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Multiparty computation does not tolerate n/3 corruptions under a plain asynchronous communication network, whatever the

computational assumptions. However, Beerliová-Hirt-Nielsen [BHN10, Podc’10] showed that, assuming access to a synchronous

broadcast at the beginning of the protocol, enables to tolerate up to t < n/2 corruptions. Thismodel is denoted as “Almost asynchronous”

MPC. Yet, [BHN10] suffers from limitations: (i) Setup assumptions: their protocol is based on an encryption scheme, with homomorphic

additivity, such that the secret keys of players are given by a trusted entity ahead of the protocol. It was left as an open question in

[BHN10] whether one can remove this assumption, denoted as “trusted setup”. (ii) Common Randomness generation: the generation of

common random secrets uses the broadcast, therefore is allowed only at the beginning of the protocol. (iii) Proactive security: the

previous limitation directly precludes the possibility of tolerating a mobile adversary. Indeed, tolerance to this kind of adversary, which

is denoted as “proactive” MPC, would require a mechanism by which players refresh their (shares of) keys, without the intervention

of a trusted entity, with on the fly randomness generation. (iv) Triple generation latency: The protocol to preprocess the material

necessary for multiplication has latency t , which is thus linear in the number of players.

We remove all the previous limitations. Of independent interest, our novel computation framework revolves around players,

denoted as “kings”, which, in contrast to Podc’10, are now replaceable after every elementary step of the computation.

1 INTRODUCTION

Secure multiparty computation (MPC) allows a set ofn players holding private inputs to securely compute any arithmetic

circuit over a (small) fixed finite field Fp on these inputs, even if up to t players, denoted as “corrupted”, are fully

controled by an adversary A which we assume computationally bounded. MPC protocols in the synchronous model are

extensively studied ([BH08; Esc+20]). The underlying assumption there is that the delay of the messages in the network

is bounded by a known constant. However, safety of these protocols fails when this assumption is not satisfied. Thus,

protocols [Gär99; Dam+09; HNP05b; CHP13; Bac+14] were developed for the asynchronous communication model. This

setting comes with limitations: Ben-Or, Kelmer, and Rabin [BKR94] proved that AMPC protocols are possible if and

only if t < n/3, while we can tolerate t < n/2 in a synchronous environment. Moreover, Canetti [Can96] showed that it

is impossible to enforce input provision which obviously, can represent an important setback for practical applications.

In [BHN10], Beerliová-Trubíniová, Hirt and Nielsen observed that one initial synchronous broadcast round is sufficient

to enforce input provision and tolerate t < n/2 corruptions in an almost-asynchronous network. In their protocol, the

circuit is evaluated using the King/Slaves paradigm [HNP05b], in n parallel instances. Every player simultaneously

acts as a king to evaluate its own computation instance with the help of the other players, and as a slave for other

n − 1 instances computing the same circuit. Players in their protocol broadcast threshold encryptions of their inputs,

then, in each instance, perform additively homomorphic operations on these ciphertexts. This computation structure

guarantees that every (recipient) player ultimately learns at least t + 1 identical plaintext outputs of the circuit (with

respect to the instances of honest kings), then terminate within a constant number of interactions. The problem is that,

to implement the threshold additive encryption required in their protocol, they need that a trusted entity assigns secret

keys to players ahead of the execution. It was left as an open problem how to remove this assumption, denoted as

“trusted setup”: in [BHN10, §4.3 ”our protocol requires quite strong setup assumptions, and it is not clear whether they are

necessary.”]. The main contribution of this paper is to remove it. Namely, we assume only the mainstream model of a

bulletin-board of public keys ([BCG20; TLP20]), where each player can publish any public key of his choice ahead of

the execution. Such loose setup is also known as “transparent”, or “ad hoc” [Daz+08; RSY18].
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Theorem 1. (Informal) Assuming n = 2t + 1 players in an asynchronous communication network, of which t are

maliciously corrupted by a polynomial adversary, in the plain model of a bulletin-board of public keys, and assuming access

to one round of synchronous broadcast at the beginning of the execution, then, any arithmetic circuit over any (small) finite

field Fp can be securely computed, with input provision.

In what follows (§1.1 and §1.1.5) we highlight the technical hurdles with respect to previous works, and give an

overview of the proof of Theorem 1. Then in §1.2 we show how we solve all the other limitations presented in (ii) (iii)

and (iv) of the abstract.

1.0.1 Roadmap of the Proof of Theorem 1. We first stress in §1.1.1, §1.1.2 that, in our demanding model of transparent

setup with asynchrony, then previous transparent threshold encryption schemes support only a finite number of

homomorphic additions, due to growth of the plaintexts, and, in §1.1.3, that known techniques for fixing this problem,

known as “bootstrap” or “refresh”, fail here. We then sketch in §1.1.1 the main novel ingredient that we introduce to

solve Theorem 1. Namely: is a threshold encryption scheme (TAE) operating in our demanding model, that supports

an unlimited number of additively homomorphic operations, at the cost that these operations are now performed by

a (t + 1)-threshold mechanism. In particular, instead of a single global public key generated by a trusted setup, TAE

takes as parameter all the n public keys published by the players ahead of the execution (adapting it to the case where

up to t keys are not published is straightforward). We then introduce our new computation framework in §1.1.5. In

§2.1 we detail the model, in §2.2 we recall basic cryptographic primitives, in §2.3 we recall the baseline protocol of

[BHN10]. In §3 we detail our computation framework. In §4 we specify and implement TAE, in §4.5 we wrap TAE in the

previous framework, then in §4.5 we deduce the proof of Theorem 1 by recasting the baseline protocol with these new

framework and ingredients.

1.1 Main contribution: Threshold-Additive Encryption (TAE) with Transparent Setup

1.1.1 Previous Work and Threshold Encryption with Transparent Setup. Let us briefly recall what is a verifiable threshold

encryption scheme. It is a public key cryptosystem between n fixed players, that comes with an algorithm that enables

any of these players, on input a ciphertext, to ouputs a “decryption share” along with a ZK proof of correctness. Then,

any t + 1 decryption shares are enough to efficiently reconstruct the plaintext. This is typically implemented with a

trusted dealer of decryption keys, e.g., [CDN01; Cho+13]. How to implement this with a transparent setup follows

from a well-known idea. Namely: generate a secret sharing of the plaintext with threshold (t + 1), for instance with

Shamir’s scheme. Then, output the encryption of the shares under the public keys of the players (the i-th under the

public key of the i-th player), along with a ZK proof of correctness. This is suggested for the first time by Goldreich

et al. [GMW91, §3.3], where it appears as wrapped into a scheme to verifiably share a secret in one single round of

broadcast. Remarkably, this has been independently re-discovered by three other research streams: first by [Sta96],

in which it is formalized as Publicly Verifiable Secret sharing scheme (PVSS), followed by [FO98; Sch99; BT99; YY01]

[CS03, §1.1] [RV05; HV08; JVS14]; then rediscovered by Fouque and Stern [FS01, §4] as the main tool for a one-round

discrete-log key generation protocol; and finally rediscovered as threshold broadcast encryption by Daza et al [Daz+08],

followed by [CFY16] [RSY18, Appendix E].

1.1.2 Previous Limitations in the Number of Homomorphic Additions, due to Growth of Size of the Plaintext. Since we

follow the blueprint of the MPC protocol [BHN10], we need to support homomorphic additions on the ciphertexts. The

straightforward idea to achieve this is to instantiate the previous scheme (PVSS), with additive encryption. Unfortunately,
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in all of the previous schemes, the ones instantiated with additive encryption schemes, support only a limited number

of additions. For instance in [Sch99, §5], the PVSS applied to electronic voting, uses, as baseline, the additive variant of

el-Gamal that we denote as in the exponent (see §2.2.3 below). Thus, decryption is performed by brute-force computation

(which is denoted by “can be computed efficiently” in loc. cit., bottom of page 11).

The same limitation is stressed in the Paillier-based [RSY18, Appendix E.2] where it is said that "it supports a

limited number (currently set to n) of homomorphic additions". The reason is that, players have different plaintext spaces

Z/NiZ, where the Ni are their public keys. One could consider a common plaintext spaceM := [0, . . . ,N − 1] where

N ≤ min(Ni ). But then, it makes no sense to speak about additions modulo N . Thus, homomorphic additions of PVSS

are guaranteed to decrypt correctly only if the plaintexts’ sizes remain smaller than N /2. Thus this limits the number

of additions.

Important Remark. By contrast, let us stress that, assuming a trusted setup, then this issue does not occur. For instance

in the Paillier additive threshold scheme considered in [CDN01; BHN10], then all plaintexts belong to a fixed Z/NZ

with unique N . Thus, homomorphic additions operate in this single ring of plaintexts. In particular they do compute

addition modulo N of the plaintexts, so there is no limit on the number of additions before correct decryption.

Remark: Formalization of The Maximum Number of Additions wrt to the Size of the Plaintext. Bendlin et al.[Ben+11,

Section 2] coined the notion of "Semi Homomorphic Encryption" (SHE), to denote any public key encryption scheme,

not necessarily threshold, that supports a limited number of additions. They formalized this limitation in terms of the

size of the plaintext (and also of the randomness, in the cases of [Reg09] and [GHV10]), which grows with the number

of consecutive additions performed. This includes Paillier, Regev’s LWE based cryptosystem [Reg09] or Gentry, Halevi

and Vaikuntanathan’s scheme [GHV10]. To this list we add what we denote as el-Gamal in the exponent (see §2.2.3).

1.1.3 Technical Hurdles with Reducing the size of Plaintexts under Asynchrony. To overcome this issue with growth

of the size, one could think of mechanisms that enable players to, collectively, reduce the size of the plaintexts when

they become too large. We now show that this fails when applied to PVSS and using known techniques, because of our

demanding model combining asynchrony and transparent setup.

First attempt. One could think of the following naive mechanism for reducing the sizes of the plaintexts contained in

a PVSS. At regular intervals, each honest player would decrypt his share of the PVSS, reduce it modulo Fp to reduce

the size of the plaintext, then rencrypt it with his public key, and send it to the other players. This protocol however

does not work in our demanding model. First, a honest player (even up to t of them) could be offline for a long time,

while many homomorphic additions are performed in the while. Thus, the size of the plaintext of his shares of secrets

has grown very large. Thus when he is back in the protocol, he is are unable to correctly decrypt his shares of secrets.

But, under our sharp adversary bound n = 2t + 1, the plaintext shares of all honest players are necessary to decrypt the

final output.

Second attempt. To reduce the sizes of the plaintexts, one could also think of using the interactive mechanism,

proposed by Choudhury-Loftus-Orsini-Patra-Smart, under the name “refresh” [Cho+13]. Like us they consider MPC

over a small finite field Fp . But in their case Fp is embedded in the single large plaintext space Z/NZ, of a threshold

additive encryption scheme. The main idea is to use the following “masking” technique in three steps. Players start

with common input a ciphertext cz , such that the plaintext z ∈ Z/NZ is of large size. First players collectively generate

a ciphertext cm of a random valuem ∈ Z/NZ, denoted the "mask", by using an initial round of all-to-all broadcast of
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random ciphertexts cmi that are summed together. Players then compute the homomorphic sum cm +cz and collectively

decrypt it to obtain the plaintextm+z (mod p). Finally, they deterministically re-encryptm+z into c ′m+z . In particular,

the size of the plaintext of c ′m+z , which ism + z (mod p), has become small again. Finally, they homomorphically

subtracting cm to deduce c ′z , which is also a ciphertext of z (mod p), but with smaller plaintext size.

However this approach, which works in the trusted setup context of [Cho+13], fails when using the aforementioned

previous threshold encryption schemes without a dealer, denoted as PVSS. Recall that a PVSS ciphertext, in all these

previous conceptions, consists in the vector of the n encryptions of the same value, encrypted under the n public keys

of the players. But first, when instantiating a PVSS with Paillier encryption, then the above “refresh”mechanism makes

no sense since the plaintext spaces Z/NiZ of players are different. Namely, uniform sampling of a plaintextm makes no

sense here. This is the big difference with a threshold Paillier with a trusted setup ([BHN10] [CDN01] [Cho+13]), where

there is a single common plaintext space.

Second, when instantiating a PVSS with, instead, ElGamal-in-the-exponent ([Sch99, §5], or §2.2.3 below), then

we have another problem when trying to apply this above “refresh” mechanism of [Cho+13]. Let consider the small

plaintext space Fp seen as [0, ..,p − 1] embedded in Z/qZ. Therefore, sampling a maskm in the whole [0, ..q − 1], as

required by [Cho+13], would result in am + z that varies uniformly in the large [0, . . . ,q − 1]. Therefore, decrypting

m + z, as required by [Cho+13], would be intractable by brute force.

