Side-Channel Attack on ROLLO Post-Quantum Cryptographic Scheme

Agathe Cheriere ${ }^{1}$, Lina Mortajine ${ }^{2,3}$, Tania Richmond ${ }^{1,4}$, and Nadia El Mrabet ${ }^{3}$
${ }^{1}$ Inria, Univ. Rennes, CNRS, IRISA, France 263 Avenue Général Leclerc, 35042 Rennes Cedex, France
\{agathe.cheriere,tania.richmond\}@inria.fr
${ }^{2}$ Wisekey Semiconductors, Arteparc de Bachasson, Bâtiment A, 13590 Meyreuil
${ }^{3}$ Mines Saint-Etienne, CEA-Tech, Departement SAS, F - 13541 Gardanne France \{lina.mortajine, nadia.el-mrabet\}@emse.fr
${ }^{4}$ DGA - Maîtrise de l'Information, BP7, 35998 Rennes Cedex 9, France

Abstract

ROLLO is a candidate to the second round of NIST PostQuantum Cryptography standardization process. In the last update in April 2020, there was a key encapsulation mechanism (ROLLO-I) and a public-key encryption scheme (ROLLO-II). In this paper, we propose an attack to recover the syndrome during the decapsulation process of ROLLO-I. From this syndrome, we explain how to perform a private keyrecovery. We target two constant-time implementations: the C reference implementation and a C implementation available on GitHub. By getting power measurements during the execution of the Gaussian elimination function, we are able to extract on a single trace each element of the syndrome. This attack can also be applied to the decryption process of ROLLO-II.

Keywords: ROLLO, side-channel attack, power consumption analysis, keyrecovery attack, single-trace analysis, rank metric, LRPC codes

1 Introduction

Nowadays number theory based cryptography, like RSA [1] or ECDSA [2], is efficient but weak against the Shor's quantum algorithm [3]. The existence of quantum algorithms pushed the National Institute of Standards and Technology (NIST) to anticipate the time when an efficient quantum computer will be able to execute these algorithms and break commonly used public-key cryptography. In late 2016, the NIST started the Post-Quantum Cryptography (PQC) standardization process to get signatures and, key encapsulation mechanisms (KEM) or public-key encryption schemes (PKE), resisting to both classical and quantum attacks. Among the classical schemes, as McEliece [4] or NTRU [5], there are recent proposals based on rank metric. Error-correcting codes in rank metric allow to reduce some drawbacks of Hamming metric, like the key-sizes. In the
second round of this standardization process, there were two proposals in rank metric, namely ROLLO [6] and RQC [7]. Both were not selected for the third round due to some algebraic attacks [89]. Nonetheless, the NIST encouraged the community to study rank metric cryptosystems 10. They seem to be a good alternative to cryptosystems in Hamming metric, but were not studied enough at that point regarding side-channel analysis and embedded implementations. Indeed, public-key cryptosystems are commonly used in embedded systems. Thus it is essential to identify potential leakage to improve their resistance against side-channel attacks and ensure their security in practice. Kocher introduced side-channel attacks in 1996 [11. An attacker can use information provided by a side-channel to extract secret data from a device executing a cryptographic primitive. The information leakage is exploited without having to tamper with the device. The first side-channel attack against a code-based cryptosystem was proposed in 2008 for McEliece in Hamming metric [12]. It was then followed by numerous others in more than a decade of research, with timing or power consumption attacks. More recently, there were two papers combining physical attacks with algebraic properties [13|14]. We do not detail more those attacks since there are out of our scope.

Related works. Two recent papers related to side-channel attacks on code-based cryptography in rank metric have been published [1516. Both exploit timing leakage of LRPC codes [17]. In this work, we focus on constant-time implementations of schemes using LRPC codes. We target two constant-time implementations of ROLLO, and in particular the Gaussian elimination function. The first one is provided by the authors of ROLLO's proposal to the NIST [6]. The second one only provides an implementation of ROLLO-I for a 128 bits of security [18].

Our contribution. To the best of our knowledge, this is the first single trace attack against different versions of the constant-time Gaussian elimination for error-correcting codes in rank metric. We show that the power consumption during the decapsulation/decryption process can provide enough information to make an efficient attack on ROLLO schemes. Our attack allow us to recover various secret data such as:

- the private key in both cryptosystems via the syndrome recovery,
- the shared secret in ROLLO-I key encapsulation mechanism, or the encrypted message in ROLLO-II public-key encryption.

We finally present two countermeasures to make the implementations resistant to the proposed attack.
Organization of the paper. In Section 2, we recall elementary notions of errorcorrecting codes in rank metric as well as ROLLO schemes. In Section3, we detail attacks on both implementations: the reference one using rbc_library and the proposal on GitHub. We also provide some experimental results for ROLLO-I128. We discuss two different countermeasures in Section 4 . Finally, we conclude this paper in Section 5.

2 Background

ROLLO's submission is based on ideal Low-Rank Parity-Check (LRPC) codes. The latter were introduced in 2013 [17]. In this section, we first give some details on ideal LRPC codes, then recall the ROLLO proposal to the NIST PQC standardization process.

2.1 Rank metric codes

In the following sections, we denote by q a power of a prime number, and let m, n, and, k be positive integers such that $n>k$.
A linear code \mathcal{C} over $\mathbb{F}_{q^{m}}$ of length n and dimension k is a subspace of $\mathbb{F}_{q^{m}}^{n}$. It is denoted by $[n, k]_{q^{m}}$, and can be represented by a parity-check matrix $\mathbf{H} \in$ $\mathbb{F}_{q^{m}}^{(n-k) \times n}$ such that

$$
\mathcal{C}=\left\{\mathbf{x} \in \mathbb{F}_{q^{m}}^{n}, \mathbf{H} \cdot \mathbf{x}^{T}=0\right\} .
$$

An element $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{C}$ is called a codeword. For an element $\mathbf{x} \in \mathbb{F}_{q^{m}}^{n}$, the syndrome of \mathbf{x} is defined as the vector $\mathbf{s}=\mathbf{H} \cdot \mathbf{x}^{T}$.
Considering the rank metric, the distance between two vectors \mathbf{x} and \mathbf{y} in $\mathbb{F}_{q^{m}}^{n}$ is defined by

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\|\mathbf{v}\|=\operatorname{rank}(M(\mathbf{v}))
$$

where $M(\mathbf{v})$ is the matrix $\left(v_{i, j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$.
The support of a vector $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$ is defined as the subset of $\mathbb{F}_{q^{m}}$ spanned by the basis of \mathbf{x}. Namely, the support of \mathbf{x} is given by

$$
\operatorname{Supp}(\mathbf{x})=\left\langle x_{1}, \cdots, x_{n}\right\rangle_{\mathbb{F}_{q}}
$$

Given a polynomial $P_{n} \in \mathbb{F}_{q}[Z]$ of degree n and a vector $\mathbf{v} \in \mathbb{F}_{q^{m}}^{n}$, an ideal matrix generated by \mathbf{v} is a $n \times n$ matrix defined by

$$
\mathcal{I M}(\mathbf{v})=\left(\begin{array}{cc}
\mathbf{v}(Z) & \bmod P_{n} \\
X \cdot \mathbf{v}(Z) & \bmod P_{n} \\
\vdots & \\
X^{n-1} \cdot \mathbf{v}(Z) & \bmod P_{n}
\end{array}\right)
$$

