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Abstract. Rasta and Dasta are two fully homomorphic encryption
friendly symmetric-key primitives proposed at CRYPTO 2018 and ToSC
2020, respectively. We point out that the designers of Rasta and Dasta
neglected an important property of the χ operation. Combined with the
special structure of Rasta and Dasta, this property directly leads to
significantly improved algebraic cryptanalysis. Especially, it enables us
to theoretically break 2 out of 3 instances of full Agrasta, which is the
aggressive version of Rasta with the block size only slightly larger than
the security level in bits. We further reveal that Dasta is more vulnerable
against our attacks than Rasta for its usage of a linear layer composed of
an ever-changing bit permutation and a deterministic linear transform.
Based on our cryptanalysis, the security margins of Dasta and Rasta
parameterized with (n, κ, r) ∈ {(327, 80, 4), (1877, 128, 4), (3545, 256, 5)}
are reduced to only 1 round, where n, κ and r denote the block size,
the claimed security level and the number of rounds, respectively. These
parameters are of particular interest as the corresponding ANDdepth is
the lowest among those that can be implemented in reasonable time and
target the same claimed security level.

Keywords: Rasta, Dasta, Agrasta, χ operation, linearization, algebraic
attack

1 Introduction

Since the pioneering work [5] of Albrecht et al. on designs of ciphers friendly to
secure multi-party computation (MPC), fully homomorphic encryption (FHE)
and zero-knowledge proofs (ZK), an increasing number of MPC-, FHE- and ZK-
friendly symmetric-key primitives have been proposed, including LowMC [5],
Kreyvrium [15], FLIP [39], Rasta [23], MiMC [4], GMiMC [3], Jarvis [9],
Hades [33], Poseidon [32], Vision [7], Rescue [7] and Ciminion [25]. As designing
symmetric-key primitives in this domain is relatively new and not well-understood,



the designers may be prone to make mistakes in their innovative proposals. Four
concrete examples come from the cryptanalysis of LowMC [5], the preliminary
version of FLIP [39], the initial version of MARVELlous [9] and MiMC [28].

In the case of LowMC, new higher-order differential cryptanalysis [24] and
the optimized interpolation attack [22] revealed that the original parameters of
LowMC were too optimistic, which directly pushed LowMC move to LowMC
v2. However, the so-called difference enumeration attack [40] in the low-data
setting could still violate the security of some parameters in LowMC v2. As a
countermeasure, the formula to calculate the secure number of rounds is updated
and this version is called LowMC v3. However, it has been recently demonstrated
in [37] that some parameters in LowMC v3 are still insecure when new algebraic
techniques and the difference enumeration attack are combined. In addition,
a very recent generic method [20] to solve multivariate equation systems over
GF (2) also shows that some parameters of LowMC v3 in the Picnic3 [36] setting
are insecure.

In the case of the preliminary version of FLIP, Duval, Lallemand and Rotella
revealed some weaknesses in its filter function and exploited them to devise an
efficient full key recovery attack based on guess-and-determine techniques [27].
This result directly leads to a more conservative design of FLIP.

In the case of MARVELlous [9], Albrecht et al. described a clever way [2] to
express the primitive as a set of low-degree equations with the introduction
of intermediate variables. On the other hand, as MARVELlous works on a
large field, the total number of variables in the equation system is still small
even though there are intermediate variables. These directly lead to powerful
Gröebner basis attacks as the Gröebner basis of such a set of polynomials can
be efficiently computed in time less than that of the brute-force attack.

In the case of MiMC [4] proposed at ASIACRYPT 2016, the key-recovery
attack on the full-round versions over F2n was presented until ASIACRYPT
2020 [28], mainly owing to a careful study of the evolution of the algebraic
degree, though it is only slightly faster than the brute-force attack.

Such a trend in designing symmetric-key primitives for advanced protocols
also motivates the cryptographers to generalize several cryptanalytic techniques
to fields of odd characteristic [11]. As a consequence, some undesirable properties
have been reported for GMiMC and Poseidon.

From the perspective of design, there are two common metrics for these
primitives, i.e. the multiplicative complexity (MC) and the multiplicative depth
of the circuit. In the context of Rasta [23], MC refers to the total number of
AND gates and the multiplicative depth of the circuit refers to the number of
rounds (called ANDdepth in Rasta [23]). The aim of Rasta is to provide a design
strategy achieving d ANDdepth and d ANDs per bit at the same time. The
designers proposed several parameters for the block/key size n, the ANDdepth
d and the targeted security level κ. To make d as small as possible and keep
its practical usage, d ∈ {4, 5, 6} is recommended. Since generating the affine
layers in each encryption is quite time-consuming in Rasta, Hebborn and Leander
proposed Dasta [35] where the linear layer is replaced with an ever-changing bit
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permutation and a deterministic linear transform. Such a construction has made
Dasta hundreds times faster than Rasta in the offline settings.

A feature in Rasta and Dasta is that n is much larger than κ and there is
indeed no generic attack matching the claimed security level κ. To encourage
more cryptanalysis, the designers of Rasta also proposed an aggressive version
called Agrasta with n = κ + 1. The currently best key-recovery attack [26] on
Agrasta in the single-plaintext setting is based on a brute-force approach and
only 3 rounds can be covered. Moreover, no nontrivial third-party attacks have
been published for Rasta or Dasta. It should be emphasized the same key can be
used to encrypt many different plaintext blocks for Rasta, Dasta and Agrasta and
hence the attacks should not be limited to the single-plaintext setting. Indeed,
it has been shown in [23,35] that given the capability to collect many plaintext-
ciphertext pairs under the same key, the attackers still cannot break any of the
three proposals.

Algebraic attacks. Algebraic attacks are potential threats to aforementioned
primitives, as can be observed from the analysis of LowMC, FLIP, MARVELlous,
MiMC, GMiMC and Poseidon. A crucial step to improve the efficiency of
an algebraic attack is to construct a suitable equation system that can be
efficiently solved with techniques like linearization, guess-and-determine, F4/F5
algorithms [29,30] (computing Gröebner basis) or XL algorithm [17]. How
to construct useful equations is nontrivial and dominates the effectiveness of
algebraic attacks. For methods to solve equations, the linearization technique
is the simplest one, which is to treat each different monomial in the equations
as an independent new variable. The drawback is hence obvious as the attacker
needs to collect sufficiently many equations in order to solve it with Gaussian
elimination. In addition, as the degree of the equations increases, the number
of monomials will become very large and the cost of Gaussian elimination
may even exceed the generic attack. For the guess-and-determine technique,
its performance fully depends on the structure of the original equation system.
Finding a clever guess-and-determine strategy is nontrivial. Especially, when the
equation system tends to be random, the effect of such a strategy seems to be
limited. For advanced algorithms like F4/F5 algorithms and the XL algorithm to
solve multivariate polynomial equations, their complexity is hard to bound when
the system is much over-defined. If only a portion of equations are taken into
account, though the time complexity can be bounded, the resulting complexity
may turn to be very high and exceeds the generic attack.

