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Abstract. In this paper, we present a concretely efficient protocol for
private set intersection (PSI) in the multi-party setting using oblivious
pseudorandom function (OPRF). In fact, we generalize the approach
used in the work of Chase and Miao [CRYPTO 2020] towards deploying
a lightweight multi-point OPRF construction for two-party PSI. Our pro-
tocol only includes oblivious transfer (OT) extension and garbled Bloom
filter as its main ingredients and avoids computationally expensive oper-
ations. From a communication pattern perspective, our protocol consists
of two types of interactions. The first type is performed over a star-like
communication graph in which one designated party interacts with all
other parties via performing OTs as the sender. Besides, parties commu-
nicate through a path-like communication graph that involves sending a
garbled Bloom filter from the first party to its neighboring party follow-
ing the last one. This design makes our protocol to be highly scalable
due to the independence of each party’s complexity from the number of
participating parties and thus causes a communication and computation
complexities of O(nλk) where n is the set size, k is the number of hash
functions, and λ is the security parameter. Moreover, the asymptotic
complexity of the designated party is O(tnλ) which linearly scales with
the number of parties. We prove the security of our protocol against
semi-honest adversaries.

Keywords: Secure Multi-Party Computation · Private Set Intersection
· Oblivious Pseudorandom Function · Concrete Efficiency.

1 Introduction

Secure multi-party computation (MPC) has been the focus of an extensive
amount of scientific works over the last few decades. It deals with the general
problem of enabling a group of distrustful parties to jointly compute a function
of their private inputs without revealing anything but the result. Due to the
considerable progress in making the MPC protocols more and more efficient,
they have become truly practical and therefore found much more applications
in recent years.
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Private set intersection (PSI) is one of the important and well-studied MPC
protocols which allows a set of parties, each holding an input set, to compute
their intersection without leaking any other information beyond their intersec-
tion. There exist many privacy-preserving potential applications for PSI such as
advertising conversion [Mia+20], private contact discovery [Kal+19; Dem+18],
and more. Recently and due to the spread of the COVID-19 pandemic, there
has been an interdisciplinary quest to develop private contact tracing systems
to contain the outbreak. In this case, PSI also plays a crucial role in building
privacy-preserving solutions [DPT20; Dit+20].

During the last decade or so, many research-oriented works have been ded-
icated to proposing efficient constructions for the PSI functionality. In general,
there are two main approaches to the design of these constructions. The first is
using generic secure protocols that deal with the computation of logical or arith-
metic circuits by parties [HEK12; Pin+18; Pin+19b]. Although generic protocols
often yield computationally efficient constructions, having high communication
complexity for the PSI problem which requires the evaluation of large circuits is
a big hurdle in making them to be practically useful. What is good to note is that
it is now widely believed that communication and not computation, is the prin-
cipal bottleneck in MPC protocols like PSI [Ash+13; Hal18]. Another approach
is related to custom PSI protocols that mainly rely on cryptographic primitives
and various assumptions. Since this type of PSI protocols can achieve better
performance compared to the previous one, it has gained significant attention
among researchers.

Loosely speaking, existing custom PSI protocols can be categorized in the
following way. PSI protocols built from oblivious polynomial evaluation [FNP04;
HV17; Haz18; GS19], hard cryptographic assumptions [DT10; DT12], and obliv-
ious transfer (OT) and hashing structures [Kol+16; Pin+20; CM20]. There has
also been a branch of works on server-aided settings [KMS20; ATD20]. Since the
OT-based PSI protocols achieve a good balance between communication and
computation costs and indeed mainly benefit from cheap cryptographic tools,
are often regarded as the fastest concretely efficient solutions in which by this
term we refer to those constructions which do not use computationally too ex-
pensive tasks like polynomial evaluation and interpolation or vast public-key
operations (see [PSZ18] for an overview on different PSI settings).1

Notice that a large body of literature on two-party OT-based PSI uses a
primitive named oblivious pseudorandom function (OPRF) which is often in-
stantiated efficiently by means of symmetric-key techniques. Particularly, the
recent work of Chase and Miao [CM20] aims to investigate the trade-offs be-
tween communication and computation costs and enjoy the best of both worlds.
By introducing an interesting lightweight multi-point OPRF protocol, they pro-
pose a highly efficient semi-honest secure two-party PSI protocol that assuming
random oracle model its security can be enhanced to one-sided malicious secu-

1 Although to perform OT one needs to use public-key operations, in [Ish+03] a
method was introduced which enables to do quite a large number of OTs utiliz-
ing only efficient symmetric-key primitives.
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rity. The idea of considering a multi-point OPRF construction instead of the
common single-point version results in decreasing the communication complex-
ity of the protocol by a constant factor due to the fact that evaluation of each
element in the set will be required only for once.