1.1.4 Our solution: bivariate PVSS for unlimited threshold additions.

Overall idea. From the first attempt, we see that the challenge is to make possible that, after an unlimited number of

additions, the share of every player in the PVSS remains of small size. To achieve this, instead of a PVSS equal to a vector

of shares, as in all previous schemes, we introduce in §4.3 a novel construction of PVSS, that uses for the first time a

double-sharing. This PVSS allows the construction of a mechanism for unlimited homomorphic additions of ciphertexts.

In detail, addition of ciphertexts is now a threshold mechanism, just as threshold decryption. Namely, on input two

ciphertexts, any player can output what we denote an “addition share”, using an algorithm denoted as Add.Contrib,
along with a ZK proof of correctness. Then, there is a public algorithm, denoted Add.Combine, that, on input correct

addition shares of the same two ciphertexts from any t + 1 distinct players, outputs a ciphertext of the sum.

Thanks to the bivariate structure of the PVSS, the addition shares produced by any t + 1 players contain enough

material to enable the t remaining players to reconstruct their share of the sum, such that these share also has small

plaintext sizes. This is what overcomes the previous issue of plaintext size growth encountered in the first attempt

above, thus enables unlimited additions.

We specify and implement this mechanism in Section 4. Notice that the notion of threshold encryption is well-know,

but the important point is that here, we explicitly require that the setup is transparent. Namely, we specify only an

algorithm KeyGen(), which each player executes locally, i.e., without interaction, to generate a key pair. Each player

must then publish on the bulletin board, ahead of the MPC protocol, the public key that he generated.

Details of the technique. In detail, each share of our PVSS, now, comes now as a n-sized column vector of ciphertexts,

such that we have the following symmetry. For every player j , then for each index i , then the plaintext of the i-th entry

of his column is equal to the plaintext in the j-th entry of the column of player i . The central idea is thus that, by having

t + 1 players add modulo p the plaintexts of their columns of ciphertexts, then by symmetry, they are able to fill the

(t + 1)-corresponding lines. This maintains the invariant that each column contains at least t + 1 entries with plaintexts
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reduced modulo p, and thus, that any player can decrypt t + 1 plaintexts on his column, which is enough to recover his

whole column, by interpolation.

Finally, to enforce verifiability, and thus active security (see §1.1.5), our protocol requires non-interactive zero-

knowledge proofs (NIZK). This step is non trivial, since the statements to be proven are composed of several inter-

dependent predicates. For instance, our Add requires the combination of proofs of: correct decryption, interpolation,

reduction modulo p, addition, then re-encryption, of evaluations of a polynomial that must be kept secret. Fortunately

this is made possible by the recent framework of Attema-Cramer [AC20]. It is indeed modular, in the sense that, it

enables the prover to prove statements on values of which he separately exhibits a public commitment. Combining

with, respectively, DDH-based and RSA-based commitments, we instantiate our scheme, along with these ZK proofs,

from el Gamal (in the exponent) and from Paillier encryption. To be complete, let us mention that specific proofs do

exist ([CDN01], [FS01, §4] (range proof), [DJ01, §4.2] (multiplicative relation), [Ben+11, Fig 1]) that apply directly to

plaintexts encrypted with Paillier. But, they do not enable to prove the composite predicates which we require.

1.1.5 Computation method. Last but not least, we put all these contributions in a novel computation framework suited

for asynchronous MPC with honest majority. We abstract out the structure of computation of [BHN10], as follows,

which defines our baseline. The circuit is evaluated using the King/Slaves paradigm [HNP05a], in n parallel instances.

Every player simultaneously acts as a king to evaluate its own computation instance with the help of the others, and as

a slave for other n − 1 instances computing the same circuit. This model of computation guarantees that all instances

relating to an honest king give at the end of the protocol all correct outputs are the result of the same set of instructions.

In more detail, we define an atomic step of computations, which we denote as “Stage”. It maintains the invariant that

it outputs a result signed as valid by t + 1 players and takes as input validly signed outputs of other stages. In other

words, checks are chained throughout the process and not pushed at the end of the protocol as formally explained in

§3.1.1. This is the main difference with [BHN10]. We motivate this choice of intermediary checking for two reasons.

First, it simplifies the termination process. Unlike in [BHN10], upon receiving a correct output, a player multicasts it

and immediately terminates. Second, it enables proactive security. To this end, it is indeed necessary that any player

can take over the role of the king while being certain of the validity of the calculations undertaken so far. More details

are provided in section 7.

1.2 Advanced contributions

1.2.1 Constant time triples generation. In order to multiply secrets, a mainstream approach, since Beaver [Bea91],

consists in having players precompute random secret multiplication triples in an input-independent offline phase, that

are later used in the so-called online phase to evaluate a circuit. This preprocessing is achieved asynchronously in

[BHN10] at a cost of a number of consecutive interactions linear in the number of players. We bring this latency down

from linear to a small constant, by leveraging the initial round of synchronous broadcast and an innovative method

from Choudhury-Hirt-Patra [CHP13, DISC13], that extracts fresh random triples from triples coming from different

players. However, their method is inherently limited to t < n/4, due to usage of Byzantine agreement, i.e., consensus,

on the input triples. We enrich this protocol by adding verifiability thanks to Zero-Knowledge proofs. This allows us to

make structural modifications to the protocol which have the result of increasing the number of triples generated. In

detail, we denote t ′ this new adjustable parameter presented in section 5. This increases the available degree of freedom

and enables to improve resiliency to t < n/2, whatever the contributions t ′ of the adversary, and without consensus.
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Theorem 2. (Informal) Assuming n = 2t + 1 players in an asynchronous communication network, of which t are

maliciously corrupted by a polynomial adversary, in the plain model of a bulletin-board of public keys, and assuming

access to one round of synchronous broadcast at the beginning of the execution, then, the players can produce random

multiplication triples unknown to the adversary , in a fix (constant) number of consecutive interactions.

1.2.2 On-the-fly encrypted randomness generation. The generation of a common random encrypted secret was proposed

in [BHN10]. It naively consists in asking each player to generate a random element, broadcast an additive encryption of

it in the first round, which are then summed. We remove the dependency on the broadcast. Our protocol, described in

section 6 can indeed be executed at any moment in an asynchronous setting. Let us sketch the idea.

In a first attempt, one could think of building on the mainstream coin-tossing scheme introduced by Cachin et al.

in [CKS05]. Recall that this scheme enables players to locally generate shares of a random coin. The problem is that

these are multiplicative shares, namely, they live in the exponent of a group with hard discrete log. Thus, multiplicative

reconstruction does not commute with computing additively homomorphic encryption.

Thus, we take instead advantage of the scheme introduced by Cramer et al. [CDI05], denoted as pseudo-random

secret sharing (PRSS). PRSS enables each player to produce directly the Shamir share of a random value. The linearity of

the reconstruction of Shamir, and the additive homomorphic property of TAE, makes it possible to encrypt the Shamir

shares obtained locally at each player, then apply Shamir’s linear reconstruction on these encrypted shares, to deduce

an encryption of the reconstruction of the coin. Finally, we augment this scheme with ZK proofs to add the robustness

which was missing in [CDI05].

1.2.3 Proactive security. Ostrovsky and Yung [OY91, Podc’91] introduced the notion of proactive security, in which

the life span of a protocol is divided into separate time periods denoted “epochs” and we assume that the adversary

can corrupt at most t players in two consecutive epochs. The set of corrupted players may change from one period to

the next, so the protocol must remain secure, even though every player may have been corrupt at some point. In the

context of our encryption scheme, which is a vector of encrypted shares, this model adds a triple threat. First, if players

do not change their secret keys and reencrypt the shares at regular intervals, then, the adversary may use the keys of

newly corrupted players, to decrypt their share of a ciphertext of which he previously gained knowledge of t other

shares. To address this first threat, we deduce an on-the-fly new keys generation mechanism, without setup, from the

encrypted randomness generator introduced above. However, re-encrypting the ((t + 1) × n) shares constituting a TAE

ciphertext, with freshly generated public keys is not enough. Indeed, recall that these plaintext shares are evaluations

of a polynomial (bivariate symmetric, in our scheme). Thus, a mobile adversary can decrypt, after 2 epochs, enough

evaluations of the polynomial to interpolate the value at (0, 0), which is equal by definition to the TAE-encrypted value.

To prevent this second threat, we detail in section 7 an interactive protocol to re-randomize the polynomial. The third

threat is that the model assumes that newly de-corrupted players lost all their memory, in particular their secret key.

Thus the need of a protocol, denoted as recover, to give it again to them. Different techniques exist to recover lost

shares. Following the seminal work of [Her+95] on proactive security, different protocols, e.g., [ZSR] [SLL10] [Mar+19]

based on resharing have been proposed, but are not directly applicable in our setting as they either require broadcast or

Byzantine agreement, i.e. consensus. We propose another way to achieve recovery and to lower the communication

cost, that leverages the redundant structure of our threshold encryption scheme, namely, our bivariate PVSS.
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2 MODEL AND DEFINITIONS

2.1 Precise Model of Theorem 1

We consider n = 2t + 1 players P = {P1, . . . , Pn }, which are a probabilistic polynomial-time (PPT) interactive Turing

machines, of fixed and public identities. They are connected by pairwise authenticated channels. We consider a PPT

entity denoted as the “adversary” who can take full control of up to t players, which are then denoted as “corrupt”,

before the protocol starts. For this reason we denote it as “static”. Notice that a stronger adversary will be considered

in §7. It can read the content of any message sent on the network. Being PPT, the adversary has however negligible

advantage in the IND-CPA games that are satisfied by the encryption schemes considered.

2.1.1 Goal: Secure Computation of Arithmetic Circuits over Fp , with input provision. Let us make precise the terminology

“secure computation of an arithmetic circuit”, used in Theorem 1. Let p ≥ n be any prime number, where n is the number

of players defined above. We denote Fp := Z/pZ the finite field with p elements. For simplicity we state the standalone

security model. A MPC protocol takes as public parameter a fixed circuit F : Fnp → Fp which is denoted as “arithmetic”,

in the sense that it is composed of addition gates, (bilinear or constant) multiplication gates (bilinear or constant, i.e.,

“scalar”) and random values gates. For the sake of simplicity, we assume that all players learn the final output. In each

execution, The robustness with input provision guarantee is that, for any set of inputs xi ∈ Fnp , if each player starts with

input xi , then all players receive the same output y, and y is a (random) evaluation of F (x ′
1
, . . . , x ′n ) such that x ′i = xi

for all indices i of uncorrupted players. The privacy guarantee is that the adversary learns no more than y, and even

nothing if no recipient is corrupted.

2.1.2 The Almost Asynchronous Model, after [BHN10]. We assume that all players have access to a synchronous

broadcast channel at the starting time of the protocol. Namely, they have the guarantee that when they send a message

on this channel at time t = 0, then it will be identically delivered to all players at time t = ∆ where ∆ is a public fixed

parameter. But apart from the messages broadcasted at t = 0, the network is otherwise fully asynchronous. Namely,

messages sent by uncorrupted players are guaranteed to be eventually delivered, but the schedule is determined by the

adversary. Our results carry over the model where messages can be lost, provided a straightforward adaptation of the

conditions for termination of protocols.

2.1.3 Transparent setup. We assume no trusted setup beyond the plain standard assumption, that [BCG20; TLP20]

denote as a “bulletin board” of public keys. This can be formalized, e.g., as the functionality denoted certification

authority FCA in Canetti [Can04], to which each player can give at most one public key, and which outputs on demand

the public key received from any given player. Notice that all honest players (≥ t + 1) do publish their public keys,

since they are instructed to, and are always able to do so.

2.2 Cryptographic primitves

2.2.1 Shamir secret sharing. We denote Fp [X ,Y ](t ,t ) the ring of bivariate polynomials with coefficients in Fp , of

degree bounded by t in both X and Y . Let us recall quickly the secret sharing scheme of Shamir over Fp . We consider

α1, . . . ,αn fixed public nonzero distinct values in Fp , denoted as the evaluation points. For instance: [1, . . . ,n]. On input

a secretm ∈ Fp , sample at random a polynomial f (X ) ∈ Fp [X ]t , so of degree at most t , with nonconstant coefficients

varying uniformly at random in Fp , and such that f (0) =m, i.e., the constant coefficient ism. Then, output the n-sized

vector [f (α1), . . . , f (αn )], denoted the “shares”. It has the property that, for any fixed secretm, then any t shares vary

uniformly. While any t + 1 shares linearly determinem as follows. For any subset I ⊂ {1, . . . ,n} of t + 1 distinct indices,
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there exists t + 1 elements λi ∈ Fp , denoted the Lagrange reconstruction coefficients, such that for every polynomial

f (X ) ∈ Fp [X ]t we have f (0) =
∑
i ∈I λi f (i).