Our Contributions. We observed the feasibility to derive exploitable low-degree
equations from the raw definition of the χ operation, which seems to be neglected
by the designers for the high degree of the inverse of the large-scale χ operation.
As a result, we could construct a system of equations of much lower degree than
expected by the designers to describe the primitives equivalently. Specifically,
r0 rounds of Rasta can be represented as a system of equations of degree
upper bounded by 2r0−1 + 1 rather than 2r0 . For Dasta, by guessing only 1-bit
secret information, we even could extract a system of equations of degree upper
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bounded by 2r0−1 from many different plaintext-ciphertext pairs for r0 rounds,
which is mainly due to the usage of a deterministic linear transform following a
bit permutation in the last linear layer.

It should be emphasized that constructing low-degree equations based on
high-degree equations is not new in symmetric-key cryptanalysis. The underlying
idea was first utilized in the algebraic attack [18] and fast algebraic attack [16]
on several LFSR-based stream ciphers. A common notion in these attacks is the
algebraic immunity of the filter function or the augmented function, which has
been studied in several papers [8,31]. It should be mentioned that the resistance
against these attack vectors has been taken into account in the design of
FLIP [39] as it is very similar to an LFSR-based design, though the register is no
longer updated by means of the LFSR, but with pseudorandom bit permutations.

However, Rasta is completely different from the LFSR-based stream cipher
and it is more like a block cipher, which can explain why the designers ruled
out the above attack vectors as they have not been successfully applied to block
ciphers. We emphasize that this is mainly because common block ciphers always
have a large number of rounds and hence the degree after a ceratin number of
rounds is very high. However, this is not the case of Rasta, which has only a
small number of rounds. Although our attack is based on low-degree equations,
its feasibility indeed also much relies on our observation on the key feed-forward
operation in Dasta and Rasta, i.e. the feature of the construction.

In a sense, our basic idea can be viewed as exploiting the algebraic immunity
of the augmented function, which is the large-scale χ operation in Rasta and
Dasta. As far as we know, there is no efficient method to compute the algebraic
immunity of a huge S-box, which may be another reason why the designers did
not take it into account. Understanding our attacks requires no knowledge of the
algebraic immunity of the augmented function, though. In a nutshell, we reveal
that the last nonlinear layer is ineffective to significantly increase the degree for
the usage of a simple key feed-forward operation, whatever the last linear layer
is.

On the complexity of Gaussian elimination. Denote the exponent of
Gaussian elimination by ω. A naive implementation of Gaussian elimination
leads to ω = 3. Due to Strassen’s divide-and-conquer algorithm [41], the
upper bound of ω is updated as log27 and the algorithm has been practically
implemented in [1]. Although there exists a more efficient algorithm [6] to
perform the matrix multiplication and the upper bound can be further updated
as ω < 2.3728596, it is in practice useless for its hidden huge constant factor.
In the preliminary analysis, the designers of Rasta [23] adopted ω = 2.8 to
compute the time complexity of algebraic attacks on reduced-round Agrasta
and compared it with the required number of binary operations to encrypt
a plaintext. The designers of Dasta [35] instead chose ω = 2.37 to evaluate
the resistance against algebraic attacks in order to explicitly understand the
security margins of Dasta and Rasta. Therefore, in this paper, we provide the
time complexity under both cases, i.e. ω = 2.8 and ω = 2.37. It should be
emphasized that the former one is reasonable in practice.
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Our results. According to the Rasta paper [23], performing r rounds of Rasta
with block size n requires about (r+1)n2 binary operations caused by the linear
layers. In our algebraic attacks, the number of equations is always kept the same
with the number of variables and it is denoted by U , even though we are able to
collect more equations. When evaluating the time complexity with ω = 2.8, we
adopt the formula Uω/

(
(r + 1)n2

)
as in [23]. When ω = 2.37 is used, we directly

compute the time complexity with the formula Uω as in [35]. The corresponding
memory complexity is obvious, i.e. U2. Our results are summarized in Table 1.

Organization. We briefly introduce Rasta, Dasta and the trivial linearization
attack in Section 2. Then, we describe how to construct exploitable low-degree
equations from the raw definition of the χ operation in Section 3. The application
of these low-degree equations to the cryptanalysis of Rasta and Dasta will
be explained in Section 4. Before concluding the paper in Section 6, we will
also discuss in Section 5 why our attacks are overlooked, the application of
others techniques such as the polynomial-based method [20] and the optimized
exhaustive search [14], and the experimental results.

2 Preliminaries

In this section, we briefly describe the overall structure of Rasta and Dasta.
Since several instances are specified, they will be distinguished with the notations
Rasta-κ-r and Dasta-κ-r, where κ and r denote the claimed security level and
the total number of rounds, respectively. In addition, throughout this paper,
n denotes the block size, rank(M) denotes the rank of the matrix M , M−1

denotes the inverse of the matrix M , ai denotes the i-th bit of the vector a,
Deg(f) denotes the degree of the function f . In addition, we define

max(p, q) =

{
p (p ≥ q)
q (p < q)

2.1 Description of Rasta

Rasta is a stream cipher based design where the nonlinear layer is deterministic
while the linear layer is randomly generated during the encryption phase.
Specifically, its input consists of a key K ∈ Fn2 , a nonce N , a counter C and
a message block m ∈ Fn2 . To encrypt m, Rasta first randomly generates a
concrete instance with SHAKE-256 taking (N,C) as input. Then this instance
is utilized to encrypt K to generate the keystream Z ∈ Fn2 . Finally, c = m ⊕ Z
is corresponding ciphertext block.

Formally, the keystream Z can be defined in the following way:

Z = (Ar,N,C ◦ S ◦Ar−1,N,C ◦ S ◦ . . . ◦A1,N,C ◦ S ◦A0,N,C(K))⊕K,

where Ai,N,C is an affine mapping and S is the large-scale χ operation. The
corresponding illustration can be referred to Figure 1.
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Table 1: Summary of the attacks on Rasta, Dasta and Agrasta, where
R, D, M and T denote the number of attacked rounds, data complexity,
memory complexity and time complexity, respectively. The number of rounds
marked with ? means that the corresponding time complexity exceeds the
claimed security level. We recomputed the time/data complexity of the trivial
linearization attacks in [35] to keep consistent with our calculations and the
results only slightly differ.

Target Methods n R log2D log2M log2T log2U ω Reference

Agrasta-128-4
brute-force 129 3 0 25 124.2 - - [26]

linearization 129 3 0 14 125.76 7 2.8 [23]
linearization 129 4 35.7 90 110 45 2.8 this paper

Agrasta-256-5
brute-force 257 3 0 25 252.2 - - [26]

linearization 257 3 0 16 253.5 8 2.8 [23]
linearization 257 5 76.7 174 225.1 87 2.8 this paper

Rasta/Dasta-80-6

linearization

219 2 19.3 54 64 27 2.37 [35]
Rasta-80-6 219 3 22 64 75.9 32 2.37 this paper
Dasta-80-6 219 3 27 54 65 27 2.37 this paper
Rasta-80-6 219 3 22 64 72.1 32 2.8 this paper
Dasta-80-6 219 3 27 54 59.1 27 2.8 this paper

Rasta/Dasta-80-4

linearization

327 2 20.7 58 68.8 29 2.37 [35]
Rasta-80-4 327 3? 24.4 70 83 35 2.37 this paper
Dasta-80-4 327 3 29 58 69.8 29 2.37 this paper
Rasta-80-4 327 3 24.4 70 79.3 35 2.8 this paper
Dasta-80-4 327 3 29 58 62.5 29 2.8 this paper