An $[n s, n t]_{q^{m}}$-code \mathcal{C}, generated by the vectors $\left(\mathbf{g}_{i, j}\right)_{\substack{i \in[1, \cdots, s-t] \\ j \in[1, \cdots, t]}} \in \mathbb{F}_{q^{m}}^{n}$, is an ideal code if a generator matrix in systematic form is of the form

$$
\mathbf{G}=\left(\begin{array}{cccc}
& \mathcal{I} \mathcal{M}\left(\mathbf{g}_{\mathbf{1}, \mathbf{1}}\right) & \cdots & \mathcal{I} \mathcal{M}\left(\mathbf{g}_{\mathbf{1}, \mathbf{s}-\mathbf{t}}\right) \\
\mathbf{I}_{n t} & \vdots & \ddots & \vdots \\
& \mathcal{I M}\left(\mathbf{g}_{\mathbf{t}, \mathbf{1}}\right) & \cdots & \mathcal{I M}\left(\mathbf{g}_{\mathbf{t}, \mathbf{s}-\mathbf{t}}\right)
\end{array}\right)
$$

In [6], the authors restrain the definition of ideal LRPC (Low-Rank Parity Check) codes to $(2,1)$-ideal LRPC codes that they used for all variants of ROLLO.

Let F be a $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{m}}$ such that $\operatorname{dim}(F)=d$. Let $\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)$ be two vectors of $\mathbb{F}_{q^{m}}^{n}$, such that $\operatorname{Supp}\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)=F$, and $P_{n} \in \mathbb{F}_{q}[Z]$ be a polynomial of degree n. A $[2 n, n]_{q^{m}}$-code \mathcal{C} is an ideal LRPC code if it has a parity-check matrix of the form

$$
\mathbf{H}=\left(\begin{array}{cc}
\mathcal{I M}\left(\mathbf{h}_{1}\right)^{T} & \mathcal{I} \mathcal{M}\left(\mathbf{h}_{2}\right)^{T}
\end{array}\right)
$$

To decode the LRPC codes, we use the Rank Support Recovery (RSR) algorithm described in ROLLO submission [6] and recalled in Algorithm 4 (see Appendix A.

2.2 ROLLO

ROLLO is a second round submission to the post-quantum standardization process launched by the NIST in 2016. Since the last update in April 2020, it is composed of two cryptosystems: ROLLO-I, a Key-Encapsulation Mechanism (KEM), and ROLLO-II, a Public-Key Encryption (PKE). Both are described in Figure 1 We use the following notations:
$-\mathbb{F}_{q^{m}}$ is the vector space isomorphic to $\mathbb{F}_{q}[z] /\left(P_{m}\right)$, where P_{m} is an irreducible polynomial of degree m over \mathbb{F}_{q}.
$-\mathbb{F}_{q^{m}}^{n}$ is the vector space isomorphic to $\mathbb{F}_{q^{m}}[Z] /\left(P_{n}\right)$, where P_{n} is an irreducible polynomial of degree n over \mathbb{F}_{q}.

We unify tables of parameters from ROLLO's specification into Table 1. For the three security levels, $q=2$. The name of each variant gives the targeted security level, e.g. ROLLO-I-128 is a 128 -bit security level. The parameters d and r correspond respectively to the private key and error's ranks. The parameters n and m can respectively be obtained with the degrees of P_{n} and P_{m}.

Instance	d	r	P_{n}
P_{m}			
ROLLO-I-128	8	7	$Z^{83}+Z^{7}+Z^{4}+Z^{2}+1$
ROLLO-I-192	8	8	$z^{67}+z^{5}+z^{2}+z+1$
ROLLO-I-256	9	9	$Z^{97}+Z^{6}+1$
$Z^{113}+Z^{9}+1$	$z^{97}+z^{9}+1$		
ROLLO-II-128	8	7	$Z^{189}+Z^{6}+Z^{5}+Z^{2}+1$
ROLLO-II-192	8	8	$z^{83}+z^{7}+z^{4}+z^{2}+1$
ROLLO-II-256	9	8	$Z^{211}+Z^{11}+Z^{15}+1$
$z^{99}+z^{6}+1$			

Table 1: ROLLO's parameters for each security level.

Fig. 1: ROLLO-I (KEM) and ROLLO-II (PKE) cryptosystems.

In the following, we will focus on the vulnerabilities of the implementations of Gaussian elimination process. The latter is used several times in ROLLO cryptosystems, namely to compute:

- the support S of the syndrome \mathbf{s}
- the support of the error $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ letting us recover the shared secret in the case of ROLLO-I or encrypt/decrypt a message in the case of ROLLO-II ;
- the intersections of two vector spaces during the decoding of the syndrome (Algorithm 4-RSR). These intersections determine the support E of the error:

$$
E \leftarrow \bigcap_{1 \leq i \leq d} f_{i}^{-1} \cdot S
$$

with $F=\left\langle f_{1}, \ldots, f_{d}\right\rangle$ the support of the private key.
Thus, the leakage coming from implementations of Gaussian elimination can allow a side-channel attacker to recover all the secret data. In the next section, we explain the attack on the syndrome. This analysis can be performed to recover the other mentioned data.

3 Side-channel attack on Gaussian elimination in constant-time

Gaussian elimination is applied to the syndrome matrix $\mathbf{S}=M(\mathbf{s}) \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)$ to calculate its support. We know that the syndrome is first computed as:

$$
\mathbf{s}(Z)=\mathbf{x}(Z) \cdot \mathbf{c}(Z) \quad \bmod P_{n}
$$

with $\mathbf{x}, \mathbf{c}, \mathbf{s} \in \mathbb{F}_{q^{m}}[Z] /\left(P_{n}\right)$. From this, with the knowledge of the syndrome \mathbf{s} and the ciphertext \mathbf{c}, we can compute \mathbf{x}, a part of the private key as:

$$
\mathbf{x}(Z)=\mathbf{s}(Z) \times \mathbf{c}(Z)^{-1} \quad \bmod P_{n}
$$

With the knowledge of \mathbf{x}, it is possible to perform a full recovery of the private key. First, we can get the second part of the private key \mathbf{y} by computing

$$
\mathbf{y}(Z)=\mathbf{p k}(Z) \times \mathbf{x}(Z) \quad \bmod P_{n} .
$$

Then, the support of \mathbf{y} and \mathbf{x} gives the last part of the private key F.
In addition, Gaussian elimination is in constant-time which means that each operation in the function is timing independent from data. This requires to process each row in each column thus an attacker could be able to recover all values in the syndrome matrix. In the case of a non constant-time Gaussian elimination, it is possible to treat only the rows under the pivot row, therefore the values in rows above remain unknown by the attacker. Thus, constant-time gives an advantage to a side-channel attacker.
The second effect of the constant-time is that, inside the power trace, there is a pattern of the mask for one iteration. Once the attacker found the exact location of this pattern, it becomes straightforward to find the locations for each other iteration.

