
Updates & Errata

May 2021

Based on a comment by Sergiu Carpov, we fixed a bug in our code related to
the use of the 80-bit long double and we re-ran all related scenarios. Find the
list of affected contents below:

Section 5.3:
– in the second scenario, all coefficients are equal to the bound minus one,
– for 80-bit long double, all scenarios were calculated correctly,
– updated Figure 2 with new measurements,
– updated Discussion.

Section 6:
– acknowledgment for Sergiu Carpov.

June 2021

We changed the y-axis labels in Figure 2 from decadic to binary.

Fast and Error-Free
Negacyclic Integer Convolution

using Extended Fourier Transform ?

Jakub Klemsa

Czech Technical University in Prague, Czech Republic
jakub.klemsa@fel.cvut.cz

Abstract. With the rise of lattice cryptography, (negacyclic) convolu-
tion has received increased attention. E.g., the NTRU scheme internally
employs cyclic polynomial multiplication, which is equivalent to the stan-
dard convolution, on the other hand, many Ring-LWE-based cryptosys-
tems perform negacyclic polynomial multiplication. A method by Cran-
dall implements an efficient negacyclic convolution over a finite field of
prime order using an extended Discrete Galois Transform (DGT) – a fi-
nite field analogy to Discrete Fourier Transform (DFT). Compared to
DGT, the classical DFT runs faster by an order of magnitude, however,
it suffers from inevitable rounding errors due to finite floating-point num-
ber representation. In a recent Fully Homomorphic Encryption (FHE)
scheme by Chillotti et al. named TFHE, small errors are acceptable (al-
though not welcome), therefore we decided to investigate the application
of DFT for negacyclic convolution.
The primary goal of this paper is to suggest a method for fast negacyclic
convolution over integer coefficients using an extended DFT. The key
contribution is a thorough analysis of error propagation, as a result of
which we derive parameter bounds that can guarantee even error-free
results. We also suggest a setup that admits rare errors, which allows to
increase the degree of the polynomials and/or their maximum norm at
a fixed floating-point precision. Finally, we run benchmarks with parame-
ters derived from a practical TFHE setup. We achieve around 24× better
times than the generic NTL library (comparable to Crandall’s method)
and around 4× better times than a näıve approach with DFT, with no
errors.

Keywords: Negacyclic Convolution, Fast Fourier Transform, Fully Ho-
momorphic Encryption

1 Introduction

In 1994, Peter Shor discovered efficient quantum algorithms for discrete loga-
rithm and factoring [26], which started the quest to design novel quantum-proof
algorithms, aka. Post-Quantum Cryptography. Since then, there have emerged

? This is the full and updated version of the paper.

2 J. Klemsa

many new schemes, which are based on various problems that are believed
to be quantum hard. E.g., supersingular elliptic curve isogeny [18], multivari-
ate cryptography [12], or lattice cryptography [2], in particular Learning With
Errors (LWE) and its variants [24,21]. In addition, many Fully Homomorphic
Encryption (FHE) schemes (e.g. [6,8]) belong to lattice-based ones, including
Gentry’s first-ever FHE scheme [14]. Most notably, the NIST’s Post-Quantum
Cryptography Standardization Program entered the third “Selection Round”
in July 2020 [23], while lattice-based cryptosystems occur among the selected
algorithms.

With the popularity of lattice-based cryptography, the need for its fast im-
plementation has risen. Besides linear algebra, many schemes require a fast algo-
rithm for cyclic (i.e., mod XN −1) or negacyclic (i.e., mod XN +1) polynomial
multiplication. Some schemes work with polynomial coefficients modulo an in-
teger (e.g., NTRU [17]), however, our main interest is in the TFHE scheme [8],
where negacyclic multiplication of integer-torus polynomials is performed. Here
the torus refers to reals modulo 1, i.e., the fractional part of a real number. In
practice, torus elements are represented as unsigned integers, which represent
the fraction of 1 uniformly in the interval [0, 1). It follows that integer-torus
polynomial multiplication can be performed with their integer representation.
Also note that TFHE accepts small errors – we prefer to avoid them, but their
impact is not fatal for decryption.

Recently, there have emerged efforts to make TFHE work with multivalued
plaintexts [7], also applications of TFHE for homomorphic evaluation of neu-
ral networks show promising results [5]. In particular, for neural networks, it
holds that they are quite error-tolerant (also verified in [5]), which supports the
acceptability of errors.

Problem Statement. Our goal is to develop a method for fast negacyclic
multiplication of univariate integer polynomials. For this method, we aim to
estimate and tune its parameters in order to provide certain guarantees of its
correctness. As outlined above, we will not focus solely on an error-free case and
we will also accept the scenario, where errors may rarely occur. Last but not
least—as we intend our method also for an FPGA implementation—we derive
all results in a generic manner, i.e., without sticking to a concrete platform,
although we run our tests on an ordinary 64-bit machine.

Related Work. There is a long and rich history of methods for fast multi-
plication over various rings, ranging from Karatsuba’s algorithm [19], through
Fast Fourier Transform (FFT; [9]) to Schönhage-Strassen algorithm [25]. Most
of these methods are based on a similar principle as Bernstein pointed out in his
survey [4].

It was the classical cyclic convolution, which was accelerated by FFT and
Convolution Theorem, and which can be employed for polynomial multiplica-
tion modulo XN − 1, too. On the contrary, polynomial multiplication modulo

Negacyclic Integer Convolution using Extended Fourier Transform 3

XN+1 (negacyclic convolution) cannot be directly calculated via FFT. One pos-
sible approach was implemented as a part of the TFHE Library [28], although
not discussed in the paper [8]. However, this method suffers from a four-tuple
redundancy in its intermediate results. An effective (non-redundant) method for
negacyclic convolution has been proposed by Crandall [11] and recently improved
by Al Badawi et al. [3]. In these methods, polynomials are considered over a fi-
nite ring and both authors employed a number-theoretic variant of FFT, named
DGT, which operates on the field GF(p2). On the one hand, DGT calculates
exact results (as opposed to FFT, where rounding errors occur and propagate),
on the other hand, it runs significantly slower as it uses modular arithmetics.