Rasta/Dasta-128-6
linearization

351 3 44.6 106 125.6 53 2.37 [35]
Rasta-128-6 351 4? 47.3 116 137.5 58 2.37 this paper
Dasta-128-6 351 4 53 106 126.6 53 2.37 this paper

Rasta/Dasta-128-5

linearization

525 2 23 64 75.9 32 2.37 [35]
Rasta-128-5 525 3 27.7 78 92.5 39 2.37 this paper
Dasta-128-5 525 3 32 64 76.9 32 2.37 this paper
Rasta-128-5 525 3 27.7 78 89.2 39 2.8 this paper
Dasta-128-5 525 3 32 64 70.6 32 2.8 this paper

Rasta/Dasta-128-4

linearization

1877 2 28.2 78 92.5 39 2.37 [35]
Rasta-128-4 1877 3 34.9 96 113.8 48 2.37 this paper
Dasta-128-4 1877 3 39 78 93.5 39 2.37 this paper
Rasta-128-4 1877 3 34.9 96 111.4 48 2.8 this paper
Dasta-128-4 1877 3 39 78 87.2 39 2.8 this paper

Rasta/Dasta-256-6
linearization

703 4 97.6 214 253.6 107 2.37 [35]
Rasta-256-6 703 5? 101.3 226 267.9 113 2.37 this paper
Dasta-256-6 703 5 107 214 254.6 107 2.37 this paper

Rasta/Dasta-256-5

linearization

3545 3 68.3 160 189.7 80 2.37 [35]
Rasta-256-5 3545 4 73.9 176 208.6 88 2.37 this paper
Dasta-256-5 3545 4 80 160 190.7 80 2.37 this paper
Rasta-256-5 3545 4 73.9 176 221.4 88 2.8 this paper
Dasta-256-5 3545 4 80 160 200 80 2.8 this paper
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A0,N,C A1,N,CS Ar,N,CSS . . .

XOFN,C

K ⊕ Z

Fig. 1: Illustration of r rounds of Rasta

Nonlinear layer y = S(x). Denote the input and output of the nonlinear layer
by x = (x0, x1, . . . , xn−1) ∈ Fn2 and y = (y0, y1, . . . , yn−1) ∈ Fn2 , respectively. In
this way, y = S(x) can be specified as follows:

yi = xi ⊕ xi+1xi+2,

where 0 ≤ i ≤ n − 1 and the indices are considered within modulo n. For
convenience, such a function y = S(x) is defined as the n-bit χ operation. To
make y = S(x) bijective, n must be odd. It is also known that the degree of the
inverse of the n-bit χ operation is (n − 1)/2 + 1. It should be mentioned that
the 5-bit χ operation is the S-box used in the Keccak round function [10].

Affine layers u = Ai,N,C(v). Denote the input and output of the affine
layers by v ∈ Fn2 and u ∈ Fn2 , respectively. The affine mapping u = Ai,N,C(v) is a
binary multiplication of an n×n matrix Mr,N,C with the n-bit input v, followed
by the addition of an n-bit round constant RCi,N,C , i.e.

u = Mi,N,C · v ⊕RCi,N,C .

A feature of Rasta is that both Mi,N,C and RCi,N,C are not specified in advance.
Instead, when a message block is to be encrypted, the corresponding message
block counter C and a nonce N is taken as the input of SHAKE-256 and
the output of SHAKE-256 will be used to fill Mi,N,C and RCi,N,C such that
rank(Mi,N,C) = n (0 ≤ i ≤ r).

The data limit. To resist against algebraic attacks, it is explicitly specified
in [23] that the largest number of n-bit message blocks that can be encrypted
under the same key is

√
2κ/n for the instance parameterized with (n, κ, r).

The instances. The designers have recommended several instances that can
be implemented in practical time in [23], as shown in Table 2.

In addition to the above recommended instances, the authors also proposed
aggressive versions called Agrasta with n = κ + 1, as listed in Table 3. For
simplicity, Agrasta parameterized with (κ, r) is denoted by Agrasta-κ-r. From
the following statement by the designers, it is easy to see that the data limit
remains the same for Agrasta, i.e.

√
2κ/n. We will give a detailed explanation

later.
“[23]Agrasta has a block size of 81-bit for 80-bit security having 4 rounds,

129-bit for 128-bit security having 4 rounds and 257-bits for 256-bit security
having 5 rounds (in this case trivial linearization would work for 4 rounds).”
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Table 2: Parameters of Rasta
κ n r

80
327 4
327 5
219 6

128
1877 4
525 5
351 6

256
445939 4
3545 5
703 6

Table 3: Parameters of Agrasta
κ n r

80 81 4
128 129 4
256 257 5

2.2 Description of Dasta

Dasta is in general the same with Rasta and we therefore do not distinguish the
used notations. Formally, the keystream Z of Dasta is defined as follows:

Z = (L ◦ Pr,C ◦ S ◦ L ◦ Pr−1,C ◦ S ◦ . . . ◦ L ◦ P1,C ◦ S ◦ L ◦ P0,C(K))⊕K,

where L is a fixed n×n binary matrix while Pi,C (0 ≤ i ≤ r) is an ever-changing
bit permutation parameterized with (i, C) and a fixed bit permutation P . The
construction of Dasta is depicted in Figure 2.

K ⊕ ZP0,C L S P1,C L S S Pr,C L
. . .

Fig. 2: Illustration of r rounds of Dasta

Our attacks are irrelevant to the details of L and Pi,C and hence their
details are omitted. The only thing we would like to emphasize is that Pi,C
is continuously changing, but it is always a bit permutation.

Differences between Rasta and Dasta. One difference is that there is no
constant addition operation in Dasta. Therefore, the encryption will output
failure when K is 0. Another difference is that the linear layer is composed of an
ever-changing bit permutation and a deterministic linear transform. Such a way
to construct linear layers will obviously significantly improve the performance of
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Rasta as there is no need to use SHAKE-256 to generate a random n × n full-
rank binary matrix, which is quite time-consuming. Finally, Dasta only specifies
7 instances as shown below:

(n, κ, r) ∈ {(327, 80, 4), (219, 80, 6),

(1877, 128, 4), (525, 128, 5), (351, 128, 6),

(3545, 256, 5), (703, 256, 6)}.

The parameter (n, κ, r) = (445939, 256, 4) is not taken into account in Dasta for
its huge matrix size. For this reason, the attack on Rasta with such a parameter is
not included in our results, though it is trivial to derive it based on our analysis.

2.3 Trivial Linearization Attacks

Due to the special construction of Dasta and Rasta, the conventional cryptanalysis
techniques such as differential attacks, higher-order differential attacks, cube
attacks and integral attacks immediately become infeasible as they all require the
attackers to collect a sufficiently large number of plaintext-ciphertext pairs under
the same key for a fixed concrete instance. Notice that when encrypting different
message blocks under the same key, both primitives behave like moving targets,
i.e. different message blocks are encrypted with different concrete instances.

