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Abstract. Rasta and Dasta are two fully homomorphic encryption
friendly symmetric-key primitives proposed at CRYPTO 2018 and ToSC
2020, respectively. We point out that the designers of Rasta and Dasta
neglected an important property of the χ operation. Combined with the
special structure of Rasta and Dasta, this property directly leads to
significantly improved algebraic cryptanalysis. Especially, it enables us
to theoretically break 2 out of 3 instances of full Agrasta, which is the
aggressive version of Rasta with the block size only slightly larger than
the security level in bits. We further reveal that Dasta is more vulnerable
to our attacks than Rasta for its usage of a linear layer composed of
an ever-changing bit permutation and a deterministic linear transform.
Based on our cryptanalysis, the security margins of Dasta and Rasta
parameterized with (n, κ, r) ∈ {(327, 80, 4), (1877, 128, 4), (3545, 256, 5)}
are reduced to only 1 round, where n, κ and r denote the block size,
the claimed security level and the number of rounds, respectively. These
parameters are of particular interest as the corresponding ANDdepth is
the lowest among those that can be implemented in reasonable time and
target the same claimed security level.

Keywords: Rasta, Dasta, Agrasta, χ operation, linearization, algebraic
attack

1 Introduction

Since the pioneering work [5] of Albrecht et al. on designs of ciphers friendly to
secure multi-party computation (MPC), fully homomorphic encryption (FHE)
and zero-knowledge proofs (ZK), an increasing number of MPC-, FHE- and ZK-
friendly symmetric-key primitives have been proposed, including LowMC [5],
Kreyvrium [10], Flip [26], Rasta [14], MiMC [4], GMiMC [3], Jarvis [8], Hades [22],
Poseidon [21], Vision [7], Rescue [7] and Ciminion [16]. As designing symmetric-
key primitives in this domain is relatively new and not well-understood, the
designers may be prone to make mistakes in their innovative proposals. Three



concrete examples come from the cryptanalysis of LowMC [5], the initial version
of MARVELlous [8] and MiMC [18].

In the case of LowMC, new higher-order differential cryptanalysis [15] and
the optimized interpolation attack [13] revealed that the original parameters of
LowMC were too optimistic, which directly pushed LowMC move to LowMC
v2. However, the so-called difference enumeration attack [27] in the low-data
setting could still violate the security of some parameters in LowMC v2. As a
countermeasure, the formula to calculate the secure number of rounds is updated
and this version is called LowMC v3. However, it has been recently demonstrated
in [25] that some parameters in LowMC v3 are still insecure when new algebraic
techniques and the difference enumeration attack are combined.

In the case of MARVELlous [8], Albrecht et al. described a clever way [2] to
express the primitive as a set of low-degree equations with the introduction of
intermediate variables. On the other hand, as MARVELlous works on a large
field, the total number of variables in the equation system is still small even
though there are intermediate variables. These directly lead to powerful Gröbner
basis attacks as the Gröbner basis of such a set of polynomials can be efficiently
computed in time less than that of the brute-force attack.

In the case of MiMC [4] proposed at ASIACRYPT 2016, the key-recovery
attack on the full-round versions over F2n was presented until ASIACRYPT
2020 [18], mainly owing to a careful study of the increase of the algebraic degree,
though it is only slightly faster than the brute-force attack.

Such a trend in designing symmetric-key primitives for advanced protocols
also motivates the cryptographers to generalize several cryptanalytic techniques
to fields of odd characteristic [9]. As a consequence, some undesirable properties
have been reported for GMiMC and Poseidon.

From the perspective of design, there are two common metrics for these
primitives, i.e. the multiplicative complexity (MC) and the multiplicative depth
of the circuit. In the context of Rasta [14], MC refers to the total number of
AND gates and the multiplicative depth of the circuit refers to the number of
rounds (called ANDdepth in Rasta [14]). The aim of Rasta is to provide a design
strategy achieving d ANDdepth and d ANDs per bit at the same time. The
designers proposed several parameters for the block/key size n, the ANDdepth
d and the targeted security level κ. To make d as small as possible and keep
its practical usage, d ∈ {4, 5, 6} is recommended. Since generating the affine
layers in each encryption is quite time-consuming in Rasta, Hebborn and Leander
proposed Dasta [24] where the linear layer is replaced with an ever-changing bit
permutation and a deterministic linear transform. Such a construction has made
Dasta 100x times faster than Rasta in the offline settings.