2.2.2 Zero Knowledge (ZK) Proofs. A non-interactive zero-knowledge proof (NIZKP )[BFM88] allows a prover to

convince a verifier that a statement is true without revealing any further information. A NIZKP captures not only the

truth of a statement but also that the prover “possesses” a witnessw to this fact.

Let R be a relation and x a common input to the prover and the verifier. Following [CDK14, Definition 3 and 4],

a non-interactive proof system Π for a relation R consists of two probabilistic polynomial algorithms: Π.Prove and

Π.Veri f y. More specifically, let f be a function and let’s assume that the prover wants to demonstrate knowledge of

a private witness w such that f (w) = x , or in other words, to prove the relation Rf = {x ;w : f (w) = x}. The prover

can produce a proof π ← Π.Prove(x ;w) while the verifier can invoke Π.Veri f y(x, π ) and either accepts or rejects

the prover’s claim. A NIZKP scheme has two main properties. First, soundness requires that no prover can make the

verifier accept a wrong statement except with some small probability. The upper bound of this probability is referred to

as the soundness error of a proof system. For all non-uniform polynomial-time adversaries A, we have:

Pr [π∗ ← A(x) : Π.Veri f y(x, π∗) = f alse] ≈ 1 (1)

Second, completeness ensures that for a valid prof, verification succeeds. For all (x,w) ∈ R, we have:

Pr [π ← Π.Prove(x,w) : Π.Veri f y(x, π ) = true if (x,w) ∈ R] = 1 (2)

2.2.3 Public key encryption with common plaintext space Fp . We say that a public key encryption scheme has common

plaintext space Fp if all plaintext spaces contain Fp . Precisely such a scheme consists in the following triple of algorithms

(KeyGen, E,Dec). Let (sK,pK) be spaces, denoted as the secret and public key spaces. Let Π be a space denoted as

“space of ZK proofs”. Let KeyGen : ∅ → (sK,pK) a PPT algorithm.

Let E be an efficiently computable PPT algorithm with source equal to (pK,Fp ), and which outputs one element

in the union of the Cpk, appended with one element in Π. We will often abuse notations and also denote E for the

first output only. More precisely, we have E(pk ∈ pK,m ∈ Fp ) ∈ Cpk. Fix any pk output by KeyGen. Let Dec be an

efficiently computable algorithm, with source the union of all (sk,Cpk), where (sk, pk) is an output of KeyGen, and with

target Fp ∪ {abort}. We require the completeness condition, that Dec(sk, E(pk,m ∈ Fp )) =m. We require the classical

IND-CPA privacy property, defined by a negligible advantage of an adversary to guess between two plaintexts in Fp of

his choice, upon being given encryption of one of them.

2.2.4 Example: Paillier. The Paillier encryption scheme, as e.g., recalled in [Ben+11, §2.1], has plaintext space Z/NZ

with pk := N a large product of two secret primes that constitute the secret key, and ciphertext space (Z/N 2Z)∗. For

our purpose we need that p be smaller than any such N generated with KeyGen. Thus, if a published public key Ni is

smaller than p, then players do as if Pi did not publish a key at all, as e.g., could happen if Pi is corrupt. Decryption in

Fp returns by definition the plaintext output by Paillier decryption if this plaintext is in [0, . . . ,p − 1] ⊂ [0, . . . ,N − 1],

else it returns abort.

2.2.5 Example: El-Gamal in-the-exponent. The following scheme was used in [Sch99, §5] to instantiate a PVSS applicable

to electronic voting. Notice that, although it supports a limited number of homomorphic additions, this scheme was

not yet formalized, to our knowledge, as a “semi-homomorphic encryption” as defined in [Ben+11]. Let (G,д) be a

group of prime order q, with public generator д, denoted multiplicatively, in which computing the DDH is hard. The
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plaintext space of the baseline el Gamal encryption is the group G, which is isomorphic to Z/qZ. The ciphertext space

is also G. Let us recall key generation, encryption and decryption. Let h be another public fixed random generator

of G (for instance, obtained from a CRS). KeyGen is as follows. Samples sk ∈ Z∗q at random, and define pk := hsk as

his public key. To encrypt γ ∈ G under public key pk, sample r ∈ Fq at random and output (pkr ,hrγ ). Decryption is

Dec
(
sk, (ciph1, ciph2)

)
:= ciph2/(ciph1)

1/sk
.

We modify this baseline scheme in order to obtain a plaintext space equal to Fp . We consider Fp as the subset

[0, . . . ,p − 1] ⊂ Fq . Then, in turn, we map Fq to G by x → дx , then apply the previously defined el-Gamal. This is

where our terminology “in-the-exponent” comes from. Now, decryption of a ciphertext c ∈ G consists in: applying the

decryption of the baseline el Gamal to obtain some дx ∈ G , then try to compute the discrete logarithm x . (Notice that this

step is denoted as “can be computed efficiently” in [Sch99], bottom of page 11.) If a discrete logarithm x ∈ [0, . . . ,p − 1]

is found, then output x mod p ∈ Fp . Else, output abort.

Thus, to make this work, we have another requirement on p to make here, which is that p is small enough such that

every discrete log of absolute value smaller than p can be computed.

2.3 Reminder of [BHN10, PODC’10]

2.3.1 Protocol overview. In [BHN10], Beerliová-Trubíniová, Hirt and Nielsen proposed a MPC protocol that securely

compute any arithmetic circuit over Fp as detailed in §2.1.1. Moreover it enforces input provision and tolerates t < n/2

corruptions in a almost asynchronous model. It follows the so-called pre-processing model. In this model, the protocol

is split up into an offline (a.k.a. pre-processing) phase and an online phase. In the offline phase, the parties execute a

protocol which emulates a trusted dealer who distributes correlated randomness to parties, that is then consumed in

the online phase as the circuit is evaluated gate-by-gate. The offline phase is independent from both the inputs and

the circuit and as such can be computed at any point prior the evaluation of the circuit. The correlated randomness

produced by the offline phase, is so-called multiplication triples[Bea91].

In this specific setting, there are two main challenges: the asynchrony and the security threshold t < n/2. To

implement asynchronous MPC, they use a threshold additive encryption scheme, whose definition is recalled in

appendix §A. Unfortunately for t < n/2, byzantine agreement is not possible. As a result, agreement on the encrypted

outputs of intermediary gates cannot be guaranteed. To solve this inconsistency of views, the whole circuit is evaluated

many times in parallel, once for every player, denoted as king. The other players, acting as slaves, help the king to

evaluate his copy of the circuit. This ensures that when the king is honest, all slaves have consistent views on all

ciphertexts.

2.3.2 Protocol details. Let E denote a threshold additive homomorphic encryption, definition is recalled in appendix

§A. Let F be the arithmetic circuit to be computed. For simplicity we consider a deterministic circuit here. How to

evaluate random gates will be discussed and improved in §6. Starting with encryptions of the inputs (broadcasted in the

initial round), the players jointly compute encryptions of the outputs of the intermediary gates, until eventually an

encryption of the output is jointly decrypted (using threshold decryption). Addition gates are evaluated locally without

interaction using the homomorphic properties of the encryption scheme while multiplication gates require interactions

and the generation of multiplication triples [Bea91], defined as triples of two encrypted random values along with the

encrypted product. More precisely, the protocol consists in the following steps:

(0) Trusted Setup: Taking as input the number of players n = 2t + 1, a trusted dealer publishes a public key pk,

and sends privately a secret key ski to each player Pi .
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(1) Inputs broadcast: Each party Pi broadcast its encrypted input Epk(xi ). From now on, the communication

pattern is asynchronous: each player waits for at most t + 1 correct messages from any t + 1 distinct players

before sending new messages.

(2) Triples generation: To generate an encrypted multiplication triple unknown to the adversary A, the king

starts from a default known encrypted triple and sends a randomization request to every n slaves and waits

for a valid answer. The king iterates this process a total of t + 1 times, which guarantees that a chain of t + 1

consecutive randomizations is achieved. Thus the plaintext values of the factors of the encrypted triple, are

indistinguishable to the adversary from uniform random ones.

(3) Circuit evaluation: Each king Pj evaluates the circuit of F in a gate-by-gate manner, with the help of all players

(including the king) acting as slaves. and outputs Epk(F (x1, x2, ..., xn ))

(4) Termination: Each circuit output is jointly decrypted and the king learns the result z. Then it sends a signature

request on z to all parties and continues to act as slaves. When it received signature shares from t + 1 parties, it

broadcasts the signed output. Once t + 1 kings have finished with the same signed output, then necessarily this

must be the correct one and all players adopt it.

3 METHOD OVERVIEW

3.1 Computation structure

We gradually present the structure of computation to evaluate a circuit as introduced in §1.1.5.

3.1.1 Stage. We break down the actual computation of a circuit into a series of intermediary functions denoted as

Stages. They represent the incompressible steps in our protocol and are entirely defined by a public Stage Identification

tag (SID) as follows. The identity of the king is encoded as SID.kinдNb. The function to be computed is denoted as

SID. f unction. Finally, SID.prev contains a list of SID’s whose outputs are used as input of this stage.

A stage takes as inputs outputs from previous stages and produces an output that we call a verified stage output
(Verif0ut in short), which consists of two elements: the result of the function SID. f unction applied to the inputs

from SID.prev and a Quorum Verification Certificates (QVC in short) which consists in the aggregation of t + 1

signatures on the result. Given a Verif0ut, we use Verif0ut.value and Verif0ut.QVC to refer to the above-mentioned

elements. Throughout the computation, we maintain the following invariant from the distribution to the termination:

Inv_staдe : any output of a stage signed by at least t + 1 players is a correct verified stage output. (3)

This essentially forms a chain of correctness from distribution to termination. Note that a player cannot terminate

until it knows that all honest parties will also terminate. In [BHN10], this requires every player to wait until they

receive t + 1 identical results to be sure that at least one honest king learns the correct result. In our protocol a signed

value is correct (per Inv_staдe). Upon receiving one correct output a player multicasts it and immediately terminates.

Examples. Some of the basic stage functions used throughout the protocol are defined as particular Stages. The

following basic functions will be used to compute any circuit: i) TAE.PubDec that enables to publicly decrypt an output

ii) TAE.Rand that generates a verifiable random variable and presented in 6.3 iii) TAE.Add that enables to add two

outputs together and introduced in 3.1.5 iv) TAE.Mult that enables to multiply an output with a scalar as shown in 4.3.

3.1.2 Overall structure of a Stage. A king drives a Stage in just two exchanges of messages called phases. The first phase

(referred as contribution phase) guarantees that each player is convinced of the correctness of the computation made
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during the current stage. The king is responsible for the collection of partial contributions, and for the aggregation

of the individual Zero-Knowledge Proofs (ZKP) into a Combine Proof (CP is short) that validates all computations

made during a stage. The second phase (referred as verification phase) guarantees the correctness of a value up to the

current step through the formation of a Quorum Verification Certificate1 (QVC) consisting of t + 1 signatures. At
the end of a stage, all outputs must be associated with a Quorum Verification Certificate. Thus, a stage is defined by

three elements:

• contribsid
2
a private contribution function for stage SID invoked by all slaves

• sj : a secret material used by Pj to compute contribsid

• combinesid a public aggregation function used by the king to aggregate the partial contributions received from

the slaves.

In summary, a stage takes as inputs a set of verified stage outputs {Xi }i and produce another VerifOut that is the
result of the function combinesid applied on t +1 contributions contribsid ({Xi }i ) from a set S of parties . In other words,

Verif0ut.value = combinesid ({contribsid ({Xi }i , sj }j ∈S, |S |=t+1). The execution of a Stage for a player is presented in

figure 1, and a more complete description of the data structures used and the pseudocodes are given in the appendix B.

Fig. 1. Computation stage for a player Pj . It first receives two verified stage outputs X1 and X2 from stages SID1 and SID2 and
uses its secret material sj to compute its partial contribution using contr ibsid . The king collects t + 1 CONTRIBMSG messages
with valid proofs, combines the contributions, and sends everything in a COMBMSG message. Finally Pj verifies the proofs and
signs the combined contributions and the king aggregates t + 1 signatures to form a valid output message.

1
A quorum denotes a subset of players in P of size at least t + 1

2
To simplify notation, here sid denotes SID .f unction
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3.1.3 Contribution phase. This phase contains two distinct aspects. On one side each player Pi evaluates a function

contribsid at stage SID, produces partial proof πi and sends a contribution message (notedCONTRIBMSG) to the king.