Consequently, the designers of Rasta [23] made a comprehensive study on a
more potential threat, namely the algebraic attack. However, all the reported
results derived from the linearization attack, guess-and-determine attack and
Gröbner basis attack are negative. In the Dasta document [35], the designers
clearly described the number of rounds that the algebraic attacks can reach, as
already mentioned in Table 1. As the time complexity of the Gröbner basis attack
cannot be well estimated once the equation system becomes much overdefined, it
is not surprising that the resistance against the linearization attack whose time
complexity can be easily computed become a main concern of the designers.
Indeed, the parameters of Rasta are chosen based on the resistance against the
linearization attack, though the designers estimate the complexity to solve a
large-scale linear equation system in a very conservative way, i.e. O(1).

Since our results are indeed based on the linearization attack, it is necessary
to describe how the designers performed such an attack on Dasta and Rasta.
Due to the high degree of the inverse of the χ operation, the designers only
considered the nonlinear equations in terms of the key in the forward direction.
Specifically, if the total number of rounds is reduced to r0 rounds, according
to the keystream Z = (z0, z1, . . . , zn−1), the attackers are able to collect the
following n nonlinear equations in terms of the key K = (k0, k1, . . . , kn−1):

F0(k0, k1, . . . , kn−1)⊕ z0 = 0

F1(k0, k1, . . . , kn−1)⊕ z1 = 0

. . .

Fn−1(k0, k1, . . . , kn−1)⊕ zn−1 = 0

(1)
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It is trivial to deduce that Deg(Fi) ≤ 2r0 (0 ≤ i ≤ n−1) as the degree of the
χ operation is 2. Although an attacker cannot collect many plaintext-ciphertext
pairs under the same key for a fixed concrete instance in both primitives, he is
able to collect many such pairs under the same key for many different instances
and the number of such pairs is upper bounded by the data limit

√
2κ/n.

A trivial linearization attack is to collect
∑2r0

i=0

(
n
i

)
such equations. Then, by

renaming all the high-degree terms as new variables, the attacker indeed could

construct
∑2r0

i=0

(
n
i

)
linear equations in terms of

∑2r0

i=0

(
n
i

)
variables. Solving such

an equation system requires time complexity

T (n, r0, ω) =

(
2r0∑
i=0

(
n

i

))ω
.

The designers of Rasta also mentioned a guess-and-determine attack. Specifically,
after guessing υ key bits, the attacker only needs to collect

2r0∑
i=0

(
n− υ
i

)
equations. Solving such an equation system would require time complexity

2υ ·

(
2r0∑
i=0

(
n− υ
i

))ω
.

It is not difficult to observe that guessing variables is not a clever choice if
taking the algebra constant ω into account as

2υ ·

(
2r0∑
i=0

(
n− υ
i

))ω
tends to increase as υ increases when n is large and 2r0 is small, which is indeed
the case of Rasta, Dasta and Agrasta.

The effect of the trivial linearization attack on Rasta and Dasta has been
discussed in [35] with ω = 2.37, as displayed in Table 1. To show that Agrasta
also resists against this attack vector, we simply calculate the corresponding
time complexity with ω ∈ {2.8, 2.37}, as shown below:

T (81, 4, 2.8) = 2153.72 , T (81, 4, 2.37) = 2130.113

T (129, 4, 2.8) = 2186.2 , T (129, 4, 2.37) = 2157.605

T (257, 5, 2.8) = 2379,68 , T (257, 5, 2.37) = 2321.372.

Even if taking the time to perform the encryption into account, the attack
cannot be better than the brute force. As stated by the designers [23], there
exists a trivial linearization attack on Agrasta parameterized with (n, κ, r) =
(257, 256, 4). Indeed, we have

T (257, 4, 2.8) = 2232.68 ,
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which means this parameter is insecure. However, it also implies that the data
limit

√
2κ/n also works for Agrasta.

To better understand the data limit, we repeat the designers’ description to
determine the claimed security level. The attacker can collect at most

√
2κ/n×

n =
√

2κ equations. In addition, there are in total

2r∑
i=0

(
n− κ
i

)
variables after linearization. It can be found that

2r∑
i=0

(
n− κ
i

)
> 2κ

for the parameters of Rasta displayed in Table 2. This also shows that the
designers made a very conservative estimation of the complexity of Gaussian
elimination, i.e. in time O(1), even though that attacker are still unable to collect
sufficiently many equations under the data limit.

3 Low-Degree Equations Hidden in the χ Operation

Both the designers of Rasta and Dasta expect that the degree of the equations
that the attacker can collect is upper bounded by 2r0 when the number of
rounds is reduced to r0. The main reason is that the inverse of the χ operation
is too costly and they directly gave up in this direction. In the following, we
demonstrate that there exist exploitable low-degree equations if relating the
input and output of the χ operation in a more clever way.

Low-degree exploitable equations. Denote the input and output of the χ
operation by (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1), respectively. Consider two
consecutive output bits (yi, yi+1), as shown below:

yi = xi ⊕ xi+1xi+2,

yi+1 = xi+1 ⊕ xi+2xi+3.

It can be derived that

yi+1(yi ⊕ xi) = 0. (2)

Proof. This can be easily proved. As yi ⊕ xi = xi+1xi+2, we have

yi+1(yi ⊕ xi) = yi+1xi+1xi+2 = (xi+1 ⊕ xi+2xi+3)xi+1xi+2 = 0.

This completes the proof of Equation 2.

11



Another very similar useful low-degree equation has been discussed in [34] to
mount preimage attacks on reduced-round Keccak, as shown below:

yi ⊕ xi = (yi+1 ⊕ 1)xi+2. (3)

Indeed, Equation 2 can also be derived from Equation 3 if both sides of
Equation 3 are multiplied by yi+1.

In addition, we further observed an exploitable cubic boolean equation from
our experiments on the small-scale χ operation (e.g. n ∈ {7, 9}) with sagemath,
as shown in Equation 4. How to perform the experiments will be explained in
Section 5.

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi) = 0. (4)

Proof. From the definition of the χ operation, we have

yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi = yi+2yi+1 ⊕ xi+1xi+2

= (xi+2 ⊕ xi+3xi+4)(xi+1 ⊕ xi+2xi+3)⊕ xi+1xi+2

= xi+2xi+1 ⊕ xi+1xi+4xi+3 ⊕ xi+1xi+2

= xi+1xi+4xi+3.

Hence,

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi) = (xi+3 ⊕ xi+4xi+5)xi+1xi+4xi+3 = 0.