We analyzed two constant-time implementations of Gaussian elimination and discovered possible leakage through power consumption. The first one has been provided at the end of the second round of the NIST PQC standardization process and is available on the ROLLO candidate webpage [6]. We refer to it as the reference implementation. It uses the rbc_library [19, which provides different functions to implement schemes using rank metric codes. The second implementation has been recently published on GitHub [18]. We refer to it as the GitHub implementation.

We denote by \otimes the multiplication between a scalar and a row of a matrix and by \oplus the bitwise XOR between two bits or two rows of a matrix. The bitwise AND is represented by \wedge and the bitwise NOT by \neg.

3.1 Information leakage of the reference implementation

The reference implementation is based on Algorithm 1, which was first introduced in [20]. The input matrix is composed of n rows and m columns. The
algorithm outputs the matrix in systematic form and its rank. The first inner for loop (line 4) fixes the ones in the diagonal (corresponding to the pivots) and the second inner for loop (line 13) removes the ones in the pivot column. In both inner for loops in Algorithm 1, mask $\in \mathbb{F}_{2}$ is computed and multiplied with specific rows of the syndrome matrix. However, the multiplication of a 32-bit word $\left(u_{0}, \ldots, u_{31}\right)_{2}$ with zero or one provides information leakage in the power traces. This allows us to recover all the mask values computed during the process, then, the initial syndrome matrix.

```
Algorithm 1: Gaussian elimination in constant time
    Input: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\)
    Output: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\) in systematic form and \(\operatorname{rank}=\min (\) dimension, \(n)\)
    dimension \(=0\)
    for \(j=0, \cdots, m-1\) do
        pivot_row \(=\min (\) dimension,\(n-1)\)
        for \(i=0, \cdots, n-1\) do
            mask \(=s_{\text {pivot_row }, j} \oplus s_{i, j}\)
            \(t m p=m a s k \otimes s_{i}\)
            if \(i>\) pivot_row then
                \(s_{\text {pivot_row }}=s_{\text {pivot_row }} \oplus t m p\)
            else
                \(d u m m y=s_{\text {pivot_row }} \oplus t m p\)
            end
        end
        for \(i=0, \cdots, n-1\) do
            if \(i \neq j\) then
                mask \(=s_{i, j}\)
                \(t m p=m a s k \otimes s_{\text {pivot_row }}\)
                if dimension \(<n\) then
                    \(s_{i}=s_{i} \oplus t m p\)
                    else
                \(d u m m y=s_{i} \oplus t m p\)
                end
            end
        end
        dimension \(=\) dimension \(+s_{\text {pivot_row }, i}\)
    end
```

Our attack consists in recovering the syndrome matrix

$$
\mathbf{S}=n \downarrow\left(\begin{array}{cccc}
s_{0,0} & s_{0,1} & \cdots & s_{0, m-1} \\
s_{1,0} & s_{1,1} & \cdots & s_{1, m-1} \tag{1}\\
\vdots & \vdots & \ddots & \vdots \\
s_{n-1,0} & s_{n-1,1} & \cdots & s_{n-1, m-1}
\end{array}\right)
$$

where $s_{i, j} \in \mathbb{F}_{2}$ for $(i, j) \in \llbracket 0, n-1 \rrbracket \times \llbracket 0, m-1 \rrbracket$. We denote by \mathbf{S}_{j} the matrix obtained after the treatment of the j-th column of \mathbf{S} and by $\mathbf{S}_{j}[k]$, the k-th column of the matrix \mathbf{S}_{j}. The recovered mask values from the two inner for loops lead to a system of linear equations. This system is obtained from two steps described below.

After the first inner for loop in Algorithm 1: we recover the mask values $s_{\text {pivot_row, } j} \oplus s_{i, j}$. If mask $=0$, then the pivot row is unchanged. Otherwise, the i-th row is added to the pivot row. Then, the first loop provides the indices of rows XORed to the pivot row. We define

$$
\sigma_{j}=\left(\delta_{0, j}, \delta_{1, j}, \ldots, \delta_{n-1, j}\right), \quad \text { where } \delta_{i, j}=\left\{\begin{array}{ll}
0 & \text { if } \text { mask }=0 \\
1 & \text { if mask }=1
\end{array},\right.
$$

the vector containing all mask values recovered after the j-th iteration. We also define the matrix

$$
J_{k}=\left(\begin{array}{cccccc}
1 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots & & \vdots \\
\delta_{0, k} & \delta_{1, k} & \ldots & 1 & \ldots & \delta_{n-1, k} \\
\vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \ldots & 0 & \ldots & 1
\end{array}\right) \longleftarrow k \text {-th row }
$$

involved in the computation of the system of linear equations. For example, considering the pivot row of index 0 . After the first inner for loop, the syndrome matrix given in Equation 1 is under the form

$$
\left(\begin{array}{cccc}
\sum_{i=0}^{n-1} \delta_{i, 0} s_{i, 0} & \sum_{i=0}^{n-1} \delta_{i, 0} s_{i, 1} & \cdots & \sum_{i=0}^{n-1} \delta_{i, 0} s_{i, m-1} \\
s_{1,0} & s_{1,1} & \cdots & s_{1, m-1} \\
\vdots & \vdots & \ddots & \vdots \\
s_{n-1,0} & s_{n-1,1} & \cdots & s_{n-1, m-1}
\end{array}\right)
$$

In other words, we can compute it as

$$
J_{0} \times \mathbf{S}=\left(\begin{array}{c|c}
1 & \delta_{1,0} \cdots \delta_{n-1,0} \\
\hline \mathbf{O} & I_{n-1}
\end{array}\right) \times \mathbf{S}
$$

where I_{n-1} denotes the identity matrix of size $n-1$ and $\mathbf{0}$ a column of $n-1$ zeros.
We notice in lines $7-8$ in Algorithm 1 that only rows with index greater than the pivot row index are added to the pivot row. Thus, after the treatment of the column j, we define $\delta_{i, j}=0$ for $i \leq$ pivot_row.