On the other side, upon receiving t + 1 valid contributions messages associated to a unique SID, the king processes

them with the function combinesid in order to compute a Combine Proof and multicasts the result in a COMBMSG

message. Recall that any player can verify a proof using the function Πsid .Veri f y.

3.1.4 Verification phase. Upon receiving a COMBMSG Z from a king, each player verifies it using a veri f () function

and, if successful, signs the value contained in the message and sends the result in a VERIFCONTRIB message. This

marks the transitions from one stage SID to SID ′. When the king received t + 1 VERIFCONTRIB messages on the

same Z .value , he concatenates them into a Quorum Verification Certificate. Then, it appends it to the output of the

stage, which is Z .value , to form a verified stage outputs, which he multicasts to the players. The function realized by

the king that produces a VerifOut is denoted veri f Output . We recall that a player Pi can use its private key to sign a

messagem, as σi ← siдni (m). Any player can verify any signature using the public keys and the function SiдVeri f y.

3.1.5 Optimization. At first glance, it seems that it takes 2 roundtrips for each operation. However, this can be reduced

in two ways. First, stages can be linearly combined. For instance, thanks to the properties of our implementation

presented in section 4.3, the TAE.Add and TAE.Mult can be combined into a single stage realizing a linear combination.

This can be further combined with a TAE.PubDec stage that decrypts the value. Secondly, similarly to what is done in

[Yin+19], one can have the player to speculatively execute the stages on some unsigned outputs of the previous stage

while they are simultaneously performing the verification phase on these outputs. They abort if it turns out that these

outputs cannot pass the verification. This halves the latency of a stage to just one roundtrip.

4 THRESHOLD-ADDITIVE ENCRYPTION (TAE) WITH TRANSPARENT SETUP

We gradually define a Threshold-Additive Encryption (TAE) scheme with transparent setup, with plaintext space a finite

field, following the programme presented in the introduction §1.1.4.

Basic specifications. In §4.1 we, firstly, require a TAE to be a verifiable threshold encryption scheme with transparent

setup, as recalled in §1.1.1.. Namely, we specify an encryption algorithm, which takes as parameter the n public keys

that are on the bulletin board. We leave the reader make the straightforward adaptation in the algorithms, for the cases

where up to t keys were not published. Notice that all honest players (≥ t + 1) do publish their public keys, since they

are instructed to, and are always able to do so.

Advanced specifications. are then specified in §4.2. They all come as triples of algorithms, with exactly the same

structure as (t + 1)-threshold description. Apart from addition and multiplication by a scalar, we also specify a (t + 1)-

threshold “private decryption”: PrivDec, which outputs the plaintext only to a designated recipient. Regarding this

latter, on the one hand, the implementation will be simple from a conceptual perspective: each player applies Contrib

on the ciphertext, then encrypts the output under the recipient’s public key. However, enabling public verifiability of

this operation will require more complicated ZK proofs.

In §4.3 we provide an implementation of TAE from any public key encryption scheme in the sense of 2.2.3. In detail, a

ciphertext is a n ×n sized matrix of ciphertexts of evaluations of a bivariate symmetric polynomial, with possibly empty

entries. In §4.4 we wrap TAE in our computation framework of interactive stages, in order to apply it to our problem of

asynchronous MPC without trusted setup. In §4.6 we finally instantiate the ZK proofs needed for implementing TAE

from two possible baseline encryption schemes: both el Gamal in-the-exponent, and Paillier.
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4.1 Basic specification: a verifiable threshold encryption scheme with transparent setup

We consider a finite field Fp of prime order p. In practice, Fp is the field of the definition of the arithmetic circuit to be

computed in MPC. For instance, in the case of an implementation using the el Gamal scheme as baseline (anticipating

on §4.3), then p is small enough so this baseline (cf §2.2.3) has efficient decryption.

Definition 3. Let Fp be a finite field. A verifiable (t + 1)-out-of n threshold encryption scheme with transparent setup

over Fp is the data of a space 𝒞 denoted as the global ciphertext space, spaces sK and pK denoted as the “secret keys”

and “public keys” spaces, a space Π denoted the “space of ZK proofs”, of two PPT algorithms

KeyGen(): ∅ → (sK,pK) ,

Encrypt: pKn × Fp → 𝒞 × Π denoted “encryption algorithm”, and of four deterministic algorithms:

Encrypt.Verify: pKn × 𝒞 × Π → {accept, reject},

PubDec.Contrib: sK × 𝒞 →
{
{0, 1}∗ × Π

}
∪ abort, denoted as “decryption share”. The {0, 1}∗ denotes binary strings

of unspecified lengths, but in our implementation it will be a vector of n elements of the plaintext space.

PubDec.Verify: pK × 𝒞 × {0, 1}∗ × Π → {accept, reject} which proves correctness of a decryption share, and

PubDec.Combine: ({0, 1}∗)t+1 → Fp ∪ abort.

That satisfy completeness, privacy: IND-CPA and simulatability of decryption shares, and decryption consistency as defined

below.

Completeness. For any pk ∈ pKn
,m ∈ Fp , and (c, π ) := Encrypt(pk,m), then Encrypt.Verify(pk, c, π ) = accept.

For any pk ∈ pKn
, suppose that there is a subset I ⊂ {1, . . . ,n} of t + 1 indices, such that, for all i ∈ I, we

have that pki := pk[i] is the public key of a correctly (locally) generated key pair: (ski , pki ) = KeyGen(). Then

for allm ∈ Fp , denote (c, π ) := Encrypt(pk,m) and (dci , πi ) := PubDec.Contrib(ski , c) ∀i ∈ I, we have both that

PubDec.Verify(pki , c,d
c
i , πi ) = accept ∀i ∈ I andm = PubDec.Combine

(
(dci )i ∈I

)
.

IND-CPA. Is defined by the following game. Consider a PPT adversary playingwith a challenger, who runs (ski , pki ) :=

KeyGen() ∀i ∈ [n] and gives all the pki to the adversary. Then, the adversary can initially request “corruption” of any

index i , up to a total of t corruptions, in the following sense. Upon corruption request for any i0, the challenger then

reveals ski0 to the adversary. When this happens, the adversary can, in addition, replace pki0 by one of his choice.

IND-CPA means that, upon submitting two plaintextsm0,m1 to the challenger, then being issued c the encryption of

one of them, the adversary has negligible advantage in distinguishing whether c is an encryption ofm0 orm1.

Simulatability of public decryption shares. Is defined as in appendix §A. Briefly: there exists a simulator that, on input

a plaintextm, a correctly computed Encrypt cm of it, and correctly computed decryption shares from a set of t player

indices denoted as “corrupt”, outputs n − t strings that are computationally undistinguishable from valid decryption

shares from the remaining player indices, even for an adversary holding the secret keys of the corrupt indices.

Decryption consistency. Is defined as in appendix §A. Namely, on input a complete set of n correctly generated

key pairs, then adversary cannot forge, except with negligible probability, a (c ∈ 𝒞, π ∈ Π) which would be

accepted by Encrypt.Verify, along with two sets of t + 1 strings accepted by PubDec.Verify as being valid outputs of

PubDec.Contrib, and such that their PubDec.Combine are different.

4.1.1 Remark: Implementation with a PVSS.. Notice that a schemewith the basic requirements above can be implemented

from any verifiable public key encryption scheme E, with the conditions and conventions of §2.2.3, as follows. Encryption
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of a plaintextm ∈ Fp consists in: sampling a degree t + 1 polynomial B ∈ Fp [X ] such that B(0) = m uniformly at

random; computing its evaluations B(αi ); output of the vector of encryptions of these evaluations under the public keys

of the corresponding players:

[
E(pki ,B(αi )), i ∈ [n]

]
. The second output of Encrypt is a ZK proof of correctness of the

computation of this vector (with witness the plaintext). (t + 1)-threshold decryption proceeds by decryption of any t + 1

coordinates, then interpolation of B to recover B(0) =m. This is exactly [GMW91, §3.3], later rediscovered as “PVSS”.

4.2 Advanced specifications: private opening, and interactive homomorphic operations

We fix E any public key encryption scheme as in §2.2.3. We abuse notations and also denote as pki the public keys used

for E . This abuse is because, in our implementation §4.3, E will be the baseline public key encryption scheme, thus the

public keys will coincide.

Definition 4 (TAE). A (t + 1)-out-of n TAE over Fp , is the data of a verifiable threshold encryption scheme with

transparent setup, as defined in Definition 3, of which we keep the notations, along with the following PPT algorithms.

Notice that Add is just a particular case of LinComb, which we describe for clarity:

PrivDec.Contrib : pK × sK × 𝒞 → {{0, 1}∗ × Π} ∪ abort. On input pkr , which is the recipient’s public key, ski and c ,

outputs E(pkr ,PubDec.Contrib(ski , c)) and π ∈ Π
)
, or abort. Notice that the notation {0, 1}∗ is because the length

is unspecified, but in our implementation it will be a vector of n Epkr -ciphertexts of elements of Fp .

PrivDec.Combine : ({0, 1}∗)t+1 → ({0, 1}∗) ∪ abort takes t + 1 outputs of PrivDec.Contrib and outputs in ({0, 1}∗)

or abort. In our implementation, the output will be an array of size n × n, partially filled with Epkr -ciphertexts of

elements of Fp

PrivDec.Verify :pK×pK×{0, 1}∗×Π → {accept, reject} proves correctness of the computation of the PrivDec .Contrib.

Add.Contrib : pKn × sK × 𝒞2 → {{0, 1}∗ × Π} ∪ abort, denoted as addition share if not abort.

Add.Verify with parameter a player index: pKn × 𝒞2 × {0, 1}∗ × Π → {accept, reject}

Add.Combine : ({0, 1}∗)t+1 → 𝒞 ∪ abort takes t + 1 outputs of Add.Contrib and outputs in 𝒞 or abort.

LinComb.Contrib with public parameters L ∈ N∗ and
(
λ1, . . . , λL

)
∈ FL

p : pKn × sK × 𝒞L → {{0, 1}∗ × Π} ∪ abort.

LinComb.Verify : pKn × 𝒞L × {0, 1}∗ × Π → {accept, reject} proves correctness of the computation of a Contrib.

LinComb.Combine : ({0, 1}∗)t+1 → 𝒞 ∪ abort takes t + 1 outputs of LinComb.Contrib and outputs in 𝒞 or abort.

That satisfy completeness, privacy: IND-CPA (updated below) & simulatability of decryption shares (unchanged), and

decryption consistency as defined below.

Completeness. To define completeness, we firstly introduce the following recursive definition.

Definition 5 (TAE.ciphertext). First, any correctly computed Encrypt(x) any x ∈ Fp is a TAE.ciphertext of x . Then,

for any TAE.ciphertext cm , cm′ , ofm, m
′ ∈ Fp , and any t + 1 correctly computed addition shares output by distinct

players, then, the output of Add.Combine on these shares is by definition a TAE.ciphertext ofm +m′ ∈ Fp . More

generally, for any t + 1 correctly computed linear combinaison shares, output by distinct players on the same inputs and

parameters, then the LinComb.Combine of these shares is by definition a TAE.ciphertext of the linear combination.

Then, the completeness requirement is that for anym ∈ Fp , then any TAE.ciphertext cm ofm decrypts tom. Namely,

m is the output of PubDec.Combine applied on any t + 1 correctly computed decryption shares output by distinct

players from PubDec.Contrib on input cm . Likewise, we require that the PrivDec.Combine of any t + 1 correctly

computed outputs of PubDec.Contrib on input the same TAE.ciphertext cm , be equal to a ofm encrypted with E under
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the recipient’s public key. Finally, the completeness guarantees that the proofs output by any correctly computed

Contrib, is accepted by the corresponding Verify.

IND-CPA.. We consider the same game as in §4.1. In addition we allow the adversary, before and after he receives

the encryption of one of his challenge plaintexts, to query the correctly computed output of PrivDec.Contrib or

LinComb.Contrib by any (possibly honest) player, on any inputs in 𝒞 of his choice. The only limitation is that in

PrivDec.Contrib, the recipient is an uncorrupt player. Indeed, otherwise, this would enable to adversary to obtain the

decryption of any ciphertext, i.e. as in IND-CCA, which we do not guarantee. Then, apart from this modification, the

privacy requirement is unchanged.

Decryption consistency. We require that the adversary cannot produce any TAE.ciphertext along with two sets of

t + 1 PubDec shares, that would both be all accepted as valid, and such that their PubDec.Combine would return two

different outputs.

Let us make a remark on this definition, anticipating on our implementation. Notice that, by soundness of ZK proofs,

any c ∈ 𝒞 which is accepted as Encrypt.Verify is in particular a TAE.ciphertext. Thus, the previous requirement is a

generalization of decryption consistency as defined in §4.1.