A feature in Rasta and Dasta is that n is much larger than κ and there is
indeed no generic attack matching the claimed security level κ. To encourage
more cryptanalysis, the designers of Rasta also proposed an aggressive version
called Agrasta with n = κ + 1. The currently best key-recovery attack [17] on
Agrasta in the single-plaintext setting is based on a brute-force approach and
only 3 rounds can be covered. Moreover, no nontrivial third-party attacks have
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been published for Rasta or Dasta. It should be emphasized the same key can be
used to encrypt many different plaintext blocks for Rasta, Dasta and Agrasta and
hence the attacks should not be limited to the single-plaintext setting. Indeed,
it has been shown in [14,24] that given the capability to collect many plaintext-
ciphertext pairs under the same key, the attackers still cannot break any of the
three proposals.

Algebraic attacks. Algebraic attacks are potential threats to aforementioned
primitives, as can be observed from the cryptanalysis of LowMC, MARVELlous,
MiMC, GMiMC and Poseidon. A crucial step to improve the efficiency of
an algebraic attack is to construct a suitable equation system that can be
efficiently solved with techniques like linearization, guess-and-determine, F4/F5
algorithms [19,20] (computing Gröbner basis) or XL algorithm [11]. How to
construct useful equations is nontrivial and dominates the effectiveness of
algebraic attacks. For methods to solve equations, the linearization technique
is the simplest one, which is to treat each different monomial in the equations
as an independent new variable. The drawback is hence obvious as the attacker
needs to collect sufficiently many equations in order to solve it with gaussian
elimination. In addition, as the algebraic degree of the equations increases, the
number of monomials will become very large and the cost of gaussian elimination
may even exceed the generic attack. For the guess-and-determine technique,
its performance fully depends on the structure of the original equation system.
Finding a clever guess-and-determine strategy is nontrivial. Especially, when the
equation system tends to be random, the effect of such a strategy seems to be
limited. For advanced algorithms like F4/F5 algorithms and the XL algorithm to
solve multivariate polynomial equations, their complexity is hard to bound when
the system is much over-defined. If only a portion of equations are taken into
account, though the time complexity can be bounded, the resulting complexity
may turn to be very high and exceeds the generic attack.

Our Contributions. We observed the feasibility to derive exploitable low-degree
equations from the raw definition of the χ operation, which seems to be neglected
by the designers for the high algebraic degree of the inverse of the large-scale
χ operation. As a result, we could construct a system of equations of a much
lower algebraic degree than expected by the designers to equivalently describe
the primitives. Specifically, r0 rounds of Rasta can be represented as a system of
equations of algebraic degree upper bounded by 2r0−1 + 1 rather than 2r0 . For
Dasta, by guessing only 1-bit secret information, we even could extract a system
of equations of algebraic degree upper bounded by 2r0−1 from many different
plaintext-ciphertext pairs for r0 rounds, which is mainly due to the usage of
a deterministic linear transform following a bit permutation in the last linear
layer.

It should be emphasized that constructing low-degree equations based on
high-degree equations is not new in symmetric-key cryptanalysis. For example,
a similar idea has been utilized in the algebraic attack on several stream ciphers
at EUROCRYPT 2003 [12], where the low-degree equations are deduced in a
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more technical way. Our idea should be distinguished from [12] as our attack
indeed also much relies on our observation on the key feed-forward operation in
Dasta and Rasta, i.e. the feature of the construction. Once the above observations
are combined, the attacks become straightforward and trivial.

On the complexity of gaussian elimination. Denote the exponent of
gaussian elimination by ω. A naive implementation of gaussian elimination leads
to ω = 3. Due to Strassen’s divide-and-conquer algorithm [28], the upper bound
of ω is updated as log27 and the algorithm has been practically implemented [1].
Although there exists a more efficient algorithm [6] to perform the matrix
multiplication and the upper bound can be further updated as ω < 2.3728596, it
is in practice useless for its hidden huge constant factor. In the preliminary
analysis, the designers of Rasta [14] adopted ω = 2.8 to compute the time
complexity of algebraic attacks on reduced-round Agrasta and compared it with
the required number of binary operations to encrypt a plaintext. The designers
of Dasta [24] instead chose ω = 2.37 to evaluate the resistance against algebraic
attacks in order to explicitly understand the security margins of Dasta and Rasta.
Therefore, in this paper, we provide the time complexity under both cases, i.e.
ω = 2.8 and ω = 2.37. It should be emphasized that the former one is reasonable
in practice.

Our results. According to the Rasta paper [14], performing r rounds of Rasta
with block size n requires about (r+1)n2 binary operations caused by the linear
layers. In our algebraic attacks, the number of equations is always kept the same
with the number of variables and it is denoted by U , even though we are able to
collect more equations. When evaluating the time complexity with ω = 2.8, we
adopt the formula Uω/((r+ 1)n2) as in [14]. When ω = 2.37 is used, we directly
compute the time complexity with the formula Uω as in [24]. The corresponding
memory complexity is obvious, i.e. U2. Our results are summarized in Table 1.

