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Abstract

Revocable hierarchical identity-based encryption (RHIBE) is an extension of HIBE that provides the
efficient key revocation function by broadcasting an update key per each time period. Many RHIBE
schemes have been proposed by combining an HIBE scheme and the tree-based revocation method,
but a generic method for constructing an RHIBE scheme has not been proposed. In this paper, we
show for the first time that it is possible to construct RHIBE schemes by generically combining un-
derlying cryptographic primitives and tree-based revocation methods. We first generically construct an
RHIBE-CS scheme by combining HIBE scheme and the complete subtree (CS) method, and prove the
adaptive security of this scheme by using the adaptive security of the HIBE schemes. Next, we generi-
cally construct an RHIBE-SD scheme by combining HIBE and hierarchical single revocation encryption
(HSRE) schemes, and the subset difference (SD) method to reduce the size of an update key. Finally, we
generically construct an RHIBE-CS scheme with shorter ciphertexts by combining HIBE schemes with
constant-size ciphertext and the CS method.
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1 Introduction

Hierarchical identity-based encryption (HIBE) is an extension of IBE that represents an identity as a hi-
erarchical identity vector and reduces the load of a key generation center by providing the key delegation
function [19]. The HIBE scheme is suitable for use in an organization with a hierarchical structure, and can
be applied to various fields such as identity-based signature, forward-secure encryption, chosen-ciphertext
secure encryption, and public-key broadcast encryption [7, 8, 13, 18]. An important extension of HIBE is
revocable HIBE (RHIBE) that supports efficient key revocation of users. In order to add the key revocation
function to an HIBE scheme, Seo and Emura [34] proposed the first RHIBE scheme by following the design
principle of the revocable IBE scheme of Boldyreva et al. [3] that associates the path of a binary tree with
a private key and associates the cover of the binary tree with an update key. After the first RHIBE scheme,
various RHIBE schemes with improved efficiency have been proposed and research in this field is actively
conducted [15, 20, 21, 27, 33, 36].

Research on RHIBE that supports the key revocation is important because it is essential to efficiently
revoke the private key of a user when the private key is exposed in a real environment. However, the existing
RHIBE schemes have the disadvantage of having to modify the underlying HIBE scheme for building an
RHIBE scheme, and perform a completely new analysis to prove the security of this RHIBE scheme. In the
case of HIBE schemes from bilinear maps, the construction of RHIBE schemes is somewhat easier since
the design methodology of RHIBE is already known [27, 34, 36], but in the case of the HIBE scheme from
different mathematical structures, a completely different design methodology is required to build an RHIBE
scheme. In order to overcome this problem, a generic design method of building an RHIBE scheme by using
the underlying cryptographic schemes as black-box is required. In this paper, we ask whether it is possible
to design an RHIBE scheme that supports efficient user key revocation by generically combining underlying
cryptographic primitives.

1.1 Our Contributions

In this section, we show for the first time that it is possible to construct RHIBE schemes by generically com-
bining underlying cryptographic schemes. The results of our RHIBE schemes are summarized as follows.

RHIBE with Complete Subtree. We first show that it is possible to design an RHIBE-CS scheme by
generically combining HIBE schemes and the complete subtree (CS) method of a binary tree. We then
prove the adaptive security of the proposed RHIBE-CS scheme based on the adaptive security of the HIBE
schemes and the properties of the CS method. For the generic construction of an RHIBE-CS scheme, we
extend the idea of Ma and Lin [30] used to design a generic RIBE scheme to an HIBE scheme. That is, since
the hierarchical identity of HIBE has an identity for each level, each identity of the level is independently
associated with a binary tree. At this time, a ciphertext is composed of HIBE ciphertexts associated with the
path of the binary tree, and an update key is composed of the HIBE secret key associated with the cover of
the binary tree. In our RHIBE-CS scheme, a ciphertext consists of approximately O(`n) HIBE ciphertexts,
a private key consists of only O(1) HIBE private keys, and an update key consists of approximately O(rn)
HIBE private keys where ` is the level of hierarchical identity, n is the depth of a binary tree, and r is the
number of revoked users.

RHIBE with Subset Difference. Next, we show that it is possible to design an RHIBE-SD scheme by
generically combining an HIBE scheme, a hierarchical single revocation encryption (HSRE) scheme, and
the SD method. The SD method is a type of the subset cover framework proposed by Naor et al. [31] to
construct revocation and tracing schemes, and it enables to construct a cover set more efficiently compared
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to the CS method. We define HSRE in which the key delegation function was added to the SRE scheme
which was introduced by Lee et al. [24] to build a public-key revocation scheme by using the SD method,
and propose an HSRE scheme by combining HIBE and SRE schemes in bilinear groups. The design idea of
the RHIBE-SD scheme is to associate a ciphertext with the path set of a binary tree and associate an update
key with the cover set of a binary tree. In our RHIBE-SD scheme, a ciphertext consists of O(`n2) HSRE
ciphertexts, a private key consists of O(1) HIBE private keys and HSRE private keys, and an update key
consists of O(r) HSRE private keys.

RHIBE with Shorter Ciphertexts. Finally, we propose an RHIBE-CS scheme with shorter ciphertexts to
reduce the ciphertext size of the previous RHIBE-CS scheme. The ciphertext of the RHIBE-CS scheme has
a disadvantage of increasing the ciphertext size because the identity of each level is associated with the path
of a binary tree, so the HIBE ciphertext is independently required for each path node. To solve this problem,
we use a method of encoding and encrypting the information of the path nodes at once by using an HIBE
scheme with a constant size ciphertext. In this case, it is possible to decrypt the ciphertext when a common
node exists in the cover set and the path set by using the key delegation property of the HIBE scheme. The
RHIBE-CS scheme with shorter ciphertexts has the advantage that the ciphertext size decreases compared
to the previous RHIBE-CS scheme, but has the disadvantage that the update key size increases. In order to
solve the problem of increasing update key size, we may consider that a cloud server stores all update keys
and transmits the corresponding keys in update keys for each user.

1.2 Related Work

IBE and Revocable IBE. The concept of IBE was first introduced by Shamir [37] to solve the key man-
agement problem of existing public-key encryption and the first IBE scheme was proposed by Boneh and
Franklin [6] by using bilinear maps. Since then, various IBE schemes have been proposed in bilinear
groups [4, 16, 39], and a number of IBE schemes from different mathematical structures have also been
proposed [12, 14, 17]. Revocable IBE (RIBE) is an extension of IBE that provides the revocation of private
keys and the first efficient RIBE scheme that uses a binary tree was proposed by Boldyreva et al. [3]. After
that, an RIBE scheme with adaptive security and an RIBE scheme that provides decryption key exposure
resistance were proposed [29, 35]. To reduce the size of update keys, an RIBE scheme from multilinear
maps was proposed [32]. Most of the previous RIBE schemes use the complete subtree (CS) method of a
binary tree, but an RIBE scheme that reduces the size of update keys by using the subset difference (SD)
method of a binary tree was proposed by Lee et al. [25]. In lattices, RIBE schemes that use binary trees have
been proposed [10, 11, 20, 38]. Recently, Ma and Lin showed that an RIBE scheme can be constructed by
generically combining HIBE and IBE schemes [30]. Lee also showed that a generic RIBE scheme that uses
the SD method can be built by combining HIBE and single revocation encryption (SRE) schemes [22]. An
RIBE scheme that delegates the generation of update keys to a cloud server and verifies the correctness of
these update keys was also proposed [23].

HIBE and Revocable HIBE. Hierarchical IBE (HIBE) is an extension of IBE that represent an identity
into a hierarchical structure in order to reduce the load of private key generation in IBE. Horwitz and Lin
introduced the concept of HIBE and proposed a two-level HIBE scheme [19]. Since then, many HIBE
schemes have been proposed in bilinear groups [4,5,18,28,40]. Different HIBE schemes have been proposed
from lattices by using the basis delegation method of lattices [1, 2, 9]. The first revocable HIBE (RHIBE)
scheme that provides the user key revocation function was proposed by Seo and Emura [34]. Similar to
the RIBE scheme, they constructed an RHIBE scheme by using binary tree such that the path of a binary
tree is associated with a private key and the cover of a binary tree is associated with an update key. Later,
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Seo and Emura proposed an efficient RHIBE scheme by using the history-free update method that reduces
the size of private keys [36]. Lee and Park proposed RHIBE schemes with shorter private keys and update
keys by carefully modifying the underlying HIBE scheme to support intermediate private keys [27]. Later,
Lee proposed RHIBE schemes with adaptive security by using the dual system encryption method [21].
Recently, an adaptively secure RHIBE scheme under the standard assumption was proposed by Emura et
al. [15].

2 Preliminaries

In this section we review the syntax and security model of the HIBE, HSRE, and RHIBE schemes.

2.1 Hierarchical Identity-Based Encryption

Hierarchical IBE (HIBE) is an extension of IBE that supports the identity of a user to have a hierarchical
structure. The concept of HIBE was introduced by Horwitz and Lin [19] and an HIBE scheme supporting
multiple levels was proposed by Gentry and Silverberg [18]. In an HIBE scheme, a private key is associated
with a hierarchical identity ID′ = (I′1, . . . , I

′
k), and a ciphertext is associated with a hierarchical identity

ID = (I1, . . . , I`). If ID′ ∈ Prefix(ID) is established, a user having the corresponding private key can decrypt
the ciphertext. The detailed syntax of HIBE is given as follows:

Definition 2.1 (Hierarchical Identity-Based Encryption, HIBE). An HIBE scheme consists of five algo-
rithms Setup, GenKey, Delegate, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,L). The setup algorithm takes as input a security parameter 1λ and maximum hierarchical depth
L. It outputs a master key MK and public parameters PP.

GenKey(ID|k,MK,PP). The key generation algorithm takes as input a hierarchical identity ID|k =(I1, . . . , Ik),
the master key MK, and the public parameters PP. It outputs a private key SKID|k .

Delegate(ID|k,SKID|k−1 ,PP). The delegation algorithm takes as input a hierarchical identity ID|k, a private
key SKID|k−1 for ID|k−1, and the public parameters PP. It outputs a delegated private key SKID|k .

Encrypt(ID|`,M,PP). The encryption algorithm takes as input a hierarchical identity ID|` = (I1, . . . , I`), a
message M, and public parameters PP. It outputs a ciphertext CTID|` .

Decrypt(CTID|` ,SKID′|k ,PP). The decryption algorithm takes as input a ciphertext CTID|` , a private key
SKID′k

, and public parameters PP. It outputs a message M or ⊥.

The correctness of HIBE is defined as follows: For all MK,PP generated by Setup(1λ ,L), all ID|`, ID′|k,
any SKID′|k generated by GenKey(ID′|k,MK,PP), it is required that

• If ID|k−1 ∈ Prefix(ID|k), then Delegate(ID|k,SKID|k−1 ,PP) = SKID|k .

• If ID′|k ∈ Prefix(ID|`), then Decrypt(Encrypt(ID|`,M,PP),SKID′|k ,PP) = M.

Definition 2.2 (IND-CPA Security). The security of HIBE is defined in terms of the indistinguishability
under chosen plaintext attacks (IND-CPA). The security game is defined as the following game between a
challenger C and a PPT adversary A:
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1. Setup: C runs Setup(1λ ,L) to generate a master key MK and public parameters PP. It keeps MK to
itself and gives PP to A.

2. Query 1: A adaptively requests private keys for hierarchical identities ID1, . . . , IDq1 . In response, C
gives the corresponding private keys SK1, . . . ,SKq1 to A by running GenKey(IDi,MK,PP).

3. Challenge: A submits challenge labels ID∗|` and two messages M∗0 ,M
∗
1 with the equal length subject

to the restriction: for all ID j of private key queries, it is required that ID j /∈ Prefix(ID∗|`). C flips a ran-
dom coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗ toA by running Encrypt(ID∗|`,M∗µ ,PP).

4. Query 2: A may continue to request private keys for hierarchical identities IDq1+1, . . . , IDq.

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage of A is defined as AdvHIBE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. An HIBE scheme is IND-CPA secure if for all probabilistic polynomial-time
(PPT) adversary A, the advantage of A is negligible in the security parameter λ .

2.2 Hierarchical Single Revocation Encryption

Single revocation encryption (SRE) is a new type of public-key encryption introduced by Lee et al. [24]
to design an efficient public key revocation scheme. In SRE, a private key is associated with group and
member labels (GL′,ML′), and a ciphertext is associated with group and revoked member labels (GL,ML).
At the decryption step, if GL = GL′ ∧ML 6= ML′ is established, a user having the corresponding private
key can decrypt the ciphertext. We extend the concept of SRE to define hierarchical SRE (HSRE) that
supports private key delegation. In HSRE, a key is divided into a delegate key and a private key. The
delegate key of HSRE is associated with a hierarchical identity ID = (I1, . . . , Ik) similar to the private key
of HIBE that support the key delegation. The private key of HSRE is associated with a hierarchical identity
ID′ and labels (GL′,ML′), and a ciphertext is also associated with ID and labels (GL,ML). In this case, if
ID = ID′∧GL = GL′∧ML 6= ML′ is established, a user having the corresponding private key can decrypt
the ciphertext. The detailed syntax of HSRE is described as follows:

Definition 2.3 (Hierarchical Single Revocation Encryption, HSRE). An HSRE scheme consists of six algo-
rithms Setup, GenKey, Delegate, MakeKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,L): The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK and
public parameters PP.

GenKey(ID|k,(GL,ML),MK,PP): The private key generation algorithm takes as input a hierarchical iden-
tity ID|k, labels (GL,ML), the master key MK, and public parameters PP. It outputs a private key
SKID|k,(GL,ML).

Delegate(ID|k,SKID|k−1 ,PP): The delegation algorithm takes as input a hierarchical identity ID|k, a private
key SKID|k−1 , and public parameters PP. It outputs a delegate key SKID|k .

MakeKey((GL,ML),SKID|k ,PP): The key making algorithm takes as input labels (GL,ML), a delegate
key SKID|k , and public parameters PP. It outputs a private key SKID|k,(GL,ML).