Our Contributions. We propose an efficient algorithm for negacyclic convo-
lution over the reals, for which we derive estimates of bounds on the maximum
error and its variance. Based on our estimates, we show that our method can
be used for an error-free negacyclic convolution over integers. Or—in case we
admit errors—we suggest to relax the estimates in order to achieve higher per-
formance: either in terms of shorter number representation (useful in particular
for FPGA), longer polynomials, or larger polynomial coefficients that can be
processed. Finally, we provide experimental benchmarking results of our im-
plementation as well as we evaluate its rounding error magnitudes and result
correctness, even with remarkably underestimated parameters.

Paper Outline. In Section 2, we provide a brief overview of the required
mathematical background, i.e., cyclic and negacyclic convolutions, their relation
to modular polynomial multiplication, as well as the Discrete Fourier Trans-
form and Convolution Theorem. Next, in Section 3, we revisit a straightforward
FFT-based approach for negacyclic polynomial multiplication, and we propose
a method that avoids the calculation of redundant intermediates. We analyze
error propagation thoroughly in Section 4, where we suggest lower bounds on
floating point type bit-precision in order to guarantee certain levels of correct-
ness. In Section 5, we discuss the implementation details and we propose a set
of testing parameters with respect to TFHE. Using these parameters, we bench-
mark our implementation and we also examine the error magnitude and result
correctness. Finally, we conclude our paper in Section 6.

2 Preliminaries

In this section, we briefly recall some basic mathematical concepts related to
convolution and Discrete Fourier Transform.

Cyclic & Negacyclic Convolution. Let f ,g ∈ CN for some N ∈ N. As
opposed to the classical cyclic convolution defined as

(f ∗ g)k :=

N−1∑
j=0

fjg(k−j) mod N , (1)

4 J. Klemsa

negacyclic convolution adds a factor of −1 with each wrap of the cyclic index at
g, i.e.,

(f ∗̄ g)k :=

N−1∑
j=0

(−1)b
k−j
N cfjg(k−j) mod N . (2)

With respect to polynomials, it is easy to verify that the cyclic convolution
calculates the coefficients of a product of two polynomials modulo XN − 1.
Indeed, their coefficients can be considered cyclic since XN = 1. On the other
hand, the negacyclic convolution calculates the coefficients of a product of two
polynomials modulo XN + 1, since XN = −1 adds a factor of −1 with each
wrap.

Convolution Theorem. A relation known as the Convolution Theorem (CT)
states an equality between the Fourier image of convoluted vectors and an ele-
ment-wise (dyadic) product of their respective Fourier images (in the discrete
variant). CT writes as follows:

F(f ∗ g) = F(f)�F(g), (3)

where F(·) stands for the Discrete Fourier Transform (DFT) and � denotes the
dyadic multiplication of two vectors. In fact, DFT is a change of basis, defined
as

F(f)k :=

N−1∑
j=0

fj exp
(
−2πijk

N

)
= Fk, (4)

F -1(F)j =
1

N

N−1∑
k=0

Fk exp
(2πijk

N

)
= fj . (5)

Convolution theorem has gained its practical significance after Fast Fourier
Transform (FFT) was (re)invented1 in 1965 by Cooley & Tukey [9]. As opposed
to a direct calculation of DFT coefficients, which requires O(N2) time, FFT runs
in O(N logN). Next, by the convolution theorem, one can calculate the convo-
lution of two vectors as f ∗ g = F -1

(
F(f) � F(g)

)
, which spends O(N logN)

time, compared to O(N2) needed for a direct calculation.

3 Efficient Negacyclic Convolution

First, we describe a method for negacyclic convolution that uses the standard
cyclic convolution and FFT. We identify its redundancy and briefly comment on
possible workarounds. Next, we outline an approach that yields no redundancy
and achieves a 4× better performance than the previous method.

1 Goldstine [15] attributes an FFT-like algorithm to C. F. Gauss dating to around
1805.

Negacyclic Integer Convolution using Extended Fourier Transform 5

3.1 Redundant Approach

Since (negacyclic) convolution is equivalent to (negacyclic) polynomial modular
multiplication, we switch to the polynomial point of view for now. Interested in
polynomial multiplication modulo XN + 1, we note that X2N − 1 = (XN − 1) ·
(XN + 1). Hence, we can calculate the product first modulo X2N − 1 (via cyclic
convolution of 2N elements) and then only reduce the result modulo XN + 1.
This method can be optimized based on the following observations.

Observation 1 (Redundancy of negacyclic extension). Let p ∈ R[X] be a real-
valued polynomial of degree N − 1, N ∈ N, and let p̄(X) := p(X)−XN · p(X)
be a negacyclic extension of p(X). Then the Fourier image of coeffs(p̄) contains
zeros at eventh positions (indexed from 0). In addition, the remaining coefficients
(at oddth positions) are mirrored and conjugated. I.e.,

F
(
coeffs(p̄)

)
= (0, P1, 0, P3, . . . , 0, PN−1, 0, PN−1, . . . , 0, P3, 0, P1). (6)

Note 1. Given N input (real-valued) polynomial coefficients, F
(
coeffs(p̄)

)
needs

to calculate 2N complex values, i.e., 4N real values. The redundancy is clearly
in the N complex zeros and in the N/2 complex conjugates.