4.2.1 A comment on the power of the adversary in the IND-CPA game. Recall that we allow the adversary to query

contributions of PrivDec, and LinComb. Actually, the adversary and the simulator have no more power than in

the definition of threshold homomorphic encryption in [CDN01] (see also Definition 13 in the appendix). Indeed, in

[CDN01] the adversary can locally compute the homomorphic linear combinations of any ciphertexts of his choice.

Whereas in our definition, computation of homomorphic linear combinations require the contribution of at least one

uncorrupt player.

4.3 Implementing TAE

We use the notations of §2.2. We consider a public key encryption scheme (KeyGen, E,Dec) over Fp as defined in §2.2.3,

with the notations that we recall as follows. Let ⊥ denote the empty value. Given n public keys pk
1
. . . , pkn , denote Ci

the corresponding ciphertext space. For brevity, we simplify the encryption notation E(pki , x) to Ei (x). Then, we define

the global ciphertext space of the TAE, denoted as 𝒞, as the subset of n × n arrays such that each row i either consists

in a vector in [C1, . . . ,Cn ], or, the empty vector ⊥n . We now introduce the following intrinsic definition. As stated in

Proposition 7, with respect to the following implementation of TAE, this definition will turn out to be synonymous

Definition 5 of a TAE.ciphertext.

Definition 6. A well formed ciphertext c ∈ 𝒞 is an array such that there exists a bivariate symmetric polynomial

B(X ,Y ) ∈ Fp [X ,Y ]t ,t , and t + 1 row indices, denoted I ⊂ [1, . . . ,n], such that the entries on these rows are encryptions

of evaluations of B:

(4) ci , j := Ej (B(αi ,α j )) ,∀i ∈ I , j ∈ [n]

The other t rows are empty. We say that c ∈ 𝒞 is a well formed ciphertext of plaintext x if x = B(0, 0)

The first important property of a well formed ciphertext is that, for every fixed column index j, then the nonempty

entries on the j-th plaintext column are t + 1 evaluations of the polynomial Bj (X ) := B(X ,α j ), which is of degree t + 1,

and thus, by Lagrange interpolation are enough to interpolate the whole polynomial Bj (X ).
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The second important property of a well formed ciphertext is that, by symmetry of B, we have equality of the

plaintexts B(αi ,α j ) = B(α j ,αi ) when the entry (i, j) is nonempty.

4.3.1 Encrypt . Let (pk ∈ pKn,m ∈ Fp ) be the inputs.

Sample a random symmetric bivariate polynomial B(X ,Y ) ∈ Fp [X ,Y ]t ,t , such that B(0, 0) =m. Choose any subset

of t + 1 indices I ⊂ [1, . . . ,n]. Output the n × n array, with the rows with indices in I as follows, and the other rows

empty: cm,(i j) := Ej (B(αi ,α j )), ∀i ∈ I , j ∈ [n], and also output a ZK proof πEncrypt that proves correctness of the

computation of the output, namely, the relation REncrypt as presented in appendix C.

4.3.2 Threshold decryption. PubDec.Contrib: Let (skj , c) be the inputs. By Definition 6, if c is a well formed ciphertext,

then there are at least t + 1 nonempty entries on column j, and all of them are correctly decryptable. Denote (dci , j )i ∈Ij ,

these decryptions, where Ij denotes the set of row indices of these entries. Each Pj then outputs (dci , j )i ∈Ij , along with

a proof that ci , j ∈ E(pkj ,d
c
i , j ) ∀i ∈ Ij .

PubDec.Combine: on input t + 1 decryption shares (with proofs returned as accept), deduce the unique symmetric

polynomial B[X ,Y ] ∈ Fp [X ,Y ]t ,t , such that, for all those t + 1 correct decryption shares, we have: B(αi ,α j ) = d
c
i , j ∈ Fp .

Then outputm := B(0, 0) ∈ Fp .

PrivDec.Contrib Let (pkr , skj , c) be the inputs. By Definition 6, if c is a well formed ciphertext, then there are t + 1

nonempty rows, of which we denote the indices I ⊂ [1, . . . ,n]. Denote (dci , j )i ∈I the decryptions of the t + 1 entries

in column j. Then, output encryption the list of their encryptions with pkr : [Er (d
c
i , j ) , i ∈ I] The ZK proof output

by PrivDec.Contrib, πPr ivDecr , j , proves correctness of the output, namely: the relation RPr ivDecr , j presented in

appendix C.

PrivDec.Combine Initialize an empty n × n array. For each correctly checked contribution [c
(out )
i , j , i ∈ I], from Pj ,

copy the elements of this list at their positions (i, j) in the array. After receiving t + 1 contributions with correct proofs,

output the array. The combine proof πPrivDec is the trivial concatenation of the correct proofs received from the t + 1

players.

4.3.3 Threshold Homomorphic Linear Operations. We describe only the threshold addition (Add), of which the threshold
linear combination LinComb is a straightforward generalization.

Add.Contrib: Let (skj , c, c ′) be the inputs of player j. By Definition 6, if c and c ′ are two well formed ciphertexts,

then let I and I ′ be the corresponding sets of t + 1 nonempty row indices. For each c and c ′, compute the decryption

of those t + 1 nonempty entries on column j, which we denote:

(
dci , j

)
i ∈I and

(
dc
′

i , j
)
i ∈I′ . Then, compute the t missing

entries on each of these (n = 2t + 1)-sized columns j , by polynomial interpolation. Next, add together these two n-sized

columns, into the column denoted as [dc+c
′

i , j , i ∈ [n]]. Finally, output encryptions of its entries, into the form of a n-sized

row vector, namely:

(5) c
(out )
j :=

[
Ei (d

c+c ′
j ,i ) , i ∈ [n]

]
.

The ZK proof πAdd, j output proves that these computations were done correctly, namely, proves the relation RAdd

presented in appendix C

Add.Combine: Initiate an empty n × n array, that is, filled with ⊥. For each contribution c
(out )
j , i.e., addition share,

from some player Pj , that comes with a correct proof, then copy this contribution, which we recall is a row vector, into

the j-th row of the array. After receiving t + 1 such correctly checked addition shares with correct proofs, output the

array computed so far.
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4.3.4 Proof of completeness, privacy: IND-CPA & shares simulatability, and decryption consistency.

Completeness. We first show that the correctly computedAdd of two well formed ciphertexts c and c ′, corresponding

to polynomials B and B′, is itself a well formed ciphertext, corresponding to polynomial B + B′, and thus with plaintext

equal to the sum of the plaintextsB(0)+B′(0). First, notice that, by symmetry of the polynomialsB andB′, we have that the

plaintexts of the row vector output by theAdd.Contrib of player j , are exactly the evaluations
[
(B+B′)(α j ,αi ), i ∈ [n]

]
.

Thus, considering the t + 1 filled rows of the array output by Combine, and switching the indices i and j in the previous

formula, we have that the i-th row of this array has its plaintexts which are equal to

[
(B + B′)(αi ,α j ), j ∈ [n]

]
. Thus by

construction and Definition 6, the array output by Add.Contrib is a well formed ciphertext of plaintext (B + B′)(0).

We do not formalize the similar statement that the LinComb of a well formed ciphertext, is a well formed ciphertext

of the linear combination. We deduce the following proposition, which concludes the proof of the first requirement of

completeness:

Proposition 7. With respect to the implementations of Encrypt, Add and more generally LinComb above, we have that

the property of being a TAE.ciphertext (Definition 5) is synonymous of being a well formed ciphertext.

Proof. In one direction, consider a well formed ciphertext cm of somem ∈ Fp . Then by construction of Encrypt,
we have that cm is a possible output of Encrypt(m). Thus by definition cm is a TAE.ciphertext.

In the other direction, we have by Definition 6 that any Encrypt of anym ∈ Fp is a well formed ciphertext. Then,

by the considerations above, the outputs of correctly computed Add and more generally LinComb, when applied

on well formed ciphertexts, retain this property. In conclusion, by the recursive Definition 5, any TAE.ciphertext is a

well formed ciphertext. □

The second completeness criterion is that the proofs attached to correctly generated Contributions are always

accepted, which follows from completeness of the ZK proof system.

Privacy: IND-CPA. For privacy we consider for simplicity the idealized model where, in all arrays in 𝒞 seen by the

adversary, then any entry which is E-ciphertext under a honest public key, can be replaced by ⊥. First, throughout

the game, each time the adversary makes Add.Contrib, it is returned an array with t + 1 empty columns and, on the

t columns of which he knew the plaintexts, the encryption of the sum of these columns under the t corrupt public

keys. Likewise for LinComb.Contrib. For PrivDec.Contrib he receives an empty vector (⊥n ). Thus, it could compute

itself what it receives from its requests. Second, denote JA the set of indices of the t corrupt players. We have that the

challenge ciphertext Encrypt(mb ) received by the adversary is by definition an array with exactly t + 1 nonempty

rows, of which we denote I the set of indices. By our idealized model above, the array, as seen by the adversary, has

t + 1 empty columns. Privacy then follows from the following Lemma 8.

Lemma 8. Fixm ∈ Fp , and consider the subset Bm of polynomials B ∈ Fp [X ,Y ](t ,t ) such that B(0, 0) =m. Consider any

subset J ⊂ [n] of t column indices and any subset I ⊂ [n] of t + 1 row indices. Then, when the polynomial B varies in Bm
such that the nonzero coefficients are sampled uniformly at random, then the subarray of evaluations

{
B(αi ,α j )i ∈I, j ∈J

}
varies uniformly at random in a subspace of F(t+1)×tp , which is the same for everym.

Proof. We first have that, (i) for any fixedm ∈ Fp , then the vector of t evaluations [B(0,α j ), j ∈ J] varies uniformly

when the nonzero coefficients of B vary uniformly at random. This is by invertibility of the Vandermonde determinant.

(ii) Next, in each column j ∈ J , the t + 1 entries in I are the evaluations at the (αi ∈I ) of the polynomial B(X ,α j ), which
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varies uniformly in the set of polynomials of degree at most t + 1 evaluating to B(0,α j ) at 0. Thus these t + 1 entries

vary uniformly in a hyperplane of Ft+1p (since a t × t submatrix has full rank, by invertibility of the Vandermonde

determinant) which depends only on the value of B(0,α j ) Combining with (i) concludes the proof of lemma 8. □

Privacy: shares simulatability. By proposition 7, since cm is a TAE.ciphertext, we have both: exactly t + 1 rows of c

are nonempty, of which we denote I the indices, and, there is a unique symmetric bivariate polynomial B ∈ Fp [X ,Y ]t ,t
such that the plaintexts on these rows, are equal to evaluations of B. Denote J ⊂ [n] the set of the t “corrupt” column

indices. The starting point is that the simulator knows the decryption share for each j ∈ J . By definition, this decryption

share is the set of the t + 1 plaintexts of the nonempty entries of the j-th column of cm , namely, of the entries on rows in

I. They linearly determine the polynomial B(X ,α j ). Thus the simulator knows all evaluations B(αi ,α j )i ∈I, j ∈J . Thus

be symmetry of B, he knows all evaluations B(α j ,αi )i ∈I, j ∈J . In particular, for every uncorrupt column index j ′, he

knows t evaluations on it. In order to fully determine the polynomial B(X ,α j′), and thus all its evaluations on column

j ′, it thus remains to know one more evaluation. But, let us notice thatm and the t corrupt decryption shares are t + 1

evaluations of the degree t + 1 polynomial B(0,Y ). Thus, they linearly determine B(0,Y ). Thus, the simulator knows the

evaluations at 0 of all polynomials B(X ,α j′): this provides the missing (t + 1)-th evaluation, as desired.

Consistency of decryptions. By proposition 7, for any TAE.ciphertext c , we have both: exactly t + 1 rows of c are

nonempty, of which we denote I the indices, and, there is a unique symmetric bivariate polynomial B ∈ Fp [X ,Y ]t ,t
such that the plaintexts on these rows, are equal to evaluations of B. Since both sets of PubDec.Contrib are valid,

soundness of the ZK proofs guarantee that they are both correct decryptions of the entries on I of t + 1 column

indices. Thus, they are evaluations of the same symmetric bivariate polynomial B, so in both cases the output of

PubDec.Combine is the same B(0).

4.4 Wrapping TAE in our computation stages framework, for application to MPC

We now compile the previous specification of a TAE, of Definition 4, into a collection of stages. We denote this collection

of stages as a “MPC-friendly TAE”, not to confuse it with a plain TAE, which is a collection of algorithms running locally.

In detail, a “MPC-friendly” TAE over Fp is the data of: a space 𝒞 that we denote as the global ciphertext space, and of a

collection of stages, each of them producing verified stage outputs, such that they enjoy the following properties. In

the present case where the value associated with such a verified stage output is a TAE.ciphertext, we call this output
a verified TAE.ciphertext.