After the second inner for loop in Algorithm 1; the recovered mask values correspond to the coefficients $s_{i, j}$ of the matrix obtained after the first inner for loop. We denote by $\sigma_{j}^{\prime}=\left(\delta_{0, j}^{\prime}, \ldots, \delta_{j-1, j}^{\prime}, *, \delta_{j+1, j}^{\prime}, \ldots, \delta_{n-1, j}^{\prime}\right)$ the vector composed of mask values. The item $*$ represents the pivot that is not processed in the second loop. For the attack, $*$ is replaced by one.
On one hand, during the treatment of the j-th column, σ_{j}^{\prime} completes the system of linear equations. Assuming we want to recover the column 0, we use a linear solver on the system

$$
J_{0} \times \mathbf{S}[0]=\left(\sigma_{0}^{\prime}\right)^{t}
$$

On the other hand, the vector σ_{j}^{\prime} allows us to recover all the operations performed on rows. These operations are taken into account in solving the system of linear equations of the $(j+1)$-th column. For this, we define the matrix

$$
J_{k}^{\prime}=\left(\begin{array}{cccccc}
1 & 0 & \ldots & \delta_{0, k}^{\prime} & \ldots & 0 \\
0 & 1 & \ldots & \delta_{1, k}^{\prime} & \ldots & 0 \\
\vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \ldots & 1 & \ldots & 0 \\
\vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \ldots & \delta_{n-1, k}^{\prime} & \ldots & 1
\end{array}\right) \longleftarrow k \text {-th row }
$$

For example, for the treatment of column 1 we consider the matrix

$$
\mathbf{S}_{0}=\underbrace{\left(\left(\sigma_{0}^{\prime}\right)^{t} \left\lvert\, \frac{\mathbf{0}}{I_{n-1}}\right.\right.}_{=J_{0}^{\prime}}) \quad \times J_{0} \times \mathbf{S}
$$

More generally, during the treatment of the column j, for $j \geq 1$, we consider

$$
\mathbf{S}_{j-1}=\left(\prod_{k=j-1, \ldots, 0} J_{k}^{\prime} \times J_{k}\right) \times \mathbf{S}
$$

In case there is no pivot in a column, all the mask values are equal to zero, thus $J_{k}^{\prime} \times J_{k}=I_{n}$.
Finally, to recover the column j, we solve the system of linear equations

$$
J_{j} \times \mathbf{S}_{j-1}[j]=\left(\sigma_{j}^{\prime}\right)^{t}
$$

3.2 Information leakage of the GitHub implementation

In this section, we denote by $\mathbf{1}=\underbrace{(11 \ldots 11)}_{m}$ and $\mathbf{0}=\underbrace{(00 \ldots 00)}_{m}$.
In [18], the authors introduced a row reduction in constant-time given in Algorithm 2, that can be seen as a generalization of the one presented in Algorithm 1 .

```
Algorithm 2: Row reduction in constant-time
    Input: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\)
    Output: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\) in row echelon form and its rank \(=\) pivot_row
    pivot_row \(=0\)
    for \(j=0, \cdots, m-1\) do
        for \(i=0, \cdots, n-1\) do
            if \(s_{\text {pivot }}\) row, \(j=0\) then
            \(\operatorname{mask} 1=1\)
            else
                \(\operatorname{mask} 1=\mathbf{0}\)
                end
                if \(s_{i, j}==1\) then
                | mask \(2=\mathbf{1}\)
            else
                \(\operatorname{mask} 2=\mathbf{0}\)
                end
                if \(i \geq\) pivot_row then
                \(m a s k 3=\mathbf{1}\)
                else
                | \(\operatorname{mask} 3=\mathbf{0}\)
                end
            \(s_{\text {pivot_row }} \leftarrow s_{\text {pivot_row }} \oplus\left(s_{i} \wedge(\operatorname{mask} 1 \wedge(\operatorname{mask} 2 \wedge \operatorname{mask} 3))\right)\)
            \(s_{i} \leftarrow \bar{s}_{i} \oplus\left(s_{\text {pivot_row }} \wedge(\operatorname{mask} 2 \wedge \operatorname{mask} 3)\right)\)
        end
        if \(s_{\text {pivot_row, } j}=1\) and pivot_row \(<n\) then
            pivot_row \(=\) pivot_row +1
        end
    end
```

At the end of Algorithm 2, we obtain a matrix under the row echelon form. In order to ensure this, three masks are first computed according to coefficients and pivot processed. Each mask is equal to $\mathbf{1}$ or $\mathbf{0}$. The three masks influence
the operations on rows (lines 5-6 in Algorithm 2) as presented in Figure 2. We notice that two paths (in red) lead to bitwise XOR on rows. First, when $\operatorname{mask} 1=\operatorname{mask} 2=\operatorname{mask} 3=\mathbf{1}$, the pivot coefficient is fixed to one. This happens at most once per loop over j. Then, when $\operatorname{mask} 2=\operatorname{mas} k 3=\mathbf{1}$ independently from mask 1 , the other ones in the processed column j are removed.

Fig. 2: Operations on matrix rows according to mask values. In red, paths leading to XOR on rows with s_{p} the pivot row and s_{i} the processed row.

In Algorithm 2, we observe two sources of leakage. The first one consists of the computation of mask1, mask2 and mask3. In the GitHub implementation, considering the function $b f_{-}$compute_mask (given in Figure 3), we notice that if the processed coefficient, defined as "bit" in line 6, is equal to one, all bits of mask2 are set to one, otherwise all bits are set to zero (lines 7-8). The same kind of operations are observed for mask1 and mask3.
However, the leakage from flipping all the bits to 1 or to 0 differs. We deduce that it is possible to recover the masks values.

```
int bf_compute_mask(bf_element_t *mask, bf_element_t *a, uint8_t
    bit_position)
{
    // Determine the processed bit
        uint8_t pos = bit_position / 64u;
    // Determine the bit position
    uint8_t bit = ((uint64_t) (pos * (a->high >> (bit_position - 64
    u))) - (1u-pos)*(a->low >> bit_position)) & 0x1u;
    mask->low = -((uint64_t) bit);
    mask->high = (uint64_t) -((uint8_t) bit) & ROLLO_I_BF_MASK_HIGH;
9 }
```

Fig. 3: Function to compute mask2 introduced in Algorithm 2 and from GitHub implementation [18].

The second source of leakage comes from the bitwise AND and XOR applied on the syndrome matrix rows. Indeed, in lines 5-6 in Algorithm 2 the rows are

XORed with either zero or non-zero row according to the masks values. The second source of leakage has not been exploited because it is equivalent to what we observe with the masks recovery. However, it is always a good point of interest for side-channel attacks.

As in the previous attack, the masks values recovery allows us to obtain a system of linear equations. We define three vectors containing respectively the values of mask 1 , mask 2 and mask $2 \wedge$ mask 3 after the iteration j :

$$
\begin{aligned}
\sigma_{\text {mask } 1, j}= & \left(\delta_{0, j}, \ldots, \delta_{n-1, j}\right), \sigma_{m a s k 2, j}=\left(\delta_{0, j}^{\prime}, \ldots, \delta_{n-1, j}^{\prime}\right), \\
& \sigma_{\text {mask } 2 \wedge \operatorname{mask} 3, j}=\left(\delta_{0, j}^{\prime \prime}, \ldots, \delta_{n-1, j}^{\prime \prime}\right),
\end{aligned}
$$

with $\delta_{i, j}, \delta_{i, j}^{\prime}, \delta_{i, j}^{\prime \prime}=0$ or 1 when mask 1 , mask 2 , mask $2 \wedge \operatorname{mask} 3=\mathbf{0}$ or $\mathbf{1}$.
As we can see in Figure 2, when mask $1=1$, only one path leads to operations on rows. Moreover, once we have mask $1=\operatorname{mask} 2=\operatorname{mask} 3=\mathbf{1}, \operatorname{mask} 1=\mathbf{0}$ until the end of the column treatment. Then, we have three cases for the pivot:

- If the vector $\sigma_{m a s k 1, j}$ contains only zeros, then the leading coefficient in the pivot row is already one.
- If the vector $\sigma_{\text {mask } 1, j}$ contains only ones then either the pivot is on the last row and we need to consider mask 2 and mask 3 or the column does not contain a pivot.
- If the vector $\sigma_{m a s k 1, j}$ contains zeros and ones, the position of the last one is the index of the added row to the pivot row in the column j.