This completes the proof.



y1y0 ⊕ y1x0 = 0

y1x2 ⊕ y0 ⊕ x0 ⊕ x2 = 0

y1(y0yn−1 ⊕ y0 ⊕ yn−2 ⊕ xn−2) = 0

y2y1 ⊕ y2x1 = 0

y2x3 ⊕ y2 ⊕ x2 ⊕ x3 = 0

y2(y1y0 ⊕ y1 ⊕ yn−1 ⊕ xn−1) = 0

. . .

yi+1yi ⊕ yi+1xi = 0

yi+1xi+2 ⊕ yi ⊕ xi ⊕ xi+2 = 0

yi+1(yiyi−1 ⊕ yi ⊕ yi−2 ⊕ xi−2) = 0

. . .

yn−1yn−2 ⊕ yn−1xn−2 = 0

yn−1x0 ⊕ yn−2 ⊕ xn−2 ⊕ x0 = 0

yn−1(yn−2yn−3 ⊕ yn−2 ⊕ yn−4 ⊕ xn−4) = 0

y0yn−1 ⊕ y0xn−1 = 0

y0x1 ⊕ y0 ⊕ x0 ⊕ x1 = 0

y0(yn−1yn−2 ⊕ yn−1 ⊕ yn−3 ⊕ xn−3) = 0

(5)
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The total number of exploitable equations of degree upper bounded by
3. If treating yi+1xi+2, yi+1xi, yi+1yi, yi+3yi, yi+3xi and yi+3yi+2yi+1 as new
variables, we can say that Equation 2, Equation 3 and Equation 4 are linearly
independent. Taking all the input bits into account, we obtain the equation
system (5).

It is not difficult to observe that these 3n equations are linearly independent if
the high-degree terms are treated as new variables. This is because each equation
contains one high-degree term that never appears in other equations.

What benefits can be brought by such a system of equations? Imagine the
case when the degree of the boolean expressions of the input x = (x0, . . . , xn−1)
and output y = (y0, . . . , yn−1) of the χ operation in terms of the key bits are
upper bounded by Dx and Dy, respectively. If only the raw definition of the χ
operation is taken into account, i.e. the equations are constructed based on

yi = xi ⊕ xi+1xi+2,

the degree of the collected equations will be upper bounded by

max(2Dx,Dy).

However, the equation system (5) can also be utilized to describe the relations
between x and y. Moreover, the degree of the equations in the equation system
(5) is upper bounded by

max(Dx +Dy, 3Dy).

If we can know Dy = 1 and Dx ≥ 2, there will be

max(Dx +Dy, 3Dy) = Dx + 1 < 2Dx = max(2Dx,Dy).

In other words, we could construct equations of much lower degree based on
the equation system (5). As the degree of the equations is reduced, the number

of all possible monomials in the equations will be reduced to
∑Dx+1
i=0

(
n
i

)
from∑2Dx

i=0

(
n
i

)
, which will be extremely useful to improve the trivial linearization

attack where the equations are derived only based on yi = xi ⊕ xi+1xi+2.

3.1 A General Approach to Search for Exploitable Equations

The above 3 equations are found manually or by performing experiments on the
small-scale χ operation, which are sufficient to devise the attacks in this paper.
However, it is still possible to miss similar equations and more equations can
be utilized to reduce the data complexity. Therefore, we are motivated to find a
more general approach to search for such useful equations. For this purpose, we
introduce the notion of exploitable equation.

Definition 1. An exploitable equation is defined as an equation where the input
bits of the χ operation are only allowed to form linear terms or quadratic terms
with the output bits.
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Now we discuss our general idea to identify more exploitable equations.
Consider the vectorial Boolean function S : Fn2 → Fn2 . Suppose (x0, x1, . . . , xn−1)
be the input of S and (y0, y1, . . . , yn−1) be the corresponding output. We aim to
find equations involving input variables and output variables of the function S.
Suppose our target is to bound the degree of input variables as 1 and degree of
the output variables as `. In other words, for any input (x0, x1, . . . , xn−1) and
output (y0, y1, . . . , yn−1), the following relation should hold:

a0 ⊕
∑

0≤i<n

b1ixi ⊕
∑

0≤i,j1<n

b2i,j1xiyj1 ⊕
∑

0≤j1<n

c1j1yj1⊕∑
0≤j1<j2<n

c2j1,j2yj1yj2 ⊕ · · · ⊕
∑

0≤j1<j2<···<j`<n

c`j1,j2,...,j`yj1yj2 . . . yj` = 0, (6)

where a0, b1i , b
2
i,j1
, c1j1 , . . . , c

`
j1,j2,...,j`

denote coefficients and are in F2.
Our aim is to identify these coefficients and they are treated as unknown

variables. Thus, there are t = n + n2 +
∑`
i=0

(
n
i

)
many unknown variables. If

` � n, we have t < 2n. Our procedure is to first fix some small odd number
n. Next, we generate t′ > t many random input (x0, x1, . . . , xn−1) output
(y0, y1, . . . , yn−1) pairs and put these values in Equation 6. Thus we have t′

linear equations over GF (2). Each solution of the linear equation system gives a
possible option of an exploitable equation. We then generate few more random
input-output pairs and check the validity of the expression. If the expression is
still valid, we can assume the expression to be valid for any input-output pair.
From this expression, we try to estimate the expression for any odd number n.
Thus our approach is based on interpolation-guess technique.

From Equation (5), we know there are 3n linearly independent exploitable
equations. First, we construct a set S = {F1,F2, . . . ,F3n} where each Fi denotes
a different equation among the 3n equations. LetM be the union of monomials
of the polynomials of S. Now if a new equation F ′ is generated using our
interpolation-guess technique and contains at least one monomial outside M,
we include F ′ in S and update M. We continue this process for each possible
expression using our interpolation-guess technique.

In our interpolation-guess idea6, we take ` = 5 and n = 11. Hence, we are
searching for t = 11 + 112 +

∑5
i=0

(
11
i

)
= 1156 many binary variables. From the

results, we found the following two simple polynomials:

F i1 = yi+5

(
xi ⊕ xi+2 ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1yi+3yi+4

)
, (7)

F i2 = yi+7

(
xi ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1(yi+4 ⊕ yi+5yi+6)yi+3

)
. (8)

Let fi = yi ⊕ xi ⊕ yi+1xi+2 for 0 ≤ i ≤ n − 1. Then we have F i1 =
yi+5(fi ⊕ yi+1fi+2 ⊕ yi+1yi+3fi+4), F i2 = yi+7(fi ⊕ yi+1fi+2 ⊕ yi+1 yi+3fi+4 ⊕
yi+1 yi+3 yi+5fi+6). From 3, we know fi = 0. Thus we have 2n extra relations:

yi+5

(
xi ⊕ xi+2 ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1yi+3yi+4

)
= 0, (9)

6 Obviously, all the 3n equations in the equation system (5) can also be detected with
this technique if it starts from an empty set S.
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yi+7

(
xi ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1(yi+4 ⊕ yi+5yi+6)yi+3

)
= 0 (10)

Consider the ideal I = 〈f0, . . . , fn−1〉. It is further found that

F i1 ∈ I,F i2 ∈ I,
yi+1(yi ⊕ xi) = yi+1(yi ⊕ xi ⊕ yi+1xi+2) ∈ I,
yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi)
= yi+3(yi ⊕ xi ⊕ yi+1xi+2)⊕ yi+3yi+1(yi+2 ⊕ xi+2 ⊕ yi+3xi+4) ∈ I

Thus, all the 5n useful relations are in I.