Observation 2 (Convolution of negacyclic extensions). Let p, q ∈ R[X] be real-
valued polynomials of degree N−1 for some N ∈ N and let p̄, q̄ be their respective
negacyclic extensions. Then it holds

coeffs
(
p·q mod (XN+1)

)
=

1

2
F -1
(
F
(
coeffs(p̄)

)
�F

(
coeffs(q̄)

))
[0 . . . N−1]. (7)

By Observation 1, it follows that the dyadic multiplication in (7) can only
be performed at odd positions of the first half, the rest can be copied (with
appropriate sign). Also note that after F -1, the coefficients are negacyclic, hence
we can only take the first half of the vector. This method is implemented in the
original TFHE Library [28].

Possible Improvements. The clear goal is to omit all calculations leading to
redundant values as outlined in Note 1. Digging deeper into FFT, we deduced
the same initial step as proposed by Crandall [11] in his method for negacyclic
convolution (namely, the folding step). However, without the additional twisting
step, we ended up with a bunch of numbers, from which we were not able to
recover the original values efficiently. Therefore, we decided to adapt the concept
of the method by Crandall.

3.2 Non-Redundant Approach

The method for negacyclic polynomial multiplication by Crandall [11] is in-
tended for polynomials over Zp and it employs internally the Discrete Galois
Transform (DGT). DGT is an analogy to DFT, which operates over the field

6 J. Klemsa

GF(p2) for a Gaussian prime number p, whereas DFT operates over C. Note that
recently Al Badawi et al. [3] extended the Crandall’s method for non-Gaussian
primes, too. The Crandall’s method prepends DGT with two steps: folding and
twisting. In the following definition we propose an analogous transformation
using DFT.

Definition 1. Let f ∈ RN for some N ∈ N, N even. We define the Discrete
Fourier Negacyclic Transform (DFNT, denoted F̄) as follows:

F̄(f) := F
((

f [0 . . .N/2− 1] + i · f [N/2 . . . N − 1]

folding

)
�
(
ωj2N

)N/2−1

j=0

twisting

)
, (8)

where ωj2N = exp
(

2πij
2N

)
and F stands for the ordinary DFT. For the inverse

DFNT, we have

t := F -1(F)� (ω−j2N)
N/2−1
j=0 , (9)

F̄ -1(F) =
[
<(t),=(t)

]
. (10)

Note 2. We will refer to DFNT, where DFT is internally calculated via FFT,
as the Fast Fourier Negacyclic Transform (FFNT).

With respect to negacyclic convolution, DFNT has two important properties:

1. given N reals at input, it outputs N/2 complex numbers, i.e., there is no
redundancy, unlike in the previous approach, and

2. it can be used for negacyclic convolution in the same manner as DFT for
cyclic convolution, a theorem follows.

Theorem 1 (Negacyclic Convolution Theorem; NCT). Let f ,g ∈ RN for
some N ∈ N, N even. It holds

F̄(f ∗̄ g) = F̄(f)� F̄(g). (11)

For a full description of negacyclic convolution over the reals via NCT see
Algorithm 1. Next, we analyze this algorithm from the error propagation point
of view, which allows us to apply this method for negacyclic convolution over
integers, too.

4 Analysis of Error Propagation

Since Algorithm 1 operates implicitly with real numbers (starting N = 4, ω2N ’s
are irrational), there emerge rounding errors provided that we use a standard
finite floating-point representation. In this section, we analyze Algorithm 1 from
the error propagation point of view and we derive estimates of the bounds of
errors as well as their variance. Based on our estimates, we derive a bound
for sufficient bit-precision of the employed floating point representation, which
guarantees error-free convolution over the ring of integers. We also provide an es-
timate of the bit-precision based on error variance and the 3σ-rule. In addition
and as a byproduct, we derive all bounds for cyclic convolution, too. First of all,
we revisit the FFT algorithm, as we will refer to it later.

Negacyclic Integer Convolution using Extended Fourier Transform 7

Algorithm 1 Efficient Negacyclic Convolution over R.

Input: f ,g ∈ RN for some N ∈ N, N even.
Precompute: ωj2N := exp

(
2πij
2N

)
for j = −N/2 + 1 . . .N/2− 1.

Output: h ∈ RN , h = f ∗̄ g.

1: for j = 0 . . .N/2− 1 do
2: f ′j = fj + ifj+N/2 // fold
3: g′j = gj + igj+N/2

4: for j = 0 . . .N/2− 1 do
5: f ′′j = f ′j · ωj2N // twist

6: g′′j = g′j · ωj2N
7: F = FN/2(f ′′), G = FN/2(g′′)
8: for j = 0 . . .N/2− 1 do
9: Hj = Fj ·Gj

10: h′′ = F -1
N/2(H)

11: for j = 0 . . .N/2− 1 do
12: h′j = h′′j · ω−j2N // untwist

13: for j = 0 . . .N/2− 1 do
14: hj = <(h′j) // unfold
15: hj+N/2 = =(h′j)

16: return h

FFT in Brief. FFT [9] is a recursive algorithm, which builds upon the following
observation: for N = n1 · n2 and k = k1 + k2n1, we can write the k-th Fourier
coefficient of an f ∈ CN as

F(f)k1+k2n1
=

n2−1∑
j2=0

((
n1−1∑
j1=0

fj2+j1n2
ωj1k1
n1

)
F
(

(fj2+j1n2)
n1−1
j1=0

)
k1

ω−j2k1

N

)
ω−j2k2
n2

, (12)

where

ωjN = exp
(2πij

N

)
, (13)

while ω’s can be precomputed.

Note 3. There exist two major FFT data paths for N a power of two: the
Cooley-Tukey data path [9] (aka. decimation-in-time), and the Gentleman-Sande
data path [13] (aka. decimation-in-frequency). At this point, let us describe the
decimation-in-time data path, we will discuss their implementation consequences
later in Section 5.

For N a power of two, FFT splits its input into two halves and proceeds recur-
sively. Next, it multiplies the results with ω’s, and finally it proceeds adequate
pairs; see (14) and (15).