• TAE.Input pKn × 𝒞∗ × Π∗ → {(𝒞 × Π)n } is a stage that takes as inputs the ciphertexts broadcasted in the first

round, and returns a list of n verified TAE.ciphertext with guarantees that: (a) all kings have the same encrypted

plaintexts and (b) for each player Pi who broadcasted cmi = Encrypt(pk,mi ) with a valid ZK proof of correct

encryption during the initial round, then cmi is in the output list at index i . Note that this stage has not Contrib

function. For the Combine function, the king simply takes the broadcasted TAE.ciphertexts with valid proof

and fills an initially empty n−dimensional vector. For player indices j that have not broadcast: the king writes

c j := Encrypt(pk, 0) in the vector box j, and adds a proof of correct encryption.

• TAE.PubDec sKn × 𝒞 → Fp is a stage that takes as input a verified TAE.ciphertext c and produces a verified

plaintextm such thatm ← TAE.PubDec(Encrypt(pk,m)).

Letm ∈ Fp be a plaintext and let c . We say that c is a well formed TAE ciphertext ofm ∈ Fp ifm = TAE.PubDec(c).
We illustrate how Add can be wrapped in interactive stages, that produce ciphertexts signed as valid by t + 1 players.
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We have the straightforward generalization to a TAE.LinComb stage. Of course one could be more efficient and pack

in one single stage, e.g., a linear combination followed by a private opening.

• TAE.PrivDec sKn×pK×𝒞 → C∗ is a stage that takes as input a verified TAE.ciphertext cm and a designated player

Pr , and produces a ciphertext E(pkr ,m) under the public key pkr of Pr , such that cm is a well formed ciphertext

ofm.

• TAE.Add pKn × sKn × 𝒞 × 𝒞 → 𝒞 is a stage that takes as inputs two verified TAE.ciphertexts cm , of some

m ∈ Fp , and cm′ , of somem′ ∈ Fp , and produces a verified TAE.ciphertext cm+m′ . It is such that cm+m′ is a

well formed ciphertext ofm +m′.

4.5 (Informal) Proof of theorem 1

We sketch how the properties argued in Theorem 1 derive from [BHN10, Theorem 1] reminded in 2.3 and our TAE

introduced in Section 4. We first note that our protocol encompasses the one of [BHN10]. and mainly differs by replacing

their AHE with our TAE stages defined in Section 4.4. In detail, considering a TAE with the notations introduced in

§4 and using the structure introduced in §2.3.2: (0) we replace the trusted setup by a local invocation to Keygen().
Then all players publish their public keys on the bulletin board. Step (1) is subdivided in our model into two sub-steps.

First each player broadcasts their inputs, encrypted with Encrypt, then they invoke TAE.Input on them. (2) and (3)

are unchanged, except that homomorphic linear combinations, which were computed locally on E−ciphertexts, are

replaced by TAE.LinComb applied to TAE.ciphertexts. (4) The final gate outputs the PubDec of F (x1, .., xn ). If not all
players are recipients, then the straightforward modification is done by using PrivDec instead. When a player receives

these verified stage outputs from one king then he forwards them to all players and halts. Given these preconditions,

it is easy to see that Theorem 1 holds.

Remark 9. Rerandomization of ciphertexts, as used in [BHN10] in (2) to generate multiplication triples, is not needed

anymore, since our implementation of Add andMult involves reencryption of the well formed ciphertexts.

Remark 10. In (4), a player can halt as soon as he receives the verified final stage output from one king. Indeed, it
carries the signature of t + 1 players attesting its correctness. By contrast, in [BHN10], he needs to wait to receive

identical signed plaintext outputs from t + 1 kings before halting.

4.6 Instantiations of the ZK proofs needed

Since any NP language is provable in zero-knowledge ([GMW91]), it follows from our implementation above §4.3 that a

TAE can be instantiated from any public key encryption scheme. However not all public key encryption schemes come

with natural ZK-proof systems. Using generic ZK-proof systems may not be practical. In what follows we sketch how

to instantiate our program with the Paillier and el Gamal schemes as defined in §2.2.3. In both cases, our baseline for

the ZK proofs is the recent framework of Attema-Cramer [AC20].

4.6.1 From el Gamal in-the-exponent scheme. The invariant of the proof scheme [AC20] is that it enables any prover,

which exhibits one (or several) Pedersen commitment(s) to one (or several) secret input x , which we denote Com(x), to

prove that the opening of this commitment satisfies any public relation R expressed by an arithmetic circuit in Fq . Plus,

it turns out that the second part of an el Gamal in-the-exponent encryption of x : (hγдx ), is none other than a Pedersen

commitment to x with hiding parameter γ . Overall, this enables to carry out the ZK proofs required in 4.3 in a modular

way. For instance, to prove Relation RAdd, the prover sends a unique commitment to the witness, including the various
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di j (with the notations of §C), along with separate proofs that these committed witnesses satisfy the various conditions

needed. (For instance, proving that an el Gamal ciphertext encrypts a committed value is used in [Sch99] with the proof

denoted as “Chaum-Pedersen” for equality of discrete logs) This now appears as a subcase of the framework of [AC20].

See also [AC20, §7] for proofs that committed values lie in a certain range (in our case: [0, . . . ,p − 1]), details are given

in the full version of [AC20].

4.6.2 From Pailler scheme. The starting point is the ZK proof in [DJ02, Appendix A] that proves that a Paillier ciphertexts

encrypts a Damgård-Fujisaki commitment [DF02]. From this point, all ZK proofs can be carried over Damgård-Fujisaki

commitments, thanks to [AC20, §8], which re-build their framework over this commitment (instead of Pedersen’s).

5 MULTIPLICATION TRIPLES GENERATION IN THE ALMOST ASYNCHRONOUS MODEL FROM
PREPROCESSING

We present our protocol to produce multiplication triples. In §5.1, we detail a roadmap to prove Theorem 2. In 5.2, we

describe the main building blocks, and finally in §5.3, we summarize how it all comes together.

5.1 Method overview

In order to multiply secrets, a mainstream approach, since Beaver [Bea91], consists in having players precompute

random secret multiplication triples as defined in section 2.3, that are later used to evaluate a circuit. In [CHP13],

Choudhury, Hirt and Patra have developed a new approach to produce multiplication triples: first, players share random

multiplication triples, and from that, shared random triples unknown to the adversary A are extracted. We follow this

approach and augment it by adding verifiability thanks to Zero-Knowledge proofs. This allows us to make structural

modifications to the protocol which have the result of increasing the number of triples generated and to improve

resiliency from t < n/4 to t < n/2, without consensus.

Our framework is made up of three main phases:

(1) Triple sharingWe first allow every player Pi to share multiplication triples to all other players. The first round

of synchronous broadcast and our encryption method ensure input provision and sharing correctness. Moreover,

for an honest Pi , the shared triples remain private from A.

(2) Verifiable transformation of independentmultiplication triples to co-related triples The secondmodule

allows every player Pi to verify that the shared triples are indeed multiplication triples. Unlike [CHP13], the

verification is local and deterministic. This ensures that all honest players own the same correct multiplication

without the need of a Byzantine Agreement, which considerably simplifies the protocol.

(3) Randomness extraction from co-related triples Finally, the third module allows every honest player to

extract random multiplication triples unknown to A from the shared material.

This method is independent of our the threshold additive encryption scheme. It can be instantiated either with the

one considered in [CDN01; BHN10], which requires trusted setup, of ours in §4, which does not. Thus, we adopt generic

notations: E denotes any threshold encryption function that enables (possibly with interactions as for the TAE scheme

presented in Section 4) the addition of ciphertexts (noted ⊞) and the scalar multiplication (noted ⊡).

5.2 Main building blocks

Non-interactive Proof of plaintext multiplication: We present a protocol that allows a prover P to give a Zero-

Knowledge proof of plaintext multiplication (ZKPoPM) such that all players agree on the outcome of the proof. A
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verifier V wants to verify that, considering a triple (X ,Y ,Z ), the third component Z is indeed the product of the first

two components (specifically that Z = E(x .y) with X = E(x) (resp Y )). We introduce such a verification function

MultVeri f that can be constructed from [DJ01, §4.2] and presented in figure 6.

Transformation of independent multiplication triples to co-related triples: The idea is to interpolate three

polynomials x(.), y(.) and z(.) from the shared triples and use them to produce new co-related shared values. Our

protocol is adapted from the protocol for the transformation of t-shared triples proposed in [CHP13]. The main difference

is that we don’t consider shares, but we work instead on values encrypted using a threshold additive homomorphic

encryption scheme. This enables all players in an instance led by a king Pk to run the same protocol with the same

inputs and produce the same outputs. The deterministic aspect is essential in our computation method in order to

ensure the correctness of the computation.

In greater detail, protocol TripTrans takes as input t + 1 + t ′ correct and independent shared triples, say {(A(j),B(j),

C(j))}j ∈[t+1+t ′], where A
(j) = E(a(j)),B(j) = E(b(j)) and C(j) = E(c(j)) and where, for all j, it holds that c(j) = a(j).b(j).

It outputs t + 1+ t ′ "co-related" shared triples, say {(X (j),Y (j),Z (j))}j ∈[t+1+t ′]
3
, such that the following holds: (1) there

exist polynomials x(.), y(.) and z(.) of degree at most
t+t ′
2
, t+t

′

2
and t +t ′ respectively, such that x(αi ) = x (i), y(αi ) = y(i)

and z(αi ) = z(i) holds for i ∈ [t + 1 + t ′]. (2) The ith output triple (X (i),Y (i),Z (i)) is a multiplication triple ii f the ith

input triple (A(i),B(i),C(i)) is a multiplication triple. (3) If A knows t ′ input triples and if t ′ ≤ t+t ′
2

, then he learns t ′

distinct values of x(.), y(.) and z(.), implying
t+t ′
2
+ 1 − t ′ degrees of freedom, i.e remaining independent distinct values

of x(.), y(.) and z(.) that would be needed to uniquely determine these polynomials.

The core functionality of this protocol that enables to build the three polynomials x(.), y(.) and z(.) is inherited

from the verification of the multiplication triples from [BFO12]. Specifically, the two polynomials x and y are entirely

defined by the first and second components (a(i),b(i)) of the first t+t ′
2
+ 1 triples. The construction of z(.) is not as

straightforward due to the difference in degree. We use x(.) and y(.) to compute
t+t ′
2

"new points" and use the remaining

t+t ′
2

available triples (A(i),B(i),C(i))i ∈[ t+t ′
2
+2,t+1+t ′] to compute their products . Ultimately, z(.) is both defined by the

last components of the first
t+t ′
2
+ 1 triples and by the

t+t ′
2

computed products. Details are presented in figure 7.

Randomness extraction: We present a protocol called TripExt that extract a random multiplication triples unknown

to A from a set of (t + 1 + t ′) shared multiplication triples. The idea of the protocol is inherited from [CHP13] and

can be summed up as follows: from a correct multiplication triples shared by the t + 1 + t ′ players the transformation

protocol is executed on to obtain three polynomials x(.), y(.) and z(.) of degree t+t ′
2

,
t+t ′
2

and t + t ′, where z = x(.).y(.)

holds. The random output multiplication triple, unknown to A, is then extracted as {(X(β),Y(β),Z(β))}. Details are

presented in figure 9.

5.3 The Preprocessing phase protocol

Our preprocessing phase protocol now consists of the following steps: (1) Every player Pi acts as a dealer and shares a

randommultiplication triple using an instance of Share . (2) Each player then verifies the correctness of the multiplication

triples and outputs a common setU of t+1+t ′ dealers who have correctly shared multiplication triple in their respective

sharing instances. (3) Finally, each player executes the triple extraction protocol TripExt on the set of triples shared by

players inU to extract a random multiplication triples unknown to A. The protocol is given in figure 10.

3
Following our notations, X (j ) = E(x (j )), Y (j ) = E(y (j )) and Z (j ) = E(z(j ))
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5.4 (Informal) Proof of theorem 2

We first note that properties of the preprocessing protocol PreProc presented in section D.3 imply that all the honest

players will terminate the protocol and will output a random multiplication triples unknown to the adversary.

We briefly recall from Section §3.1 and §4 that every homomorphic linear combination (in particular ⊞ and ⊡),

possibly followed by a public decryption, is computed in an overall four consecutive interactions, which we denoted a

stage. In particular, following the protocol detailed in this section, the generation of a multiplication triple requires a

constant number of consecutive stages, which is independent of the number of players.