Remark. Apart from 5n such relations, we obtained many other useful relations
for n = 11, ` = 5. However, these expressions are too complicated. Hence, we do
not try to generalize them. One interesting observation is that these relations
are also in I. We emphasize that our algorithm is very similar to the algorithm
proposed by Fischer and Meier at FSE 2007, which is used to compute the
algebraic immunity of S-boxes and augmented functions [31]. However, as most
similar algorithms [19,12] to search for quadratic boolean functions of a certain
S-box based on Gaussian elimination, the algorithm [31] soon becomes infeasible
for a huge S-box, i.e. the large-scale χ operation, which requires almost all the
input-output pairs of the S-box. The feasibility of our algorithm contributes to
our critical observation that some forms of exploitable equations holding for
the small-scale χ operation (with small n) might also apply to the large-scale
χ operation (with large n). This directly allows to first search for exploitable
equations for the small-scale χ operation, and then to check whether they also
hold for the large-scale one.

4 Algebraic Cryptanalysis of Rasta and Dasta

Notice that there exists a key feed-forward phase just before computing the
final keystream Z in Rasta and Dasta. This special construction together with
the above low-degree exploitable equations will lead to significantly improved
linearization attacks.

For simplicity, denote the state after Ai,N,C by αi and the state before Ai,N,C
by βi. In this way, the state transitions in Rasta can be described as follows:

K = β0 A0,N,C−→ α0 S−→ β1 A1,N,C−→ α1 S−→ . . .
Ar−1,N,C−→ αr−1

S−→ βr
Ar,N,C−→ αr

For Dasta, similarly, denote the state after Pi,C by ρi, the state after L by πi

and the state before Pi,C by λi. In this way, the state transitions in Dasta can
be expressed as follows:

λ0
P0,C−→ ρ0

L−→ π0 S−→ λ1
P1,C−→ ρ1

L−→ π1 S−→ . . .
L−→ πr−1

S−→ λr
Pr,C−→ ρr

L−→ πr,

where K = λ0.
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4.1 Constructing Low-degree Equations for Rasta

First of all, we discuss the attacks on r0 rounds of Rasta. In the forward direction,
αr0−1 can be written as boolean expressions in terms of the key. Denote the
expression of αr0−1i (0 ≤ i ≤ n − 1) in terms of K = (k0, k1, . . . , kn−1) by
gi(k0, k1, . . . , kn−1), i.e.

αr0−1i = gi(k0, k1, . . . , kn−1).

As the degree of the χ operation is 2, we have

Deg(gi) ≤ 2r0−1. (11)

According to the plaintext-ciphertext pair (m, c), the corresponding keystream
Z can be computed with Z = m⊕ c. Since

αr0 = Z ⊕K,
αr0 = Mr0,N,C · βr0 ⊕RCr0,N,C ,

we have

βr0 = M−1r0,N,C · (m⊕ c⊕K ⊕RCr0,N,C).

In other words, in the backward direction, βr0 can be written as linear expressions
in terms of K. For simplicity, denote the corresponding linear expression of βr0i
(0 ≤ i ≤ n− 1) by hi(k0, k1, . . . , kn−1), i.e.

βr0i = hi(k0, k1, . . . , kn−1).

Hence, we have

Deg(hi) = 1. (12)

Notice that

βr0 = S(αr0−1).

Hence, according to Equation 2, Equation 3, Equation 4, Equation 9 and
Equation 10, the following low-degree equations can be derived:

hi+1 · hi ⊕ hi+1 · gi = 0,

hi ⊕ gi ⊕ hi+1 · gi+2 ⊕ gi+2 = 0,

hi+3(hi+2hi+1 ⊕ hi+2 ⊕ hi ⊕ gi) = 0,

hi+5

(
gi ⊕ gi+2 ⊕ hi ⊕ hi+1hi+2 ⊕ hi+1hi+3hi+4

)
= 0,

hi+7

(
gi ⊕ hi ⊕ hi+1hi+2 ⊕ hi+1(hi+4 ⊕ hi+5hi+6)hi+3

)
= 0.

where the indices are considered within modulo n. Based on Equation 11 and
Equation 12, it can be found that the degree of the above 5 equations is upper
bounded by

D = max(Deg(gi) +Deg(hi), 5Deg(hi)) = max(2r0−1 + 1, 5).
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When r0 ≥ 3, which is the case in our attacks7, we have

D = 2r0−1 + 1. (13)

As hi is linearly independent from each other and gi can also be viewed
as linearly independent from each other once all high-degree monomials are
renamed with new variables, we can then construct 5n linearly independent
equations in terms of the key K for each pair (m, c). Different from the designers’
analysis, the degree of our 5n equations is upper bounded by 2r0−1 + 1 rather
than 2r0 . This is a great reduction in the number of all possible monomials, i.e.

reduced from
∑2r0

i=0

(
n
i

)
to
∑2r0−1+1
i=0

(
n
i

)
. Obviously, such a reduction contributes

to our clever way to utilize the low-degree equations discussed in Section 3.

Linearization attacks on reduced-round Rasta. The attacks are now quite
straightforward. Specifically, the attacker collects sufficiently many plaintext-
ciphertext pairs. For each pair, 5n equations in terms of K can be constructed
and the degree of these equations is upper bounded by D (Equation 13). To
solve this equation system, the linearization technique is applied. As a result,
the time complexity T0 and data complexity D0 of our attacks on r0 rounds of
Rasta can be formalized as follows, where U denotes the maximal number of
possible monomials.

U =

2r0−1+1∑
i=0

(
n

i

)
, T0 = Uω, D0 = U/(3n).

As the maximal number of message blocks that can be encrypted under the
same key is

√
2κ/n, we need to ensure

D0 =

2r0−1+1∑
i=0

(
n

i

) /(5n) <
√

2κ/n→

2r0−1+1∑
i=0

(
n

i

) < 5
√

2κ. (14)

In addition, as mentioned before, when the time complexity is evaluated with
the algebra constant ω = 2.8, the final time complexity will be computed with
Equation 15, i.e. the time to encrypt a plaintext requires about (r0+1)n2 binary
operations for r0 rounds of Rasta.

T ′0 =

2r0−1+1∑
i=0

(
n

i

)2.8

/
(
(r0 + 1)n2

)
(15)

When the time complexity is evaluated with ω = 2.37 as in [35], the time
complexity will be directly computed with

T0 =

2r0−1+1∑
i=0

(
n

i

)2.37

. (16)

7 For r0 = 2, we then only use Equation 2, Equation 3 and Equation 4.
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To violate the claimed security levels, it is essential to require

T ′0 < 2κ (17)

when ω = 2.8 or

T0 < 2κ (18)

when ω = 2.37.
Based on the formulas Equation 15, Equation 17 and Equation 14, we directly

break 2 out of 3 instances of Agrasta. In addition, the trivial linearization attacks
on Rasta taking the parameters

(n, κ, r) ∈ {(327, 80, 4), (1877, 128, 4), (3545, 256, 5)}

are significantly improved, which directly reduces the security margins of these
instances to only 1 round.

If evaluating the complexity with Equation 16 and Equation 14 as in [23],
under the constraint Equation 18, almost all linearization attacks described
in [23] are improved by one round. All the results are summarized in Table 1.

Remark. For the high-degree nonlinear function, the designers should make a
careful investigation of whether low-degree equations exist. For Rasta, the degree
of the inverse of the χ operation is very high. However, this does not mean that
we cannot derive useful low-degree equations if considering the relations between
the input bits and output bits in a more careful way, which is obviously neglected
by the designers. Especially, when the design has an additional structure, the
neglected useful equations will become potential threats to the security.