Multi-Party PSI. While two-party setting encompasses the majority of exist-
ing works, multi-party PSI has not attracted that much attention in the litera-
ture. This might account for the fact that there is a seemingly inevitable need to
have interactions among parties which incurs an extreme communication cost to
the protocol and hence makes it practically infeasible. More recently, however,
few works including [Kol+17; HV17; IOP18; GN19] have come up with asymp-
totically efficient constructions for multi-party PSI in different security models.
Regardless of the tools and primitives used, the core idea underlying all these
constructions is considering a designated party who individually interacts with
all other parties throughout the protocol execution (i.e., star topology network).
This attitude towards multi-party PSI protocol appears to be useful since it
results in a reduction in intermediate exchanges between parties but has the
weakness of putting a high workload on the designated party which may be very
problematic in practical scenarios. Very recently, the approaches of [Kol+17;
IOP18], which led to concretely efficient constructions are extended by [Efr+21]
in a maliciously secure model.

Additional Related Work. The authors in [DCW13] present a two-party OT-
based PSI protocol using a variant of Bloom filter called garbled Bloom filter.
[RR16] follows the approach of the aforementioned protocol and presents a mali-
ciously secure protocol employing the cut-and-choose technique. A few construc-
tions like [Yin+20; Bud+20] concentrate on some variants of PSI in which they
study the problem of performing different sets of computations on the intersec-
tion. There are also a few works on threshold PSI such as [ZC18; GS19; Bad+20;
BDP20]. In [ZC18], authors introduce a protocol based on oblivious polynomial
evaluation for threshold PSI. The exciting work of [GS19] demonstrates a lower
bound on the communication complexity of two-party threshold PSI. The most
recent work of [Bad+20] takes this a stage further and extends the results to the
multi-party setting.

1.1 Our Contribution

We study the problem of private set intersection in the case that there are more
than two parties involved in the execution of the protocol, namely multi-party
PSI. When practicality comes into play, most of the current protocols on multi-
party PSI fail to meet the need because of suffering from either high communi-
cation or computational overhead for the considerable number of participating
parties or the large set sizes. In this work, we aim to present a concretely ef-
ficient multi-party PSI protocol following the idea of [CM20] in employing an
efficient multi-point OPRF construction that through leading to a better balance
between communication and computation costs causes [CM20] to be the fastest
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two-party PSI in moderate bandwidth compared to the state-of-the-art proto-
cols. Our multi-party PSI protocol has oblivious transfer and garbled Bloom
filter as its main components.

Our protocol leverages a combination of so-called star and path communica-
tion graphs which in the former, a designated party as the sender runs OTs with
all other parties, and in the latter, each party only sends a garbled Bloom filter
to his adjacent party in the direction of the last party. In light of this design,
our construction can be very scalable since the communication and computation
complexities of each party (except the designated party) only depend on his
own input set size and not on the number of parties involved in the protocol.
So, while the designated party has the asymptotic complexity of O(tnλ) which
linearly scales with the number of parties t, the complexity of each other party
is O(nλk) where n is the party’s set size, k is the number of hash functions (used
in garbled Bloom filter), and λ is the security parameter. Also, thanks to this
fusion of star and path communication graphs, instead of having a designated
party with significantly high communication overhead compared to others, the
distribution of cost is rather fair with respect to the number of parties t and
the number of hash functions k and therefore this prevents the designated party
from taking a lot of bandwidth. We consider semi-honest security and prove the
security of our protocol in this model.

2 Preliminaries

2.1 Notation

Throughout this paper, we consider t parties P1, P2, . . . , Pt who each owns an
input set X1, X2, . . . , Xt, respectively. We may refer to Pt as the leader and
all the other parties as clients. λ and σ are used to denote the computational
and statistical security parameters which the former deals with the hardness
of problems in the face of computationally bounded adversaries and the latter
is concerned with the attacks that may occur during protocol interactions. [n]
concisely shows a set of n items {1, 2, . . . , n}. By v[i], we refer to the i-th element
of the vector v. In an n×m matrix M , the i-th column is denoted as Mi where
i ∈ [m]. ‖x‖ denotes the hamming weight of a string x. We consider negl(λ) as
a negligible function that proceeds asymptotically towards zero faster than any

inverse polynomial for appropriately large inputs. Finally, we use s
R←− S to show

that s is sampled uniformly at random from S.

2.2 Secret Sharing Scheme

Secret sharing [Sha79] is one of the pivotal tools in cryptography which has nu-
merous applications in constructing secure computation protocols. In an (t, n)
secret sharing scheme, a secret s is distributed among n parties in a way that by
having up to t− 1 shares, no information about the secret is revealed. The sim-
plest form of an (n, n) secret sharing scheme can be achieved by means of bitwise-
XOR operation. In fact, one chooses n−1 random strings (v1, v2, . . . , vn−1), and
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then selects the last share by computing vn = s⊕ v1 ⊕ . . .⊕ vn−1. This scheme
has perfect security and for reconstructing the secret s having all shares are
required.