At the end of the recursion we have for N = 2:

FFT2 |f0 f1| = |f0 + f1 f0 − f1|. (14)

8 J. Klemsa

Next, for N ≥ 4 we have

FFTN (f) :

∣∣∣∣∣∣∣∣∣
f0 f1

f2 f3

...
...

fN−2 fN−1

∣∣∣∣∣∣∣∣∣
n1×n2 = N/2×2

FFTN/2 columns
−−−−−−−−−−→

(recursively)

∣∣∣∣∣∣∣∣∣
f ′0 f ′1
f ′2 f ′3
...

...
f ′N−2 f

′
N−1

∣∣∣∣∣∣∣∣∣�
∣∣∣∣∣∣∣∣∣

1 1
1 ω−1·1

N
...

...

1 ω
−1·(N/2−1)
N

∣∣∣∣∣∣∣∣∣
ω
−j2k1
N

−−−→

→

∣∣∣∣∣∣∣∣∣
f ′′0 f ′′1
f ′′2 f ′′3
...

...
f ′′N−2 f

′′
N−1

∣∣∣∣∣∣∣∣∣
FFT2 rows−−−−−−−→

∣∣∣∣∣∣∣∣∣
f ′′0 + f ′′1 f ′′0 − f ′′1
f ′′2 + f ′′3 f ′′2 − f ′′3

...
...

f ′′N−2 + f ′′N−1 f
′′
N−2 − f ′′N−1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
F0 FN/2

F1 FN/2+1

...
...

FN/2−1 FN−1

∣∣∣∣∣∣∣∣∣ .
(15)

FFT-1 proceeds similarly to the direct transformation with the following excep-
tions:

1. in the second step, it multiplies by ωj2k1

N (i.e., with a positive exponent), and
2. the final result is multiplied by 1/N (only once at the top level).

4.1 Error Propagation through FFT and FFNT

Let us begin with two lemmas, which provide bounds on the error and variance
of complex multiplication and FFT, respectively. Note that we will assume for
our estimates of variance bounds that the rounding errors are uniformly random
and independent.

Note 4. We will distinguish two types of the maximum norm ‖·‖∞ over CN . For
1. error vectors, and for 2. other complex vectors, we consider:

1. the maximum of real and imaginary parts (i.e., rectangular), and
2. the maximum of absolute values (i.e., circular), respectively.

Lemma 1. Let a, b ∈ C, |a| ≤ A0 and |b| ≤ B0 for some A0, B0 ∈ R+. Then

|a · b| ≤ A0 ·B0, (16)

‖Err(a · b)‖∞ /
√

2 ·
(
A0 · ‖Err(b)‖∞ +B0 · ‖Err(a)‖∞

)
, and (17)

Var
(
Err(a · b)

)
/ 2 ·

(
A2

0 · Var
(
Err(b)

)
+B2

0 · Var
(
Err(a)

))
, (18)

where we neglected second-order error terms and for (18), we further assumed
that the errors of a and b are independent.

Proof. Let a = (p+Ep)+i(q+Eq) and b = (r+Er)+i(s+Es), where we denote
the parts’ bounds as |p| ≤ P0 etc. According to Note 4, we split the complex
error into parts – we write for the real part (similarly for the complex part)

Err
(
<(a · b)

)
= pEr + rEp − (qEs + sEq) + negl., (19)

Negacyclic Integer Convolution using Extended Fourier Transform 9

which can be bounded as∣∣Err
(
<(a · b)

)∣∣ / P0‖Err(b)‖∞ +R0‖Err(a)‖∞ +Q0‖Err(b)‖∞ + S0‖Err(a)‖∞ /

/ (P0 +Q0)‖Err(b)‖∞ + (S0 +R0)‖Err(a)‖∞. (20)

Since |p+ iq| / A0, we can bound P0 +Q0 /
√

2A0 and the result (17) follows,
similarly for (18).

Lemma 2. Let f ∈ CN , where N = 2ν for some ν ∈ N, ‖f‖∞ ≤ 2ϕ0 for some
ϕ0 ∈ N, and let χ denote the bit-precision of ω’s as well as all intermediate
values during the calculation of FFTN (f) =: F, represented as a floating point
type. Then

‖F‖∞ ≤ 2ϕ0+ν , (21)

‖Err(F)‖∞ / cH ·
(√

2 + 1
)ν

+ cN · 2ν (for ν ≥ 2), and (22)

Var
(
Err(F)

)
/ dH · 3ν + dN · 4ν (for ν ≥ 2), (23)

where

cH = 2(
√

2− 1) · ‖Err(f)‖∞ + (2−
√

2) · 2ϕ0−χ+1,

dH = 2/3 Var
(
Err(f)

)
− 8/27 22ϕ0−2χ,

cN = −(2 +
√

2) · 2ϕ0−χ−1,

dN = 1/6 22ϕ0−2χ.

(24)

Proof. We write
FFTN : FFT2 ◦ (�ωN) ◦ FFTN/2, (25)

from where we derive recurrence relations for the bounds on absolute value, error
and variance.

In each recursion level, the values propagate to a lower level, then they are
multiplied by a complex unit and two such values are added, or subtracted.
Firstly, note that in every level the initial bound on the absolute value is doubled,
hence (21) follows.

Regarding the errors, it is important to note that the final FFT2 acts on two
values, each of which has been previously multiplied by ωj2k1

N , where j2 ranges
in {0, 1}. I.e., one value is multiplied by 1 and only the other is multiplied by
a (mostly) non-trivial complex unit, which is rounded to χ bits of precision, i.e.,
‖Err(ω)‖∞ ≤ 2−χ−1. Putting things together, we get the following recurrence
relations for the bounds on the error and its variance after ν levels, respectively:

Eν =
√

2 ·
(
1 · Eν−1 + 2ϕ0+ν−1 · 2−χ−1

)
+ Eν−1 =

=
(√

2 + 1
)
· Eν−1 +

√
2 · 2ϕ0+ν−χ−2, (26)

E2 = (E1 + 2ϕ0+1 · Eω4

=0

) ·
√

2 + E1 = (
√

2 + 1)E1 = 2(
√

2 + 1)E0, and (27)

Vν = 2 ·
(
12 · Vν−1 + (2ϕ0+ν−1)2 · 1/12 (2−χ)2

)
+ Vν−1 =

= 3Vν−1 + 1/3 22ϕ0+2ν−2χ−3, (28)

V2 = 3V1 = 6V0, (29)

10 J. Klemsa

where in (27), we applied the fact that ω4 is error-free; cf. (13). Also note that the
error more than doubles in each step (while the bound only doubles), therefore
the χ bits of precision are sufficient and rounding errors can be neglected. The
results follow by solving (26) and (27), and (28) and (29), respectively.