We determine the system of linear equations as previously with two matrices depending respectively of mask 1 and mask $2 \wedge$ mask 3 :

The vector $\sigma_{m a s k 2, j}$ depends on the coefficients processed in the column j. Therefore, $\sigma_{\text {mask } 2,0}$ gives us the first column as there is no pre-processing on rows. After the first iteration, we have to consider XORs performed on rows of the matrix during the treatment of the column $j-1$.
For example, after the treatment of the column 0 , the positions of the executed

XORs are given in the resulting matrix $J_{0}^{\prime} \times J_{0}$. Thus, for the column 1 , we use a linear solver on the system

$$
J_{0}^{\prime} \times J_{0} \times \mathbf{S}[0]=\left(\sigma_{\operatorname{mask} 2,1}\right)^{t}
$$

More generally, to recover the column $j \geq 1$, we have to solve the system of linear equations

$$
\left(\prod_{k=j-1, \ldots, 0} J_{k}^{\prime} \times J_{k}\right) \times \mathbf{S}[j]=\left(\sigma_{m a s k 2, j}\right)^{t}
$$

3.3 Experimental results of our side-channel analysis

In this section, we demonstrate the practicability of the attack on an ARM SecurCore SC300 32-bit processor (equivalent to CORTEX-M3). We implemented ROLLO-I-128 in C. The first implementation corresponds to the reference one and the second to the GitHub version [18].

ROLLO-I-128 traces are captured with a Lecroy SDA 725Zi-A oscilloscope with a bandwidth of 2.5 GHz . We put a trigger right before the execution of the Gaussian elimination. The measurements for the reference implementation are given in Figure 4. The power trace of the first inner for loop (line 4-Algorithm 1) is given in Figure 4 a and the power trace of the second inner for loop (line 13 - Algorithm 1) is given in Figure 4b. We can observe the difference of power consumption when 32 -bit words are multiplied either by one or by zero. Even if it is possible to distinguish the treatment of a bit at one or zero with a single trace, we averaged ten traces to slightly reduce the impact of noise. The difference of pattern leads us to recover the mask values of the two inner for loops. For example, we observe in Figure 4 the beginning of the treatment of column 0:

$$
\begin{aligned}
\sigma_{0} & =(0,1,0,0,0,1,1,0,1,0,1,1, \cdots) \\
\sigma_{0}^{\prime} & =(*, 0,1,1,1,0,0,1,0,1,0,0,0, \cdots)
\end{aligned}
$$

The source code of the attack for the reference implementation is given in Appendix C.
The measurement for the GitHub implementation is given in Figure 5. We can first observe the difference of patterns for the three masks values at each inner iteration. For a better understanding, we highlight each time the computation of the different masks. Thus, we obtain

$$
\left.\begin{array}{l}
\sigma_{m a s k 1,1}=(1,1,1,0,0,0,0, \ldots) \\
\sigma_{\text {mas } k, 1}=(1,0,1,0,0,1,0, \ldots) \\
\sigma_{\text {mas } 3,1}=(0,0,1,1,1,1,1, \ldots)
\end{array}\right\} \quad \sigma_{\text {mask } 2 \wedge \operatorname{mask} 3,1}=(0,0,1,0,0,1,0, \ldots)
$$

We can perform the attack from the recovered masks values. The source code of the attack for the GitHub implementation is given in Appendix D.
Other variations can be observed but are not exploited here.

Fig. 4: Measurements for the reference implementation - traces of the two inner loops in Gaussian elimination for the processing of one column in ROLLO-I-128: in green the treatment when the bit is 0 and in red when the bit is 1 .

Fig. 5: Measurement for the GitHub implementation - trace of the treatment of one column in ROLLO-I-128.

3.4 Experimentation with a Cortex-M4 and comparison

In this section, we show that the attack is also applicable on a ARM Cortex-M4. For the experimentation we use the ROLLO-I-128 implementation provided in the mupq git [21] on a STM32F4 ChipWhisperer microcontroller. The traces are captured with a RTO2000 oscilloscope with bandwidth 3 GHz . We put a trigger right before the execution of the Gaussian elimination.
The measurement of eight executions of the main loop in the Gaussian elimination is given in Figure 6. The distinction between the execution of the first and the second inner loop in Algorithm 1 is simple: we just have to look at the bottom of the measurement. Thus, it is possible to determine the start and the end of each inner loop.

Figure 7 provides measurements obtained with a Cortex-M4. Similarly to Figure 4 with a Cortex-M3, the traces are annotated with rectangles and colors: green for a mask at 0 and red for a mask at 1 .
We notice that in Figure 4a the difference between a mask at 0 and a mask at 1 is more pronounced than in Figure 7a. In fact, in the latter, the difference of power consumption between both masks is smaller and requires to look carefully at the end of the pattern to distinguish them. For Figure 4 b and Figure 7 b , the

Fig. 6: Measurement of eight executions of the main loop in the Gaussian elimination.
patterns for a mask at 0 and a mask at 1 are similar. However, we notice that the decreasing power in the pattern of a mask at 0 is more accentuated in Figure 7b. Because of a lack of space, we did not develop the automation of our leakage detection. Nonetheless, we manage afterwards to perform a template analysis on our measured traces.

4 Countermeasures

In this section, we propose two solutions to protect the future implementations against our attack. It is important to remark that the implementations with the countermeasures remain in constant-time.

4.1 First countermeasure for the reference implementation

The first countermeasure consists in reducing the differentiation between a multiplication of a word by zero or by one. For this, we mask the coefficients processed. In the first inner for loop, we split the pivot row into two parts. Thus, for each iteration, we compute

$$
s_{\text {pivot_row }}=s_{1 \text { pivot_row }} \oplus s_{2 \text { pivot_row }}
$$

with $s_{1 \text { pivot_row }}, s_{2 \text { pivot_row }} \in \mathbb{F}_{2^{m}}$. The variable tmp (line 6-Algorithm 1) is then computed as

$$
t m p=\left(m^{2} k \prime \wedge \wedge\left(s_{i} \oplus s_{2 \text { pivot_row }}\right)\right) \vee\left(\neg \text { mask }^{\prime} \wedge s_{2 \text { pivot_row }}\right)
$$

with maskı $=\neg($ mask -1$)$. Then, we can update the pivot row by computing

$$
s_{\text {pivot_row }}=s_{1 \text { pivot_row }} \oplus t m p
$$

If $i \leq$ pivot_row, we have

$$
d u m m y=s_{1_{\text {pivot_row }}} \oplus t m p
$$

Fig. 7: Measurement for the processing, on the Cortex M4, of one column in the Gaussian elimination from the reference implementation.

The same operations are performed in the second inner for loop by replacing the pivot row by the processed row s_{i}. With this countermeasure, whether the mask is zero or one, we always perform the same operations, namely two bitwise ANDs between non-zero and zero words. Thus, we are not able to distinguish different patterns when mask equals 0 or 1 . We applied the same set up as in Section 3.3 to illustrate this in Figure 8 .