2.3 Bloom Filter

Bloom filter (BF) [Blo70] is a probabilistic compact data structure which is used
as a tool for efficient set membership checking. It randomly maps a set X con-
taining n items to a binary array of size M , where every single element maps
to a different subset of indices in the array. Bloom filter includes k independent
uniform hash functions H = {h1, . . . , hk} that hi : {0, 1}∗ → [M ] . At first,
all bits in the array are set to zero. To insert each element x ∈ X, one sets
BF [hi(x)] = 1 for all i ∈ [k]. To see whether the set X consists of an element
x′, one simply needs to check all the BF [hi(x

′)] are equal to one. Even if one of
the corresponding bits in the array be equal to zero, then it can be concluded
that the element x′ is not in the related set. On the other hand, if all of the
corresponding bits in array are equal to one, then x′ is in the set but for a de-
termined false-positive probability ε. The computed upper bound on ε is given

by pk(1 +O(kp

√
lnM−k ln p

M )) where p = 1− (1− 1
M )nk. It is shown in [DCW13]

that the optimal values to accomplish the best performance are k = M
n ln 2 and

M ≥ n log2(e). log2( 1
ε ).

Garbled Bloom Filter. A different version of BF was introduced in [DCW13]
which is called garbled Bloom Filter (GBF). To give a concise description of
GBF, we can refer to it as an extended Bloom filter that instead of having an
array consisting of single bits, it is an array consisting of bit strings where the
length of the bit string is determined by security parameter. Like BF, inser-
tion is done in GBF simply by computing the hash functions for each input
element x with regard to a set of uniform hash functions H = {h1, . . . , hk},
but instead of dealing with just single bits, some randomly chosen shares of x
are placed in those indices corresponded to x subjecting to the constraint that⊕k

i=1GBF [hi(x)] = x. Garbled property of GBF makes it computationally im-
possible to know whether a given element x is in the set, unless one queries
GBF on all the indices related to x. In this manner, the false-positive proba-
bility in GBF equals 2−λ. It can also be easily noticed that having two garbled
Bloom filters GBF1 and GBF2, regarding two sets X1 and X2, respectively,
GBF1 ⊕ GBF2 culminates with a GBF of X1 ∩ X2, where ⊕ is bitwise-XOR
operator.

2.4 Oblivious Transfer

A foundational cryptographic primitive used as a building block in many secure
computation protocols is oblivious transfer (OT) [Rab05] whose functionality is
presented in Figure 1. In an 1-out-of-2 OT, there exist a sender and a receiver,
where the sender has two strings (x0, x1) and the receiver has a choice bit c as
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Inputs: The sender inputs two strings (x0, x1) and the receiver inputs a choice bit
c ∈ {0, 1}.
Output: The functionality returns xc to the receiver and returns nothing to the sender.

Fig. 1: The functionality of oblivious transfer (FOT )

their inputs, respectively. After the execution of OT, the sender learns nothing
and the receiver learns xc without obtaining any information about x1−c. As
shown in [IR89], it cannot be possible to do OT without relying on public-key
operations. Thus, this was considered as the main constraint when it comes to
do a great number of OTs which is a typical task in PSI protocols. However,
[Ish+03] proposed a method called OT extension which makes it possible to do
an extensive number of OTs while using only a limited number of public-key
operations for initial OTs (i.e., known as base-OTs). Also, some variants of OT
are available. Random OT (ROT) refers to a setting in which the sender and
receive do not choose their inputs and they are chosen by the functionality itself.
By using ROT, the protocol can be performed with much less communication
overhead compared to OT.

2.5 Security Model

Definition 1. (Computational Indisguishability) Let X = {X(λ)}λ∈N and Y =
{Y (λ)}λ∈N are two probability distribution ensembles, we say that X and Y are
computationally indistinguishable, X ≈ Y , if for every probabilistic polynomial
time (PPT) algorithm, D, there exists a negligible function negl(λ) such that for
all sufficiently large λ

|Pr[D(λ,X(λ))]− Pr[D(λ, Y (λ))]| ≤ negl(λ).

Our protocol is secure against semi-honest adversaries who take control of the
corrupted parties and follow the protocol as specified, but try to get some other
honest parties’ private information. Note that we assume the leader does not
collude with any client. This assumption is widely used in the literature [Aba+17;
Zha+19]. Having this in mind, our protocol can tolerate up to t− 1 corruptions.

The security of an MPC protocol is typically proven respecting real/ideal
simulation paradigm. That is, a protocol is considered to be secure if the real
execution of the protocol Π computationally looks like the ideal execution of the
protocol F . To put in another way, imagine an ideal world where there exists a
fully trusted entity that parties can privately send their inputs to and then it
computes the result and returns it back to the parties. Surely, this ideal world
execution captures all the required security we want. So, if we somehow show
that for any real world adversary, the real and ideal execution of the protocol
are computationally indistinguishable, then we can deduce the protocol Π is
secure. Here, we give the formal definition of real/ideal simulation paradigm for
two-party protocol introduced in [Gol09].
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Definition 2. (Semi-Honest Security) Let denote Pi’s view in the real execution
of the protocol Π as viewΠi (X1, X2) for i ∈ [2]. Fi(X1, X2) denotes the output of
ideal functionality for Pi. The protocol Π securely realizes the ideal functionality
F in the presence of static semi-honest adversaries if there exist PPT simulators
S1 and S2 for all inputs such that

{S1(λ,X1,F1(X1, X2))} ≈ {viewΠ1 (X1, X2))},

{S2(λ,X2,F2(X1, X2))} ≈ {viewΠ2 (X1, X2))}.