2 Preliminaries

In this section, we briefly describe the overall structure of Rasta and Dasta.
Since several instances are specified, they will be distinguished with the notations
Rasta-κ-r and Dasta-κ-r, where κ and r denote the claimed security level and
the total number of rounds, respectively. In addition, throughout this paper,
n denotes the block size, rank(M) denotes the rank of the matrix M , M−1

denotes the inverse of the matrix M , ai denotes the i-th bit of the vector a,
Deg(f) denotes the algebraic degree of the function f .

2.1 Description of Rasta

Rasta is a stream cipher based design where the nonlinear layer is deterministic
while the linear layer is randomly generated during the encryption phase.
Specifically, its input consists of a key K ∈ Fn2 , a nonce N , a counter C and
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Table 1: Summary of the attacks on Rasta, Dasta and Agrasta, where
R, D, M and T denote the number of attacked rounds, data complexity,
memory complexity and time complexity, respectively. The number of rounds
marked with ? means that the corresponding time complexity exceeds the
claimed security level. We recomputed the time/data complexity of the trivial
linearization attacks in [24] to keep consistent with our calculations and the
results only slightly differ.

Target Methods n R log2D log2M log2T log2U ω Ref.

Agrasta-128-4
brute-force 129 3 0 25 124.2 - - [17]

linearization 129 3 0 14 125.76 7 2.8 [14]
linearization 129 4 37.7 90 110 45 2.8 this paper

Agrasta-256-5
brute-force 257 3 0 25 252.2 - - [17]

linearization 257 3 0 16 253.5 8 2.8 [14]
linearization 257 5 78 174 225.1 87 2.8 this paper

Rasta/Dasta-80-6

linearization

219 2 19.3 54 64 27 2.37 [24]
Rasta-80-6 219 3 23.3 64 75.9 32 2.37 this paper
Dasta-80-6 219 3 27 54 65 27 2.37 this paper
Rasta-80-6 219 3 23.3 64 72.1 32 2.8 this paper
Dasta-80-6 219 3 27 54 59.1 27 2.8 this paper

Rasta/Dasta-80-4

linearization

327 2 20.7 58 68.8 29 2.37 [24]
Rasta-80-4 327 3? 25.7 70 83 35 2.37 this paper
Dasta-80-4 327 3 29 58 69.8 29 2.37 this paper
Rasta-80-4 327 3 25.7 70 79.3 35 2.8 this paper
Dasta-80-4 327 3 29 58 62.5 29 2.8 this paper

Rasta/Dasta-128-6
linearization

351 3 44.6 106 125.6 53 2.37 [24]
Rasta-128-6 351 4? 48.6 116 137.5 58 2.37 this paper
Dasta-128-6 351 4 53 106 126.6 53 2.37 this paper

Rasta/Dasta-128-5

linearization

525 2 23 64 75.9 32 2.37 [24]
Rasta-128-5 525 3 29 78 92.5 39 2.37 this paper
Dasta-128-5 525 3 32 64 76.9 32 2.37 this paper
Rasta-128-5 525 3 29 78 89.2 39 2.8 this paper
Dasta-128-5 525 3 32 64 70.6 32 2.8 this paper

Rasta/Dasta-128-4

linearization

1877 2 28.2 78 92.5 39 2.37 [24]
Rasta-128-4 1877 3 36.2 96 113.8 48 2.37 this paper
Dasta-128-4 1877 3 39 78 93.5 39 2.37 this paper
Rasta-128-4 1877 3 36.2 96 111.4 48 2.8 this paper
Dasta-128-4 1877 3 39 78 87.2 39 2.8 this paper

Rasta/Dasta-256-6
linearization

703 4 97.6 214 253.6 107 2.37 [24]
Rasta-256-6 703 5? 102.6 226 267.9 113 2.37 this paper
Dasta-256-6 703 5 107 214 254.6 107 2.37 this paper

Rasta/Dasta-256-5

linearization

3545 3 68.3 160 189.7 80 2.37 [24]
Rasta-256-5 3545 4 75.3 176 208.6 88 2.37 this paper
Dasta-256-5 3545 4 80 160 190.7 80 2.37 this paper
Rasta-256-5 3545 4 75.3 176 221.4 88 2.8 this paper
Dasta-256-5 3545 4 80 160 200 80 2.8 this paper
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a message block m ∈ Fn2 . To encrypt m, Rasta first randomly generates a
concrete instance with SHAKE-256 taking (N,C) as input. Then this instance
is utilized to encrypt K to generate the keystream Z ∈ Fn2 . Finally, c = m ⊕ Z
is corresponding ciphertext block.