Encrypt(ID|`−1,(GL,ML),M,PP): The encryption algorithm takes as input a hierarchical identity ID|`−1,
labels (GL,ML), a message M ∈M, and public parameters PP. It outputs a ciphertext CTID|`−1,(GL,ML).
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Decrypt(CTID|`−1,(GL,ML),SKID′|`−1,(GL′,ML′),PP): The decryption algorithm takes as input a ciphertext
CTID|`−1,(GL,ML), a private key SKID′|`−1,(GL′,ML′), and public parameters PP. It outputs a message M.

The correctness of HSRE is defined as follows: For all MK and PP generated by Setup(1λ ,L), SKID gen-
erated by GenKey(ID′|`−1,(GL′,ML′),MK,PP) for any (GL′,ML′), and any (GL,ML) and any M, it is
required that

• If ID|k ∈ Prefix(ID|`−1), MakeKey((GL,ML),Delegate(ID|`−1,SKID|k ,PP),PP) = SKID|`−1,(GL,ML).

• If (ID|`−1 = ID′|`−1)∧(GL = GL′)∧(ML 6= ML′), Decrypt(CTID|`−1,(GL,ML),SKID′|`−1,(GL′,ML′),PP) =
M.

Definition 2.4 (IND-CPA Security). The security of HSRE is defined in terms of the indistinguishability
under chosen plaintext attacks (IND-CPA). The security game is defined as the following game between a
challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,L) to generate a master key MK and public parameters PP. It keeps MK to
itself and gives PP to A.

2. Query 1: A adaptively requests delegate keys and private keys. If a delegate key for ID|k is requested,
then it generates SKID|k by running Delegate(ID|k,SKID|k−1 ,PP). If a private key for ID|k,(GL,ML)
is requested, then it generates SKID|k,(GL,ML) by running GenKey(ID|k,(GL,ML),MK,PP).

3. Challenge: A submits a challenge hierarchical identity ID∗|`−1, challenge labels (GL∗,ML∗) and two
messages M∗0 ,M

∗
1 with the equal length subject to the restrictions: (1) For all ID|k of delegate keys, it

is required that ID|k /∈ Prefix(ID∗|`−1). (2) For all ID|k,(GL,ML) of private key queries, it is required
that (ID|k,GL) 6= (ID∗|`−1,GL∗) or (ID|k,GL) = (ID∗|`−1,GL∗)∧ (ML = ML∗).

C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running En-
crypt(ID∗|`−1,(GL∗,ML∗),M∗µ ,PP).

4. Query 2: A may continue to request delegate keys and private keys.

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage ofA is defined as AdvHSRE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. An HSRE scheme is IND-CPA secure if for all PPT adversary A, the advantage
of A is negligible in the security parameter λ .

2.3 Revocable Hierarchical Identity-Based Encryption

Revocable HIBE (RHIBE) is an extension of HIBE that additionally supports the revocation of private
keys, and Seo and Emura first introduced the concept of RHIBE and proposed RHIBE schemes [34, 36].
RHIBE schemes are classified into history-preserving type and history-free type according to the method of
generating an update key. Since the RHIBE schemes of this paper are history-preserving type that requires
all update keys related with a user’s private key when deriving a decryption key, we define the history-
preserving RHIBE scheme. The detailed syntax of history-preserving RHIBE is described as follows:

Definition 2.5 (Revocable HIBE). An RHIBE scheme with history-preserving updates for the identity space
I, the time space T , and the message spaceM, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:
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Setup(1λ ,L): This algorithm takes as input a security parameter 1λ , the maximum depth L of a hierarchical
identity. It outputs a master key MK, an (empty) revocation list RLε , and public parameters PP.

GenKey(ID|k,SKID|k−1 ,PP): This algorithm takes as input a hierarchical identity ID|k = (I1, . . . , Ik) ∈ Ik,
a private key SKID|k−1 , and public parameters PP. It outputs a private key SKID|k .

UpdateKey(T,RLID|k−1 ,SKID|k−1 ,PP): This algorithm takes as input time T ∈ T , a revocation list RLID|k−1 ,
a private key SKID|k−1 , and public parameters PP. It outputs an update key UKID|k−1,T .

DeriveKey(SKID|k ,UKID|0,T , . . . ,UKID|k−1,T ,PP): This algorithm takes as input a private key SKID|k for a
hierarchical identity ID|k, update keys UKID|0,T , . . . ,UKID|k−1,T for time T , and the public parameters
PP. It outputs a decryption key DKID|k,T .

Encrypt(ID|`,T,M,PP): This algorithm takes as input a hierarchical identity ID|` = (I1, . . . , I`) ∈ I`, time
T , a message M, and the public parameters PP. It outputs a ciphertext CTID|`,T .

Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T , a decryption key
DKID′|k,T ′ and the public parameters PP. It outputs an encrypted message M.

Revoke(ID|k,T,RLID|k−1): This algorithm takes as input a hierarchical identity ID|k, revocation time T ,
and a revocation list RLID|k−1 . It updates the revocation list RLID|k−1 .

The correctness of RHIBE is defined as follows: For all MK and PP generated by Setup(1λ ,L,Nmax), SKID|k
generated by GenKey(ID|k,SKID|k−1 ,PP), UKID|k−1,T generated by UpdateKey(T,RLID|k−1 ,SKID|k−1 ,PP),
CTID|`,T generated by Encrypt(ID|`,T,M,PP), it is required that

• If ID| j is not revoked in RLID| j−1 to the time T for all j∈ [k], then DeriveKey(SKID|k ,UKID|k−1,T ,PP)=
DKID|k,T .

• If (ID|` = ID′|`)∧ (T = T ′), then Decrypt(CTID|`,T ,DKID′|`,T ′ ,PP) = M.

Definition 2.6 (IND-CPA Security). The IND-CPA security of RHIBE is defined in terms of the following
experiment between a challenger C and a PPT adversary A:

1. Setup: C obtains a master key MK, a revocation list RLε , and public parameters PP by running
Setup(1λ ,L). It keeps MK,RLε to itself and gives PP to A.

2. Phase 1: A adaptively requests a polynomial number of queries. These queries are processed as
follows:

• Create key: If it is a create key query for a hierarchical identity ID|k, then C creates a private key
SKID|k by running GenKey(ID|k,SKID|k−1 ,PP) with the restriction that the private key SKID|k−1

was already created.

• Private key: If it is a private key query for a hierarchical identity ID|k, then C reveals the private
key SKID|k that was already created.

• Update key: If it is an update key query for a hierarchical identity ID|k−1 and time T , then C gives
an update key UKID|k−1,T by running UpdateKey(T,RLID|k−1 ,SKID|k−1 ,PP) with the restrictions
that SKID|k−1 was already created and ID|k−1 or one of its ancestor was not revoked on time T .
Although we described this update key as a key query, we can assume that all update keys for
created private keys are broadcasted to A.

8



• Decryption key: If it is a decryption key query for a hierarchical identity ID|k and time T , then
C gives a decryption key DKID|k,T by running DeriveKey(SKID|k ,UKID|0,T , . . . ,UKID|k−1,T ,PP)
with the restriction that SKID|k−1 was already created and IDID|k is not revoked in UKID|k−1,T .

• Revocation: If it is a revocation query for a hierarchical identity ID|k and time T , then C updates
a revocation list RLID|k−1 by running Revoke(ID|k,T,RLID|k−1) with the restriction: A revocation
query for ID|k on time T cannot be requested if an update key query for ID|k on the time T was
requested.

Note that we assume that update key, decryption key, and revocation queries are requested in non-
decreasing order of time.

3. Challenge: A submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
` ), challenge time T ∗, and

two challenge messages M∗0 ,M
∗
1 with the following restrictions:

• If a private key query for ID|k ∈ Prefix(ID∗|`) was requested, then ID|k or one of its ancestors
must be revoked at some time T ≤ T ∗.

• A decryption key query for ID|k ∈ Prefix(ID∗|`) on the challenge time T ∗ was not requested.

C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗ID∗|`,T ∗ to A by running En-
crypt(ID∗|`,T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request a polynomial number of queries subject to the restrictions of the
challenge step.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvRHIBE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. An RHIBE scheme is IND-CPA secure if for all PPT adversary A, the
advantage of A is negligible in the security parameter λ .

3 Revocable HIBE with CS

In this section, we generically construct an RHIBE scheme by combining HIBE schemes and the complete
subtree method and prove the adaptive security of this scheme.

3.1 Binary Tree

A perfect binary tree BT is a tree data structure in which all internal nodes have two child nodes and all leaf
nodes have the same depth. Let N = 2n be the number of leaf nodes in BT . The number of all nodes in BT
is 2N−1 and we denote vi as a node in BT for any 1≤ i≤ 2N−1. The depth di of a node vi is the length of
the path from a root node to the node. The root node of a tree has depth zero. The depth of BT is the length
of the path from the root node to a leaf node. A level of BT is a set of all nodes at given depth.

Each node vi ∈ BT has an identifier Li ∈ {0,1}∗ which is a fixed and unique string. An identifier of
each node is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether it is
connected to the left or right child node. The identifier Li of a node vi is obtained by reading all labels of
edges in a path from the root node to the node vi. The root node has an empty identifier ε . For a node vi, we
define Label(vi) be the identifier of vi and Depth(vi) be the depth di of vi.
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A subtree Ti in BT is defined as a tree that is rooted at a node vi ∈ BT . A subset Si is defined as a set of
all leaf nodes in Ti. For any two nodes vi,v j ∈ BT where v j is a descendant of vi, Ti, j is defined as a subtree
Ti−T j, that is, all nodes that are descendants of vi but not v j. A subset Si, j is defined as a set of leaf nodes
in Ti, j, that is, Si, j = Si \S j. For a perfect binary tree BT and a subset R of leaf nodes, ST (R) is defined as
the Steiner Tree induced by the set R and the root node, that is, the minimal subtree of BT that connects all
the leaf nodes in R and the root node.

3.2 Complete Subtree Method

The complete subtree (CS) method is a type of the subset cover framework proposed by Naor et al. [31]
to design revocation schemes for stateless receivers. The detailed description of the CS method is given as
follows.

CS.Setup(N): Let N = 2n for simplicity. It sets a perfect binary tree BT of depth n. It outputs the binary
tree BT . Note that a user is assigned to a leaf node v ∈ BT and the collection S is defined as {Si}
where Si is the set of all leaves in a subtree Ti with a subroot vi ∈ BT .

CS.Assign(BT ,vu): Let vu be a leaf node of BT that is assigned to a user u. Let (vk0 ,vk1 , . . . ,vkn) be the
path from the root node vk0 = v0 to the leaf node vkn = vu. It initializes a path set PV as an empty one.
For all j ∈ {k0, . . . ,kn}, it adds S j into PV . It outputs the path set PV = {S j}.

CS.Cover(BT ,R): This algorithm partitionsN \R into disjoint subsets Si1 , . . . ,Sim as follows: It first builds
the Steiner Tree ST (R) which is the minimum subtree of BT that connects all the leaf nodes in R and
the root node. Let Tk1 , . . .Tkm be all the subtrees of BT that hang off ST (R), that is all subtrees whose
roots vk1 , . . .vkm are not in ST (R) but adjacent to nodes of outdegree 1 in ST (R). It initializes a cover
set CV as empty one. For all i ∈ {k1, . . . ,km}, it adds Si into CV . It outputs the cover set CV = {Si}.

CS.Match(CV,PV ): It finds a common subset Sk such that Sk ∈ CV and Sk ∈ PV . If Sk exists, it outputs
(Sk,Sk). Otherwise, it outputs ⊥.

Lemma 3.1. Let PV be a path set obtained by the CS.Assign algorithm for a leaf node v, and CV be a cover
set obtained by the CS.Cover algorithm for a set R of leaf nodes. In this case, the CS method satisfies the
following two properties: 1) If v /∈ R, there is only one subset Sk ∈ PV ∩CV . 2) If v ∈ R, PV ∩CV is an
empty set.

Proof. We prove the first property. If v /∈ R, then v belongs to only one subset Sk ∈CV since the CS.Cover
algorithm outputs disjoint subsets Si1 , . . . ,Sim . Since the subtree Tk of Sk contains v as a leaf node, the root
node vk of Tk is an ancestor of v. Thus, there is only one Sk ∈CV ∩PV since vk is one of the path nodes of v.

Next, we prove the second property. If v ∈ R, the path nodes of v belong to the tree ST (R). Because
disjoint subtrees Ti1 , . . . ,Tim are created by removing ST (R) by the CS.Cover algorithm, these subtrees
cannot include v. Thus, CV ∩PV is an empty set.

3.3 Generic Construction

We first define three encoding functions E1,E2, and E3. We define the function Ei(x) takes a string x as input
and returns i‖x. In this case, if i 6= j, then Ei(x) 6= E j(y) for any strings x and y. If ~x = (x1,x2, . . . ,x`), the
function Ei(~x) returns a vector (Ei(x1), . . . ,Ei(x`)). An RHIBE-CS scheme that is designed by generically
combining HIBE schemes and the CS method is described as follows:
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RHIBE-CS.Setup(1λ ,L): Let I = {0,1}n be the identity space and L be the maximum depth of a hierar-
chical identity.

1. It first obtains MKHIBE1 ,PPHIBE1 by running HIBE.Setup(1λ ,L+1). It obtains MKHIBE2 ,PPHIBE2

by running HIBE.Setup(1λ ,L).

2. It defines a binary treeBT by running CS.Setup(2n) where an identity I ∈I is uniquely assigned
to a leaf node v such that Label(v) = I.

3. It outputs a master key MK = (MKHIBE1 ,MKHIBE2), a revocation list RLε = /0, and public pa-
rameters PP = (PPHIBE1 ,PPHIBE2 ,BT ).

RHIBE-CS.GenKey(ID|k,SKID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik where k≥ 1. Let SKID|0 = MK where
SKHIBE1,ID|0 = MKHIBE1 and SKHIBE2,ID|0 = MKHIBE2 .

1. It obtains SKHIBE1,ID|k by running HIBE.Delegate(E1(ID|k),SKHIBE1,ID|k−1 ,PPHIBE1), and ob-
tains SKHIBE2,ID|k by running HIBE.Delegate(E1(ID|k),SKHIBE2,ID|k−1 ,PPHIBE2).