4.2 Constructing Low-degree Equations for Dasta

The above results can be trivially applied to Dasta. However, we further observe
that the last linear layer of Dasta is constructed in the way to apply a bit
permutation followed by a fixed linear transform. In the following, we describe
how to exploit this feature to further obtain nonlinear equations of lower degree.

Based on similar analysis, when the target is r0 rounds of Dasta, from the
forward direction, πr0−1 can be written as expressions in terms of K and the
degree of these equations is upper bounded by 2r0−1. In the backward direction,
both λr0 and ρr0 can be written as linear expressions in terms of K.

Firstly, focus on the expressions of ρr0 . It can be derived that

ρr0 = L−1 · (m⊕ c⊕K) = L−1 · (m⊕ c)⊕ L−1 ·K.

Let

σ = L−1 ·K. (19)
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It can be found that the expressions of σi (0 ≤ i ≤ n− 1) remain invariant due
to the usage of a fixed linear transform L. As

ρr0 = L−1 · (m⊕ c)⊕ σ,

under different (m, c), the expressions of ρr0 only vary in the constant parts. As
λr0 is just a bit permutation on ρr0 , we have that the set of expressions of λr0

also only vary in the constant parts that only depend on (m, c).
In other words, if guessing one bit of σ, we can always find a bit of λr0 that

can be uniquely determined based on this guess. More specifically, since the bit
permutation may change when different message blocks are encrypted, a fixed
guessed bit of σ will always lead to a computable bit of λr0 whose bit position
is not fixed. How to exploit this fact to improve the attacks on Dasta is detailed
as follows.

Linearization attacks on reduced-round Dasta. Denote the expression of
λr0i by h′i(k0, k1, . . . , kn−1) and the expression of πr0−1i by g′i(k0, k1, . . . , kn−1)
(0 ≤ i ≤ n− 1). Similarly, we have

Deg(h′i) = 1, Deg(g′i) ≤ 2r0−1.

Based on the above analysis, guessing a fixed bit of σ will lead to a determined
bit of λr0 , though its position is not fixed and is indeed a moving position.
However, we can always find a bit λr0 that can be determined. Since

λr0 = S(πr0−1),

according to Equation 3, we can deduce that

h′i ⊕ g′i = (h′i+1 ⊕ 1)g′i+2. (20)

Based on Equation 4, we have

h′i+1(h′ih
′
i−1 ⊕ h′i ⊕ h′i−2 ⊕ g′i−2) = 0. (21)

In addition, based on Equation 9 and Equation 10, we further have

h′i+1

(
g′i−4 ⊕ g′i−2 ⊕ h′i−4 ⊕ h′i−3h′i−2 ⊕ h′i−3h′i−1h

′
i

)
= 0. (22)

h′i+1

(
g′i−6 ⊕ h′i−6 ⊕ h′i−5h

′
i−4 ⊕ h′i−5(h′i−2 ⊕ h′i−1h

′
i)h
′
i−3
)

= 0. (23)

Therefore, if the value of the expression h′i+1 is known, an equation of degree
upper bounded by 2r0−1 can be constructed based on Equation 20, further
reducing the degree by 1. If h′i+1 = 1, three more equations of degree upper
bounded by 2r0−1 can be derived from Equation 21, Equation 22 and Equation 23
given that r0 ≥ 3.

As mentioned several times, once a fixed bit of σ is guessed, there always
exists a bit of λr0 that can be uniquely determined. In other words, we can always
find an expression h′i+1 whose value can be uniquely calculated based on the
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guessed bit. However, different from the attacks on Rasta, the number of useful
equations of degree upper bounded by 2r0−1 is 4 for each plaintext-ciphertext
pair. Among the 4 equations, one can always be constructed, while whether
the remaining three equations can be constructed will depend on the collected
plaintext-ciphertext pair. Therefore, to make our results more convincing, we
only use the probability-1 equation derived from Equation 20. Therefore, the
data complexity of our attack on Dasta is just an upper bound.

The attacks now become quite straightforward. Specifically, denote the data
complexity and time complexity by D1 and T1, respectively. As we only aim at
equations of degree upper bounded by 2r0−1, the maximal number of possible
monomials is

U =

2r0−1∑
i=0

(
n

i

)
.

Since only 1 equation is useful for a pair (m, c), we have

D1 =

2r0−1∑
i=0

(
n

i

)
.

As we need to guess a bit of σ, the time complexity is computed as follows:

T1 = 2×

2r0−1∑
i=0

(
n

i

)ω

.

Again, when ω = 2.8, the time complexity is refined as

T ′1 = 2×

2r0−1∑
i=0

(
n

i

)2.8

/
(
(r0 + 1)n2

)
.

The time complexity should not exceed the claimed security level. The data
complexity cannot exceed the data limit. Under the two constraints, we can
significantly improve the linearization attacks on reduced-round Dasta, as shown
in Table 1. It is not surprising to find that the attacks become more powerful as
the degree decreases.

Countermeasures. A countermeasure to keep Dasta as secure as Rasta is
to swap the bit permutation and linear transform in the last linear layer. In
addition, the bit permutation should always be different when different message
blocks are encrypted under the same key, which is indeed the strategy used in
the first linear layer of Dasta. In this case, under different (m, c), the attacker
needs to guess different bits in order to collect one equation of degree upper
bounded by 2r0−1, which is obviously more time-consuming than the attacks
based on equations of degree upper bounded by 2r0−1 + 1.
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5 Discussions

The presented attack is surprisingly simple and can be treated as a generic attack
on Rasta-like constructions. It should be emphasized that such a simple generic
attack has remained undiscovered since the publication of Rasta [23] at CRYPTO
2018 and that designing and analyzing symmetric-key primitives for advanced
protocols is an active field in recent years. Especially, Equation 3 has been
frequently exploited to mount preimage attacks on reduced-round Keccak [10]
since the linear structure of Keccak was proposed at ASIACRYPT 2016 [34],
though it is always interpreted in another way due to the sponge construction.
Specifically, as the 5-bit χ operation is adopted in Keccak, Equation 3 is always
interpreted as follows in the context of preimage attacks:

Observation 1 [34] When l (1 < l < 5) consecutive output bits of the 5-bit
S-box are known, there exist l−1 linear equations only in terms of the input
bits holding with probability 1.

The reason to construct equations only in terms of the input bits is that some
output bits of the 5-bit S-box are unknown to adversaries and the degree of their
expressions in terms of the message bits is very high. Therefore, equations like

yi+1(yi ⊕ xi) = 0,

yi ⊕ xi ⊕ (yi+1 ⊕ 1)xi+2 = 0,

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi) = 0

are not friendly to attacks when only yi is known to adversaries. Otherwise, the
involved equations will contain more unknown variables (e.g. yi+1) or the degree
of the constructed equations in terms of the message bits will increase, both of
which will have negative influences on the preimage attacks.

Based on the above fact, it is imaginable why the presented attack in this
paper is overlooked. Specifically, due to the key feed-forward operation in Rasta,
none of the output bits of the last χ operation is known, even though it is very
easy to observe that these output bits are linear in the key bits in the backward
direction. Hence, the above widely-used observation does not apply anymore as
it requires known output bits of the χ operation and guessing output bits is too
costly for Rasta.