Formally, the keystream Z can be defined in the following way:

Z = (Ar,N,C ◦ S ◦Ar−1,N,C ◦ S ◦ . . . ◦A1,N,C ◦ S ◦A0,N,C(K))⊕K,

where Ai,N,C is an affine mapping and S is the large-scale χ operation.

Nonlinear layer y = S(x). Denote the input and output of the nonlinear
layer by x = (x0, x1, . . . , xn−1) ∈ Fn2 and y = (x0, x1, . . . , xn−1)Fn2 , respectively.
In this way, y = S(x) can be specified as follows:

yi = xi ⊕ xi+1xi+2,

where the indices are considered within modulo n.

Affine layers y = Ai,N,C(x). Denote the input and output of the affine
layers by x ∈ Fn2 and y ∈ Fn2 , respectively. The affine mapping y = Ai,N,C(x) is a
binary multiplication of an n×n matrix Mr,N,C with the n-bit input x, followed
by the addition of an n-bit round constant RCi,N,C , i.e.

y = Mi,N,C · x⊕RCi,N,C .

A feature of Rasta is that both Mi,N,C and RCi,N,C are not specified in advance.
Instead, when a message block is to be encrypted, the corresponding message
block counter C and a nonce N is taken as the input of SHAKE-256 and
the output of SHAKE-256 will be used to fill Mi,N,C and RCi,N,C such that
rank(Mi,N,C) = n (0 ≤ i ≤ r).

The data limit. To resist against algebraic attacks, it is explicitly specified
in [14] that the largest number of n-bit message blocks that can be encrypted
under the same key is

√
2κ/n for the instance parameterized with (n, κ, r).

The instances. The designers have recommended several instances that can
be implemented in practical time in [14], as shown in Table 2.

In addition to the above recommended instances, the authors also proposed
aggressive versions called Agrasta with n = κ + 1, as listed in Table 3. For
simplicity, Agrasta parameterized with (κ, r) is denoted by Agrasta-κ-r. From
the following statement by the designers, it is easy to see that the data limit
remains the same for Agrasta, i.e.

√
2κ/n. We will give a detailed explanation

later.
“[14]Agrasta has a block size of 81-bit for 80-bit security having 4 rounds,

129-bit for 128-bit security having 4 rounds and 257-bits for 256-bit security
having 5 rounds (in this case trivial linarization would work for 4 rounds).”
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Table 2: Parameters of Rasta
κ n r

80
327 4
327 5
219 6

128
1877 4
525 5
351 6

256
445939 4
3545 5
703 6

Table 3: Parameters of Agrasta
κ n r

80 81 4
128 129 4
256 257 5

2.2 Description of Dasta

Dasta is in general the same with Rasta and we therefore do not distinguish the
used notations. Formally, the keystream Z of Dasta is defined as follows:

Z = (L ◦ Pr,C ◦ S ◦ L ◦ Pr−1,C ◦ S ◦ . . . ◦ L ◦ P1,C ◦ S ◦ L ◦ P0,C(K))⊕K,

where L is a fixed n×n binary matrix while Pi,C (0 ≤ i ≤ r) is an ever-changing
bit permutation parameterized with (i, C) and a fixed bit permutation P . Our
attacks are irrelevant to the details of L and Pi,C and hence their details are
omitted. The only thing we would like to emphasize is that Pi,C is continuously
changing, but it is always a bit permutation.

Differences between Rasta and Dasta. One difference is that there is no
constant addition operation in Dasta. Therefore, the encryption will output
failure when K is 0. Another difference is that the linear layer is composed of an
ever-changing bit permutation and a deterministic linear transform. Such a way
to construct linear layers will obviously significantly improve the performance of
Rasta as there is no need to use SHAKE-256 to generate a random n × n full-
rank binary matrix, which is quite time-consuming. Finally, Dasta only specifies
7 instances as shown below:

(n, κ, r) ∈ {(327, 80, 4), (219, 80, 6),

(1877, 128, 4), (525, 128, 5), (351, 128, 6),

(3545, 256, 5), (703, 256, 6)}.