2.6 Hamming Correlation Robustness

The security of some protocols can be proven using a weaker assumption than
random oracle model which is called Correlation Robustness [KK13; Pin+19a;
CM20]. In this paper we use the definition presented in [Pin+19a; CM20] to
prove the security of our protocol.

Definition 3. (Hamming Correlation Robustness) Let H be a hash function
with the input length n. Then H is d-Hamming correlation robust if, for any
a1, . . . , am, b1, . . . , bm ∈ {0, 1}n with ‖bi‖ ≥ d = λ for each i ∈ [m], the following
distribution, induced by random sampling of s←− {0, 1}n, is pseudorandom.

H(a1 ⊕ [b1 · s]), . . . ,H(am ⊕ [bm · s]),

where · denotes bitwise-AND.

2.7 PSI From OPRF

An oblivious pseudorandom function (OPRF) is a secure two-party computation
protocol which was introduced in [Fre+05]. In an OPRF protocol, the sender
inputs a random PRF key k and the receiver inputs a single input x. At the end
of the protocol, the sender learns nothing and the receiver learns the evaluation
of the OPRF functionality on his input.

There are several works on two-party PSI protocol which use single-point
OPRF construction [Pin+15; Kol+16]. At a high level, the general structure of
these protocols is as follows. Firstly, the sender (P1) and the receiver (P2) run
the OPRF protocol that at the end P1 owns a random key k and P2 obtains the
outcome of the functionality on his input OPRFk(x21). They run the protocol for
all items in the receiver’s set x21, . . . , x

2
n2
∈ X2. As a result, the sender learns a

set of random keys and the receiver learns a set of OPRF values. Then, P1 eval-
uates OPRF functionality on his set of inputs x11, . . . , x

1
n1
∈ X1 and sends the

resulting values to P2. We should note that in these protocols parties often use
a cuckoo hashing construction [PR04] to map every single of their elements to a
separate bin and it is also assumed parties’ sets have the same size n1 = n2 = n.
Finally and by comparing the received values and his OPRFs, P2 can determine
the intersection.
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From Single-Point to Multi-Point OPRF. In [Kol+16], a hash function
(which is modeled as a random oracle) is considered an OPRF whose keys are
in fact parts of its input argument. Pinkas et al. in [Pin+19a] proposed a PSI
protocol based on multi-point OPRF construction in which it enables parties to
instead of having to evaluate n instances of OPRF protocol, do it in a way that
computing OPRF values needs far less communication round complexity, i.e.,
they no longer need to use cuckoo hashing and perform several OPRFs for every
single hash bin, so each element is only evaluated once. But, multi-point OPRF
of [Pin+19a] incurs a high computational overhead compared to the single-point
version of [Kol+16], since it needs to evaluate and interpolate a high-degree
polynomial over a large field which obviously causes much more cost than just
using symmetric primitives and bitwise operations as in [Kol+16].

Efficient Multi-Point OPRF. To provide a more reasonable balance between
communication and computation costs, Chase and Miao [CM20] introduced a
two-party PSI protocol using a lightweight multi-point OPRF where oblivious
transfer protocol is the only heavy cryptographic operation needed that also itself
can be performed efficiently using OT extension. To perform the multi-point
OPRF, a random seed of length w is picked by the sender, s←− {0, 1}w, and the
receiver constructs two m × w matrices of A and B in which the entries of the
former are selected randomly from {0, 1} and those of the latter are determined
by evaluating a pseudorandom function with the output length of w · logm on
each element of the receiver’s set, v = Fk(x2i ). The matrix B is formed such that
for every x2i ∈ X2, the corresponding bits in two matrices are the same while
other bits differ. After running w OTs between parties, the sender who acts as
a receiver obtains an m × w matrix C that each of its columns is either Ai or
Bi for all i ∈ [w] depending on the chosen seed s. Then, the sender evaluates
the PRF on each of his input element x1i ∈ X1 as v = Fk(x1i ) and computes the
OPRF value ϕ = H(C1[v[1]] ‖ . . . ‖ Cw[v[w]) and sends the resulting OPRFs
to the receiver. Ultimately, the receiver computes the OPRF values of his input
elements and finds the intersection of the two sets. Notice that if a sender’s
element be in the intersection, x1i ∈ X2, its corresponding input to the OPRF is
equal to one of the receiver’s element input to the OPRF, otherwise the inputs
to OPRF are different with overwhelming probability.

3 Our Multi-Party PSI Protocol

3.1 An Overview

In this section we introduce our proposed multi-party PSI protocol. As men-
tioned earlier, there is a group of parties P1, P2, . . . , Pt with their private input
sets X1, X2, . . . , Xt, respectively, who want to jointly compute their set inter-
section X1 ∩X2 ∩ . . .∩Xt without leaking any other private information relates
to either individual or a proper subset of parties. As in many other multi-party
protocols, we consider Pt as the party who learns the intersection at the end of
the protocol. The functionality of multi-party PSI is defined in Figure 2. We use
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There are t parties P1, P2, . . . , Pt.
Inputs: Each party Pj has an input set Xj = {xj1, . . . , xjnj

} where every xj ∈ {0, 1}∗.
Output: Party Pt receives the intersection I = X1 ∩X2 ∩ . . . ∩Xt and other parties
receive nothing.