In the following proposition, we bound the error and variance of the result
of cyclic and negacyclic convolution via FFT /FFNT, respectively. For a quick
reference, we provide an overview of these methods in (30) and (31), respectively:

f
FFTN−−−→ F

g
FFTN−−−→ G

�−→ H
FFT−1

N−−−−→ h = f ∗ g, (30)

f
fold−−→ f ′

twist−−−→ f ′′
FFTN/2−−−−−→ F̄

g
fold−−→ g′

twist−−−→ g′′
FFTN/2−−−−−→ Ḡ

�−→ H̄
FFT−1

N/2−−−−−→ h′′
untwist−−−−→ h′

unfold−−−−→ h̄ = f ∗̄ g.

(31)

Proposition 1. Let f ,g ∈ RN , where N = 2ν for some ν ∈ N, ‖f‖∞ ≤ 2ϕ0 and
‖g‖∞ ≤ 2γ0 for some ϕ0, γ0 ∈ N, and let χ denote the bit-precision of ω’s as well
as all intermediate values during the calculation of FFTN (·) and its inverse,
represented as a floating point type. We denote h := FFT−1

N

(
FFTN (f)�FFTN (g)

)
and h̄ := FFNT−1

N

(
FFNTN (f) � FFNTN (g)

)
, while we consider the errors as

‖Err(h)‖∞ = ‖h− f ∗ g‖∞ and ‖Err(h̄)‖∞ = ‖h̄− f ∗̄ g‖∞, respectively. Then

log‖Err(h)‖∞ / (2ν − 2) · log
(√

2 + 1
)

+ ϕ0 + γ0 − χ+ 4, (32)

log Var
(
Err(h)

)
/ 4ν + 2ϕ0 + 2γ0 − 2χ− 1− log(3), and (33)

log‖Err(h̄)‖∞ / (2ν − 4) · log
(√

2 + 1
)

+ ϕ0 + γ0 − χ+ 4 + log(3) + 1/2, (34)

log Var
(
Err(h̄)

)
/ 4ν + 2ϕ0 + 2γ0 − 2χ− 3. (35)

Proof. Find the proof in Appendix A.

We apply our estimates of the error and variance bounds in order to derive
two basic parameter setups for convolution over integers: an error-free setup and
a setup with rare errors based on the 3σ-rule; see the following corollary.

Corollary 1. Provided that

χ
(c.)
0 & 2 log

(√
2 + 1

)
≈2.54

·ν + ϕ0 + γ0 + 5− 2 log
(√

2 + 1
)

≈2.46

, or (36)

χ
(nc.)
0 & 2 log

(√
2 + 1

)
≈2.54

·ν + ϕ0 + γ0 + 5 + log(3) + 1/2− 4 log
(√

2 + 1
)

≈2.00

, (37)

we have ‖Err(h)‖∞ . 1/2, or ‖Err(h̄)‖∞ . 1/2, which means an error-free cyclic,
or negacyclic convolution on integers via FFTN , or FFNTN , respectively. I.e.,

Negacyclic Integer Convolution using Extended Fourier Transform 11

for f ,g ∈ ZN , we have⌊
FFT−1

N

(
FFTN (f)� FFTN (g)

)⌉
= f ∗ g, or (38)⌊

FFNT−1
N

(
FFNTN (f)� FFNTN (g)

)⌉
= f ∗̄ g, (39)

respectively, up to negligible probability.
Next, if

χ
(c.)
3σ & 2ν + ϕ0 + γ0 + 1/2 log(6)

≈1.29

, or (40)

χ
(nc.)
3σ & 2ν + ϕ0 + γ0 + log(3)− 1/2

≈1.08

, (41)

we have 3
√

Var
(
Err(h)

)
. 1/2, or 3

√
Var
(
Err(h̄)

)
. 1/2, which estimates the

required floating point type precision for the respective convolution variant based
on the 3σ-rule.

Note 5. In the most common practical setting with the binary64 type as per
IEEE 754 standard [1] (aka. double), we have χ = 53 bits of precision. For the
80-bit variant of the extended precision format (aka. long double), we have
χ = 64 bits of precision.

5 Implementation & Experimental Results

In this section, we briefly comment on how we use the data paths in our im-
plementation (as outlined in Note 3), we discuss the choice of parameters with
respect to TFHE, and then we focus on the following:

1. benchmarking with other implementations using chosen parameters,
2. performance on long polynomials using both 64-bit double and 80-bit long

double floating point number representations, and
3. error magnitude and correctness of the results.

Implementation Remarks. In our implementation of the Cooley-Tukey data
path [9], we adapted the 4-vector approach from the Nayuki Project [22], which
optimizes the RAM access for the most common 64-bit architectures. In a similar
manner, we implemented the Gentleman-Sande data path [13]. To calculate FFT
properly, both data paths require a specific reordering of their input or output,
respectively. The reordering is based on bit-reversal of position indexes, counting
from 0. E.g., for 16 elements (4 bits), we exchange the elements at positions
5↔ 10, since 5 = 0b0101 and 10 = 0b1010.