The parameter (n, κ, r) = (445939, 256, 4) is not taken into account in Dasta for
its huge matrix size. For this reason, the attack on Rasta with such a parameter is
not included in our results, though it is trivial to derive it based on our analysis.
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2.3 Trivial Linearization Attacks

Due to the special construction of Dasta and Rasta, the conventional cryptanalysis
techniques such as differential attacks, higher-order differential attacks, cube
attacks and integral attacks immediately become infeasible as they all require the
attackers to collect a sufficiently large number of plaintext-ciphertext pairs under
the same key for a fixed concrete instance. Notice that when encrypting different
message blocks under the same key, both primitives behave like moving targets,
i.e. different message blocks are encrypted with different concrete instances.

Consequently, the designers of Rasta [14] made a compressive study on a
more potential threat, namely the algebraic attack. However, all the reported
results derived from the linearization attack, guess-and-determine attack and
Gröbner basis attack are negative. In the Dasta document [24], the designers
clearly described the number of rounds that the algebraic attacks can reach, as
already mentioned in Table 1. As the time complexity of the Gröbner basis attack
cannot be well estimated once the equation system becomes much overdefined, it
is not surprising that the resistance against the linearization attack whose time
complexity can be easily computed become a main concern of the designers.
Indeed, the parameters of Rasta are chosen based on the resistance against the
linearization attack, though the designers estimate the complexity to solve a
large-scale linear equation system in a very conservative way, i.e. O(1).

Since our results are indeed based on the linearization attack, it is necessary
to describe how the designers performed such an attack on Dasta and Rasta. Due
to the high algebraic degree of the inverse of the χ operation, the designers only
considered the nonlinear equations in terms of the key in the forward direction.
Specifically, if the total number of rounds is reduced to r0 rounds, according
to the keystream Z = (z0, z1, . . . , zn−1), the attackers are able to collect the
following n nonlinear equations in terms of the key K = (k0, k1, . . . , kn−1):


f0(k0, k1, . . . , kn−1)⊕ z0 = 0

f1(k0, k1, . . . , kn−1)⊕ z1 = 0

. . .

fn−1(k0, k1, . . . , kn−1)⊕ zn−1 = 0

(1)

The algebraic degree of the nonlinear function fi (0 ≤ i ≤ n − 1) is upper
bounded by 2r0 as the algebraic degree of the χ operation is 2. Although an
attacker cannot collect many plaintext-ciphertext pairs under the same key for a
fixed concrete instance in both primitives, he is able to collect many such pairs
under the same key for many different instances and the number of such pairs
is upper bounded by the data limit

√
2κ/n.

A trivial linearization attack is to collect
∑2r0

i=0

(
n
i

)
such equations. Then, by

renaming all the high-degree terms as new variables, the attacker indeed could

construct
∑2r0

i=0

(
n
i

)
linear equations in terms of

∑2r0

i=0

(
n
i

)
variables. Solving such
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an equation system requires time complexity

T (n, r0, ω) = (

2r0∑
i=0

(
n

i

)
)ω.

The designers of Rasta also mentioned a guess-and-determine attack. Specifically,
after guessing υ key bits, the attacker only needs to collect

2r0∑
i=0

(
n− υ
i

)
equations. Solving such an equation system would require time complexity

2υ · (
2r0∑
i=0

(
n− υ
i

)
)ω.

It is not difficult to observe that guessing variables is not a clever choice if
taking the algebra constant ω into account as

2υ · (
2r0∑
i=0

(
n− υ
i

)
)ω

tends to increase as υ increases when n is large and 2r0 is small, which is indeed
the case of Rasta, Dasta and Agrasta.

The effect of the trivial linearization attack on Rasta and Dasta has been
discussed in [24] with ω = 2.37, as displayed in Table 1. To show that Agrasta
also resists against this attack vector, we simply calculate the corresponding
time complexity with ω ∈ {2.8, 2.37}, as shown below:

T (81, 4, 2.8) = 2153.72 , T (81, 4, 2.37) = 2130.113

T (129, 4, 2.8) = 2186.2 , T (129, 4, 2.37) = 2157.605

T (257, 5, 2.8) = 2379,68 , T (257, 5, 2.37) = 2321.372.

Even if taking the time to perform the encryption into account, the attack
cannot be better than the brute force. As stated by the designers [14], there
exists a trivial linearization attack on Agrasta parameterized with (n, κ, r) =
(257, 256, 4). Indeed, we have

T (257, 4, 2.8) = 2232.68 ,

which means this parameter is insecure. However, it also implies that the data
limit

√
2κ/n also works for Agrasta.

To better understand the data limit, we repeat the designers’ description to
determine the claimed security level. The attacker can collect at most

√
2κ/n×

n =
√

2κ equations. In addition, there are in total

2r∑
i=0

(
n− κ
i

)
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variables after linearization. It can be found that

2r∑
i=0

(
n− κ
i

)
> 2κ

for the parameters of Rasta displayed in Table 2. This also shows that the
designers made a very conservative estimation of the complexity of gaussian
elimination, i.e. in time O(1), even though that attacker are still unable to collect
sufficiently many equations under the data limit.