Fig. 8: First for loop trace of Gaussian elimination with masking countermeasure.

4.2 Second countermeasure for both implementations

The second countermeasure is based on shuffling. The treatment of each column is performed randomly by using an algorithm generating a random permutation of a finite set such as the Fisher-Yates method (described in Algorithm 33). The choice is left to the developer under condition of a good implementation. For the reference implementation, a list containing the coefficients indexes is randomized before the two inner for loops. Then, at each iteration the pivot row is chosen randomly and the other coefficients in a column are processed following the order of the randomized list. This countermeasure is presented in Appendix E (Algorithm 5). As the indexes are shuffled before the two inner for loops, there is no correlation between the masks of the first for loop (line 8 - Algorithm 5) and the masks of the second for loop (line 19 - Algorithm 5).

```
Algorithm 3: FisherYatesShuffle
    Input: \(L\) list of \(n\) elements
    Output: the list \(L\) shuffled
    for \(i=n-1, \cdots, 0\) do
        \(j=\operatorname{random}() \bmod i\)
        exchange \(L_{i}\) and \(L_{j}\)
    end
```

For the GitHub implementation, a similar countermeasure is presented in Appendix E (Algorithm 6). Before each iteration on rows, the pivot row is chosen randomly and the indexes are shuffled using Fisher-Yates method.

With the randomization countermeasure, an attacker can distinguish patterns related to the masks values for both implementations but not determine the order of elements. Moreover, a brute force attack is not achievable. Indeed, an adversary has n ! possibilities for each column which implies a total of $(n!)^{m}$ possibilities to recover the syndrome matrix. Thus, only the number of zeros and ones on the matrix will be known.

We provide in Table 2 the performances analysis for the SC300 processor of the impact of our countermeasures. This impact depends on the board and the used random number generator. We counted the cycles by using IAR Embedded Workbench IDE for ARM ${ }^{5}$ compiler $\mathrm{C} / \mathrm{C}++$ with high-speed optimization level.

implementation	Reference		GitHub		
countermeasure	masking	randomization	without	randomization	without
$\#$ cycles $\left(\times 10^{6}\right)$	3,15	2,5	1,82	2,9	2,22

Table 2: Impact factor of Gaussian elimination with and without countermeasures for ARM securCore SC300 processor.

5 Conclusion and perspectives

We show in this paper that constant-time implementations of Gaussian elimination provided in [6] and [18] are both sensitives to power consumption attacks. The weakness, directly linked to the mask used to avoid timing attacks, allows us to make the first attack by side-channel on the last implementation version given by the authors of ROLLO. We can also applied our attack on another implementation of ROLLO-I-128. These attacks can lead to a full recovery of the private

[^0]key using a single trace. To secure the implementations, we propose two different countermeasures. The first one can be applied to [6] by hiding the values of the mask. The second countermeasure can be applied to both implementations. The idea is to treat each row in a column of the matrix in a random way. It adds randomness which makes our attack not exploitable in practice anymore. Other attacks as CPA or DPA could not be applied because of single-trace only. We base our work on traces got from Cortex-M3 and Cortex-M4. We show that the attacks are feasible in both cases even though there is some difference in the traces.
The constant-time Gaussian elimination function is in the rbc_library library. This library is also used in the implementation of the RQC scheme. Even though the Gaussian elimination in constant time is not used in the RQC implementation, the entire library should be analyzed to find possible leakage. In particular, we want to analyze the Karatsuba function used in both ROLLO implementation and the polynomial multiplication for computation over ideal codes in RQC.

References

1. Ronald L. Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120126, 1978.
2. Don Johnson and Alfred Menezes and Scott Vanstone. The Elliptic Curve Digital Signature Algorithm (ECDSA). International Journal of Information Security, 1(1):36-63, aug 2001. doi:10.1007/s102070100002
3. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):14841509, 1997.
4. Robert James McEliece. A public-key cryptosystem based on algebraic coding theory. Technical Report 44, California Inst. Technol., Pasadena, CA, January 1978.
5. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem. Proceedings of the Third International Symposium on Algorithmic Number Theory, pages 267-288, 1998.
6. Carlos Aguilar-Melchor, Nicolas Aragon, Magali Bardet, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Alain Couvreur, Jean-Christophe Deneuville, Philipe Gaborit, Adrien Hauteville, and Gilles Zémor. ROLLO-Rank-Ouroboros, LAKE \& LOCKER, 2019. URL: https://pqc-rollo.org/.
7. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Maxime Bros, Alain Couvreur, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Rank Quasi-Cyclic (RQC), 2020. URL: https://pqc-rqc.org/.
8. Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger, Olivier Ruatta, and Jean-Pierre Tillich. An algebraic attack on rank metric codebased cryptosystems. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020, pages 64-93, Cham, 2020. Springer International Publishing.
9. Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Improvements of algebraic attacks for solving the rank decoding and minrank problems. In Shiho Moriai
and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020, pages 507-536, Cham, 2020. Springer International Publishing.
10. Dustin Moody and Gorjan Alagic and Daniel C Apon and David A Cooper and Quynh H Dang and John M Kelsey and Yi-Kai Liu and Carl A Miller and Rene C Peralta and Ray A Perlner and Angela Y Robinson and Daniel C Smith-Tone and Jacob Alperin-Sheriff. Status report on the second round of the NIST postquantum cryptography standardization process. Technical report, Jul 2020. doi: 10.6028/nist.ir. 8309
11. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO, pages 104-113", Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.
12. Falko Strenzke, Erik Tews, H Gregor Molter, Raphael Overbeck, and Abdulhadi Shoufan. Side channels in the McEliece PKC. In International Workshop on PostQuantum Cryptography, pages 216-229. Springer, 2008.
13. Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska. Side channel information set decoding using iterative chunking. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020, pages 881910, Cham, 2020. Springer International Publishing.
14. Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu, and Lilian Bossuet. Message-recovery laser fault injection attack on the Classic McEliece cryptosystem. 2021. https://eprint.iacr.org/2020/900
15. Nicolas Aragon and Philippe Gaborit. A key recovery attack against LRPC using decryption failures. In International Workshop on Coding and Cryptography (WCC), Saint-Jacut-de-la-Mer, France, 2019.
16. Simona Samardjiska, Paolo Santini, Edoardo Persichetti, and Gustavo Banegas. A reaction attack against cryptosystems based on LRPC codes. In Progress in Cryptology - LATINCRYPT, pages 197-216. Springer International Publishing, 2019. doi:10.1007/978-3-030-30530-7_10.
17. Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zemor. Low Rank Parity Check codes and their application to cryptography. In Lilya Budaghyan, Tor Helleseth, and Matthew G. Parker, editors, International Workshop on Coding and Cryptography (WCC), Bergen, Norway, Apr 2013. ISBN 978-82-308-2269-2. URL: https://hal.archives-ouvertes.fr/hal-00913719.
18. Carlos Aguilar-Melchor, Nicolas Aragon, Emanuele Bellini, Florian Caullery, Rusydi H Makarim, and Chiara Marcolla. Constant time algorithms for ROLLO-I-128. https://eprint.iacr.org/2020/1066.pdf 2020. Source code available at https://github.com/peacker/constant_time_rollo.git.
19. Nicolas Aragon and Loïc Bidoux. rbc_library, 2020. URL: https://rbc-lib.org/.
20. Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded Systems (CHES), pages 250-272, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
21. mupq git: Implementation second round NIST schemes for ARM Cortex-M4 . Source code available at https://github.com/mupq/mupq/tree/Round2/crypto_ kem