2. Finally, it outputs a private key SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k).

RHIBE-CS.UpdateKey(T,RLID|k−1 ,SKID|k−1 ,PP): Let SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k). To generate
an update key for ID|k−1 and T , it proceeds as follows:

1. It initializes RV = /0. For each tuple (ID j,Tj) ∈ RLID|k−1 where ID j = (I1, . . . , Ik−1, Ik), it adds
a leaf node v j ∈ BT which is associated with Ik such that Label(v j) = Ik into RV if Tj ≤ T . It
obtains CVk−1 by running CS.Cover(BT ,RV ).

2. For each Si ∈ CVk−1, it sets Li = Label(Si) and obtains SKHIBE2,Si by running HIBE.Delegate
((E1(ID|k−1),E2(Li‖T )),SKHIBE2,ID|k−1 ,PPHIBE2).

3. Finally, it outputs an update key UKID|k−1,T =
(
CVk−1,{SKHIBE2,Si}Si∈CVk−1

)
.

RHIBE-CS.DeriveKey(SKID|k ,UKID|0,T , . . . ,UKID|k−1,T ,PP): Let SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k). To
derive a decryption key for ID|k = (I1, . . . , Ik) and T , it proceeds as follows:

1. It obtains SKHIBE1,ID|k,T by running HIBE.Delegate((E1(ID|k),E3(T )),SKHIBE1,ID|k ,PPHIBE1).

2. For each u ∈ [k], it proceeds as follows:

(a) It obtains PVu by running CS.Assign(BT ,vu) where vu is a leaf such that Label(vu) = Iu.
(b) It finds (Siu ,Siu) by running CS.Match(CVu−1,PVu). If it fails to find, it returns ⊥.
(c) It retrieves SKHIBE2,Siu

from UKID|u−1,T and sets SKHIBE2,u = (Siu ,SKHIBE2,Siu
).

3. Finally, it outputs a decryption key DKID|k,T = (SKHIBE1,ID|k,T ,SKHIBE2,1, . . . ,SKHIBE2,k).

RHIBE-CS.Encrypt(ID|`,T,M,PP): To generate a ciphertext for ID|` = (I1, . . . , I`) and T , it proceeds as
follows:

1. It selects random R2,1, . . . ,R2,` and sets R1 = M⊕ (R2,1 ⊕ ·· · ⊕ R2,`). It obtains CTHIBE1 by
running HIBE.Encrypt((E1(ID|`),E3(T )),R1,PPHIBE1).

2. For each k ∈ [`], it performs the following steps.

(a) It obtains PVk by running CS.Assign(BT ,vk) where vk is a leaf such that Label(vk) = Ik.
(b) For each S j ∈ PVk, it sets L j = Label(S j) and obtains CTHIBE2,S j by running HIBE.Encrypt

((E1(ID|k−1),E2(L j‖T )),R2,k,PPHIBE2).
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(c) It creates CTPVk =
(
PVk,{CTHIBE2,S j}S j∈PVk

)
.

3. Finally, it outputs a ciphertext CTID|`,T = (CTHIBE1 ,CTPV1 , . . .CTPV`
).

RHIBE-CS.Decrypt(CTID|`,T ,DKID′|`,T ′ ,PP): Let CTID|`,T = (CTHIBE1 ,CTPV1 , . . . ,CTPV`
) and DKID′|`,T ′ =

(SKHIBE1 ,SKHIBE2,1, . . . ,SKHIBE2,k) where CTPVk = (PVk,{CTHIBE2,S j}). If (ID|` 6= ID′|`)∨ (T 6= T ′),
then it returns ⊥.

1. It first obtains R1 by running HIBE.Decrypt(CTHIBE1 ,SKHIBE1 ,PPHIBE1).

2. For each k ∈ [`], it performs the following steps:

(a) It gets Sik from SKHIBE2,k = (Sik ,SKHIBE2,Sik
) and retrieves CTHIBE2,Sik

from CTPVk .
(b) It obtains R2,k by running HIBE.Decrypt(CTHIBE2,Sik

,SKHIBE2,Sik
,PPHIBE2).

3. Finally, it outputs a message M = R1⊕R2,1⊕·· ·⊕R2,`.

RHIBE-CS.Revoke(ID|k,T,RLID|k−1): If (ID|k,∗) already exists in RLID|k−1 , it outputs RLID|k−1 . Otherwise,
it adds (ID|k−1,T ) to RLID|k−1 and outputs the updated RLID|k−1 .

3.4 Correctness

In order to show that our RHIBE-CS scheme is correct, we must show that the original message can be
recovered when a ciphertext is decrypted with a valid decryption key. First, we show that if the hierarchical
identity ID|k = (I1, . . . , Ik) of a user is not revoked in revocation lists RLID|0 , . . . ,RLID|k−1 before time T , a
valid decryption key can be derived. It is easy to derive a valid key component SKHIBE1,ID|k,T by using the
delegation property of HIBE. For each u ∈ [k], the path nodes PVu of a ciphertext can be determined since a
private key is associated with ID|k and the leaf node vu for Iu in a binary tree is fixed in advance, and we get
a common subset Siu of CVu−1 and PVu by the first property of the CS method in Lemma 3.1. Thus, we can
obtain valid decryption key components SKHIBE2,Si1

, . . . ,SKHIBE2,Sik
associated with Si1 , . . . ,Sik respectively.

Next, we show that a ciphertext for ID|` and T can be decrypted by using a decryption key for ID′|`
and T ′. At this time, a ciphertext CTID|`,T is composed of a ciphertext CTHIBE1 and multiple ciphertexts
CTPV1 , . . . ,CTPV`

, and a decryption key DKID′|`,T ′ consists of a private key SKHIBE1 and a number of tuples
(Si1 ,SKHIBE2,Si1

), . . . ,(Si` ,SKHIBE2,Si`
). If ID|` = ID′|` and T = T ′ are satisfied, we can obtain the correct R1

by decrypting CTHIBE1 with the private key SKHIBE1 from the correctness of the HIBE scheme. Next, for
each k ∈ [`], we can derive the correct R2,k by decrypting the ciphertext CTHIBE2,Sik

∈CTPVk with the private
key SKHIBE2,Sik

by the correctness of the HIBE scheme. Therefore, we can correctly derive the original
message M by computing R1⊕R2,1⊕·· ·⊕R2,`.

3.5 Security Analysis

In this section, we prove the security of our RHIBE-CS scheme by using the security of the underlying
HIBE schemes and the properties of the CS method. The basic idea of this proof is to separate adversaries
into `+1 types and perform independent proofs for these individual types.

Theorem 3.2. The generic RHIBE-CS scheme is IND-CPA secure if the underlying HIBE schemes are IND-
CPA secure.

Proof. Let ID∗|` = (I∗1 , . . . , I
∗
` ) be the challenge hierarchical identity and T ∗ be the challenge time. We

divide the behavior of an adversary as `+1 types: Type-1, · · · , Type-`+1, which are defined as follows:
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Type-τ . An adversary is Type-τ for τ ∈{1, . . . , `} if it does not request a private key for ID|k ∈Prefix(ID∗|τ−1),
but it must request a private key for ID|k = ID∗|τ .

Type-`+1. An adversary is Type-`+1 if it does not request a private key for ID|k ∈ Prefix(ID∗|`).

Let Eτ be the event that A behaves like Type-τ adversary. From Lemma 3.3 and Lemma 3.4, we obtain
the following result

AdvRHIBE
A (λ )≤

`+1

∑
τ=1

Pr[Eτ ]AdvRHIBE
A (λ )≤ O(`n)AdvHIBE

B (λ )+AdvHIBE
B (λ ).

This completes our proof.

Lemma 3.3. For the Type-τ adversary such that τ ∈ {1, . . . , `}, the generic RHIBE-CS scheme is IND-CPA
secure if the HIBE scheme is IND-CPA secure.

Proof. Let CT ∗ = (CT ∗HIBE1
,CT ∗PV1

, . . . ,CT ∗PV`
) be the challenge ciphertext. For the security proof, we define

hybrid games H0,H1, . . . ,Hn+1 as follows:

Game H0. This game is the original security game defined in the security model except that the challenge
bit µ is fixed to 0.

Game Hρ In this game, the generation of CT ∗PVτ
= (PVτ ,{CT ∗HIBE2,S jd

}S jd∈PVτ
) in the challenge ciphertext

CT ∗ is changed. The simulator of this game sets R′2,τ = M∗1 ⊕R1
⊕

1≤k 6=τ≤` R2,k and R2,τ = M∗0 ⊕
R1
⊕

1≤k 6=τ≤` R2,k. The game Hρ is similar to the game Hρ−1 except that CT ∗HIBE2,S jρ
is an encryption

on the value R′2,τ . Specifically, CT ∗HIBE2,S jd
for d ≤ ρ is an encryption on R′2,τ and CT ∗HIBE2,S jd

for d > ρ

is an encryption on R2,τ .

Game Hn+1 This game is the original security game in the security model except that the challenge bit µ is
fixed to 1.

Suppose there exists a Type-τ adversary A that distinguishes between Hρ−1 and Hρ of the RHIBE
scheme with a non-negligible advantage. An algorithm B that attacks the HIBE scheme is initially given
public parameters PPHIBE2 by a challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHIBE1 ,PPHIBE1 by running HIBE.Setup(1λ ,L+1). It initializes RLε = /0 and gives
PP = (PPHIBE1 ,PPHIBE2 ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.

• For a private key query with ID|k, B proceeds as follows: It generates SKHIBE1,ID|k by running
HIBE.GenKey(E1(ID|k),MKHIBE1 ,PPHIBE1). It receives SKHIBE2,ID|k from C by querying a private
key for E1(ID|k). It gives SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k) to A.

• For an update key query with ID|k−1 and time T , B proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj)∈ RLID|k−1 , it adds a leaf node v j ∈BT into RV if Tj ≤ T .
It obtains CVk−1 by running CS.Cover(BT ,RV ).

2. For each Si ∈CVk−1, it sets Li = Label(Si) and receives SKHIBE2,Si from C by querying a private
key for (E1(ID|k−1),E2(Li‖T )).
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3. It creates UKID|k−1,T =
(
CVk−1,{SKHIBE2,Si}Si∈CVk−1

)
and gives UKID|k−1,T to A.

• For a decryption key query with ID|k and time T , B proceeds as follows:

1. It generates SKHIBE1,ID|k,T by running HIBE.GenKey((E1(ID|k),E3(T )),MKHIBE1 ,PPHIBE1).

2. Next, it obtains update keys UKID|0,T , . . . ,UKID|k−1,T by querying its own update key oracle for
(ID|0,T ), . . . ,(ID|k−1,T ). For each u ∈ [k], it obtains SKHIBE2,u if Iu is not revoked in UKID|u−1,T
by following the procedure in the RHIBE-CS.DeriveKey algorithm.

3. If Iu was revoked in UKID|u−1,T for any u∈ [k], then it gives⊥ toA. Otherwise, t gives DKID|k,T =
(SKHIBE1,ID|k,T ,SKHIBE2,1, . . . ,SKHIBE2,k) to A.

• For a revocation query with a hierarchical identity ID|k and time T , B adds (ID|k,T ) to RLID|k−1 if
ID|k was not revoked before.

Challenge: A submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
` ), challenge time T ∗, and two

challenge messages M∗0 ,M
∗
1 . B proceeds as follows:

1. It first selects random R1,{R2,i}1≤i 6=τ≤` and computes R2 =
⊕

1≤i 6=τ≤` R2,i. It sets R2,τ,0 = M∗0 ⊕R1⊕
R2 and R2,τ,1 =M∗1⊕R1⊕R2. Next, it generates CT ∗HIBE1

by running HIBE.Encrypt((E1(ID∗|`),E3(T ∗)),
R1,PPHIBE1).

2. For each k ∈ [`], it performs the following steps:

(a) It obtains PVk by running CS.Assign(BT ,vk) where a leaf node vk is associated with I∗k .

(b) Case k 6= τ: For each S j ∈ PVk, it obtains L j = Label(S j) and generates CT ∗HIBE2,S j
by running

HIBE.Encrypt((E1(ID∗|k−1),E2(L j‖T ∗)),R2,i,PPHIBE2).
It creates CT ∗PVk

=
(
PVk,{CT ∗HIBE2,S j

}S j∈PVk

)
.

(c) Case k = τ: For each S jd ∈ PVτ = {S j1 , . . . ,S jn+1}, it obtains L jd = Label(S jd ) and proceeds as
follows:

• If d < ρ , then it generates CT ∗HIBE2,S jd
by running HIBE.Encrypt((E1(ID∗|τ−1),E2(L jd‖T ∗)),

R2,τ,1,PPHIBE2).
• If d = ρ , then it receives CT ∗HIBE2,S jρ

from C by submitting a challenge hierarchical identity
(E1(ID∗|τ−1),E2(L jρ‖T ∗)) and challenge messages R2,τ,0,R2,τ,1.

• If d > ρ , then it generates CT ∗HIBE2,S jd
by running HIBE.Encrypt((E1(ID∗|τ−1),E2(L jd‖T ∗)),

R2,τ,0,PPHIBE2).

It creates CT ∗PVτ
=
(
PVτ ,{CT ∗HIBE2,S jd

}S jd∈PVτ

)
.

3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE1
,CT ∗PV1

, . . . ,CT ∗PV`
) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof of this lemma, we must show that the simulator can correctly handle private key,
update key, and decryption key queries of the adversary. At this time, the HIBE2 private key queries and
the HIBE2 challenge ciphertext requested by the simulator to the challenger must satisfy the constraint of
the HIBE security model. To simplify the analysis, we first analyze the HIBE2 challenge ciphertext of the
challenge ciphertext and check whether the HIBE2 private keys of private keys, update keys, and decryption
keys satisfy the constraint.
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• Challenge ciphertext: The challenge ciphertext consists of multiple HIBE2 ciphertexts, and the HIBE2
challenge ciphertext is CT ∗HIBE2,S jρ

∈CT ∗PVτ
. In this case, the HIBE2 challenge ciphertext is associated

with (E1(ID∗|τ−1),E2(Lρ‖T ∗)) where Lρ is the label of a path node defined by a leaf node I∗τ .