3 Low-Degree Equations Hidden in the χ Operation

Both the designers of Rasta and Dasta expect that the algebraic degree of the
equations that the attacker can collect is upper bounded by 2r0 when the number
of rounds is reduced to r0. The main reason is that the inverse of the χ operation
is too costly and they directly gave up in this direction. In the following, we
demonstrate that there exist exploitable low-degree equations if relating the
input and output of the χ operation in a more clever way.

Low-degree exploitable equations. Denote the input and output of the χ
operation by (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1), respectively. Consider two
consecutive output bits (yi, yi+1), as shown below:

yi = xi ⊕ xi+1xi+2,

yi+1 = xi+1 ⊕ xi+2xi+3.

It can be derived that

yi+1(yi ⊕ xi) = 0. (2)

Proof. This can be easily proved. As yi ⊕ xi = xi+1xi+2, we have

yi+1(yi ⊕ xi) = yi+1xi+1xi+2 = (xi+1 ⊕ xi+2xi+3)xi+1xi+2 = 0.

This completes the proof of Equation 2.

Another very similar useful low-degree equation has been discussed in [23] to
mount preimage attacks on reduced-round Keccak, as shown below:

yi ⊕ xi = (yi+1 ⊕ 1)xi+2. (3)

Indeed, Equation 2 can also be derived from Equation 3 if both sides of
Equation 3 are multiplied by yi+1.
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The total number of exploitable equations If treating yi+1xi+2, yi+1xi and
yi+1yi as new variables, we can say that Equation 2 and Equation 3 are linearly
independent. Taking all the input bits into account, we obtain the equation
system (4). 

y1y0 ⊕ y1x0 = 0

y1x2 ⊕ y0 ⊕ x0 ⊕ x2 = 0

y2y1 ⊕ y2x1 = 0

y2x3 ⊕ y2 ⊕ x2 ⊕ x3 = 0

. . .

yi+1yi ⊕ yi+1xi = 0

yi+1xi+2 ⊕ yi ⊕ xi ⊕ xi+2 = 0

. . .

yn−1yn−2 ⊕ yn−1xn−2 = 0

yn−1x0 ⊕ yn−2 ⊕ xn−2 ⊕ x0 = 0

y0yn−1 ⊕ y0xn−1 = 0

y0x1 ⊕ y0 ⊕ x0 ⊕ x1 = 0

(4)

It is not difficult to observe that these 2n equations are linearly independent if
the quadratic terms are treated as new variables. This is because each equation
contains one quadratic term that never appears in other equations.

4 Algebraic Cryptanalysis of Rasta and Dasta

Notice that there exists a key feed-forward phase just before computing the
final keystream Z in Rasta and Dasta. This special construction together with
the above low-degree exploitable equations will lead to significantly improved
linearization attacks.

For simplicity, denote the state after Ai,N,C by αi and the state before Ai,N,C
by βi. In this way, the state transitions in Rasta can be described as follows:

K = β0 A0,N,C−→ α0 S−→ β1 A0,N,C−→ α1 S−→ . . .
Ar−1,N,C−→ αr−1

S−→ βr
Ar,N,C−→ αr

For Dasta, similarly, denote the state after Pi,C by λi, the state after L by
πi and the state before Pi,C by ρi. In this way, the state transitions in Dasta
can be expressed as follows:

ρ0
P0,C−→ λ0

L−→ π0 S−→ ρ1
P1,C−→ λ1

L−→ π1 S−→ . . .
L−→ πr−1

S−→ ρr
Pr,C−→ λr

L−→ πr,

where K = ρ0.

4.1 Constructing Low-degree Equations for Rasta

First of all, we discuss the attacks on r0 rounds of Rasta. In the forward direction,
αr0−1 can be written as boolean expressions in terms of the key. Denote the
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expression of αr0−1i (0 ≤ i ≤ n − 1) in terms of K = (k0, k1, . . . , kn−1) by
gi(k0, k1, . . . , kn−1), i.e.

αr0−1i = gi(k0, k1, . . . , kn−1).

As the algebraic degree of the χ operation is 2, we have

Deg(gi) = 2r0−1. (5)

According to the plaintext-ciphertext pair (m, c), the corresponding keystream
Z can be computed with Z = m⊕ c. Since

αr0 = Z ⊕K,
αr0 = Mr0,N,C · βr0 ⊕RCr0,N,C ,

we have

βr0 = M−1r0,N,C · (m⊕ c⊕K ⊕RCr0,N,C).