Fig. 2: The functionality of multi-party private set intersection (FMPSI)

the lightweight multi-point OPRF construction introduced in [CM20] to build
an efficient and scalable multi-party PSI. The full description of our protocol
which constitutes several steps is presented in Figure 3.

Generally speaking, the protocol works as follows. At first, Pt constructs a
random m × w matrix A. In fact, to generate the i-th column of matrix A, Pt
chooses t− 1 strings of length m uniformly at random and sets Ai = A1

i ⊕A2
i ⊕

. . .⊕At−1i . In addition, for each j ∈ [t− 1], party Pt creates the matrix Bj from
the matrix Aj by computing a pseudorandom function Fk(·) on all his input
elements and sets B = B1 ⊕B2 ⊕ . . .⊕Bt−1. After running w OTs between Pt
as the sender and each {Pj}j∈[t−1] as the receiver, every Pj ends up with a matrix
Cj which its column vectors are just m-bit random strings. Then, each party
locally constructs a garbled Bloom filter of his input set GBFj in a special way
(Step 6). Afterwards, P1 sends GBF1 to P2 that upon getting it by P2, he XORs
GBF1 with GBF2 and sends the resulting GBF to the next party. This process
continues until Pt−1 computes the cumulative GBF and also OPRF values and
then sends the OPRFs to the Pt to allow him to find the intersection.

Remark 1. We can consider an upper bound N on each party’s input set size.
Meaning, parties P1, P2, . . . , Pt can have different input set sizes up to N . In this
way, parties’ exact set sizes would not be revealed during the execution of the
protocol.

Remark 2. We assume that clients are connected by secure channels, i.e., party
Pt is not able to learn useful information by observing communication between
P1, P2, . . . , Pt−1. We stress that deploying such point-to-point channels is cheap
and does not impose that much cost.

3.2 Protocol Correctness

Regarding the particular form of matrices Aj and Bj constructed by Pt, for
each xt ∈ Xt, let v = Fk(H1(xt)), it holds that Aji [v[i]] = Bji [v[i]] for all i ∈ [w].
Let x be an element which is in the intersection, i.e., it exists in all the parties’
input sets. Since Pt inputs uniformly random shares of each column of matrix A
(using XOR secret sharing scheme) while performing OTs with clients, for each

x ∈ I it holds that Ai[v[i]] =
⊕t−1

j=1 C
j
i [v[i]], for all i ∈ [w]. Therefore, regardless

of what random string sj is chosen by the client Pj , XORing the strings at all
coordinates corresponded to x in GBF ∗ by Pt−1 (Step 8) results in a string
which is the same as one of the Pt’s element input to the hash function H2.
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Parameters: Parties P1, P2, . . . , Pt agree on security parameters λ and σ, two hash
functions H1 : {0, 1}∗ −→ {0, 1}l1 and H2 : {0, 1}w −→ {0, 1}l2 , and a pseudorandom
function F : {0, 1}λ×{0, 1}l1 −→ {m}w. They also agree on a garbled Bloom filter spec-
ification which includes a set of independent random hash functions H = {h1, . . . , hk}
that hi : {0, 1}∗ −→ [M ] for i ∈ [k], and entries string length of w.

Initial Computation:

1. Each party Pj picks a random string sj
R←− {0, 1}w for j ∈ [t− 1].

2. Pt generates an m × w matrix A in which its entries are selected randomly from
{0, 1}. For all i ∈ [w], party Pt chooses t−1 shares uniformly at random under the
constraint that Ai = A1

i ⊕ A2
i ⊕ . . . ⊕ At−1

i . He also samples a uniform PRF key

k
R←− {0, 1}λ.

Performing Oblivious Transfer:

3. To construct an m × w matrix Bj , party Pt computes v = Fk(H1(xt)) for all
xt ∈ Xt, and copies those bits from the corresponding positions in matrix Aj

to the matrix Bj . He also flips the bits from Aj to Bj for the remaining empty
positions.

4. At this stage, Pt as the sender with inputs {Aji , B
j
i } independently runs w OTs

with each party Pj as the receiver with inputs sj [i] for all i ∈ [w] and j ∈ [t− 1].
Eventually, for all j ∈ [t − 1] each party Pj forms an m × w matrix Cj which its
columns are those strings he receives after doing OTs.

5. Pt sends the PRF key k to Pj for all j ∈ [t− 1].

Concluding the Intersection:

6. Each party {Pj}j∈[t−1] constructs a garbled Bloom filter of his input set GBFj

such that for every xj ∈ Xj it holds that
⊕k

i=1GBFj [hi(x
j)] equals concatenation

of all the bits in positions Cji [v[i]] where v = Fk(H1(xj)).
7. P1 sends GBF1 to P2 that upon receiving it, he XORs GBF1 and GBF2 and sends

the resulting GBF to the next party. This process continues until Pt−1 computes
the cumulative garbled Bloom filter GBF ? = GBF1 ⊕GBF2 ⊕ . . .⊕GBFt−1.