• Private key: Since the adversary is Type-τ , he cannot request a private key for ID∗|k and k < τ , but
must request a private key for ID∗|τ . To simplify the analysis, we divide the private key generation of
the simulator into the following cases:

– Case ID|k /∈ Prefix(ID∗|`): In this case, the constraint of the HIBE2 security model is satisfied,
so it can generate a private key by using the HIBE2 private key query.

– Case ID|k ∈ Prefix(ID∗|`)∧ k = τ: In this case, we have ID|k = ID∗|τ = (I∗1 , . . . , I
∗
τ ), and the

simulator requests an HIBE2 private key for E1(ID∗|τ) = (E1(I∗1 ), . . . ,E1(I∗τ )) to the challenger.
Since the encoding functions satisfy E1(x) 6=E2(y) for any x and y, it is established that E1(I∗|τ) 6=
E2(Lρ‖T ∗). Thus, it can generate a private key by using the HIBE2 private key query since the
constraint of the HIBE2 security model is satisfied.

– Case ID|k ∈ Prefix(ID∗|`)∧ k > τ: This case also includes the index i = τ , so the same logic as
in the previous case is applied. Thus, it can generate a private key by using the HIBE2 private
key query.

• Update key: The simulator must be able to generate an update key for any ID|k−1 and T . To simplify
the analysis, we divide the update key generation of the simulator into the following cases:

– Case T 6= T ∗: In this case, the hierarchical identity of an HIBE2 private key in an update key
contains a string E2(Li‖T ) and the challenge hierarchical identity of the HIBE2 challenge ci-
phertext contains a string E2(L j‖T ∗), so it is established that E2(Li‖T ) 6= E2(L j‖T ∗). Thus, it
can generate an update key by using the HIBE2 private key query.

– Case T =T ∗∧ID|k−1 /∈Prefix(ID∗|τ−1): In this case, it is established that (E1(ID|k−1),E2(Li‖T ∗))
/∈ Prefix((E1(ID∗|τ−1),E2(Lρ‖T ∗))) in the HIBE2 scheme. Thus, since this HIBE2 private key
query is allowed in the HIBE security model, it can generate an update key.

– Case T = T ∗∧ ID|k−1 ∈ Prefix(ID∗|τ−1)∧ k ≤ τ−1: In this case, the HIBE2 private key of an
update key is associated with a string (E1(ID|k−1),E2(Li‖T ∗)), and we have E2(Li‖T ∗) 6= E1(I∗k )
by the encoding function. This means that (E1(ID|k−1),E2(Li‖T ∗)) /∈ Prefix((E1(ID∗|τ−1),
E2(Lρ‖T ∗))). Thus, it can generate an update key since this HIBE2 private key query is al-
lowed in the HIBE security model.

– Case T = T ∗∧ ID|k−1 ∈ Prefix(ID∗|τ−1)∧ k = τ: In this case, by the constraints of the RHIBE
security model, the identity I∗τ must be revoked in this update key. From the second property
of the CS method in Lemma 3.1, we have that PVτ ∩CVτ−1 is an empty set. That is, a label Li

of the cover CVτ−1 is different from the label L jρ of the path node PVτ , so we have Li 6= L jρ .
This means that (E1(ID∗|τ−1),E2(Li‖T ∗)) 6= (E1(ID∗|τ−1),E2(L jρ‖T ∗)). Thus, it can generate
an update key by using the HIBE2 private key query.

• Decryption key: In the case of the decryption key, if the simulator can correctly generate update keys,
then simulator can also correctly generate a decryption key.
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Finally, we analyze the advantage of the simulation. Let SHi
A be the event that A outputs 0 in a game Hi.

Since this lemma consists of a number of hybrid games, we get the following result

AdvRHIBE
A (λ )≤ 1

2

∣∣∣Pr[SH0
A ]−Pr[SHn+1

A ]
∣∣∣≤ 1

2

n+1

∑
ρ=1

∣∣∣Pr[SHρ−1
A ]−Pr[SHρ

A ]
∣∣∣≤ O(n)AdvHIBE

B (λ ).

This completes our proof.

Lemma 3.4. For the Type-`+ 1 adversary, the generic RHIBE scheme is IND-CPA secure if the HIBE
scheme is IND-CPA secure.

Proof. Suppose there exists a Type-`+1 adversaryA that attacks the RHIBE scheme with a non-negligible
advantage. An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE1 by a
challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHIBE2 ,PPHIBE2 by running HIBE.Setup(1λ ,L). It initializes RLε = /0 and gives
PP = (PPHIBE1 ,PPHIBE2 ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.

• For a private key query with ID|k, B proceeds as follows: It receives SKHIBE1,ID|k from C by querying a
private key for ID|k. It generates SKHIBE2,ID|k by running HIBE.GenKey(E1(ID|k),MKHIBE2 ,PPHIBE2).
It gives SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k) to A.

• For an update key query with ID|k−1 and T , B proceeds as follows: It generates UKID|k−1,T by running
RHIBE-CS.UpdateKey algorithm since it knows MKHIBE2 . It gives UKID|k−1,T to A.

• For a decryption key query with ID|k and T , B proceeds as follows:

1. It receives SKHIBE1,ID|,T from C by querying a private key for (E1(ID|k),E3(T )).

2. Next, it obtains update keys UKID|0,T , . . . ,UKID|k−1,T by querying its own update key oracle for
(ID|0,T ), . . . ,(ID|k−1,T ). For each u ∈ [k], it obtains SKHIBE2,u if Iu is not revoked in UKID|u−1,T
by following the procedure in the RHIBE-CS.DeriveKey algorithm.

3. If Iu was revoked in UKID|u−1,T for any u∈ [k], then it gives⊥ toA. Otherwise, t gives DKID|k,T =
(SKHIBE1,ID|k,T ,SKHIBE2,1, . . . ,SKHIBE2,k) to A.

• For a revocation query with a hierarchical identity ID|k and time T , B adds (ID|k,T ) to RLID|k−1 if
ID|k was not revoked before.

Challenge: A submits a challenge hierarchical identity ID∗|`, challenge time T ∗, and two challenge mes-
sages M∗0 ,M

∗
1 . B proceeds as follows:

1. It first selects random {R2,i}1≤i≤` and computes R2 =
⊕

1≤i≤` R2,i. It sets R1,0 = M∗0 ⊕R2 and R1,1 =
M∗1 ⊕R2. It receives CT ∗HIBE1

from C by submitting challenge identity (E1(ID∗|`),E3(T ∗)) and chal-
lenge messages R1,0,R1,1.

2. For each k ∈ [`], it proceeds as follows:

(a) It obtains PVk by running CS.Assign(BT ,vk) where a leaf node vk is associated with I∗k .
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(b) For each S j ∈PVk, it obtains L j =Label(S j) and generates CT ∗HIBE2,S j
by running HIBE.Encrypt

((E1(ID∗|k−1),E2(L j‖T ∗)),R2,k,PPHIBE2).

(c) It creates CT ∗PVk
=
(
PVk,{CT ∗HIBE2,S j

}S j∈PVk

)
.

3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE1
,CT ∗PV1

, . . . ,CT ∗PV`
) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof of this lemma, we must show that the simulator can correctly generate private
keys, update keys, decryption keys, and the challenge ciphertext by using HIBE1 private keys and HIBE1
challenge ciphertext while satisfying the constraint of the HIBE security model.

• Challenge ciphertext: The adversary submits ID∗|` and T ∗ as challenges, and the simulator requests
the HIBE1 challenge ciphertext after applying additional encoding. Therefore, the challenge hierar-
chical identity of the HIBE1 scheme is set to (E1(ID∗|`),E3(T ∗)).

• Private key: Since the adversary is Type-`+ 1, he can query a private key for ID|k /∈ Prefix(ID∗|`),
but he cannot query a private key for ID|k ∈ Prefix(ID∗|`). Therefore, the HIBE private key satisfies
E1(ID|k) /∈ Prefix(E1(ID∗|`)), so the simulator can generate a private key by using the HIBE1 private
key query.

• Update key: Since an update key is composed of only HIBE2 private keys, the simulator can easily
generate an update key by using MKHIBE2 .

• Decryption key: The adversary can query a decryption key for ID|k /∈ Prefix(ID∗|`) or T 6= T ∗ due to
the constraints of the RHIBE security model. At this time, a decryption key is composed of an HIBE1
private key and a number of update keys, and update keys are easily generated as previously analyzed.
To simplify the analysis, we divide the decryption key generation into the following cases and analyze
the decryption key by checking whether it is possible to create an HIBE1 private key.

– Case ID|k /∈ Prefix(ID∗|`): In this case, we have E1(ID|k) /∈ Prefix(ID∗|`), so an HIBE1 private
key satisfies (E1(ID|k),E3(T )) /∈ Prefix(E1(ID∗)|`),E3(T ∗)). Thus, the simulator can generate
a decryption key since the constraint of the HIBE security model is satisfied.

– Case T 6= T ∗∧k < `: In this case, we have E3(T ) 6= E1(I∗|k+1) by the property of encoding func-
tions, so an HIBE1 private key satisfies (E1(ID|k),E3(T )) /∈ Prefix(E1(ID∗|`),E3(T ∗)). Thus,
the simulator can generate a decryption key since the constraint of the HIBE security model is
satisfied.

– Case T 6= T ∗∧ k = `: In this case, we have E3(T ) 6= E3(T ∗), so an HIBE1 private key satisfies
(E1(ID|k),E3(T )) /∈ Prefix(E1(ID∗|`),E3(T ∗)). Thus, the simulator can generate a decryption
key since it satisfies the constraint of the HIBE security model.

– Case T 6= T ∗∧k > `: In this case, we have E1(I`+1) 6= E3(T ∗), so an HIBE1 private key satisfies
(E1(ID|k),E3(T )) /∈ Prefix(E1(ID∗)|`),E3(T ∗)). Thus, the simulator can generate a decryption
key since it satisfies the constraint of the HIBE security model.

This completes the proof.
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3.6 Discussions

Efficiency Analysis. We analyze the efficiency of our RHIBE-CS scheme. Let n be the depth of a binary
tree and ` be the level of a hierarchical identity. Note that in order to handle an arbitrary identity string,
the depth n must be the length of a hash output which is 2λ . In our RHIBE-CS scheme, a private key is
compact since it consists of two HIBE private keys. An update key is roughly composed of O(rn) HIBE
private keys since it is composed of HIBE private keys that are related to the cover nodes of the CS method
where r is the number of revoked users in a binary tree. A decryption key is composed of `+1 HIBE private
keys since it only needs some HIBE private keys in update keys that match to the path nodes of the private
key’s identity. A ciphertext is consists of approximately `(n+1) HIBE ciphertexts since it is composed of
one HIBE ciphertext and HIBE ciphertexts associated with path nodes. The decryption algorithm is efficient
because it only requires `+1 HIBE decryption operations.

Reducing the Transmission of Update Keys. In our RHIBE-CS scheme, an update key has a disadvantage
of a large size since it is generated for each individual user and it is composed of approximately O(rn)
HIBE private keys. In order to improve the inefficiency of the update key transmission, we can consider to
delegate the generation of update keys to a cloud server and to store these update keys on the cloud server.
It is possible to delegate the generation of update keys to the cloud server since the HIBE2 private key
of a user’s private keys is only used to generate an update key. If a user with a hierarchical identity ID|k
requests update keys UKID|0,T , . . . ,UKID|k−1,T , the cloud server transmits HIBE2 privates keys that match to
path nodes associated with ID|k instead of transmitting all update keys. Recall that this approach is similar
to the procedure of the decryption key algorithm. This approach has the disadvantage of requiring that each
user have to query the cloud server, but it can reduce the transmission cost of update keys.

Reducing the Size of Ciphertexts. In our RHIBE-CS scheme, a ciphertext is composed of `(n+1) HIBE
ciphertexts since it consists of one HIBE1 ciphertext and `CTPV ciphertexts where each CTPV contains n+1
HIBE2 ciphertexts. In this case, the number of HIBE ciphertexts included in the ciphertext is quite large
since n is the depth of a binary tree. One way to reduce the ciphertext size of our RHIBE-CS scheme is
to change the underlying HIBE scheme to the BBG-HIBE scheme with constant size ciphertext [5]. That
is, the ciphertext generation algorithm creates a BBG-HIBE ciphertext by setting a binary tree path as a
hierarchical identity, and the update key generation algorithm generates BBG-HIBE private keys by setting
the binary tree path up to a curve node as a hierarchical identity. If there is a matching node among the curve
set of an update key and the path set of a ciphertext, decryption of the ciphertext can be done by using the
key delegation property of the BBG-HIBE scheme. Thus, the ciphertext of this method is very efficient since
it consists of only ` BBG-HIBE ciphertexts, but the size of the update key increases since the private key of
the BBG-HIBE scheme contains additional elements for key delegation. The description of this scheme is
given in Section 5.

4 Revocable HIBE with SD

In this section, we generically construct an RHIBE scheme by combining an HIBE scheme, an HSRE
scheme, and the SD method and prove the adaptive security of this scheme.

4.1 Subset Difference Method

The subset difference (SD) method is a type of the subset cover framework proposed by Naor et al. [31]. We
use the SD method newly defined by Lee et al. [24] that separate the subset definition and key assignment.
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The detailed definition of the SD method is given as follows.

SD.Setup(N): Let N = 2n be the number of leaf nodes. It sets a perfect binary tree BT of depth n and
outputs BT . Note that a user is assigned to a leaf node in BT and the collection S of SD is the set of
all subsets {Si, j} where vi,v j ∈ BT and v j is a descendant of vi.

SD.Assign(BT ,v): Let v be the leaf node of BT that is assigned to a user ID. Let (vk0 ,vk1 , . . . ,vkn) be a
path from the root node vk0 to the leaf node vkn = v. It initializes a path set PV as an empty one. For
all i, j ∈ {k0, . . . ,kn} such that v j is a descendant of vi, it adds a subset Si, j defined by two nodes vi and
v j in the path into PV . It outputs the path set PV = {Si, j}.