6 ON-THE-FLY ENCRYPTED RANDOM VALUE GENERATION

We propose a linear threshold construction to produce an encrypted random value without setup. This construction

makes possible the generation of pairs of public/private keys as well as proactive security. Let define Fkд : Sk → K that

goes from a private key space Sk to a a public key space K , as a generic function that derives a public key in K from a

private key in Sk . Depending on the type of keys, different circuits can be computed in Fkд . For instance, we assume a

black-box access to a Pseudorandom function (PRF) with private key space SkPRF .

6.1 Encrypted Randomness Generator

We define a stage, denoted TAE.Rand, which has a specification close to a Threshold Coin, as introduced in [CKS05,

§4.3.]. Each TAE.Rand stage is parametrized by a public coin number, which is encoded in the SID, and takes as public

inputs a vector pk of public keys. It outputs a verified TAE.ciphertext cr of a value r ∈ Fp , that enjoys the following

properties

(1) Robustness: two distinct calls to TAE.Rand with the same coin number, output a TAE.ciphertext of the same r .

(2) Unpredictability : consider that the Adversary A, which maliciously controls t players, can ask a polynomial

number of executions of TAE.Rand on coin numbers Ci of his choice, and asks to TAE.PubDec for any of the

outputs previously produced by these executions. Then, upon choosing a coin numberCi of its choice which was

not previously publicly decrypted, A has a negligible advantage in distinguishing whether it is given a value r ′

sampled at random in Fp , or, the actual TAE.PubDec output r of TAE.Rand executed on the coin number Ci .

Notice in particular that robustness implies that, two stages with different Kings executing TAE.Rand on the same coin

number, output a ciphertext of the same value r .

6.1.1 First implementation using broadcast. This can be easily implemented during the initial synchronous broadcast

round by letting every party sharing a random value; the sum of the shared random values will be common and random

to every party. Our goal is to go beyond this naive idea and to propose a randomness generator that works in an

asynchronous network.

6.2 Distributed Key Generation

We define KeyGenj ,Fkд as a set of stages. Informally, it produces a ciphertext Ej (sk′j ) of a private key sk′j ∈ sK and

the public key pk′j ∈ K derived from sk′j . This simple idea needs to be carried out on the p-adic decomposition of the

sk′j , since the output of TAE.Rand belongs to Fp , and not to Sk . We denote logp |sK| the number of elements of Fp
necessary to encode an element of sK . We define KeyGenj ,Fkд as the four followings steps:

(1) cskj ← TAE.Rand().value : use TAE.Rand to produces a vector of TAE.ciphertext denoted as (csk lj
)l ∈1, ...,logp |Sk |
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(2) Invocation of TAE.PrivDecj on the (csklj
)l ∈1, ...,logp |sK | . From the output, Pj can deduce his private key sk′j

(3) Evaluation of the circuit which implements Fkд applied on the vector (cskj ,l )l ∈1, ...,logp |sK | to produce

(cpklj
)l ∈1, ...,logp |sK | .

(4) Invocation of TAE.PubDec to open them, and obtain pkj by p-adic summation

6.3 On-the-fly implementation of TAE.Rand () without broadcast

To implement TAE.Randwithout broadcast, we leverage the construction introduced by Cramer-Damgård-Ishai [CDI05,

§4] and denoted pseudorandom secret sharing (PRSS). It enables players to generate, without interaction, an unlimited

number of shared unpredictable random values. They come in the form of Shamir shares, that players generate locally.

6.3.1 Reminder of Pseudorandom Secret Sharing (PRSS). The public parameters of a PRSS over Fp , are public sets

denoted sKPRSS : the space of secret keys, and S the space of seeds, a pseudorandom function (PRF)ψ : sK × S → Fp .

The initialisation of a PRSS assumes that a trusted dealer gives, to each player, several secret keys as follows. For each

subset A ⊂ {1, . . . ,n} of cardinality n − t , sample rA ∈ sKPRSS at random, and give it to exactly the players in A. Now,

when they need to generate shares of a new random value, then players deterministically select a new seed a ∈ S

which was not used before, then each player Pl locally outputs

(6) PRSS(l,a) :=
∑

|A |=n−t , l ∈A

ψrA (a) · fA(l)

Where fA is a fixed public polynomial that we do not specify. Then, by Lemma 3 ofs(a) is linearly reconstructible from

any t + 1 shares.

6.3.2 Our additional ingredients. We enrich the PRSS with, simultaneously: encryption of the output and public veri-

fiability, as follows. First, we enrich the secret keys with public keys, namely, we consider: an algorithm Fkд : ∅ →

(sKPRSS ,pKPRSS ). Second, we consider a TAE, with plaintext space Fp and ciphertext space denoted as 𝒞, and consider
any fixed set of n public keys pk

1
, . . . , pkn . In what follows, the TAE encryption will be implicitely performed relatively

to this set of public keys. We enrich PRSS with a proof algorithm that, on input the set of secret keys (rA)l ∈A of some

player l and some seed a ∈ S, issues a proof that the (encrypted) output of Encrypt(PRSS(l,a)) is correctly computed.

This proof is checked against the set of public keys of player l : (pkA)l ∈A. It is validly checked as soon as all key pairs

(rA, pkA) are correctly generated with Fkд .

For sake of concreteness, let us illustrate an implementation of the previous ingredients, based on the one of our

TAE in §4.3. In this implementation, the new space of seeds is S(t+1)(t+2)/2. Consider a player l , with inputs its set of

secret keys (rA)l ∈A, a seed a and pk
1
, . . . , pkn the set of public keys. Pl computes bli , j := PRSS(l,ai j ) on (t + 1)(t + 2)/2

fixed public distinct seeds: ai , j ∈ S, they are the (t + 1)(t + 2)/2 coefficients of a symmetric bivariate polynomial

Bl (X ,Y ) ∈ Fp [X ,Y ](t ,t ). Second, it computes the the array of its evaluations, on the (αi ,α j ) for i, j ∈ [n]
2
, then encrypts

the entries in each column j with j’s public key. Third, it produces a proof πRand, j of correct computation of the

whole. Namely, of simultaneously: correct evaluation of the PRSS(l,ai j ), evaluation at the (αi ,α j ), followed by correct

encryption.

6.3.3 Our on the fly threshold-encrypted random generation. The initial step is to implement the trusted dealer of

PRSS keys, by the distributed key generation protocol of §6.2. The calls to TAE.Rand () required in this initial step, can

either be implemented with the broadcast, or, recursively, from previous calls to TAE.Rand () with the broadcast-free

implementation that we are describing now.
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TAE.Rand comes as two consecutive stages. The first one takes no input. The second one outputs a TAE.ciphertext, cs
such that the plaintext s ∈ Fp is unpredictable for an adversary corrupting at most t players.

The first stage takes as parameters a fresh seed a. To be concrete, notice that, in the implementation sketched above

in §6.3.2, then a comes as a set of (t +1)(t +2)/2 fresh distinct seeds ai , j ∈ S. Its contribution function is as follows: each

player outputs Encrypt(PRSS(j,a)), along with a proof of correctness, as specfied in 6.3.2. Its combination function

simply takes as input a set of contributions issued by any set L ⊂ {1, . . . ,n} of t + 1 distinct players:
{
(cl , π l ), l ∈ L

}
,

such that the proofs of correctness π l are verified, and outputs the concatenation of them along with the proofs.

The second stage takes as input such a set of t + 1 contributions {(cl , π l ), l ∈ L}. Let λl ∈L be the Lagrange linear

reconstruction coefficients associated to the subset L. Then, the output of this second stage is the linear combination

(7) cs(a) := TAE.LinComb(λl )l∈L
(
{cl }l ∈L

)
.

Proposition 11. The output of these two consecutive stages has the unpredictability property defined as in the game below.

The challenging oracle initializes n public/secret key pairs, and samples

(n
t
)
PRSS keys rA at random. On each

corruption request for an index j ∈ [n], for a total of at most t indices, the oracle reveals to the adversary the secret key

and the (rA)A∋j . Upon request of a seed a, the oracle returns the n − t correctly computed contributions of uncorrupt

keys, then, returns the output cs(a) of the linear reconstruction of the ciphertext coin, as in (7). The guessing advantage

of the adversary is the difference between the probability of guessing the value of the plaintext coin s(a), and 1/p.

6.3.4 Proof of Proposition 11.

Correctness. Let us briefly justify that the output of the two stages is indeed a TAE.ciphertext of the shared coin

produced by the PRSS on seed a. This is because that (7) applies linear reconstruction homomorphically on TAE-

encrypted Shamir shares, and therefore, produces a TAE.ciphertext of the (linear) reconstruction of the Shamir-shared

PRSS coin.

Unpredictability. Suppose by contradiction that there exists an adversary A who has nonnegligible advantage in

the following predictability game. We are going to show how such a A can be used to construct an adversary A ′

who has nonnegligible advantage against the challenging IND-CPA oracle O′ of TAE, which is a contradiction. A ′

initiates the adversary A, and samples

(n
t
)
PRSS keys rA at random. From now on, A ′ plays the role of the challenging

unpredictability oracle towards A. A ′ forwards to A the public keys initialized by O′. On every corruption request

for an index j from A, A ′ forwards it to O′. Then on response of O′ the secret key skj , A ′ forwards it to A, along

with the RO j . We assume for simplicity that A makes exactly t distinct corruption requests, and denote J ⊂ [n] their

indices. After the corruption phase, A gives to A ′ a challenge seed a. Using the PRSS keys rA of the t + 1 uncorrupt

players, A ′ computes their PRSS shares PRSS(j,a)j ∈[n]\J and deduces the plaintext value s(a). A ′ then gives to O′

two challenge plaintexts:m0 := a, and anym1 ∈ Fp distinct fromm0.

Then O′ returns one challenge ciphertext cb to A ′. Now, let us recall that, since s(a) and the t corrupt PRSS shares

PRSS(j,a)j ∈J are t + 1 evaluations of the degree t + 1 polynomial of the PRSS Shamir sharing, then the uncorrupt PRSS

shares are linear combination of them. Let us denote as “Lagrange” the coefficients involved.A ′ computes TAE.ciphertext

of the t corrupt PRSS shares: Encrypt(PRSS(j,a))j ∈J , and queries LinComb on cb and these t ciphertexts, with the

Lagrange coefficients, to deduce t + 1 prospective uncorrupt encryptions of PRSS shares: �PRSS(j,a)j ∈[n]\J , which he

forwards to A as the challenge. Recall that, by construction, if cb is a TAE.ciphertext of s(a), then these prospective
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uncorrupt encryptions are exactly TAE.Rand contributions of uncorrupt players indices. Therefore, if we are in this

case, then A has nonnegligible distinguishing advantage.

Finally, on output a valuem from A: ifm = s(a), then A ′ outputs b := 0 to O′, and otherwise he outputs b := 1 to

O′.

7 PROACTIVE SECURITY

In §2.1 we define the model, denoted as “proactive”. We then explain how it stands between the models of Liskov-

Liskov-Schultz [SLL10], and of Baron-El Defrawy-Lampkins-Ostrovsky [Bar+14]. We finally compare it to the one of

Cachin-Kursawe-Lysyanskaya-Strobl [Cac+02]. We then address the three threats mentionned in the introduction.

Namely, we describe in §7.1.1 how to refresh the keys, both for encryption and for the randomness generation (§6),

then in §7.2 how to refresh the plaintext shares constituting the ciphertexts.

7.1 Model

We define locally, at each player, a monotonically increasing counter denoted as epoch number: e = 1, 2, . . . . Furthermore,

we denote that a player is performing a “closing operation” if he is currently participating to one of the sub-protocols,

detailed in §7.1.1 and §7.2, which consist in refreshing the keys and the ciphertexts. The adversary can corrupt any

player at any time, but for each positive number e , then no more than a total of t distinct players can ever be corrupted

while they are in epoch e . Furthermore, a player performing a closing operation of some epoch e which is corrupted,

counts also a corrupted with respect to epoch e + 1. Each player has in memory: his secret key relatively of the current

epoch, his set of secret keys (rA)j ∈A for the PRSS relatively to the current epoch, and the TAE.ciphertexts on which

he is currently operating (as a slave or king, in n simultaneous instances). The adversary learns the memory of every

player at the instant when he becomes corrupt, and stores this information forever (even after the player is decorrupted).

