transfer time from DRAM to the hardware after observing the time
difference between operating upon ciphertexts that were/were not resident in
cache memory [32].

7 Experimental Evaluation

To better understand the improvements gained in performance we implemented
our scheme using C++11, and version 2.10 of the Intel SGX SDK and present
our results below (code available at: https://anonymous.4open.science/r/
ea7619a6-3c77-483f-86c0-2ba60068ea54/). For our PSA backend we used
the open-source implementation of SLAP’s noise-scaled variant [31], which uses
optimizations including RNS, SIMD batching, and NTT, which are discussed
in Chapter 4. We used SLAP’s default parameters; security parameter λ = 128,
polynomial modulus degree N = 1024, and ciphertext modulus q with 56 bits.
Our experiments were run on a computer running Ubuntu 18.04 with an Intel(R)
Xeon(R) W-1290P 3.70GHz CPU with 10 cores, 20 threads, 128 GB of memory,
and Intel SGX support. We did not leverage GPUs/FPGAs because we did not
have access to computers equipped with both Intel SGX and GPUS/FPGAs.
Our tests took average runtimes of 5 trials.

Benchmarks: To benchmark our protocol, we computed polynomials of the
form

∑2
j=1

∏n−j+1
i=1−j+1 mi,j,ts and report the time for each step below. Achieving

accurate timings for operations within the enclave is difficult, because the SGX
primitive sgx get trusted time only supports second level precision, but many
operations can be computed at millisecond precision (Intel is committed to
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Fig. 4. Benchmarks of Cryptonomial using SLAP as the PSA

providing better timing support in future releases). To measure benchmarks,
we used C++ std::chrono, which supports microsecond precision, and timed
the overall time to compute ECALLs within the untrusted component of the
program. We report how these times scale as we increase the number of users
in Figure 4. In general, we find that preprocessing time is linear in the number
of users, and is ≤ 1 millisecond for 100,000 users (excluding network latency).
Also, encryption and decryption time is linear in the number of users, and is
approximately 1 millisecond per user. Aggregation time is logarithmic in the
number of users, but is still practical in large scale computation.

Case Study: To better understand how our technique performs in a real world
setting, we implemented multiple linear regression analysis using Cryptonomial,
and compared it to the performance reported by the current state-of-the-art
privacy-preserving polynomial evaluation technique known as PDA [18]. The
linear regression model consists of one equation of linearly increasing variables
(also called parameters or features) along with a coefficient estimation algorithm
called least squares, which attempts to determine the best possible coefficient
given a variable. Multiple linear regression is a model that can capture the linear
relationship between multiple variables and features, assuming that there is one.
The multiple linear regression formula is y = β0 + β1x1 + β2x2 + . . .+ βixi + ε,
where β0 is known as the intercept, β1 to βi are known as coefficients, x1 to xi
are the features of the dataset, and ε are the residual terms.

We can also represent the formula for linear regression in vector notation.
Linear least squares (LLS) is the main algorithm for estimating coefficients of
the formula just shown. We use the most popular variant called ordinary least
squares (OLS). The OLS algorithm minimizes the sum of squares of residuals.
The following formula ensures that the resulting coefficients define a minimum
for the normal equation, which means that the result is the minimized total

sum of squared residual: β̂ =
(
XTX

)−1
XTy. Here β̂ is a vector containing all

of the coefficients that can be used to make predictions by using the formula
presented in the beginning for multiple linear regression. We simulated training
a linear regression model over the datasets in a privacy-preserving manner using
our scheme (Section 4.5) with data from the UCI Machine Learning Database
as done in PDA [18]. We measured the time to complete the training in a local
computer and our times are reported in Table 1. By utilizing batching and other
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Table 1. Cryptonomial OLS Performance on UCI Dataset
Datasets Records Features Our Time PDA Time Speedup
Census 48,842 14 1.74 s 355 s 204x
Bank 45,211 17 1.63 s 341 s 209x

Insurance 9,822 14 0.42 s 74 s 176x
White wine 4,898 11 0.25 s 33 s 132x
Red wine 1,599 11 0.14 s 12 s 85x

optimizations in SLAP, data for all features was encoded into a single ciphertext,
significantly reducing computation and communication overhead.

We note that our technique is always the fastest by at least an order of
magnitude. This makes sense as our lattice-based PSA cryptographic primitive
combined with a TEE as discussed in our framework is considerably less compu-
tationally expensive than the ECC-based techniques of PDA. Also, PDA makes
use of an interesting but expensive ECC-based encoding procedure that allows
for a form of fault tolerance, where users can be dynamically added or dropped
from the system. This encoding negatively impacts the overall run time, and this
trend continues as we increase the number of records in the final aggregation
calculation. We note that although this paper does not consider fault tolerance,
there are preexisting techniques that leverage a TEE to transform any traditional
PSA scheme into a fault tolerant PSA scheme [20], and such techniques can be
incrementally deployed on our solution. Thus, we can conclude that in secure
polynomial evaluation scenarios where aggregation times greatly impact the
overall performance, our method offers the best efficiency.