SD.Cover(BT ,R): Let R be a revoked set of leaf nodes (or users). It first sets a subtree T as ST (BT ,R),
and then it builds a cover set CV iteratively by removing nodes from T until T consists of just a single
node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does
not contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v
such that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left,
it makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CV ; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the cover set CV = {Si, j}.

SD.Match(CV,PV ): Let CV = {Si, j} and PV = {Si, j}. It finds two subsets Si, j ∈CV and Si′, j′ ∈ PV such
that (vi = vi′)∧ (d j = d j′)∧ (v j 6= v j′) where d j is the depth of v j. If two subsets exist, then it outputs
(Si, j,Si′, j′). Otherwise, it outputs ⊥.

Lemma 4.1 ( [31]). Given any set of revoked leaves R, the SD.Cover algorithm partitionsN \R into at most
2r−1 disjoint subsets where N is the set of all leaves and r is the size of R.

Lemma 4.2. Let PV be a path set obtained by the SD.Assign algorithm for a leaf node v, and CV be a cover
set obtained by the SD.Cover algorithm for a revoked leaves R. In this case, the SD method satisfies the
following two properties: 1) If v /∈R, there is only one subset pair (Si, j,Si′, j′) of Si, j ∈PV and Si′, j′ ∈CV such
that vi = vi′ ∧d j = d j′ ∧ v j 6= v j′ . 2) If v ∈ R, there is no subset pair (Si, j,Si′, j′) of Si, j ∈ PV and Si′, j′ ∈CV
such that vi = vi′ ∧d j = d j′ ∧ v j 6= v j′ .

Proof. We prove the first property. From Lemma 4.1, the SD.Cover algorithm partitions all leaf nodes
except R into disjoint subsets Si′1, j

′
1
, . . . ,Si′m, j′m . It means that the leaf node v /∈R must belong to one partitioned

subset Si′, j′ . According to the definition of the subset Si′, j′ , if v ∈ Si′, j′ , v belongs to the leaves of the subtree
Ti′ , but not the leaves of the subtree T j′ . Thus, the path nodes of v include the root node vi′ of Ti′ , and not the
root node v j′ of T j′ . Also, since v j′ is a descendant of vi′ , there exists a node v j in the path nodes of v such
that the depth d j of v j is the same as the depth d j′ of v j′ . Therefore, the subset Si, j defined by vi = vi′ and v j

belongs to PV and satisfies vi = vi′ ∧d j = d j′ ∧ v j 6= v j′ .
Next, we prove the second property. Suppose that there is a subset Si′, j′ ∈CV that satisfies the condition

vi = vi′ ∧d j = d j′ ∧ v j 6= v j′ . By the definition of subsets, the leaf node v is the leaf node of the subtree Ti′ ,
but not the leaf node of the subtree T j′ . Thus, v belongs to the subset Si′, j′ . However, this contradicts that v
belongs to R. Therefore, there is no subset pair that satisfies the condition if v ∈ R.
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4.2 Generic Construction

An RHIBE-SD scheme that is designed by generically combining an HIBE scheme, an HSRE scheme, and
the SD method is described as follows:

RHIBE-SD.Setup(1λ ,L): Let I = {0,1}n be the identity space and L be the maximum number of hierar-
chical depth.

1. It first obtains MKHIBE ,PPHIBE by running HIBE.Setup(1λ ,L+1). It obtains MKHSRE ,PPHSRE

by running HSRE.Setup(1λ ,L).

2. It defines a binary tree BT by running SD.Setup(2n) where an identity I ∈I is uniquely assigned
to a leaf node v such that Label(v) = I.

3. It outputs a master key MK = (MKHIBE ,MKHSRE), a revocation list RLε = /0, and public param-
eters PP = (PPHIBE ,PPHSRE ,BT ).

RHIBE-SD.GenKey(ID|k,SKID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik where k ≥ 1.

1. It obtains SKHIBE,ID|k by running HIBE.Delegate(E1(ID|k),SKHIBE,ID|k−1 ,PPHIBE), and obtains
SKHSRE,ID|k by running HSRE.Delegate(E1(ID|k),SKHSRE,ID|k−1 ,PPHSRE).

2. Finally, it outputs a private key SKID|k = (SKHIBE,ID|k ,SKHSRE,ID|k).

RHIBE-SD.UpdateKey(T,RLID|k−1 ,SKID|k−1 ,PP): To generate an update key for T , it proceeds as follows:

1. It initializes RV = /0. For each tuple (ID j,Tj) ∈ RLID|k−1 where ID j = (I1, . . . , Ik−1, Ik), it adds
a leaf node v j ∈ BT which is associated with Ik such that Label(v j) = Ik into RV if Tj ≤ T . It
obtains CVk−1 by running SD.Cover(BT ,RV ).

2. For each Si, j ∈ CVk−1, it sets (GL,ML) = GMLabels(Si, j) and obtains SKHSRE,Si, j by running
HSRE.MakeKey((E2(GL‖T ),E2(ML)),SKHSRE,ID|k−1 ,PPHSRE).

3. Finally, it outputs an update key UKID|k−1,T =
(
CVk−1,{SKHSRE,Si, j}Si, j∈CVk−1

)
.

RHIBE-SD.DeriveKey(SKID|k ,UKID|0,T , . . . ,UKID|k−1,T ,PP): Let SKID|k = (SKHIBE,ID|k ,SKHSRE,ID|k). To
derive a decryption key for ID|k = (I1, . . . , Ik) and T , it proceeds as follows:

1. It obtains SKHIBE,ID|k,T by running HIBE.Delegate((E1(ID|k),E3(T )),SKHIBE,ID|k ,PPHIBE).

2. For each u ∈ [k], it proceeds as follows:

(a) It obtains PVu by running SD.Assign(BT ,vu) where vu is a leaf such that Label(vu) = Iu.
(b) It finds (Siu, ju ,Si′u, j′u) by running SD.Match(CVu−1,PVu). If it fails to find, it returns ⊥.
(c) It retrieves SKHSRE,Siu , ju

from UKID|u−1,T and sets SKHSRE,u = ((Siu, ju ,Si′u, j′u),SKHSRE,Siu , ju
).

3. Finally, it outputs a decryption key DKID|k,T = (SKHIBE,ID|k,T ,SKHSRE,1, . . . ,SKHSRE,k).

RHIBE-SD.Encrypt(ID|`,T,M,PP): To generate a ciphertext for ID|` = (I1, . . . , I`) and T , it proceeds as
follows:

1. It selects random R2,1, . . . ,R2,` and sets R1 = M⊕ (R2,1 ⊕ ·· · ⊕ R2,`). It obtains CTHIBE1 by
running HIBE.Encrypt((E1(ID|`),E3(T )),R1,PPHIBE).

2. For each k ∈ [`], it performs the following steps.
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(a) It obtains PVk by running SD.Assign(BT ,vk) where vk is a leaf such that Label(vk) = Ik.
(b) For each Si, j ∈ PVk, it sets (GL,ML) = GMLabels(Si, j) and obtains CTHSRE,Si, j by running

HSRE.Encrypt(E1(ID|k−1),(E2(GL‖T ),E2(ML)),R2,k,PPHSRE).
(c) It creates CTPVk =

(
PVk,{CTHSRE,Si, j}Si, j∈PVk

)
.

3. Finally, it outputs a ciphertext CTID|`,T = (CTHIBE ,CTPV1 , . . .CTPV`
).

RHIBE-SD.Decrypt(CTID|`,T ,DKID′|`,T ′ ,PP): Let CTID|`,T = (CTHIBE ,CTPV1 , . . . ,CTPV`
) and DKID′|`,T ′ =

(SKHIBE ,SKHSRE,1, . . . ,SKHSRE,`). If (ID|` 6= ID′|`)∨ (T 6= T ′), then it returns ⊥.

1. It first obtains R1 by running HIBE.Decrypt(CTHIBE ,SKHIBE ,PPHIBE).

2. For each k ∈ [`], it performs the following steps:

(a) It gets Si′k, j
′
k

from SKHSRE,k = ((Sik, jk ,Si′k, j
′
k
),SKHSRE,Sik , jk

) and retrieves CTHSRE,Si′k , j
′
k

from

CTPVk = (PVk,{CTHSRE,Si′, j′}).
(b) It obtains R2,k by running HSRE.Decrypt(CTHSRE,Si′k , j

′
k
,SKHSRE,Sik , jk

,PPHSRE).

3. Finally, it outputs a message M = R1⊕R2,1⊕·· ·⊕R2,`.

RHIBE-SD.Revoke(ID|k,T,RLID|k−1): If (ID|k,∗) already exists in RLID|k−1 , it outputs RLID|k−1 . Otherwise,
it adds (ID|k−1,T ) to RLID|k−1 and outputs the updated RLID|k−1 .

4.3 Correctness

In order to show that our RHIBE-SD scheme is correct, we must show that the original message can be
recovered when a ciphertext is decrypted with a valid decryption key. First, we show that if the hierarchi-
cal identity ID|k = (I1, . . . , Ik) of a user is not revoked in revocation lists RLID|0 , . . . ,RLID|k−1 before time
T , a valid decryption key can be derived. It is easy to derive a valid key component SKHIBE,ID|k,T by
using the delegation property of HIBE. For each u ∈ [k], the path nodes PVu of a ciphertext can be deter-
mined since a private key is associated with ID|k and the leaf node vu for Iu in a binary tree is fixed in
advance, and we get subsets Si, j ∈CVk−1 and Si′, j′ ∈ PVu by the first property of the SD method in Lemma
4.2. Thus, we can obtain valid decryption key components SKHSRE,Si1, j1

, . . . ,SKHSRE,Sik , jk
associated with

(Si1, j1 ,Si′1, j
′
1
), . . . ,(Sik, jk ,Si′k, j

′
k
) respectively.

Next, we show that a ciphertext for ID|` and T can be decrypted by using a decryption key for ID′|`
and T ′. At this time, a ciphertext CTID|`,T is composed of a ciphertext CTHIBE and multiple ciphertexts
CTPV1 , . . . ,CTPV`

, and a decryption key DKID′|`,T ′ consists of a private key SKHIBE and a number of tuples
((Si1, j1 ,Si′1, j

′
1
),SKHSRE,Si1 , j1

), . . . ,((Si`, j` ,Si′`, j
′
`
),SKHSRE,Si`, j`

). If ID|` = ID′|` and T = T ′ are satisfied, we can
obtain the correct R1 by decrypting CTHIBE with the private key SKHIBE from the correctness of the HIBE
scheme. Next, for each k ∈ [`], we can derive the correct R2,k by decrypting the ciphertext CTHSRE,Si′k , j

′
k
∈

CTPVk with the private key SKHSRE,Sik , jk
by the correctness of the HSRE scheme. Therefore, we can correctly

derive the original message M by computing R1⊕R2,1⊕·· ·⊕R2,`.

4.4 Security Analysis

Theorem 4.3. The generic RHIBE-SD scheme is IND-CPA secure if the underlying HIBE and HSRE
schemes are IND-CPA secure.

Proof. Let ID∗|` = (I∗1 , . . . , I
∗
` ) be the challenge hierarchical identity and T ∗ be the challenge time. We

divide the behavior of an adversary as `+1 types: Type-1, · · · , Type-`+1, which are defined as follows:
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Type-τ . An adversary is Type-τ for τ ∈{1, . . . , `} if it does not request a private key for ID|k ∈Prefix(ID∗|τ−1),
but it must request a private key for ID|k = ID∗|τ .

Type-`+1. An adversary is Type-`+1 if it does not request a private key for ID|k ∈ Prefix(ID∗|`).

Let Eτ be the event that A behaves like Type-τ adversary. From Lemma 4.4 and Lemma 4.5, we obtain
the following result

AdvRHIBE
A (λ )≤

`+1

∑
τ=1

Pr[Eτ ]AdvRHIBE
A (λ )≤ O(`n2)AdvHSRE

B (λ )+AdvHIBE
B (λ ).

This completes our proof.

Lemma 4.4. For the Type-τ adversary, the generic RHIBE-SD scheme is IND-CPA secure if the HSRE
scheme is IND-CPA secure.

Proof. Let CT ∗ = (CT ∗HIBE ,CT ∗PV1
, . . . ,CT ∗PV`

) be the challenge ciphertext and m = n(n−1)/2 be the number
of subsets in PVτ . For the security proof, we define hybrid games H0,H1, . . . ,Hm as follows:

Game H0. This game is the original security game defined in the security model except that the challenge
bit µ is fixed to 0.

Game Hρ In this game, the generation of CT ∗PVτ
= (PVτ ,{CT ∗HSRE,Sid , jd

}Sid , jd∈PVτ
) in the challenge ciphertext

CT ∗ is changed. The simulator of this game sets R′2,τ = M∗1 ⊕R1
⊕

1≤k 6=τ≤` R2,k and R2,τ = M∗0 ⊕
R1
⊕

1≤k 6=τ≤` R2,k. The game Hρ is similar to the game Hρ−1 except that CT ∗HSRE,Siρ , jρ
is an encryption

on the value R′2,τ . Specifically, CT ∗HSRE,Sid , jd
for d ≤ ρ is an encryption on R′2,τ and CT ∗HSRE,Sid , jd

for
d > ρ is an encryption on R2,τ .

Game Hm This game is the original security game in the security model except that the challenge bit µ is
fixed to 1.

Suppose there exists an adversary A that distinguishes between Hρ−1 and Hρ of the RHIBE scheme
with a non-negligible advantage. An algorithm B that attacks the HSRE scheme is initially given public
parameters PPHSRE by a challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHIBE ,PPHIBE by running HIBE.Setup(1λ ,L+ 1). It initializes RLε = /0 and gives
PP = (PPHIBE ,PPHSRE ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.

• For a private key query with ID|k, B proceeds as follows: It first generates SKHIBE,ID|k by running
HIBE.GenKey(E1(ID|k),MKHIBE ,PPHIBE). It receives SKHSRE,ID|k from C by querying a private key
for E1(ID|k). It gives SKID|k = (SKHIBE,ID|k ,SKHSRE,ID|k) to A.

• For an update key query with ID|k−1 and time T , B proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT into RV if Tj ≤ T . It
obtains CVk−1 by running SD.Cover(BT ,RV ).