In other words, in the backward direction, βr0 can be written as linear expressions
in terms of K. For simplicity, denote the corresponding linear expression of βr0i
(0 ≤ i ≤ n− 1) by hi(k0, k1, . . . , kn−1), i.e.

βr0i = hi(k0, k1, . . . , kn−1).

Hence, we have

Deg(hi) = 1. (6)

Notice that

βr0 = S(αr0−1).

Hence, according to Equation 2 and Equation 3, the following low-degree
equations can be derived:

hi+1 · hi ⊕ hi+1 · gi = 0,

hi ⊕ gi ⊕ hi+1 · gi+2 ⊕ gi+2 = 0,

where the indices are considered within modulo n. Based on Equation 5 and
Equation 6, it can be found that the above 2 equations are of algebraic degree

D = Deg(gi) +Deg(hi) = 2r0−1 + 1. (7)

As hi is linearly independent from each other and gi can also be viewed
as linearly independent from each other once all high-degree monomials are
renamed with new variables, according to the equation system (4) implied by
the χ operation, we can construct 2n linearly independent equations in terms
of the key K for each pair (m, c). Different from the designers’ analysis, the
algebraic degree of our 2n equations is upper bounded by 2r0−1 + 1 rather than
2r0 . This is a great reduction in the number of all possible monomials, i.e. reduced

from
∑2r0

i=0

(
n
i

)
to
∑2r0−1+1
i=0

(
n
i

)
. Obviously, such a reduction contributes to our

clever way to utilize the low-degree equations discussed in Section 3.
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Linearization attacks on reduced-round Rasta. The attacks are now quite
straightforward. Specifically, the attacker collects sufficiently many plaintext-
ciphertext pairs. For each pair, he can construct 2n equations in terms of K and
of algebraic degree upper bounded by D (Equation 7). To solve this equation
system, the linearization technique is applied. As a result, the time complexity T0
and data complexity D0 of our attacks on r0 rounds of Rasta can be formalized
as follows, where U denotes the maximal number of possible monomials.

U =

2r0−1+1∑
i=0

(
n

i

)
, T0 = Uω, D0 = U/(2n).

As the maximal number of message blocks that can be encrypted under the
same key is

√
2κ/n, we need to ensure

D0 = (
2r0−1+1∑
i=0

(
n

i

)
)/(2n) <

√
2κ/n→ (

2r0−1+1∑
i=0

(
n

i

)
) < 2κ/2+1. (8)

In addition, as mentioned before, when the time complexity is evaluated with
the algebra constant ω = 2.8, the final time complexity will be computed with
Equation 9, i.e. the time to encrypt a plaintext requires about (r0 + 1)n2 binary
operations for r0 rounds of Rasta.

T ′0 = (

2r0−1+1∑
i=0

(
n

i

)
)2.8/((r0 + 1)n2) (9)

When the time complexity is evaluated with ω = 2.37 as in [24], the time
complexity will be directly computed with

T0 = (

2r0−1+1∑
i=0

(
n

i

)
)2.37. (10)

To violate the claimed security levels, it is essential to require

T ′0 < 2κ (11)

when ω = 2.8 or

T0 < 2κ (12)

when ω = 2.37.
Based on the formulas Equation 9, Equation 11 and Equation 8, we directly

break 2 out of 3 instances of Agrasta. In addition, the trivial linearization attacks
on Rasta taking the parameters

(n, κ, r) ∈ {(327, 80, 4), (1877, 128, 4), (3545, 256, 5)}

are significantly improved, which directly reduces the security margins of these
instances to only 1 round.

If evaluating the complexity with Equation 10 and Equation 8 as in [14],
under the constraint Equation 12, almost all linearization attacks described
in [14] are improved by one round. All the results are summarized in Table 1.
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Remark. For the high-degree nonlinear function, the designers should make
a careful investigation of whether low-degree equations exist. For Rasta, the
inverse of the χ operation has a very high algebraic degree. However, this does
not mean that we cannot derive useful low-degree equations if considering the
relations between the input bits and output bits in a more careful way, which
is obviously neglected by the designers. Especially, when the design has an
additional structure, the neglected useful equations will become potential threats
to the security.

4.2 Constructing Low-degree Equations for Dasta

The above results can be trivially applied to Dasta. However, we further observe
that the last linear layer of Dasta is constructed in the way to apply a bit
permutation followed by a fixed linear transform. In the following, we describe
how to exploit this feature to further obtain nonlinear equations of lower
algebraic degrees.