Since our goal is solely convolution, i.e., we do not care about the exact order
of the FFT coefficients, the bit-reverse reordering can be omitted, as pointed out

12 J. Klemsa

by Crandall and Pomerance [10]. By construction, it follows that the Gentleman-
Sande data path must be used for the direct transformation and the Cooley-
Tukey data path for the inverse.

For benchmarking purposes, we also adopted some code from the TFHE Li-
brary [28] to compare the redundant and non-redundant approaches; cf. Sec-
tions 3.1 and 3.2, respectively.

Relation to the TFHE Parameters. The main (cryptographic) motivation
of our algorithm for negacyclic convolution over integers is the negacyclic poly-
nomial multiplication in the TFHE scheme [8]. Below we outline a relation of the
TFHE parameters to the parameters of negacyclic convolution via FFNT. As a
result, we suggest a reasonable parameter setup for benchmarking.

In TFHE, negacyclic polynomial multiplication occurs in the bootstrapping
procedure (namely, in the calculation of the external product), where an integer
polynomial is multiplied by a torus polynomial. The coefficients of the right-
hand side (torus) polynomial can be represented as integers scaled to [0, 1) and
bounded by 2 to the power of their bit-precision, denoted by τ . In the left-hand
side (integer) polynomial, the coefficients are bounded by 2γ , where γ is one of
the fundamental TFHE parameters. By construction, the parameter γ is smaller
than τ , namely, γ ≤ τ/l, where l is another TFHE parameter. In a corner case, it
can be γ = 1 and the bound can be hence as low as 20.

Based on our preliminary calculations for multivalue TFHE, we need the
degree of TFHE polynomials to be at least N = 214 for 8-bit plaintexts with 128-
bit security, and the torus precision to be at least τ = 34 (both can be smaller
for shorter plaintexts). Finally, we suggest to run the tests using polynomials
with ϕ0 = γ0 = τ/2 = 17 and N = 210, . . . , 214.

5.1 Benchmarking Results

As a reference for benchmarking of our implementation [20] of negacyclic convo-
lution, we have chosen the NTL Library [27] and the redundant method (as used
in the original TFHE Library [28]; cf. Section 3.1), for which we used the same
implementation of FFT as for our non-redundant method. Note that the imple-
mentation by Al Badawi et al. [3] shows similar results to the popular NTL (only
about 1.01–1.2× faster) and they also show that NTL is faster than the concur-
rent FLINT Library [16]. For NTL, we tested both ZZ pX and ZZ pE classes, while
the latter shows slightly better performance, hence we used that for benchmark-
ing. Find the results of our benchmarks in Table 1.

Note 6. During the parameter setup, we silently passed over the fact that χ = 53
(bit-precision of double) is lower than our 3σ-rule estimates for all tested ν’s,

as per (41) in Corollary 1. Indeed, they dictate χ
(nc.)
3σ & 2ν + ϕ0 + γ0 + 1.08 =

55.08 . . . 63.08. For this reason, we reran the scenario with ν = 14 for 1 000-times,
we checked the results for correctness, and we did not detect any error across all
tested polynomials.

Negacyclic Integer Convolution using Extended Fourier Transform 13

Degree (N) 210 211 212 213 214

NTL [ms] 0.617 1.258 2.643 6.132 12.771

FFT2N [ms] 0.122 0.230 0.458 0.982 2.277

FFNTN [ms] 0.036 0.069 0.120 0.243 0.541

FFNTN over FFT2N 3.35× 3.33× 3.82× 4.04× 4.21×

FFNTN avg. error [‰] 0.06 0.08 0.12 0.18 0.27

FFNTN max. error [‰] 0.37 0.55 0.98 1.47 1.95

Table 1: Mean time per negacyclic multiplication of uniformly random polynomi-
als with ‖p‖∞ ≤ 217 using NTL (similar times as FLINT), FFT2N on negacyclic
extension (implemented in [28]), and FFNTN , both using 64-bit double. Speedup
of FFNTN over FFT2N . Average and maximum rounding errors of FFNTN . 1 000
runs per degree and method on an Intel Core i7-8550U CPU @ 1.80GHz.

5.2 Performance on Long Polynomials

As a reference for other prospective applications of our method, we tested our
code on longer polynomials, too. We provide the performance results using both
64-bit double and 80-bit long double in Figure 1.

0.1

1

10

100

214 215 216 217 218

3.61× 3.48× 2.99× 3.18× 3.34×

T
im

e
[m

s]

Polynomial degree N

Factor

long double (80-bit)
double (64-bit)

Fig. 1: Mean time per polynomial multiplication modXN+1 and speedup factor
of double over long double. Uniformly random polynomials with ‖p‖∞ ≤ 217,
1 000 measurements.

14 J. Klemsa

5.3 Error Magnitude & Correctness on Long Polynomials

As outlined in Note 6, our experimental setup exceeds the derived theoretical
bounds, even for lower-degree polynomials. Hence, our next goal is to evaluate
the error magnitude as well as to check the correctness of the results. We tested
the following input polynomial scenarios:

1. uniformly random coefficients (bounded by ‖p‖∞ ≤ 2ϕ0), and
2. all coefficients equal to the bound minus one, i.e., 2ϕ0 − 1.

Find the results of the random polynomial setup in Figure 2, where we tested
both 64-bit double and 80-bit long double implementations.

Regarding the setup with all coefficients equal to the bound, we ran the same
scenarios as for random polynomials (cf. Figure 2). With 64-bit double, the only
correct results were obtained for the setup with ‖p‖∞ ≤ 217 and N = 214, or
N = 215, respectively. With 80-bit long double, all scenarios were calculated
correctly, with maximum rounding error . 0.109 for ‖p‖∞ ≤ 220 and N = 218.