8 Conclusion

We presented Cryptonomial, a framework for converting any PSA scheme
amenable to a CCE into a secure computation protocol that can compute
any function that can be written as a polynomial, by combining PSA and a
TEE. We showed that Cryptonomial meets the security and privacy require-
ments of PSA, and supports strong security guarantees. Simulations show our
scheme’s performance is orders of magnitude faster than similar work supporting
polynomial calculations.
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A Proof

We adapt existing proofs [2, 30] for our own protocol.

Theorem 1. (Aggregator Obliviousness Security): Let the output of
Cryptonomial.Enc be indistinguishable from random. Then the instantiation of
our framework is secure under aggregator obliviousness.

Proof. Our goal is to show that if there exists a PPT adversary A that wins the
aggregator obliviousness security game, then there exists a PPT adversary B
that can distinguish between RLWE ciphertexts in our protocol.

A Slightly Modified Game: For the proof, we modify the game of aggregator
obliviousness as follows: First, we change any Encrypt query to be a Compromise
query from the adversary (which actually strengthens the adversary), and we
change the Challenge phase to a real-or-random version. Second, in the original
game of aggregator obliviousness, the adversary is asked to specify two sets
of plaintext/randomness pairs (xi, zi), (x̃i, z̃i) and then to distinguish between
encryptions of either of the pairs. However, in our proof the adversary chooses
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one plaintext (xi) and they must distinguish between valid encryptions of (xi) or
random values. Note that any adversary with greater than negligible advantage
in winning this modified game would also win the original game of aggregator
obliviousness with more than negligible advantage [2,30]. Thus, we must show
that any PPT adversary A with a greater than negligible advantage in winning
the modified game can be used to construct an algorithm B that can distinguish
RLWE ciphertexts from random, to solve the decisional RLWE problem.

For simplicity, we consider the protocol’s operation at a single timestamp
ts, and use A to denote an element of Rt chosen uniformly at random, or via
a method of generating keys indistinguishable from such. We also omit the
timestamp identifier of plaintexts, ciphertexts, and other variables. Recall that
aggregator obliviousness acknowledges the case where the adversary compromises
all participants but one, and allows that an adversary may inevitably learn the
secret key of that participant and therefore distinguish between valid encryptions
and random values. Because of this, the definition requires that adversaries do
not learn any additional information about that participant.

Reducing to Semantic Security: First, we briefly define a game for B that
describes their ability to break the semantic security of RLWE ciphertexts.
Suppose B receives the parameters (Rq, t, n). Then with a challenger C testing
the ability of B to break the SLAPNS cryptosystem, B will play the modified
game described above. In this, B can make Sample queries by arguing m ∈ Rt to
C and will receive back the pair (A,M), where A is a publicly known element of
Rq and M is an encryption under the secret key s∗ of m. Then in the Distinguish
part, B argues m∗ ∈ Rt to C. Based on a random bit b chosen by C, C will choose
M∗ either as an encryption of m∗ (if b = 0) or a random element of Rq (if b = 1).
Then B must guess the value of b, winning if correct.

Reduction: We now show how B can simulate the modified game of aggregator
obliviousness toA. In the Setup phase, B will first choose distinct j, k ∈ [0, n)∪{ζ}.
Note the probability A will not select these parties to be compromised is 1

n2 .
Then, B implicitly sets sk = s∗, chooses secret keys si for all i 6= j, k, and
implicitly sets sj = [−(

∑
i 6=j,k si) − sk]q. Note that B does not know either of

sk, sj , which are the aggregation scheme’s secret keys for users j, k. After this, B
chooses the aggregation key s′ randomly from {si}i∈[0,n) \ {sj , sk}.

In the Compromise phase, A will send a query i to B. If i /∈ {j, k}, then B
returns si to A, otherwise we abort. Also, if i = ζ, then s′ will be returned to A.

In the Challenge phase, A will choose a set of uncompromised users U ⊆
[0, n) \ {j, k}, to send plaintexts {(xi)} with i ∈ U to B. Because we chose earlier
to abort if a query was for either of j, k, we know that j, k ∈ U . Then, B computes
{ci = τEnc(parms, si,xi)} for i ∈ U \ {j, k}.

Now B enters the Distinguish phase and sends mk = [xk]q to C who returns
the tuple (A,M). Then, B sets ck := M. B then computes an encryption of the
sum of the plaintexts, with v = [

∑
i∈U xi]q and cj = FHE.Enc(parms,A,v),

where FHE is the backend cryptosystem used by SLAP . Now B has ci for i ∈ U ,
including cj and ck. B then returns these values ci to A.

We now move to the Guess phase. If A has more than negligible advantage
in winning the aggregator obliviousness security game, they can distinguish the
ciphertexts from random. Specifically, if ck = M is a valid encryption of xk and
A will return 0, otherwise they return 1.

Therefore, by forwarding A’s output to C as their guess, B wins the game,
and they can distinguish M from random and break the semantic security of
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the SLAPNS scheme being used. Therefore, the scheme achieves aggregator
obliviousness and all the adversary can learn is what can be inferred based on
the output of the the final polynomial calculation and inputs they control, since
the ciphertexts seen outside the enclave are semantically secure and the final
decryption and aggregation done in the enclave is secure against eavesdropping
due the TEE’s strong isolation. This completes the proof. ut
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