A Rank Support Recovery Algorithm

```
Algorithm 4: Rank Support Recovery (RSR) algorithm
    Input: An \(\mathbb{F}_{q}\)-subspace \(F=\left\langle f_{1}, \cdots, f_{d}\right\rangle, \mathbf{s}=\left(s_{1}, \cdots, s_{n}\right)\) a syndrome of an
                error e, \(r\) the error's rank weight
    Output: A candidate \(E\) for the support of \(\mathbf{e}\)
    // Part 1 : Compute the vector space \(E F\)
    Compute \(S=\left\langle s_{1}, \cdots, s_{n}\right\rangle\)
    // Part 2 : Recover the vector space \(E\)
    Pre-compute every \(S_{i}=f_{i}^{-1} . S\) for \(i=1\) to \(d\)
    \(E \leftarrow \bigcap_{1 \leq i \leq d} S_{i}\)
    return \(E\)
```


B Toy example for the attack for the reference implementation

Let us take a small example, with $q=2, m=5$ and $n=7$, to illustrate the information leakage that we found.

Assume we want to recover the following \mid The searched matrix is defined as matrix
$\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0\end{array}\right)$

$$
\longrightarrow \quad \mathbf{S}=\left(\begin{array}{lllll}
s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} & s_{0,4} \\
s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} & s_{1,4} \\
s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} & s_{2,4} \\
s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} & s_{3,4} \\
s_{4,0} & s_{4,1} & s_{4,2} & s_{4,3} & s_{4,4} \\
s_{5,0} & s_{5,1} & s_{5,2} & s_{5,3} & s_{5,4} \\
s_{6,0} & s_{6,1} & s_{6,2} & s_{6,3} & s_{6,4}
\end{array}\right)
$$

corresponding to the syndrome $\mathbf{s} \in \mathbb{F}_{2^{5}}^{7}$.
After the execution of the Gaussian elimination process, we guess from the power consumption analysis the masks in the first and second loops:

1. masks in the first loop for each column:

$$
(*, 1,1,1,0,0,0),(1, *, 1,0,1,1,0),(1,0, *, 0,1,0,1),(1,1,1, *, 0,1,1) \text {, }
$$

$$
(1,1,1,0, *, 1,0)
$$

2. masks of the second loop for each column:

$$
(*, 0,0,0,1,1,1),(1, *, 1,1,0,0,1),(0,1, *, 1,0,1,0),(1,1,1, *, 0,1,0),
$$

$$
(1,1,1,0, *, 1,1)
$$

with $*$ the pivot. As explained in Section 3.1, the $*$ are replaced by one.
Let us focus on recovering the two first columns of the syndrome matrix. The recovered masks vector of the first loop $(1,1,1,1,0,0,0)$ provides the additions on the pivot row 0 :

The masks vector of the second loop $\sigma_{0}^{\prime}=(1,0,0,0,1,1,1)$ is the solution vector of the system of linear equations where $s_{i, j}$ are unknowns. Thus, by applying a SageMath ${ }^{6}$ linear solver on the system

$$
J_{0} \times \mathbf{S}[0]=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)^{t}
$$

we find the solution $(1,0,0,0,1,1,1)$, which corresponds to the first column of the syndrome matrix (see Appendix C for the source code). At the end of the process of the first column, we have the matrix

$$
\mathbf{S}_{0}=\left(\left(\sigma_{0}^{\prime}\right)^{t} \left\lvert\, \frac{\mathbf{0}}{I_{6}}\right.\right) \times J_{0} \times \mathbf{S}
$$

For the second column, the recovered masks vector of the first loop is $(1,0,1,0$, $1,1,0)$. However, as explained in Section 3.1, only the rows for which the index row is greater than the index pivot row are added to the pivot row. Thus, in the recovered masks vector, we replace one by zero for $i<1$. This gives us the vector $\sigma_{1}=(0,0,1,0,1,1,0)$. In addition, the masks vector of the second loop is $\sigma_{1}^{\prime}=(1,1,1,1,0,0,1)$.

$$
\underbrace{\left(\begin{array}{c|cccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\hline \mathbf{0} & & I_{5}
\end{array}\right.}_{J_{1}} \times \mathbf{S}_{0}\left[\begin{array}{llll}
1]=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)^{t} .
\end{array}\right.
$$

The result of this system corresponds to the vector $(1,0,1,1,1,1,0)$. At the end, we have the matrix

$$
\mathbf{S}_{1}=\left(\begin{array}{l|l}
1 \\
\mathbf{0} & \left(\sigma_{1}^{\prime}\right)^{t} \\
I_{5}
\end{array}\right) \times J_{1} \times \mathbf{S}_{0}
$$

We perform the same for the three remaining columns.

[^1]
C Source code for the attack on the reference implementation using SageMath

```
def matrix_equation(pivot_index, mask_firstloop,
        mask_secondloop, nbrow):
    # Initialization of the two matrices that will
        determine the system of equations
    Meq1 = identity_matrix(Zmod(2),nbrow)
    Meq2 = identity_matrix(Zmod(2),nbrow)
    # Placing coefficients at 1 for the additions on the pivot
        row, defined thanks to the 'masks, of the first loop
    for i in range(len(mask_firstloop)):
        if(mask_firstloop[i]):
            Meq1[pivot_index,i]=1
    # Placing coefficients at 1 for the additions on rows with
        the leading coefficient at 1, defined thanks to the masks
            of the second loop
    for i in range(len(mask_secondloop)):
        if(mask_secondloop[i]):
            Meq2[i,pivot_index]=1
    return Meq1,Meq2
def matrix_equation_columnindex(masks_firstloop,
        masks_secondloop, nbrow, columnindex):
    M = []
    # Initialization of M with the matrices of equations
    for i in range(columnindex+1):
        M.append(matrix_equation(i, masks_firstloop[i],
        masks_secondloop[i], nbrow))
    return M
def equations_to_solve(masks_firstloop, masks_secondloop,
        nbcolumn, nbrow, columnindex):
    # Initiatialization of the matrices to define the system of
        equations
    Meq = matrix_equation_columnindex(masks_firstloop,
        masks_secondloop,nbrow, columnindex)
    # Multiplication of the matrices to determine all the
        equations for the column "columnindex"
    Stmp = Meq[0][0]
```

```
for i in range(columnindex):
        Stmpbis = Meq[i][1]* Stmp
        Stmp =Meq[i+1][0] * Stmpbis
    #Solving the system of equations
    S = Stmp.solve_right(matrix(Zmod(2),masks_secondloop[
        columnindex]).transpose())
    return S
```