2. For each Si, j ∈ CVk−1, it sets (GL,ML) = GMLabels(Si, j) and receives SKHSRE,Si, j from C by
submitting E1(ID|k−1) and (E2(GL‖T ),E2(ML)).
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3. It creates UKID|k−1,T =
(
CVk−1,{SKHSRE,Si, j}Si, j∈CVk−1

)
and gives UKID|k−1,T to A.

• For a decryption key query with ID|k and time T , B proceeds as follows:

1. It generates SKHIBE,ID|k,T by running HIBE.GenKey((E1(ID|k),E3(T )),MKHIBE ,PPHIBE).

2. Next, it obtains update keys UKID|0,T , . . . ,UKID|k−1,T by querying its own update key oracle for
(ID|0,T ), . . . ,(ID|k−1,T ). For each u ∈ [k], it obtains SKHSRE,u if Iu is not revoked in UKID|u−1,T
by following the procedure in the RHIBE-SD.DeriveKey algorithm.

3. If Iu was revoked in UKID|u−1,T for any u∈ [k], then it gives⊥ toA. Otherwise, t gives DKID|k,T =
(SKHIBE,ID|k,T ,SKHSRE,1, . . . ,SKHSRE,k) to A.

• For a revocation query with a hierarchical identity ID|k and time T , B adds (ID|k,T ) to RLID|k−1 if
ID|k was not revoked before.

Challenge: A submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
` ), challenge time T ∗, and two

challenge messages M∗0 ,M
∗
1 . B proceeds as follows:

1. It first selects random R1,{R2,i}1≤i 6=τ≤` and computes R2 =
⊕

1≤i6=τ≤` R2,i. It sets R2,τ,0 = M∗0 ⊕R1⊕
R2 and R2,τ,1 =M∗1⊕R1⊕R2. Next, it generates CT ∗HIBE by running HIBE.Encrypt((E1(ID∗|`),E3(T ∗)),
R1,PPHIBE).

2. For each k ∈ [`], it performs the following steps:

(a) It obtains PVk by running SD.Assign(BT ,vk) where a leaf node vk is associated with I∗k .

(b) Case k 6= τ: For each Si, j ∈ PVk, it obtains (GL,ML) = GMLabels(Si, j) and generates CT ∗HSRE,Si, j

by running HSRE.Encrypt((E1(ID∗|k−1),(E2(GL‖T ∗),E2(ML))),R2,i,PPHSRE).
It creates CT ∗PVk

=
(
PVk,{CT ∗HSRE,Si, j

}Si, j∈PVk

)
.

(c) Case k= τ: For each Sid , jd ∈PVτ = {Si1, j1 , . . . ,Sim, jm}, it obtains (GLd ,MLd)=GMLabels(Sid , jd )
and proceeds as follows:

• If d < ρ , then it generates CT ∗HSRE,Sid , jd
by running HSRE.Encrypt(E1(ID∗|τ−1),(E2(GLd‖T ∗),

E2(MLd)),R2,τ,1,PPHSRE).
• If d = ρ , then it receives CT ∗HSRE,Siρ , jρ

from C by submitting a challenge hierarchical identity
E1(ID∗|τ−1), (E2(GLρ‖T ∗),E2(MLρ)) and challenge messages R2,τ,0,R2,τ,1.

• If d > ρ , then it generates CT ∗HSRE,Sid , jd
by running HSRE.Encrypt(E1(ID∗|τ−1),(E2(GLd‖T ∗),

E2(MLd)),R2,τ,0,PPHSRE).

It creates CT ∗PVτ
=
(
PVτ ,{CT ∗HSRE,Sid , jd

}Sid , jd∈PVτ

)
.

3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗PV1
, . . . ,CT ∗PV`

) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof of this lemma, we must show that the simulator can correctly handle private key,
update key, and decryption key queries of the adversary. At this time, the HSRE private key queries and
the HSRE challenge ciphertext requested by the simulator to the challenger must satisfy the constraints of
the HSRE security model. To simplify the analysis, we first analyze the HSRE challenge ciphertext of the
challenge ciphertext and check whether the HSRE private keys of private keys, update keys, and decryption
keys satisfy the constraints.
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• Challenge ciphertext: The challenge ciphertext consists of multiple HSRE ciphertexts, and the HSRE
challenge ciphertext is CT ∗HSRE,Siρ , jρ

∈CT ∗PVτ
. In this case, the HSRE challenge ciphertext is associated

with a hierarchical identity E1(ID∗|τ−1) and labels (E2(GLρ‖T ∗),E2(MLρ)) where GLρ ,MLρ are
group and member labels in path nodes defined by a leaf node I∗τ .

• Private key: By the restriction of the adversary type, the adversary of Type-τ cannot request a private
key for ID∗|k∧k < τ , but must request a private key for ID∗|τ . To simplify the analysis, we divide the
private key generation of the simulator into the following cases:

– Case ID|k /∈ Prefix(ID∗|`): In this case, the constraint of the HSRE security model is satisfied,
so it can generate a private key by using the HSRE delegate key query.

– Case ID|k ∈ Prefix(ID∗|`)∧ k = τ: In this case, we have ID|k = ID∗|τ = (I∗1 , . . . , I
∗
τ ), and the

simulator requests an HSRE delegate key for E1(ID∗|τ) = (E1(I∗1 ), . . . ,E1(I∗τ )) to the challenger.
Since the encoding functions satisfy E1(x) 6=E2(y) for any x and y, it is established that E1(I∗|τ) 6=
E2(GLρ‖T ∗). Thus, it can generate a private key by using the HSRE delegate key query since
the constraint of the HSRE security model is satisfied.

– Case ID|k ∈ Prefix(ID∗|`)∧ k > τ: This case also includes the index i = τ , so the same logic as
in the previous case is applied. Thus, it can generate a private key by using the HSRE delegate
key query.

• Update key: The simulator must be able to generate an update key for any ID|k−1 and T . To simplify
the analysis, we divide the update key generation of the simulator into the following cases:

– Case T 6= T ∗: In this case, the hierarchical identity of an HSRE private key in an update key
contains a string E2(GLi‖T ) and the challenge hierarchical identity of the HSRE challenge ci-
phertext contains a string E2(GLd‖T ∗), so it is established that E2(GLi‖T ) 6=E2(GLd‖T ∗). Thus,
it can generate an update key by using the HSRE private key query.

– Case T = T ∗∧ID|k−1 /∈ Prefix(ID∗|τ−1): In this case, we have E1(ID|k−1) /∈ Prefix(E1(ID∗|τ−1).
Thus, it can generate an update key since this HSRE private key query is allowed in the HSRE
security model.

– Case T = T ∗∧ID|k−1 ∈ Prefix(ID∗|τ−1)∧k≤ τ−1: In this case, the HSRE private key of an up-
date key is associated with E1(ID|k−1) and (E2(GLi‖T ∗),E2(MLi)), and we have E2(GLi‖T ∗) 6=
E1(I∗k ) by the encoding functions. This means that (E1(ID|k−1),E2(GLi‖T ∗)) /∈Prefix(E1(ID∗|τ−1)).
Thus, it can generate an update key since this HSRE private key query is allowed in the HSRE
security model.

– Case T = T ∗∧ ID|k−1 ∈ Prefix(ID∗|τ−1)∧ k = τ: In this case, by the constraints of the RHIBE
security model, the identity I∗τ must be revoked in this update key. From the second property of
the SD method in Lemma 4.2, there is no subset tuple (Si, j ∈CVτ−1,Si′, j′ ∈ PVτ) such that vi =
vi′ ∧d j = d j′ ∧ v j 6= v j′ . That is, GLi 6= GLρ or GLi = GLρ ∧MLi = MLρ where (GLρ ,MLρ) =
GMLabels(Si′, j′) and (GLi,MLi)=GMLabels(Si, j). This means that (E1(ID∗|τ−1),E2(GLi‖T ∗))
6= (E1(ID∗|τ−1),E2(GLρ‖T ∗)) or (E1(ID∗|τ−1),E2(GLi‖T ∗)) = (E1(ID∗|τ−1),E2(GLρ‖T ∗))∧
(E2(MLi)) = (E2(MLρ)). Thus, it can generate an update key by using the HSRE private key
query.

• Decryption key: In the case of the decryption key, if the simulator can correctly generate update keys,
then simulator can also correctly generate a decryption key.
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Finally, we analyze the advantage of the simulation. Let SHi
A be the event that A outputs 0 in a game Hi.

Since this lemma consists of a number of hybrid games, we get the following result

AdvRHIBE
A (λ )≤ 1

2

∣∣∣Pr[SH0
A ]−Pr[SHm

A ]
∣∣∣≤ 1

2

m

∑
ρ=1

∣∣∣Pr[SHρ−1
A ]−Pr[SHρ

A ]
∣∣∣≤ O(n2)AdvHSRE

B (λ ).

This completes our proof.

Lemma 4.5. For the Type-`+1 adversary, the generic RHIBE-SD scheme is IND-CPA secure if the HIBE
scheme is IND-CPA secure.

Proof. Suppose there exists a Type-`+1 adversaryA that attacks the RHIBE scheme with a non-negligible
advantage. An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE by a
challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHSRE ,PPHSRE by running HSRE.Setup(1λ ,L). It initializes RLε = /0 and gives
PP = (PPHIBE ,PPHSRE ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.

• For a private key query with ID|k, B proceeds as follows: It receives SKHIBE,ID|k from C by querying a
private key for ID|k. It generates SKHSRE,ID|k by running HSRE.GenKey(E1(ID|k),MKHSRE ,PPHSRE).
It gives SKID|k = (SKHIBE,ID|k ,SKHSRE,ID|k) to A.

• For an update key query with ID|k−1 and T , B proceeds as follows: It generates UKID|k−1,T by running
RHIBE-SD.UpdateKey algorithm since it knows MKHSRE . It gives UKID|k−1,T to A.

• For a decryption key query with ID|k and T , B proceeds as follows:

1. It receives SKHIBE,ID|k,T from C by querying a private key for (ID|k,T ).
2. Next, it obtains update keys UKID|0,T , . . . ,UKID|k−1,T by querying its own update key oracle for

(ID|0,T ), . . . ,(ID|k−1,T ). For each u ∈ [k], it obtains SKHSRE,u if Iu is not revoked in UKID|u−1,T
by following the procedure in the RHIBE-SD.DeriveKey algorithm.

3. If Iu was revoked in UKID|u−1,T for any u∈ [k], then it gives⊥ toA. Otherwise, t gives DKID|k,T =
(SKHIBE,ID|k,T ,SKHSRE,1, . . . ,SKHSRE,k) to A.

• For a revocation query with a hierarchical identity ID|k and time T , B adds (ID|k,T ) to RLID|k−1 if
ID|k was not revoked before.

Challenge: A submits a challenge hierarchical identity ID∗|`, challenge time T ∗, and two challenge mes-
sages M∗0 ,M

∗
1 . B proceeds as follows:

1. It first selects random {R2,i}1≤i≤` and computes R2 =
⊕

1≤i≤` R2,i. It sets R1,0 = M∗0⊕R2,R1,1 = M∗1⊕
R2. It receives CT ∗HIBE from C by submitting challenge identity (E1(ID∗|`),E3(T ∗)) and challenge
messages R1,0,R1,1.

2. For each k ∈ [`], it proceeds as follows:

(a) It obtains PVk by running SD.Assign(BT ,vk) where a leaf node vk is associated with I∗k .
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(b) For each Si, j ∈ PVk, it obtains (GL,ML) = GMLabels(Si, j) and generates CT ∗HSRE,Si, j
by running

HSRE.Encrypt(E1(ID∗|k−1),(E2(GL‖T ∗),E2(ML)),R2,k,PPHSRE).

(c) It creates CT ∗PVk
=
(
PVk,{CT ∗HSRE,Si, j

}Si, j∈PVk

)
.

3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗PV1
, . . . ,CT ∗PV`

) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof of this lemma, we must show that the simulator can correctly generate private
keys, update keys, decryption keys, and the challenge ciphertext while satisfying the constraints of the
HIBE security model. Since the simulator sets the HSRE scheme by itself, the simulator can proceed with
the simulation of the RHIBE queries while satisfying the constraints of the HIBE security model in the same
way as Lemma 3.4. We omit the details of the analysis.

4.5 Discussions

Efficiency Analysis. We analyze the efficiency of our RHIBE-SD scheme. Let n be the depth of a binary
tree and ` be the depth of a hierarchical identity. In our RHIBE-SD scheme, a private key is compact since
it consists of an HIBE private key and an HSRE private key. An update key is roughly composed of O(r)
HSRE private keys since it is composed of HSRE private keys that are related to the cover nodes of the SD
method where r is the number of revoked users in a binary tree. A decryption key is composed of one HIBE
private key and ` HSRE private keys since it only needs some HSRE private keys in update keys that match
to the path nodes of the private key’s identity. A ciphertext is consists of one HIBE ciphertext and O(`n2)
HSRE ciphertexts since it is composed of one HIBE ciphertext and HSRE ciphertexts associated with path
nodes. The decryption algorithm is efficient because it only requires one HIBE decryption operation and `
HSRE decryption operations.

5 RHIBE-CS with Shorter Ciphertexts

In this section, we construct an RHIBE scheme with shorter ciphertexts by combining HIBE schemes with
constant size ciphertext and the CS method and prove the adaptive security of this scheme.

5.1 Generic Construction

An RHIBE-CS scheme with shorter ciphertexts that is designed by generically combining HIBE schemes
with constant-size ciphertext and the CS method is described as follows:

RHIBE-CS.Setup(1λ ,L): Let I = {0,1}n be the identity space and L be the maximum depth of a hierar-
chical identity.

1. It first obtains MKHIBE1 ,PPHIBE1 by running HIBE.Setup(1λ ,L+1). It obtains MKHIBE2 ,PPHIBE2

by running HIBE.Setup(1λ ,L+n).

2. It defines a binary treeBT by running CS.Setup(2n) where an identity I ∈I is uniquely assigned
to a leaf node v such that Label(v) = I.
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3. It outputs a master key MK = (MKHIBE1 ,MKHIBE2), a revocation list RLε = /0, and public pa-
rameters PP = (PPHIBE1 ,PPHIBE2 ,BT ).