Based on similar analysis, when the target is r0 rounds of Dasta, from the
forward direction, πr0−1 can be written as expressions in terms of K and the
algebraic degree of these equations is 2r0−1. In the backward direction, both λr0

and ρr0 can be written as linear expressions in terms of K.
Firstly, focus on the expressions of ρr0 . It can be derived that

ρr0 = L−1 · (m⊕ c⊕K) = L−1 · (m⊕ c)⊕ L−1 ·K.

Let

σ = L−1 ·K.

It can be found that the expressions of σi (0 ≤ i ≤ n− 1) remain invariant due
to the usage of a fixed linear transform L. As

ρr0 = L−1 · (m⊕ c)⊕ σ,

under different (m, c), the expressions of ρr0 only vary in the constant parts. As
λr0 is just a bit permutation on ρr0 , we have that the set of expressions of λr0

also only vary in the constant parts that only depend on (m, c).
In other words, if guessing one bit of σ, we can always find a bit of λr0 that

can be uniquely determined based on this guess. More specifically, since the bit
permutation may change when different message blocks are encrypted, a fixed
guessed bit of σ will always lead to a computable bit of λr0 whose bit position
is not fixed. How to exploit this fact to improve the attacks on Dasta is detailed
as follows.

Linearization attacks on reduced-round Dasta. Denote the expression of
λr0i by h′i(k0, k1, . . . , kn−1) and the expression of πr0−1 by g′i(k0, k1, . . . , kn−1)
(0 ≤ i ≤ n− 1). Similarly, we have

Deg(h′i) = 1, Deg(g′i) = 2r0−1.
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Based on the above analysis, guessing a fixed bit of σ will lead to a determined
bit of λr0 , though its position is not fixed and is indeed a moving position.
However, we can always find a bit λr0 that can be determined. Since

λr0 = S(πr0−1),

according to Equation 3, we can deduce that

h′i ⊕ g′i = (h′i+1 ⊕ 1)g′i+2.

Therefore, if the value of the expression h′i+1 is known, we directly obtain one
equation of algebraic degree 2r0−1, further reducing the algebraic degree by 1.

As mentioned several times, once a fixed bit of σ is guessed, there always
exists a bit of λr0 that can be uniquely determined. In other words, we can
always find a expression h′i+1 whose value can be uniquely calculated based on
the guessed bit. However, different from the attacks on Rasta, only 1 equation
is useful as we target equations of algebraic degree upper bounded by 2r0−1.

The attacks now become quite straightforward. Specifically, denote the data
complexity and time complexity by D1 and T1, respectively. As we only aim at
equations of algebraic degree upper bounded by 2r0−1, the maximal number of
possible monomials is

U =

2r0−1∑
i

(
n

i

)
.

Since only 1 equation is useful for a pair (m, c), we have

D1 =

2r0−1∑
i

(
n

i

)
.

As we need to guess a bit of σ, the time complexity is computed as follows:

T1 = 2× (

2r0−1∑
i

(
n

i

)
)ω.

Again, when ω = 2.8, the time complexity is refined as

T ′1 = 2× (

2r0−1∑
i

(
n

i

)
)2.8/((r0 + 1)n2).

The time complexity should not exceed the claimed security level. The data
complexity cannot exceed the data limit. Under the two constraints, we can
significantly improve the linearization attacks on reduced-round Dasta, as shown
in Table 1. It is not surprising to find that the attacks become more powerful as
the algebraic degree decreases.
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Countermeasures. A countermeasure to keep Dasta as secure as Rasta is
to swap the bit permutation and linear transform in the last linear layer. In
addition, the bit permutation should always be different when different message
blocks are encrypted under the same key, which is indeed the strategy used in the
first linear layer of Dasta. In this case, under different (m, c), the attacker needs
to guess different bits in order to collect one equation of algebraic degree 2r0−1,
which is obviously more time-consuming than the attacks based on equations of
algebraic degree 2r0−1 + 1.

5 Conclusion

While it seems impossible to invert the large-scale χ operation, we find that
it still implies some exploitable low-degree nonlinear equations. Combined with
the key feed-forward operation in Dasta and Rasta, these hidden equations can
be utilized to significantly improve the linearization attacks on reduced-round
Rasta and Dasta. Especially, the improvement directly allows us to theoretically
break 2 out of 3 instances of Agrasta. Based on our analysis, some recommended
parameters of Dasta and Rasta seem to be aggressive for their small security
margins.
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reduction to zero F5. In International Symposium on Symbolic and Algebraic
Computation Symposium - ISSAC 2002, pages 75–83, Villeneuve d’Ascq, France,
July 2002. ACM. Colloque avec actes et comité de lecture. internationale.
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