D Source code for the attack on the GitHub implementation using SageMath

```
# matrix_equation returns a matrix of all the additions made
        on rows to get the system of equation for given pivot
        index and masks.
def matrix_equation(index_column, pivot_index, mask1, mask2,
        mask3, nbrow):
    copy_pivot_index = pivot_index
        # If mask1 is full of ones then the column does not
        contain a pivot or the pivot is on the last row.
        # In the first case we return the identity matrix,
        # Else the position of the first zero on maski determines
        the pivot's position.
    if(mask1.count (0) ==0) :
        if(mask2[-1]&mask3[-1] == 1):
            pivot_position= nbrow-1
        else:
            return identity_matrix(Zmod(2),nbrow), copy_pivot_index
        else:
            if(mask1.index (0)==0) :
                pivot_position= pivot_index
            else:
            pivot_position = mask1.index(0) -1
        # Initialization of the two matrices that will determine
        the system of equations
    Mpivot = identity_matrix(Zmod(2),nbrow)
    Mrows = identity_matrix(Zmod(2),nbrow)
    # Then the matrix Mpivot get an additionnal one that
        indicates which row has been added to pivot row
    Mpivot[pivot_index, pivot_position] = 1
        # The pivot row is added to the processed row when (mask2
        [i] and mask3[i])=1.
        # We use those mask to determine when operations on the
        rows have been performed except for the pivot row.
```

```
8
    matrix Mrows at the position i (number of the processed
        row) and the pivot index.
    for i in range(nbrow):
        if((mask2[i]&mask3[i])==1):
            Mrows[i,pivot_index]=1
    # Meq is the matrix representation of all the addition to
        make to get the system of equation
    Meq = Mrows*Mpivot
    copy_pivot_index = pivot_index + 1
    return Meq, copy_pivot_index
def matrix_equation_columnindex(mask1s, mask2s,mask3s,nbrow,
        columnindex):
    M = []
    pivot_index=0
    # Initialization of M with the matrices of equations
    for i in range(columnindex):
        R = matrix_equation(i, pivot_index, mask1s[i], mask2s[i],
            mask3s[i],nbrow)
        # In the case there is no pivot in a column, the index
        pivot is unchanged
        pivot_index = R[1]
        M. append (R [0])
    return M
def solution_vector(mask2s,columnindex):
    # Return the vector solution of the system of equation for
        the column "columnindex"
    return matrix(Zmod(2),mask2s[columnindex])
def equations_to_solve(mask1s, mask2s,mask3s,nbcolumn,nbrow,
        columnindex):
    # In the case we want to recover the column 0 of the
        matrix, the vector mask2 gives directly the solution
    if(columnindex==0):
        S = solution_vector(mask2s,columnindex)
        return S
    # Initiatialization of the matrices to define the system of
        equations
    Meq = matrix_equation_columnindex(mask1s,mask2s,mask3s,
        nbrow, columnindex)
    # Multiplication of the matrices to determine all the
        equations for the column "columnindex"
    Stmp = identity_matrix(Zmod(2),nbrow)
    for i in range(columnindex):
```

```
Stmp = Meq[i]*Stmp
#Solving the system of equations
v_sol = solution_vector(mask2s,columnindex)
S = Stmp.solve_right(v_sol.transpose()).transpose()
return S
```


E Algorithms for countermeasures with randomization

```
Algorithm 5: Gaussian elimination in constant time with randomiza-
tion
    Input: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\)
    Output: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\) in systematic form
    mask \(=\) dimension \(=0\)
    \(L \leftarrow\) array containing indexes \(0, \ldots, n-1\)
    for \(j=0, \cdots, m-1\) do
    pivot_row \(=\min (\) dimension,\(n-1)\)
    randpivot \(=\) random \((\) pivot_row \(+1, n-1)\)
    exchange \(s_{\text {pivot_row }}\) and \(s_{\text {randpivot }}\)
    \(L=\) FisherYatesShuffle \((L)\)
    for \(i=0, \cdots, n-1\) do
        randrow \(=L[i]\)
        mask \(=s_{\text {pivot_row }, j} \oplus s_{\text {randrow, }}\)
            \(t m p=m a s k \otimes s_{\text {randrow }}\)
            if randrow > pivot_row then
            \(s_{\text {pivot_row }}=s_{\text {pivot_row }} \oplus t m p\)
            else
            \(d u m m y=s_{\text {pivot_r }_{\_} \text {row }} \oplus t m p\)
        end
        end
        \(L=\) FisherYatesShuffle \((L)\)
        for \(i=0, \cdots, n-1\) do
            randrow \(=L[i]\)
            if randrow \(\neq j\) then
                mask \(=s_{\text {randrow }, j}\)
            \(t m p=m a s k \otimes s_{\text {pivot_row }}\)
            if dimension \(<n\) then
                \(s_{\text {randrow }}=s_{\text {randrow }} \oplus t m p\)
            else
                \(d u m m y=s_{\text {randrow }} \oplus t m p\)
            end
        end
        end
        dimension \(=\) dimension \(+s_{\text {pivot_row, }, i}\)
    end
```

```
Algorithm 6: Row echelon form in constant time with randomization
    Input: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\)
    Output: \(\mathbf{S} \in \mathcal{M}_{n, m}\left(\mathbb{F}_{2}\right)\) in row echelon form and its rank \(=\) pivot_row
    pivot_row \(=0\)
    \(L \leftarrow\) array containing indexes \(0, \ldots, n-1\)
    for \(j=0, \cdots, m-1\) do
        randpivot \(=\) random \((\) pivot_row \(+1, n-1)\)
        exchange \(s_{\text {pivot_row }}\) and \(s_{\text {randpivot }}\)
        \(L=\) FisherYatesShuffle \((L)\)
        for \(i=0, \cdots, n-1\) do
            randrow \(=L[i]\)
            if \(s_{\text {pivot_row, }}==0\) then
                \(\operatorname{mask} 1=1\)
            else
                \(\operatorname{mask} 1=\mathbf{0}\)
            end
            if \(s_{\text {randrow }, j}==1\) then
                \(\operatorname{mask} 2=1\)
            else
                \(\operatorname{mask} 2=\mathbf{0}\)
            end
            if randrow \(\geq\) pivot row then
            \(\operatorname{mask} 3=1\)
            else
                \(m a s k 3=\mathbf{0}\)
            end
            \(s_{\text {pivot row }} \leftarrow s_{\text {pivot row }} \oplus s_{i} \wedge(\operatorname{mask} 1 \wedge(\operatorname{mask} 2 \wedge \operatorname{mask} 3))\)
            \(s_{\text {randrow }} \leftarrow s_{\text {randrow }} \oplus s_{\text {pivot_row }} \wedge(\) mask \(2 \wedge\) mask 3\()\)
        end
        if \(s_{\text {pivot_row, }}=1\) and pivot_row \(<n\) then
        pivot_row \(=\) pivot_row +1
        end
    end
```


[^0]: ${ }^{5}$ https://www.iar.com/knowledge/learn/debugging/
 how-to-measure-execution-time-with-cyclecounter/

[^1]: 6 https://www.sagemath.org/