RHIBE-CS.GenKey(ID|k,SKID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik where k≥ 1. Let SKID|0 = MK where
SKHIBE1,ID|0 = MKHIBE1 and SKHIBE2,ID|0 = MKHIBE2 .

1. It obtains SKHIBE1,ID|k by running HIBE.Delegate(E1(ID|k),SKHIBE1,ID|k−1 ,PPHIBE1), and ob-
tains SKHIBE2,ID|k by running HIBE.Delegate(E1(ID|k),SKHIBE2,ID|k−1 ,PPHIBE2).

2. Finally, it outputs a private key SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k).

RHIBE-CS.UpdateKey(T,RLID|k−1 ,SKID|k−1 ,PP): Let SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k). To generate
an update key for ID|k−1 and T , it proceeds as follows:

1. It initializes RV = /0. For each tuple (ID j,Tj) ∈ RLID|k−1 where ID j = (I1, . . . , Ik−1, Ik), it adds a
leaf node v j ∈ BT which is associated with Ik such that Label(v j) = Ik into RV if Tj ≤ T .

2. It obtains CVk−1 = {Si1 , . . . ,Sim} by running CS.Cover(BT ,RV ).

3. For each Siu ∈CVk−1, it performs the following steps:

(a) It obtains path nodes PN = {vi0 , . . . ,viu} from the root node vi0 = v0 to the node viu of the
subset Siu .

(b) It encodes a node identity vector NIDu = (L0‖T, . . . ,Lu‖T ) where Li = Label(viu).
(c) It obtains SKHIBE2,Su by running HIBE.Delegate((E1(ID|k−1),E2(NIDu)),SKHIBE2,ID|k−1 ,

PPHIBE2).

4. Finally, it outputs an update key UKID|k−1,T =
(
CVk−1,{SKHIBE2,Si}Si∈CVk−1

)
.

RHIBE-CS.DeriveKey(SKID|k ,UKID|0,T , . . . ,UKID|k−1,T ,PP): Let SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k). To
derive a decryption key for ID|k = (I1, . . . , Ik) and T , it proceeds as follows:

1. It obtains SKHIBE1,ID|k,T by running HIBE.Delegate((E1(ID|k),E3(T )),SKHIBE1,ID|k ,PPHIBE1).

2. For each u ∈ [k], it proceeds as follows:

(a) It obtains PVu by running CS.Assign(BT ,vu) where vu is a leaf such that Label(vu) = Iu.
(b) It finds (Siu ,Siu) by running CS.Match(CVu−1,PVu). If it fails to find, it returns ⊥.
(c) It retrieves SKHIBE2,Siu

from UKID|u−1,T and sets SKHIBE2,u = (Siu ,SKHIBE2,Siu
).

3. Finally, it outputs a decryption key DKID|k,T = (SKHIBE1,ID|k,T ,SKHIBE2,1, . . . ,SKHIBE2,k).

RHIBE-CS.Encrypt(ID|`,T,M,PP): To generate a ciphertext for ID|` = (I1, . . . , I`) and T , it proceeds as
follows:

1. It selects random R2,1, . . . ,R2,` and sets R1 = M⊕ (R2,1 ⊕ ·· · ⊕ R2,`). It obtains CTHIBE1 by
running HIBE.Encrypt((E1(ID|`),E3(T )),R1,PPHIBE1).

2. For each k ∈ [`], it performs the following steps.

(a) It obtains PVk = {S j0 , . . . ,S jn} by running CS.Assign(BT ,vk) where vk is a leaf such that
Label(vk) = Ik.

(b) It encodes a path identity vector PIDk = (L j0‖T, . . . ,L jn‖T ) where L ju = Label(S ju).
(c) It obtains CTHIBE2,k by running HIBE.Encrypt((E1(ID|k−1),E2(PIDk)),R2,k,PPHIBE2).
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3. Finally, it outputs a ciphertext CTID|`,T = (CTHIBE1 ,CTHIBE2,1, . . .CTHIBE2,`).

RHIBE-CS.Decrypt(CTID|`,T ,DKID′|`,T ′ ,PP): Let CTID|`,T =(CTHIBE1 ,CTHIBE2,1, . . . ,CTHIBE2,`) and DKID′|`,T ′

= (SKHIBE1 ,SKHIBE2,1, . . . ,SKHIBE2,k). If (ID|` 6= ID′|`)∨ (T 6= T ′), then it returns ⊥.

1. It first obtains R1 by running HIBE.Decrypt(CTHIBE1 ,SKHIBE1 ,PPHIBE1).

2. For each k ∈ [`], it performs the following steps:

(a) Let (E1(ID|k−1),E2(NIDu)) be the identity vector of SKHIBE2,k and (E1(ID|k−1),E2(PIDk))
be the identity vector of CTHIBE2,k.

(b) It derives SK′HIBE2,k by running HIBE.Delegate((E1(ID|k−1),E2(PIDk)),SKHIBE2,k,PPHIBE2)
since NIDu ∈ Prefix(PIDk).

(c) It obtains R2,k by running HIBE.Decrypt(CTHIBE2,k,SK′HIBE2,k,PPHIBE2).

3. Finally, it outputs a message M = R1⊕R2,1⊕·· ·⊕R2,`.

RHIBE-CS.Revoke(ID|k,T,RLID|k−1): If (ID|k,∗) already exists in RLID|k−1 , it outputs RLID|k−1 . Otherwise,
it adds (ID|k−1,T ) to RLID|k−1 and outputs the updated RLID|k−1 .

5.2 Security Analysis

Theorem 5.1. The generic RHIBE-CS scheme with shorter ciphertexts is IND-CPA secure if the underlying
HIBE schemes are IND-CPA secure.

Proof. Let ID∗|` = (I∗1 , . . . , I
∗
` ) be the challenge hierarchical identity and T ∗ be the challenge time. We

divide the behavior of an adversary as `+1 types: Type-1, · · · , Type-`+1, which are defined as follows:

Type-τ . An adversary is Type-τ for τ ∈{1, . . . , `} if it does not request a private key for ID|k ∈Prefix(ID∗|τ−1),
but it must request a private key for ID|k = ID∗|τ .

Type-`+1. An adversary is Type-`+1 if it does not request a private key for ID|k ∈ Prefix(ID∗|`).

Let Eτ be the event that A behaves like Type-τ adversary. From Lemma 5.2 and Lemma 5.3, we obtain
the following result

AdvRHIBE
A (λ )≤

`+1

∑
τ=1

Pr[Eτ ]AdvRHIBE
A (λ )≤ (`+1)AdvHIBE

B (λ ).

This completes our proof.

Lemma 5.2. For the Type-τ adversary such that τ ∈ {1, . . . , `}, the generic RHIBE-CS scheme with shorter
ciphertexts is IND-CPA secure if the HIBE scheme is IND-CPA secure.

Proof. Suppose there exists a Type-τ adversary A that attacks the RHIBE scheme with a non-negligible
advantage. An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE2 by a
challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHIBE1 ,PPHIBE1 by running HIBE.Setup(1λ ,L+1). It initializes RLε = /0 and gives
PP = (PPHIBE1 ,PPHIBE2 ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.
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• For a private key query with ID|k, B proceeds as follows: It generates SKHIBE1,ID|k by running
HIBE.GenKey(E1(ID|k),MKHIBE1 ,PPHIBE1). It receives SKHIBE2,ID|k from C by querying a private
key for E1(ID|k). It gives SKID|k = (SKHIBE1,ID|k ,SKHIBE2,ID|k) to A.

• For an update key query with ID|k−1 and time T , B proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj)∈ RLID|k−1 , it adds a leaf node v j ∈BT into RV if Tj ≤ T .
It obtains CVk−1 by running CS.Cover(BT ,RV ).

2. For each Siu ∈CVk−1, it proceeds as follows:

(a) It obtains path nodes PN = {vi0 , . . . ,viu} of the node viu related to the subset Siu .
(b) It encodes a node identity vector NIDu = (L0‖T, . . . ,Lu‖T ) where Li = Label(viu).
(c) It receives SKHIBE2,Siu

from C by querying a private key for (E1(ID|k−1),E2(NIDu)).

3. It creates UKID|k−1,T =
(
CVk−1,{SKHIBE2,Si}Si∈CVk−1

)
and gives UKID|k−1,T to A.

• For a decryption key query with ID|k and time T , B proceeds as follows:

1. It generates SKHIBE1,ID|k,T by running HIBE.GenKey((E1(ID|k),E3(T )),MKHIBE1 ,PPHIBE1).

2. Next, it obtains update keys UKID|0,T , . . . ,UKID|k−1,T by querying its own update key oracle for
(ID|0,T ), . . . ,(ID|k−1,T ).

3. For each u∈ [k], it obtains SKHIBE2,u if Iu is not revoked in UKID|u−1,T by following the procedure
in the RHIBE-CS.DeriveKey algorithm.

4. If Iu was revoked in UKID|u−1,T for any u∈ [k], then it gives⊥ toA. Otherwise, t gives DKID|k,T =
(SKHIBE1,ID|k,T ,SKHIBE2,1, . . . ,SKHIBE2,k) to A.

• For a revocation query with a hierarchical identity ID|k and time T , B adds (ID|k,T ) to RLID|k−1 if
ID|k was not revoked before.

Challenge: A submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
` ), challenge time T ∗, and two

challenge messages M∗0 ,M
∗
1 . B proceeds as follows:

1. It first selects random R1,{R2,i}1≤i 6=τ≤` and computes R2 =
⊕

1≤i 6=τ≤` R2,i. It sets R2,τ,0 = M∗0 ⊕R1⊕
R2 and R2,τ,1 =M∗1⊕R1⊕R2. Next, it generates CT ∗HIBE1

by running HIBE.Encrypt((E1(ID∗|`),E3(T ∗)),
R1,PPHIBE1).

2. For each k ∈ [`], it performs the following steps:

(a) It obtains PVk = {S j0 , . . . ,S jn} by running CS.Assign(BT ,vk) where a leaf node vk is associated
with I∗k .

(b) It encodes a path identity vector PID∗k = (L j0‖T ∗, . . . ,L jn‖T ∗) where L ju = Label(S ju).

(c) Case k 6= τ: It generates CT ∗HIBE2,k by running HIBE.Encrypt((E1(ID∗|k−1),E2(PID∗k)),R2,i,
PPHIBE2).

(d) Case k = τ: It receives CT ∗HIBE2,τ
from C by submitting an hierarchical identity (E1(ID∗|τ−1),

E2(PID∗τ)) and challenge messages R2,τ,0,R2,τ,1.

3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE1
,CT ∗HIBE2,1, . . . ,CT ∗HIBE2,`

) to A.
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Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To finish the proof, we show that the simulator can correctly handle private key, update key, and de-
cryption key queries of the adversary. At this time, the HIBE2 private key queries and the HIBE2 challenge
ciphertext requested by the simulator to the challenger must satisfy the constraint of the HIBE security
model. To simplify the analysis, we first analyze the HIBE2 challenge ciphertext of the challenge ciphertext
and check whether the HIBE2 private keys of private keys, update keys, and decryption keys satisfy the
constraint.

• Challenge ciphertext: The challenge ciphertext consists of multiple HIBE2 ciphertexts, and the HIBE2
challenge ciphertext is CTHIBE2,τ . In this case, the HIBE2 challenge ciphertext is associated with
(E1(ID∗|τ−1),E2(PID∗τ)) where PID∗τ = (L j0‖T ∗, . . . ,L jn‖T ∗).

• Private key: Since the adversary is Type-τ , he cannot request a private key for ID∗|k and k < τ , but
must request a private key for ID∗|τ . To simplify the analysis, we divide the private key generation of
the simulator into the following cases:

– Case ID|k /∈ Prefix(ID∗|`): In this case, the constraint of the HIBE2 security model is satisfied,
so it can generate a private key by using the HIBE2 private key query.

– Case ID|k ∈ Prefix(ID∗|`)∧ k = τ: In this case, we have ID|k = ID∗|τ = (I∗1 , . . . , I
∗
τ ), and the

simulator requests an HIBE2 private key for E1(ID∗|τ) = (E1(I∗1 ), . . . ,E1(I∗τ )) to the challenger.
Since the encoding functions satisfy E1(x) 6=E2(y) for any x and y, it is established that E1(I∗|τ) 6=
E2(PID∗τ). Thus, it can generate a private key by using the HIBE2 private key query since the
constraint of the HIBE2 security model is satisfied.

– Case ID|k ∈ Prefix(ID∗|`)∧ k > τ: This case also includes the index i = τ , so the same logic as
in the previous case is applied. Thus, it can generate a private key by using the HIBE2 private
key query.

• Update key: The simulator must be able to generate an update key for any ID|k−1 and T . To simplify
the analysis, we divide the update key generation of the simulator into the following cases:

– Case T 6= T ∗: In this case, the hierarchical identity of an HIBE2 private key in an update
key contains a string E2(NIDu) that contains T and the challenge hierarchical identity of the
HIBE2 challenge ciphertext contains a string E2(PID∗τ) that contains T ∗, so it is established that
E2(NIDu) 6= E2(PID∗τ) from T 6= T ∗. Thus, it can generate an update key by using the HIBE2
private key query.

– Case T =T ∗∧ID|k−1 /∈Prefix(ID∗|τ−1): In this case, it is established that (E1(ID|k−1),E2(NIDu))
/∈ Prefix((E1(ID∗|τ−1),E2(PID∗τ))) in the HIBE2 scheme. Thus, since this HIBE2 private key
query is allowed in the HIBE security model, it can generate an update key.

– Case T = T ∗∧ ID|k−1 ∈ Prefix(ID∗|τ−1)∧ k ≤ τ−1: In this case, the HIBE2 private key of an
update key is associated with a string (E1(ID|k−1),E2(NIDu)), and we have E2(NIDu) 6= E1(I∗k )
by the encoding function. This means that (E1(ID|k−1),E2(NIDu)) /∈ Prefix((E1(ID∗|τ−1),
E2(PID∗τ))). Thus, it can generate an update key since this HIBE2 private key query is allowed
in the HIBE security model.