8. For each xt−1 ∈ Xt−1, Pt−1 computes u =
⊕k

i=1GBF
∗[hi(x

t−1)] and its OPRF
value ψ = H2(u) and sends it to Pt. Let Ψ denote the set of all OPRFs.

9. After receiving the OPRFs, Pt computes his corresponding OPRF values as ψ =
H2(A1[v[1]] ‖ . . . ‖ Aw[v[w]) for each xt ∈ Xt, where v = Fk(H1(xt)). Pt considers
xt in the intersection iff ψ ∈ Ψ.

Fig. 3: Our multi-party private set intersection protocol (ΠMPSI)

3.3 Protocol Security

Security Analysis. In the protocol, Pt runs OTs independently with each
client using randomly chosen shares of columns of the matrix A that itself is a
random matrix sampled by Pt. So, each matrix Cj formed by the Pj contains
independent uniform strings as its columns. As a result, concerning the way each
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party computes his garbled Bloom filter (Step 7), receiving the GBF of Pi by
Pj for any i, j ∈ [t − 1] leaks no useful information about Pi’s input set. Also,
by the suitable choice for the parameters m,w (as will be discussed later) and
indeed security properties of GBF, for any item in the Pt−1’s input set which
is not in the intersection I, the corresponded OPRF value is pseudorandom to
Pt. Thus, Pt is only able to obtain intersection over all parties’ input sets and
learns nothing about partial set intersection (i.e., elements which exist in some
parties’ input sets but not all the parties).

The parameters m,w. Choosing m and w plays an important role in providing
the security of the protocol. The mentioned parameters should be selected in a
way that for any common element in clients’ sets which is not in the intersection
(i.e., x ∈ I\Xt), its attributed OPRF value must be pseudorandom to Pt. In
view of this, we need to make sure that if F is a random function and H1 is a
collision resistant hash function then for all i ∈ [w], there exist at least λ flipped
bits in the positions Bi[v[i]], where v = Fk(H1(x)). This is essentially because of
fulfilling the correlation robustness property of H2, and consequently preventing
brute force searches by Pt. It should also be noted that for any Pt−1’s element
which is not in client’s intersection, its associated OPRF value is pseudorandom
to Pt due to the obliviousness property of garbled Bloom filter.

Since the input to Fk(·) is different for every xt ∈ Xt, the probability that
any bit in each column of matrix B is flipped equals to p = (1− 1

m )nt . Thus, for
any x ∈ I\Xt, the number of flipped bits in B1[v[1]], . . . , Bw[v[w]] has a binomial
distribution, which the probability of having d flips is equal to(

w

d

)
pd(1− p)w−d.

So, by fixing m we can determine the proper value for w using the union
bound as follows

N ·
λ−1∑
d=0

(
w

d

)
pd(1− p)w−d ≤ negl(σ).

It is also worth mentioning that the parameter l2 which is the output length of
H2 needs to be chosen such that the probability of having collision in PSI protocol
(Step 9) be negligible. Similarly to [Pin+19a; CM20], it can be calculated as
l2 = σ + 2 log(N) for the semi-honest model.

Security Proof. In this part, we formally prove the security of our proposed
multi-party protocol based on the notion of real/ideal simulation paradigm in the
semi-honest model. Note that we consider two cases for corruption, in one case
adversary corrupts a subset of clients and in the other case only Pt is corrupted.

Theorem 1. Assume that F is a pseudorandom function, H1 is a collision re-
sistant hash function, and H2 is a d-Hamming robust hash function, then proto-
col ΠMPSI (Figure 3) securely realizes the functionality FMPSI (Figure 2) in the
presence of semi-honest adversaries for proper choice of parameters as discussed.
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Proof. (Pt is not corrupted) We show that there exists a PPT simulator SZ
that given corrupted parties’ inputs can generate simulated views which are
computationally indistinguishable from joint distribution of corrupted parties’
views in the real execution of the protocol. Let us consider a subset Z of parties
P1, P2, . . . , Pt−1 is corrupted by the adversary. Given {Xj}j∈Z , the simulator
SZ honestly chooses random strings {sj}j∈Z and random matrices {Cj}j∈Z ∈
{0, 1}m×w. Then, SZ runs OT simulator in order to simulate the view of each
corrupted party Pj ∈ Z as the receiver with respect to the inputs sj [1], . . . , sj [w]

and outputs Cj1 , . . . , C
j
w. Moreover, SZ sends a randomly picked PRF key to the

corrupted parties. Knowing the description of garbled Bloom filter, the simulator
also constructs random garbled Bloom filters on behalf of the honest parties from
its randomness.

We now argue that SZ(λ, {Xj}j∈Z ,⊥) ≈ viewΠZ (λ,X1, X2, . . . , Xt). To do
so, we use a sequence of hybrid distributions in which each two adjacent dis-
tributions are computationally indistinguishable and thanks to the transitive
property, it can be concluded that the two desired distributions are also compu-
tationally indistinguishable.