2−13

2−11

2−9

2−7

2−5

2−3

1/2

1

214 215 216 217 218

Polynomial degree N

214 215 216 217 218
2−23

2−21

2−19

2−17

2−15

2−13

2−11

Polynomial degree N

R
ou

n
d
in
g
er
ro
r

64-bit double

‖p‖∞ ≤ 217

‖p‖∞ ≤ 218

80-bit long double

‖p‖∞ ≤ 219

‖p‖∞ ≤ 220

Fig. 2: Median (solid) and Maximum (dashed) rounding errors for uniformly
random polynomials. Erroneous results emphasized by empty red circles. 10
measurements per degree, bound and floating point type.

Negacyclic Integer Convolution using Extended Fourier Transform 15

Discussion. We observed a factor ∼ 4× speedup of FFNTN (i.e., the non-
redundant approach) over FFT2N (i.e., the redundant approach). Compared to
NTL, which calculates the coefficients precisely using a number-theoretic trans-
form, our FFT-based method shows by more than an order of magnitude better
results. Even though we ran our tests with underestimated precision, we obtained
correct results for much larger polynomials with uniformly random coefficients.
Note that random-like polynomials occur in TFHE, hence our benchmarking
scenario with random polynomials is representative for the usage with TFHE.

In addition, we tested our code with the 80-bit long double floating point
type. It enabled error-free calculations with polynomials of higher degree and/or
with greater coefficient bound, yet it was only about 3–4 times slower than the
variant with the 64-bit double.

6 Conclusion

We showed that FFT-based convolution algorithms can significantly outperform
similar algorithms based on number-theoretic transforms, and they can still guar-
antee error-free results in the integer domain. We derived estimates of the lower
bound of the employed floating point type for error-free cyclic and negacyclic
convolutions, as well as we suggested the bounds based on the 3σ-rule.

We suggested a set of testing parameters for negacyclic convolution with
particular respect to the usage with the TFHE Scheme on a multivalue plain-
text space. We ran a benchmark that compares the popular NTL Library, the
approach that is used in the TFHE Library, and our approach. Compared to
the generic NTL Library, which employs a number-theoretic transform, and to
the TFHE Library approach, which calculates redundant intermediate values, we
achieved a speedup of around 24× and 4×, respectively.

Finally, our experiments have shown approximate bounds for practical error-
free results. Namely, we could multiply polynomials without errors up to degree
N = 216 and norm ‖p‖∞ ≤ 220 with uniformly random coefficients, and up to
degree N = 214 with coefficients equal to 217. To conclude, we find our approach
particularly useful for negacyclic integer polynomial multiplication, not only in
TFHE.

Future Directions. Our aim is to implement a version based on the 64-bit
signed integer type instead of double, where we would keep the exponent at one
place for the entire array. Such an approach requires less demanding arithmetics
and it would serve as a proof-of-concept for a propective FPGA implementation.

Acknowledgments. We would like to thank Ahmad Al Badawi and Sergiu
Carpov for useful comments and remarks.

16 J. Klemsa

References

1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008), pages 1–84, 2019.

2. Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 99–108,
1996.

3. Ahmad Al Badawi, Bharadwaj Veeravalli, and Khin Mi Mi Aung. Efficient poly-
nomial multiplication via modified discrete galois transform and negacyclic convo-
lution. In Future of Information and Communication Conference, pages 666–682.
Springer, 2018.

4. Daniel J Bernstein. Multidigit multiplication for mathematicians. 2001.
5. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast ho-

momorphic evaluation of deep discretized neural networks. In Annual International
Cryptology Conference, pages 483–512. Springer, 2018.

6. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):13, 2014.

7. Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques for
multi-value input homomorphic evaluation and applications. In Cryptographers’
Track at the RSA Conference, pages 106–126. Springer, 2019.

8. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
fast fully homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–
91, 2020.

9. James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

10. Richard Crandall and Carl B Pomerance. Prime numbers: a computational per-
spective, volume 182. Springer Science & Business Media, 2006.

11. Richard E Crandall. Integer convolution via split-radix fast galois transform. Cen-
ter for Advanced Computation Reed College, 1999.

12. Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signa-
ture scheme. In International Conference on Applied Cryptography and Network
Security, pages 164–175. Springer, 2005.

13. W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun and
profit. In Proceedings of the November 7-10, 1966, fall joint computer conference,
pages 563–578, 1966.

14. Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, volume 20.
Stanford University, 2009.

15. Herman H Goldstine. A history of numerical analysis from the 16th through the
19th century. Bull. Amer. Math. Soc, 1:388–390, 1979.

16. William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library
for Number Theory. https://www.flintlib.org/, 2011.

17. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In International Algorithmic Number Theory Symposium, pages
267–288. Springer, 1998.

18. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19–34. Springer, 2011.

19. Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital
numbers by automatic computers. In Doklady Akademii Nauk, volume 145, pages
293–294. Russian Academy of Sciences, 1962.

https://www.flintlib.org/

Negacyclic Integer Convolution using Extended Fourier Transform 17

20. Jakub Klemsa. Benchmarking FFNT. https://gitlab.fit.cvut.cz/klemsjak/
ffnt-benchmark, 2021.

21. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

22. Fast Fourier transform in x86 assembly. https://www.nayuki.io/page/
fast-fourier-transform-in-x86-assembly, 2021. Accessed: 2021-01-30.

23. NIST. NIST’s Post-Quantum Cryptography Program Enters “Se-
lection Round”. https://www.nist.gov/news-events/news/2020/07/
nists-post-quantum-cryptography-program-enters-selection-round, 2020.

24. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):1–40, 2009.

25. Arnold Schönhage and Volker Strassen. Schnelle multiplikation grosser zahlen.
Computing, 7(3):281–292, 1971.

26. Peter W Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th annual symposium on foundations of computer science,
pages 124–134. Ieee, 1994.