– Case T = T ∗∧ ID|k−1 ∈ Prefix(ID∗|τ−1)∧ k = τ: In this case, by the constraints of the RHIBE
security model, the identity I∗τ must be revoked in this update key. From the second property of
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the CS method in Lemma 3.1, we have that PVτ ∩CVτ−1 is an empty set. That is, a label Li of
the cover CVτ−1 is different from the label L jρ of the path node PVτ , so we have NIDu 6= PID∗τ .
This means that (E1(ID∗|τ−1),E2(NIDu)) 6= (E1(ID∗|τ−1),E2(PID∗τ)). Thus, it can generate an
update key by using the HIBE2 private key query.

• Decryption key: In the case of the decryption key, if the simulator can correctly generate update keys,
then simulator can also correctly generate a decryption key.

This completes our proof.

Lemma 5.3. For the Type-`+1 adversary, the generic RHIBE scheme with shorter ciphertexts is IND-CPA
secure if the HIBE scheme is IND-CPA secure.

We omit the proof of this lemma since it is almost the same as that of Lemma 3.4.

6 Instantiations

In this section, we look at how to instantiate our generic RHIBE constructions in bilinear groups or lattices.

6.1 Construction from Bilinear Maps

We first instantiate an RHIBE-CS scheme in bilinear groups. To instantiate an RHIBE-CS scheme that
provides the selective security, we can choose the HIBE scheme of Boneh and Boyen [4] that provides the
selective security. To instantiate an RHIBE-CS scheme that provides the adaptive security, we can choose
the HIBE scheme of Waters [40] that provides the adaptive security. In these HIBE schemes, a private key is
composed of O(`) group elements, and a ciphertext is composed of O(`) group elements. Thus, the private
key, update key, and ciphertext of the RHIBE-CS scheme are composed of O(`),O(`rn), and O(`2n) group
elements, respectively.

Next, we instantiate an RHIBE-SD scheme in bilinear groups. To instantiate an RHIBE-SD scheme
that provides the selective security, we choose the HIBE scheme of Boneh and Boyen that provides the
selective security, and the HSRE scheme that provides the selective security in Section 6.3. Although there
is still no HSRE scheme that provides the adaptive security, we expect that an adaptively secure HSRE
scheme can be made without difficulty by combining the adaptively secure SRE scheme of Lee and Park [26]
and the adaptively secure HIBE of Lewko and Waters [28]. The private key and ciphertext of the HSRE
scheme in Section 6.3 consist of O(`) and O(`) group elements, respectively. Thus, the private key, update
key, and ciphertext of the RHIBE-SD scheme are composed of O(`),O(`r), and O(`2n2) group elements,
respectively.

Finally, we instantiate an RHIBE-CS scheme with shorter ciphertexts in bilinear groups. We choose the
HIBE scheme of Boneh, Boyen, and Goh [5], which provides the selective security with constant size ci-
phertext, or the HIBE scheme of Lewko and Waters [28], which provides the adaptive security with constant
size ciphertext. In these HIBE schemes, a private key is composed of O(L) group elements, and a ciphertext
is composed of O(1) group elements. Thus, the private key, update key, and ciphertext of the RHIBE-CS
scheme are composed of O(L+ n),O((L+ n)rn), and O(`) group elements, respectively. In Table 1, we
compare our RHIBE schemes with other RHIBE scheme in bilinear groups.
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Table 1: Comparison of RHIBE schemes in bilinear groups

Scheme PP Size SK Size UK Size CT Size Model Generic

SE [34] O(L) O(`2 logN) O(`r log N
r ) O(`) SE-IND No

SE (CS) [36] O(L) O(L logN) O(Lr log N
r ) O(1) SE-IND No

SE (SD) [36] O(L) O(L log2 N) O(Lr) O(1) SRL-IND No

RLPL [33] O(1) O(` logN) O(`r log N
r ) O(`) SE-IND No

LP (CS) [27] O(1) O(logN) O(`+ r log N
r ) O(`) SE-IND No

LP (SD) [27] O(1) O(log2 N) O(`+ r) O(`) SRL-IND No

Lee (CS) [21] O(L) O(L logN) O(L+ r log N
r ) O(1) AD-IND No

Lee (SD) [21] O(L) O(L log2 N) O(L+ r) O(1) AD-IND No

ETW [15] O(L) O(L logN) O(Lr log N
r ) O(1) AD-IND No

Ours-1 (CS) O(L) O(`) O(`rn) O(`2n) AD-IND Yes

Ours-2 (SD) O(L) O(`) O(`r) O(`2n2) SE-IND Yes

Ours-3 (CS) O(L+n) O(L+n) O((L+n)rn) O(`) AD-IND Yes

Let N be the number of maximum users in each level, r be the number of revoked users, L be the maximum level
of a hierarchical identity, ` be the level of a hierarchical identity, and n be the depth of a binary tree in generic
constructions. We count the number of group elements to measure the size. We use symbols SE-IND for selective
IND-CPA, SRL-IND for selective revocation list IND-CPA, and AD-IND for adaptive IND-CPA.

6.2 Construction from Lattices

We instantiate an RHIBE-CS scheme from lattices. First, in order to instantiate an RHIBE-CS scheme
that provides the selective security, we select the HIBE scheme of Agrawal, Boneh, and Boyen [1] that is
selectively secure under the LWE assumption. In order to instantiate an RHIBE-CS scheme with shorter
ciphertexts from lattices, we can select the HIBE scheme of Agrawal, Boneh, and Boyen [2] with shorter
ciphertext. Unfortunately, we cannot instantiate an RHIBE-SD scheme from lattices since a lattice-based
HSRE scheme does not exist yet.

6.3 An HSRE Scheme from Bilinear Maps

An HSRE scheme that is designed by combining the HIBE scheme of Boneh and Boyen [4] and the SRE
scheme of Lee and Park [26] is described as follows:

HSRE.Setup(1λ ,L): It first generates a bilinear group G of prime order p of bit size Θ(λ ). Let g be a
generator of G. It chooses a random exponent α ∈ Zp and random elements u,h,w,v ∈ G. It also
chooses a random hash function H fromH. It outputs a master key MK = α and public parameters as

PP =
(
(p,G,GT ,e), g, u,h1, . . . ,hL, w,v, Ω = e(g,g)α

)
.

HSRE.GenKey(ID|k,(GL,ML),MK,PP): Let SKID|k = (K′0,K
′
1,1, . . . ,K

′
1,k). It selects random exponents
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r1, . . . ,rk+1,rk+2 ∈ Zp and outputs a private key SKID|k,(GL,ML) as

K0 = gα
k

∏
i=1

(uIihi)
ri(uGLhk+1)

rk+1wrk+2 ,
{

K1,i = g−ri
}k+2

i=1 , K2 = (wMLv)rk+2 .

HSRE.Delegate(ID|k,SKID|k−1 ,PP): Let SKID|k−1 =(K′0,K
′
1,1, . . . ,K

′
1,k−1). It selects random exponents r′1, . . . ,

r′k−1,rk ∈ Zp and outputs a delegated private key SKID|k as

K0 = K′0
k−1

∏
i=1

(uIihi)
r′i(uIk hk)

rk ,
{

K1,i = K′1,ig
−r′i
}k−1

i=1 , K1,k = g−rk .

HSRE.MakeKey((GL,ML),SKID|k ,PP): Let SKID|k =(K′0,K
′
1,1, . . . ,K

′
1,k). It selects random exponents r′1, . . . ,

r′k,rk+1,rk+2 ∈ Zp and outputs a private key SKID|k,(GL,ML) as

K0 = K′0
k

∏
i=1

(uIihi)
r′i(uGLhk+1)

rk+1wrk+2 ,
{

K1,i = K′1,ig
−r′i
}k

i=1,
{

K1,i = g−ri
}k+2

i=k+1,

K2 = (wMLv)rk+2 .

HSRE.Encrypt(ID|`−1,(GL,ML),M,PP): It chooses a random exponent t ∈ Zp and outputs a ciphertext
CTID|`−1,(GL,ML) as

C = Ω
t ·M, C0 = gt ,

{
C1,i = (uIihi)

t}`−1
i=1 , C1,` = (uGLh)t , C2 = (wMLv)t .

HSRE.Decrypt(CTID|`−1,(GL,ML),SKID′|`−1,(GL′,ML′),PP): If (ID|`−1 = ID′|`−1)∧(GL =GL′)∧(ML 6=ML′),
then it outputs a message as

M =C ·
(

e(C0,K0) ·
`

∏
i=1

e(C1,i,K1,i) ·
(
e(C0,K2) · e(C2,K1,`+1)

)−1/(ML′−ML)
)−1

.

Otherwise, it outputs ⊥.

Theorem 6.1. The HSRE scheme is selectively IND-CPA secure if the DBDH assumption holds.

Proof. Suppose there exists an adversary A that breaks the security of HSRE with a non-negligible ad-
vantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = e(g,g)abc or Z = e(g,g)d . Then B interacts with A as follows:

Init: A initially submits a challenge hierarchical identity ID∗|`−1 = (I∗1 , . . . , I
∗
`−1) and challenge labels

(GL∗,ML∗).
Setup: B selects random exponents u′,h′1, . . . ,h

′
`,w
′,v′ ∈ Zp and creates public parameters implicitly setting

α = ab as

g, u = gagu′ , h1 = (ga)−I∗1 gh′1 , . . . , h`−1 = (ga)−I∗`−1gh′`−1 , h` = (ga)−GL∗gh′` ,

w = gagw′ ,v = (ga)−ML∗gv′ , Ω = e(ga,gb).

Query 1: A adaptively request delegate keys and private keys. If this is a delegate key query for ID|k, then
it handles this query as follows:
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• Case ID|k /∈ Prefix(ID∗|`−1): In this case, there is an index j ∈ [k] such that I j− I∗j 6= 0. It selects
random exponents {ri}1≤i 6= j≤k,r′j ∈ Zp and creates a delegate key by implicitly setting r j =−b/(I j−
I∗j )+ r′j as

K0 = ∏
1≤i 6= j≤k

(uIihi)
ri(gb)−(u

′I j+h′j)/(I j−I∗j )(uI j h j)
r′j ,{

K1,i = g−ri
}

1≤i 6= j≤k, K1, j = (gb)1/(I j−I∗j )g−r′j .

If this is a private key query for ID|k and (GL,ML), then it handles this query as follows:

• Case ID|k /∈ Prefix(ID∗|`−1): In this case, there is an index j ∈ [k] such that I j− I∗j 6= 0. It selects
random exponents {ri}1≤i6= j≤k,r′j,rk+1,rk+2 ∈ Zp and creates a private key by implicitly setting r j =
−b/(I j− I∗j )+ r′j as

K0 = ∏
1≤i6= j≤k

(uIihi)
ri(gb)−(u

′I j+h′j)/(I j−I∗j )(uI j h j)
r′j(uGLhk+1)

rk+1wrk+2 ,{
K1,i = g−ri

}
1≤i 6= j≤k+2, K1, j = (gb)1/(I j−I∗j )g−r′j , K2 = (wMLv)rk+2 .

• Case ID|k = ID∗|`−1∧GL 6= GL∗: It selects random exponents r1, . . . ,r`−1,r′`,r`+1 ∈ Zp and creates
a private key by implicitly setting r` =−b/(GL−GL∗)+ r′` as

K0 =
`−1

∏
i=1

(uIihi)
ri(gb)−(u

′GL+h′)/(GL−GL∗)(uGLh`)r′`wr`+1 ,{
K1,i = g−ri

}
1≤i6=`≤`+1, K1,` = (gb)1/(GL−GL∗)g−r′` , K2 = (wMLv)r`+1 .

• Case ID|k = ID∗|`−1∧GL = GL∗∧ML = ML∗: It selects random exponents r1, . . . ,r`,r′`+1 ∈ Zp and
creates a private key by implicitly setting r`+1 =−b+ r′`+1 as

K0 =
`−1

∏
i=1

(uIihi)
ri(uGLh`)r`(gb)−w′wr′`+1 ,{

K1,i = g−ri
}`

i=1, K1,`+1 = gbg−r′`+1 , K2 = (gb)−(w
′ML+v′)(wMLv)r′`+1 .

Challenge: A submits two messages M∗0 ,M
∗
1 . B flips a random coin µ ∈ {0,1} internally. Next, it implicitly

sets t = c and creates a challenge ciphertext as

C = Z ·M∗µ , C0 = gc,
{

C1,i = (gc)u′I∗i +h′i
}`−1

i=1 , C1,` = (gc)u′GL∗+h′` , C2 = (gc)w′ML∗+v′ .

Query 2: Same as Query 1.
Guess: Finally, A outputs a guess µ ′. If µ = µ ′, B outputs 0. Otherwise, it outputs 1.

7 Conclusion

In this paper, we have shown for the first time that it is possible to construct RHIBE schemes that provide
the key revocation function by generically combining underlying cryptographic primitives and tree-based
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revocation methods. The first result is the RHIBE-CS scheme which combines HIBE schemes and the CS
method. In this scheme, a ciphertext consists of O(`n) HIBE ciphertexts and an update key consists of O(rn)
HIBE private keys where ` is the level of a hierarchical identity, n is the depth of a binary tree, and r is the
number of revoked users. The second result is the RHIBE-SD scheme which combines HIBE and HSRE
schemes, and the SD method. In this scheme, a ciphertext consists of one HIBE ciphertext and O(`n2)
HSRE ciphertexts, and an update key consists of O(r) HSRE private keys. The third result is the RHIBE-CS
scheme with shorter ciphertexts that uses an HIBE scheme with constant-size ciphertext and a better identity
encoding method. In this scheme, a ciphertext consists of O(`) HIBE ciphertexts and an update key consists
of O(rn) HIBE private keys.

From this study, we left some interesting problems. The first one is to construct a revocable attribute-
based encryption (RABE) scheme by generically combining an ABE scheme and the tree-based revocation
method. In HIBE, it is possible to associate an identity with a leaf node in a binary tree, but in ABE, it is not
easy to do that. The second one is to improve the RHIBE-SD scheme to have shorter ciphertexts. In order
to reduce the ciphertext size of the RHIBE-SD scheme, a method of aggregating multiple HSRE ciphertexts
into a single ciphertext is needed. The third one is to improve the update key size of the RHIBE-CS scheme
with shorter ciphertexts.
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