Hybrid0 : The view of corrupted parties {Pj}j∈Z in the real execution of the
protocol.
Hybrid1 : The same as Hybrid0, except, SZ instead of Pt does the following
for every corrupt Pj . That is, if sj [i] = 0, he randomly chooses an m-bit string
Aj [i] and does the same as in Step 3 to construct each corresponded column of
matrix Bj ; on the other hand, if sj [i] = 1, he randomly picks an m-bit string
Bj [i] and computes Aj [i] by flipping corresponding bits as mentioned in Step 3.
So, this argument is essentially identical to Hybrid0.
Hybrid2 : The same as previous hybrid, except, SZ computes a garbled Bloom
filter on behalf of each honest client (i.e., party Pj /∈ Z) using its own random-
ness. Note that the indisguishability of this hybrid and Hybrid1 stems from
using XOR secret sharing scheme by Pt’s for its inputs to the OTs and also the
special way the garbled bloom filters constructed.
Hybrid3 : The simulated view of SZ . Due to the security properties of OT pro-
tocol and garbled Bloom filter, this hybrid is computationally indistinguishable
from Hybrid2.

Proof. (Pt is corrupted) We show that there exists a PPT simulator St that given
Pt’s input and output can generate a simulated view which is computationally
indistinguishable from Pt’s view in the real execution of the protocol. The sim-
ulator can be considered as follows. St first receives Pt’s input set Xt, Pt−1’s set
size nt−1, and the intersection I. Running the OT simulator, St simulates Pt’s
view as the sender by honestly constructing matrices Aj and Bj for all i ∈ [t−1].
Moreover, for any x ∈ I, he computes ψ = H2(A1[v[1]] ‖ . . . ‖ Aw[v[w]]), where
v = Fk(H1(x)). Let ΨI denote this set of OPRF values. He also picks a set of
size nt−1 - |I| containing l2-bit random strings. Let us denote this set by ΨR.
Then, simulator sends ΨI ∪ΨR to the Pt. Eventually, St outputs Pt’ simulated
view as St(λ,Xt, nt−1, I).
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We now show that St(λ,Xt, nt−1, I) ≈ {viewπt (λ,X1, X2, . . . , Xt)} by using
a multi-step hybrid argument.

Hybrid0 : The view of Pt in the real execution of the protocol.
Hybrid1 : The same as Hybrid0, except, the protocol terminates if there is any
xi, xj ∈ X1 ∪X2 ∪ . . . ∪Xt, x

i 6= xj that H1(xi) = H1(xj). The probability of
termination is negligible by collision resistance property of H1.
Hybrid2 : The same as Hybrid1, except, the protocol also terminates if there is
any x ∈ I\Xt in which for all i ∈ [w] the number of flipped bits in Bi[v[i]], where
v = Fk(H1(x)), be fewer than the security parameter λ. As discussed earlier, the
parameters m and w must be chosen such that the probability of termination
be negligible.
Hybrid3 : The same as Hybrid2, except, St runs the OT simulator with hon-
estly selected inputs {Aji , B

j
i } to simulate the view of Pt as the sender. On ac-

count of the security properties of OT protocol, this hybrid is computationally
indistinguishable from Hybrid2.
Hybrid4 : The same as Hybrid3, except, the OPRF values sent from Pt−1
are replaced with l2-bit random strings for all x ∈ I\Xt. Regarding correlation
robustness property of the hash function H2, it can be shown that this hybrid is
computationally indistinguishable from the previous one. More specifically, for
all i ∈ [w], let ai equals to the concatenation of bits Ai[v[i]] and also bi equals
to the concatenation of bits Bi[v[i]], where v = Fk(H1(x)). In Step 8, the hash

function H2 takes the concatenation of bits
⊕t−1

j=1 C
j
i [v[i]] as its input which is

equivalent to ai ⊕ [(ai ⊕ bi) · s]. Since we know that ‖ai ⊕ bi‖ ≥ λ and also s is a
random string unknown to Pt, thanks to the correlation robustness property of
H2, the OPRF value sent to P2 is pseudorandom.
Hybrid5 : The same as Hybrid4, except, the protocol does not terminate. This
hybrid is Pt’s view simulated by St. Indeed, what described above simply implies
indisguishability of this hybrid and Hybrid4.

Remark 1. It is important to mention that the two-party PSI protocol of [CM20]
guarantees one-sided malicious security (i.e., against a malicious sender) in the
random oracle model. We believe using the same assumption our protocol can
also provide security against malicious clients.

4 Complexity Analysis

4.1 Asymptotic Complexity

Now, we analyze the asymptotic complexity of our protocol. We should highlight
the fact that our proposed multi-party PSI protocol is concretely efficient since
it only relies on cheap tools including oblivious transfer extension, hashing, and
bitwise operations. Without loss of generality, we consider n as the set size for
all parties.2 Also, as in [CM20], we set m = n. So, by fixing m and n, in our
complexity analysis w can be regarded as a value depends on λ (see Section 3.3).