27. Victor Shoup et al. NTL: A library for doing number theory. https://libntl.org/,
2001.

28. TFHE: Fast Fully Homomorphic Encryption Library over the Torus. https://
github.com/tfhe/tfhe, 2016.

https://gitlab.fit.cvut.cz/klemsjak/ffnt-benchmark
https://gitlab.fit.cvut.cz/klemsjak/ffnt-benchmark
https://www.nayuki.io/page/fast-fourier-transform-in-x86-assembly
https://www.nayuki.io/page/fast-fourier-transform-in-x86-assembly
https://www.nist.gov/news-events/news/2020/07/nists-post-quantum-cryptography-program-enters-selection-round
https://www.nist.gov/news-events/news/2020/07/nists-post-quantum-cryptography-program-enters-selection-round
https://libntl.org/
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe

18 J. Klemsa

Appendix

A Proof of Proposition 1

Proof. Let us begin with the cyclic convolution. By (30) and Lemma 1 and 2,
we have

‖Err(F�G)‖∞ /
(
c
(f)
H ·

(√
2 + 1

)ν
'‖Err(F)‖∞

· 2γ0+ν

≥‖G‖∞
+ c

(g)
H ·

(√
2 + 1

)ν · 2ϕ0+ν
)
·
√

2 =

=
(√

2 + 1
)ν · 2ν+ϕ0+γ0−χ+2 ·

(
2−
√

2
)
·
√

2 =: EH, and
(42)

Var
(
Err(F�G)

)
/
(
d

(f)
N · 22ν

'Var
(
Err(F)

) · 22γ0+2ν

≥‖G‖2∞

+ d
(g)
N · 22ν · 22ϕ0+2ν

)
· 2 =

= 2/3 · 24ν+2ϕ0+2γ0−2χ =: VH, (43)

which we apply as the initial error and variance bound to (22) and (23), re-
spectively, together with multiplication by 1/N = 2−ν , which poses the only
difference between FFT-1 and FFT from the error point of view. We neglect
other than leading terms and we get

‖Err(h)‖∞ / 2−ν · 2(
√

2− 1) · EH

≈ c(H)
H

·
(√

2 + 1
)ν

/

/
(√

2 + 1
)2ν−2 · 2ϕ0+γ0−χ+4, and (44)

Var
(
Err(h)

)
/ 2−2ν · 1/6 · 22(ϕ0+γ0+2ν)−2χ

= d
(H)
N

·4ν = 1/6 · 24ν+2ϕ0+2γ0−2χ, (45)

and the cyclic results follow.

For the negacyclic convolution, we feed DFT with a folded and twisted input
vector; cf. (31). It enters DFT with error bounded as

‖Err(f ′′)‖∞ / (1 · 0 + 2ϕ0+1/2 · 2−χ−1) ·
√

2 = 2ϕ0−χ. (46)

Regarding variance, it shows that the term with Var
(
Err(f ′′)

)
will be neglected.

Next, we precompute

c
(f ′′)
H = 2(

√
2− 1) · ‖Err(f ′′)‖∞ + (2−

√
2) · 2ϕ0+1/2−χ+1 /

/ 6(
√

2− 1) · 2ϕ0−χ, and (47)

d
(f ′′)
N = 1/6 22(ϕ0+1/2)−2χ, (48)

Negacyclic Integer Convolution using Extended Fourier Transform 19

and apply into

‖Err(F̄� Ḡ)‖∞ /
(
c
(f ′′)
H ·

(√
2 + 1

)ν−1

'‖Err(F̄)‖∞

· 2γ0+1/2+ν−1

≥‖Ḡ‖∞
+

+ c
(g′′)
H ·

(√
2 + 1

)ν−1 · 2ϕ0+1/2+ν−1
)
·
√

2 =

= 3
(√

2 + 1
)ν−2 · 2ν+ϕ0+γ0−χ+2 =: EH̄, and (49)

Var
(
Err(F̄� Ḡ)

)
/
(
d

(f ′′)
N · 4ν−1

'Var
(
Err(F̄)

) · 22γ0+1+2ν−2

≥‖Ḡ‖2∞

+

+ d
(g′′)
N · 4ν−1 · 22ϕ0+1+2ν−2

)
· 2 =

= 1/3 · 24ν+2ϕ0+2γ0−2χ−1 =: VH̄. (50)

Next, we apply these estimates as the initial error and variance bound into (22)
and (23), respectively, together with multiplication by 2/N = 2−ν+1. We have

‖Err(h′′)‖∞ / 2−ν+1 · 2(
√

2− 1) · EH̄

≈ c(H̄)
H

·
(√

2 + 1
)ν−1 ≈

≈ 3
(√

2 + 1
)2ν−4 · 2ϕ0+γ0−χ+4, and (51)

Var
(
Err(h′′)

)
/ 2−2ν+2 · 1/6 · 2(2ϕ0+2γ0+2+4ν−4)−2χ

= d
(H̄)
N

·4ν−1 =

= 1/3 · 24ν+2ϕ0+2γ0−2χ−3, (52)

while in (52), it has shown that the term with VH̄ was not the leading term,
hence it was neglected. By (31) it remains to untwist and unfold, we have

‖Err(h′)‖∞ /
(
1 · 3(

√
2 + 1)2ν−4 · 2ϕ0+γ0−χ+4

'‖Err(h′′)‖∞

+ 22ν+ϕ0+γ0−1

≥‖h′′‖∞
·2−χ−1

)
·
√

2 ≈

≈ 3
√

2 · (
√

2 + 1)2ν−4 · 2ϕ0+γ0−χ+4, and (53)

Var
(
Err(h′)

)
/ (12 · 1/3 · 24ν+2ϕ0+2γ0−2χ−3

'Var
(
Err(h′′)

) + 24ν+2ϕ0+2γ0−2

≥‖h′′‖2∞

·1/12 · 2−2χ) · 2 =

= 24ν+2ϕ0+2γ0−2χ−3. (54)

Since the unfolding operation does not change the error, the negacyclic results
follow.

	 Fast and Error-FreeNegacyclic Integer Convolutionusing Extended Fourier Transform