Our simple attacks also demonstrate that the designers should make a
thorough study on the new components in their innovative proposals, e.g. the
large-scale χ operation in Rasta and Dasta. Indeed, finding a set of quadratic
boolean equations satisfying a given S-box in terms of the input and output bits
is well-known since the algebraic attack on AES [19], though our attacks require
some special equations where the input bits are only allowed to form linear terms
or quadratic terms with the output bits. We could only imagine that the large-
scale χ operation is too large to handle, thus making the exploitable low-degree
equations neglected.

21



However, dealing with a small-scale χ operation is sufficient and such
equations can be easily observed. Indeed, there is an interface8 in sagemath
to compute the reduced Gröebner basis of the quadratic polynomials satisfying
a given S-box, i.e. sbox.polynomials(groebner=True). This function first
computes a set of polynomials of degree upper bounded by 2 satisfying a given
S-box with the method in [12] and then computes the reduced Gröebner basis
for the obtained polynomials. We tested the 7-bit and 9-bit χ operations and
observed Equation 4. We argue that this is not a general method and we may
miss some exploitable equations. We recommend to use the dedicated approach
discussed in Section 3 to search for more exploitable equations, which is also
based on the idea to detect equations in the small-scale χ operation and then to
further verify them for the large-scale χ operation.

Indeed, Equation 2, Equation 3 and Equation 4 are sufficient to mount
attacks on full Agrasta, Rasta and Dasta. With the general approach to search
for more complicated exploitable equations, the data complexity can be reduced
as more equations can be constructed based on a plaintext-ciphertext pair.
However, the final time complexity and memory complexity of the linearization
attack will remain the same. Moreover, it seems that the number of exploitable
equations of degree upper bounded by a certain value is still small and the data
complexity cannot be significantly reduced.

5.1 On the Polynomial Method [20]

Recently, based on the polynomial method [13,21,38], an improved generic
method to solve multivariate equation systems over GF (2) is proposed [20].
The conclusion is that the time complexity and memory complexity of solving
systems of equations in terms of N variables are N 2 ·2(1−1/2.7D)N bit operations
and N 2 · 2(1−1/1.35D)N bits, respectively, where D represents the upper bound
of the degree of the equations. A disadvantage of such a generic method is that
it cannot benefit from an overdefined system of equations.

When such a method is applied to Agrasta-128-4 and Agrasta-256-5, based
on our way to construct low-degree equations, the memory complexity of the
corresponding attacks is 129×129×2118.4 ≈ 2132.4 and 257×257×2245.8 ≈ 2261.8

bits, respectively. Thus, it is not better than the generic attack and requires
much more memory than ours. In addition, as mentioned in [20], an optimized
exhaustive search algorithm [14] for solving polynomial systems of degree D
over GF (2) requires 2Dlog2N · 2N bit operations. In other words, based on
our way to construct low-degree equations, the optimized exhaustive search for
Agrasta-128-4 and Agrasta-256-5 requires at least 2136 and 2265 bit operations,
respectively. For the technique in [20], without guessing key bits, it requires 2137.7

and 2267 bit operations, respectively. Guessing key bits will increase the time
complexity and hence the technique in [20] will not be faster than the optimized
exhaustive search. If counting the number of bit operations for our linearization

8 https://doc.sagemath.org/html/en/reference/cryptography/sage/
crypto/sbox.html
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attacks on Agrasta-128-4 and Agrasta-256-5, we need about 245×2.8 = 2126 and
287×2.8 = 2243.6 bit operations, respectively, which are still significantly below
that of the optimized exhaustive search.

For attacks on reduced-round Rasta and Dasta based on the proposed
polynomial method [20] or the optimized exhaustive search [14], even with our
method to construct low-degree equations, the corresponding memory complexity
and time complexity will be much higher than the claimed security level because
n is much larger than κ. This shows the advantage of the linearization attacks
which can greatly benefit from an over-defined system of equations.

5.2 Experimental Verification

The main concern of the linearization attack is whether the constructed equations
are indeed linearly independent. To address it, we performed some experiments9

on the small-state Rasta with small n for r0 ∈ {2, 3}. Notice that the number
of possible monomials increases very fast as the number of rounds increases.
Consequently, the experiments are performed on 2 and 3 rounds of Rasta for
efficiency. We are aware that the linearization attacks on such instances may not
be competitive to the pure brute-force attack. However, we emphasize that the
experiments are mainly used to check whether the constructed equations with
our method are indeed linearly independent.

For the experiments on 2-round attack, only Equation 2, Equation 3 and
Equation 4 will be considered, while Equation 9 and Equation 10 will be included
in the 3-round attack. This is because the degree of Equation 9 and Equation 10
is upper bounded by 4 and 5, respectively.

The aim of our experiments is to compute the number of linearly independent
equations after gaussian elimination, which is denoted by EQA, i.e. the rank of
the coefficient matrix. If it is almost the same with the total number of equations
before gaussian elimination, which is denoted by EQB, our assumption on the
linear independence between the equations is reasonable. We performed 100
random tests for each small instance, it was found that

0 ≤ EQB− EQA ≤ 3, (24)

which indicates that our assumption is reasonable. The experimental results are
displayed in Table 4.

6 Conclusion

While fully inverting the large-scale χ operation will make the linearization
attack worse for its high degree, by carefully studying the relations between
its input bits and output bits, we find that there exist some hidden low-degree
equations where the input bits are only allowed to form linear terms or quadratic

9 The source code can be found at https://github.com/LFKOKAMI/
AlgebraicAttackOnRasta.git.
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Table 4: Experimental results on small-state versions, where #(= i) represents
the number of tests when EQB− EQA = i among the 100 tests.

r0 n EQB
EQB− EQA

#(= 0) #(= 1) #(= 2) #(= 3)

2 21 1561 29 54 17 0
2 23 2047 38 55 7 0
2 25 2625 32 51 17 0
2 27 3303 25 63 12 0
2 29 4089 27 56 16 1
3 9 381 25 67 7 1
3 11 1023 27 61 12 0
3 13 2379 25 56 19 0

terms with the output bits. Combined with the key feed-forward operation in
Dasta and Rasta, these hidden equations can be utilized to significantly improve
the linearization attacks on reduced-round Rasta and Dasta. Especially, the
improvement directly allows us to theoretically break 2 out of 3 instances of
Agrasta. Based on our analysis, some recommended parameters of Dasta and
Rasta seem to be aggressive for their small security margins. Our cryptanalysis
also implies that the last nonlinear layer in Rasta and Dasta cannot effectively
increase the degree in a fast way as expected by the designers.
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39. P. Méaux, A. Journault, F. Standaert, and C. Carlet. Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. In M. Fischlin and J. Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in
Computer Science, pages 311–343. Springer, 2016.

40. C. Rechberger, H. Soleimany, and T. Tiessen. Cryptanalysis of Low-Data Instances
of Full LowMCv2. IACR Trans. Symmetric Cryptol., 2018(3):163–181, 2018.

41. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–
356, 1969.

28

https://eprint.iacr.org/2020/1034

	Algebraic Attacks on Rasta and Dasta Using Low-Degree Equations
	Fukang Liu, Santanu Sarkar, Willi Meier, Takanori Isobe