2 One can think of n as the upper bound on set sizes.
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Communication Pattern Pt −→ Pj Pj −→ Pt Pj −→ Pj+1 Pt−1 −→ Pt

Star Topology nw w(λ− 1) − −
Path Topology − − 1.44nwk nl2

Table 1: Bits sent for leader and clients. Note that we do not consider the ini-
tial base-OTs which can be done ahead of time. Also, optimal parameters are
considered for garbled Bloom filter.

Recall that we denote the party Pt as the leader who takes the main overhead
of the protocol and other parties as clients. In terms of the asymptotic complex-
ity of our protocol, Pt first constructs specially formed matrices Aj and Bj which
preparing them takes him linear complexity in n. He then as the sender inde-
pendently runs w OTs with each client which leads to linear communication and
computation complexities in the number of OTs. Apart from running OTs, par-
ties just do hashing and bitwise-XOR which regarding the optimal parameters
for garbled Bloom filter (as discussed in Section 2.3), they incur linear complex-
ity in both communication and computation. As shown in [CM20] for the case
of two-party, it is possible to use random OT in our multi-party PSI protocol
which causes the communication overhead from the leader to the clients to be
dramatically decreased. We refer the reader to [CM20] to see how random OT
can be used in the protocol. Thus, taking this into account and also concerning
the optimized semi-honest OT extension of [Ash+13], the total amount of bits
exchanged between parties are summarized in Table 1.

Remark 1. Our protocol can be separated into two phases of offline and online
which the former can be done before even parties’ inputs are available and the
latter is executed after learning the inputs. Therefore, a considerable part of the
communication and computation costs of the protocol (which includes perform-
ing base-OTs, together with the messages sent from receiver to sender in the
random OTs) can be done in the offline phase and only lightweight operations
take place in the online phase.

Remark 2. Although the overall communication overhead is not evenly dis-
tributed over all clients and Pt−1 has less communication compared to others,
he needs to do more evaluation of hash functions in order to compute the OPRF
values. So, we can think of it as a trade-off between the Pt−1’s communication
and computation costs. In addition, the costs in our protocol is rather balanced
which makes the protocol preferable in terms of not having a single designated
party who has significantly higher overhead compared to others that may cause
problem in practice.

Remark 3. An interesting feature of our protocol is that as the number of parties
involved in the protocol increases, the communication and computation complex-
ities of each client remain the same and only depend on its input set size. This is
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Communication Computation Security Concretely

Protocol Leader Client Leader Client Model Efficient

[HV17] O(tnλ) O(nλ) O(tn log(n)) O(n) Semi-Honest No

[IOP18] O(tnλk) O(tnλk) O(tnλk) O(tnλk) Semi-Honest Yes

[IOP18] O(log(t)nλk) O(log(t)nλk) O(tnλk) O(tnλk) Aug Semi-Honest Yes

[GN19] O((t2 + tn)λ) O(nλ) O(tn log(n)) O(n log2(n)) Malicious No

Ours O(tnλ) O(nλk) O(tnλ) O(nλk) Semi-Honest Yes

Table 2: Comparison of communication and computation complexities of multi-
party PSI protocols in different security settings, where t is the number of parties,
n is the the set size of input set, and k is the number of hash functions.

a crucial point especially when it comes to having a large number of participants
and indeed makes our protocol scale well with the number of parties.

4.2 Comparison

In Table 2, we compare the communication and computation complexities of
our proposed multi-party PSI protocol with those of [HV17; IOP18; GN19]. We
should mention that having various structures and security levels makes it hard
to provide a fair comparison, though, we try to pick some recent works with
different security settings. As in [HV17; GN19], the client’s complexities do not
depend on the number of parties. However, the two mentioned protocols are not
concretely efficient. We observe that the distribution of costs is asymptotically
rather fair in our protocol concerning the number of parties t and the number of
hash functions k. The workload of parties in [IOP18] is also balanced. We should
note that the reported complexities of the augmented semi-honest secure version
of [IOP18] are with regard to some optimizations and security relaxations.3

5 Conclusion

In this work we have proposed a multi-party PSI protocol utilizing a lightweight
multi-point OPRF construction. Our protocol is concretely efficient because of
involving oblivious transfer extension and garbled bloom filter as its two core
building blocks and also achieves linear complexity in both computation and
communication concerning each party’s input set size. In our protocol, interac-
tions among parties are performed over a combination of star and path network
topologies and as a consequence of this design, the asymptotic communication
and computation complexities of each client only rely on his input set size and

3 Augmented semi-honest security is a weaker notion than semi-honest security. We
consider the optimized version of the protocol which tries to load balance the inter-
actions between pairs of parties at the cost of some security relaxations.
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not on the number of parties, namely O(nλk). In general, this study has gone
some way towards presenting an efficient scalable multi-party PSI protocol that
can be deployed in practice. This inevitably comes at a cost of relaxation on
the security model, but we do believe that future works can focus on enhancing
the security of multi-party PSI based on OPRF to obtain far robust security
guarantees without that much compromising the efficiency.
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