Thus, to prevent the adversary to gain too much knowledge, players regularly erase from their memory all the material

not needed anymore. Let us outline the chronology of a closing

7.1.1 Closing of an epoch. First, players in epoch e perform a protocol to generate a new public / private key pairs for

all of them relatively to epoch e + 1. On the one hand, freshly decorrupted players have had their memory erased. Thus

they locally generate a new public / private key pair, and publish the public key on the bulletin board. On the other

hand, for the players who still have their keys, there are two alternatives. The simple one is to do the same, namely,

each of them publishes a new public key on the bulletin board. So this requires a global clock such that, after a timeout,

players who did not publish a new key are treated as dishonest. The more complicated one, which has the advantage

not to use the bulletin board, is to perform the Keygen protocol of §6.2, once for each recipient player who still has

its keys. This creates, for each player j, a new key pair, such that: the private key comes as TAE.ciphertexts, with the

signature of t + 1 players attesting its correctness, which is furthermore privately opened to j , and, such that the public

key is publicly opened.

Next, players generate new PRSS keys. For this they perform

( n
n−t

)
executions of the Keygen protocol of §6.2. Each

execution has parameter a set A of n − t recipient players.

Finally, players refresh the ciphertexts which are to be used in future epochs, as sketched in §1.2.3 and detailed below

in §7.2. Then they delete their secret keys of previous epochs, and all plaintexts and ciphertexts related to previous

epochs.
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7.1.2 Similarities with [Bar+14]. The model of [Bar+14], is defined under a synchrony assumption where the time is

divided in rounds of synchronous communications. The similarity of our corruption model with theirs, is that they

also consider separately the specific time periods in which players refresh their shared secrets. They denote these time

periods as “refreshment phases”, divided between two parts denoted as “opening” and “closing”. While in our model

above, we denote them simply as “closing”. Since there is no global clock in our asynchronous model, it makes no more

sense to say that players are together doing a “closing”. This is why we defined “closing” relatively to each player. The

common point with [Bar+14], is that a player corrupted while performing a “closing” of some epoch e , counts as both

corrupt in epoch e and in epoch e + 1. Anticipating, the rationale for this is that such a player has simultaneously in

memory: his plaintexts columns in clear of all ciphertexts relative to epoch e , and also has his secret decryption key

relatively to epoch e + 1.

7.1.3 Differences [SLL10].

The first difference. is that [SLL10] assumes that players have access to a public-key encryption scheme E which is

forward secure. Recall that a forward secure scheme provides local algorithms to update both the public and private keys.

However, [SLL10] do not specify how a freshly decorrupted player, who lost all his memory including his decryption

key, proceeds to inform all other players of a new public key. Hence, solving this issue would probably require to

assume anyway, like we did in §7.1.1, that freshly decorrupted players have access to a public bulletin board of keys at

the beginning of each epoch.

This allows us not to make the forward-security assumption. The advantage of not making this assumption, is that

we have access to the encryption schemes of Paillier and el-Gamal-in-the-exponent. Hence, they enable efficient ZK

proof systems, as required by our implementation of 4.3, of whom we sketch an efficient instantiation in 4.6.

The second difference. is that in [SLL10], the closing operation of an epoch is not guaranteed to take a predetermined

finite number of consecutive exchanges. Indeed, closing of an epoch succeeds only if a designated player, which they

denote “primary”, is honest, and benefits from a fast enough network (also known as “partial synchrony” condition).

Indeed, they explain in (6) of §5 that, if this primary is not able to have players refresh their shares of secrets in a timely

delay, then “the group will carry out a view change, elect a new primary, and rerun the [refresh] protocol.” By contrast,

our specification the “closing”, which includes the implementation §7.2, takes a (small) constant number of stages.

7.1.4 Differences with Cachin-Kursawe-Lysyanskaya-Strobl [Cac+02]. They assume that encryption and decryption are

performed locally at each player by a trusted hardware. They furthermore assume that each pair of players creates a

new session key at each epoch, but that the public keys remain unchanged
4
. So this is orthogonal with our specification

of TAE, which is a public key encryption mechanism, such that the adversary sees every TAE.ciphertext sent on the

network. There is a second reason for which such a hardware assumption is incompatible with TAE. Indeed, TAE

requires players to produce complex ZK proofs of statements that combine, e.g., correct encryption with polynomial

evaluations. Players would not be able to produce such ZK proofs if the witness, which is the secret key corresponding

to their public key, was concealed in a hardware.

4
“The communication link between every pair of servers is encrypted and authenticated using a phase session key that is stored in secure hardware. A

fresh session key is established in the co-processor as soon as both enter a new phase, with authentication based on data stored in secure hardware (if a

public-key infrastructure is used, this may be a single root certificate). Thus, even if the adversary corrupts a server, she gains access to the phase session

key only through calls to the co-processor.”
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7.2 Refresh of the (encrypted) shares

We recall that a well formed ciphertext cs of some secret plaintext s ∈ Fp , is an array of encryptions of evaluations of a

symmetric bivariate polynomial B ∈ Fp [X ,Y ]t ,t such that B(0, 0) = s . Our solution is that players collectively generate

a ciphertext c0 of 0, in the form of an array of encryption of evaluations of a random symmetric bivariate polynomial

Q ∈ Fp [X ,Y ]t ,t such that Q(0, 0) = 0. Finally, players perform TAE.Add of cs and c0, which outputs a new ciphertext

c ′s of s . In detail, generation of such a Q , which we denote as TAE.RandZero, along with summation with cs , consists in

two stages. Firstly each player l generates a random bivariate polynomial Ql (X ,Y ) with zero constant coefficient, then

sends the array of encryptions Ql (αi ,α j ) (with exactly t + 1 nonempty rows) to the king along with a ZK proof that the

constant coefficient is indeed 0, that is, that Ql (0, 0) = 0. The output of this first stage is the concatenation of any t + 1

such valid contributions. Then in the next stage, players execute TAE.Add to compute the summation of these t + 1

contributions, which is denoted c0, along with cs . We prove with lemma 12 the privacy of this refresh.

Lemma 12. If A corrupts no more than t parties performing a "closing operation", the view of A during the refresh

operation is distributed independently of the plaintext s and of its view in previous epochs.

Proof. We consider a well formed ciphertext cs of some secret plaintext s ∈ Fp relatively to some epoch e , and

denote B the underlying bivariate polynomial. We denote I the set of the t + 1 indices of the nonempty rows of c ′s ,

and JA the set of indices of the at most t corrupt players in epoch e + 1. During the closing, A receives an array of

E-ciphertexts of evaluations of B + Q on the rows I. We make the same idealized assumption on E as in the proof

§4.3.4 of privacy of our implementation of TAE. Namely, we consider that the adversary received exactly the (t + 1) × t

plaintext evaluations of B′ := B +Q at

{
αi ,α j

}
i ∈I, j ∈J while the columns with indices [n]\JA can be considered as

empty.

Now, since at least one honest player contributed to Q (with an additive contribution Ql
), we have that the nonzero

coefficients of B′ := B +Q vary uniformly at random, independently of the coefficients of B. Thus by lemma 8 applied

tom := 0, the subarray of plaintext evaluations of B′ := B +Q at

{
αi ,α j

}
i ∈I, j ∈J , varies uniformly in a subspace of

F(t+1)×tp , independently of the subarray of evaluations of B at the same points. □
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A REMINDER OF VERIFIABLE THRESHOLD ADDITIVE HOMOMORPHIC ENCRYPTION

We first recall the notion of threshold additive homomorphic encryption (AHE), as implemented in [CDN01; BHN10],

at the cost of a trusted setup.

Definition 13. (Threshold Additive Homomorphic Encryption)

Let the message spaceM be a finite group, and let λ be the security parameter. A threshold additive homomorphic

cryptosystem on M is a septuplet (AHE.Setup,AHE.Encrypt,AHE.PartDec,AHE.Combine,AHE.Veri f y,AHE.Add,

AHE.ConstMult) of probabilistic, expected polynomial time algorithms, satisfying the following functionalities:

• AHE.Setup is a randomized procedure that takes as input the number of parties n, a threshold t where 0 ≤ t < n,

and a security parameter λ ∈ Z. It outputs a vector (pk, sk1, ..., skn ) and a verification key vk . We call pk the

public key and call ski the private key share of party i . Party i is given the private key share (i, ski ) and uses it

to derive a decryption share for a given ciphertext.

• AHE.Encrypt is a deterministic procedure that returns a ciphertext c ← AHE.Encrypt(pk, x) for any plaintext

x ∈ M . Let C denotes the ciphertext space. For brevity, let note c = Epk(x).

• AHE.PartDec is a deterministic procedure that returns, on input an element c ∈ C and one of the n private key

share ski , an element µi denoted as decryption share.

• AHE.Combine is a deterministic procedure that returns, on input t + 1 decryption shares {µ1, ..., µt+1}, an

element x ← AHE.Combine({µ1, ..., µt+1}).

• AHE.Verify is a deterministic procedure that, on input the public key pk , the verification key vk , a ciphertext c

and a decryption share µ, outputs valid or invalid. When the output is valid we say that µ is a valid decryption

share of c (and that c is a valid ciphertext).

• AHE.Add is a deterministic procedure that, on input elements c1 ∈ Epk(x1) and c2 ∈ Epk(x2), returns an element

c3 ∈ Epk(x1 + x2). Let represent AHE.Add by ⊞, and note Epk(x3) = Epk(x1) ⊞ Epk(x2).

• AHE.Mult is a direct extension of AHE.Add, that for any integer a ∈ ZN and for a ciphtertext c ∈ Epk (x),

returns c ′ ∈ Epk(a.x). Let us write Epk(a.x) = a ⊡ Epk(x) .

and such that we have privacy (IND-CPA and simulatability of decryption shares) and decryption consistency as defined

below.

Privacy: IND-CPA. Let us introduce the following game between a challenger and a static adversary A. Both are

given n, t , and a security parameter λ ∈ Z as input.

Setup : The challenger runs AHE.Setup(n, t, λ) to obtain a random instance (pk, sk1, ..., skn ). It gives the adversary pk

and all skj for j ∈ S

Corruption : The adversary outputs a set S ⊂ {1, ...,n} of at most t parties, then receives their secret keys from the

challenger.

Challenge : The adversary sends two messagesm0,m1 of equal length. The challenger picks a random b ∈ {0, 1} and

lets cb = AHE.Encrypt(pk,mb ). It gives c
b
to the adversary.
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Guess Algorithm A outputs its guess b ′ ∈ {0, 1} for b and wins the game if b = b ′

The IND-CPA requirement is that the function AdvCPAA,n,t (λ) :=
��Pr [b = b ′] − 1

2

��
, denoted as the advantage of A,

is negligible in λ.

Privacy: Simultability of decryption shares. There exists a PPT simulator Sim which, on input a set of indices I ⊂ [n] of

size at most t , a plaintextm, a correctly computed encryption cm of it, and any set of valid decryption shares {µi , i ∈ I},

produces simulated decryption shares {µ ′i }i ∈[n]\I ; such that on input: any output (pk, sk1, ..., skn ) of AHE.Setup, any

set I ⊂ [n] of at most t indices, anym, any valid ciphertext cm that decrypts tom (via AHE.PartDec then Combine)

and correctly computed decryption shares

{
µi := PartDec(cm, ski ), i ∈ I

}
, then, for any

{
µi := PartDec(cm, ski ), i ∈

[n]\I
}
correctly computed decryption shares for the remaining indices we have that the adversary has negligible

advantage, in λ, in distinguishing between the two distributions{
cm,m, {µi }i ∈I, Sim

(
cm,m, {µi }i ∈I

)}
and

{
cm,m, {µi }i ∈I, {µi }i ∈[n]\I

}
(8)

Decryption consistency. We consider a challenger that runsAHE.Setup(n, t, λ) to obtain a random instance (pk, sk1, ..., skn ).,

then gives all this to the adversary. Then the requirement is that the adversary has negligible probability (in λ) in

producing any valid ciphertext c along with two sets of t + 1 valid decryption shares for c , such that their corresponding

decryptions (via PartDec then Combine) plaintexts are different.

B PSEUDOCODE OF THE COMPUTATION METHOD

B.0.1 Data Structures. Messages. A messagem in the protocol has a fixed set of fields that are populated using the

MSG() utility shown in algorithm 2. Each messagem is automatically stamped with kinдNb, the king number that lead

the computation. Each message has a type m.type ∈ {CONTRIBMSG,COMBMSG,VERIFCONTRIB,VERIFIED −

OUTPUT }.m.sid contains the Stage Identification number that contains information about the circuit to compute. Finally

m.value contains the material used throughout the computation. There are two optional fieldsm.siд andm.proo f . The

king uses them to carry respectively the QVC and the CP for the different stages while the slaves used them to carry a

partial signature and a ZK proof. We recall that the function to be computed in a stage is embedded in sid . f unction. In

summary, parties can send four types of messages:

• VERIFIED −OUTPUT : message sent by a king that contains a VerifOut build from veri f Output .

• CONTRIBMSG: message sent by a slave that contains its partial contribution from contribsid .

• COMBMSG: message sent by a king that contains the aggregated contributions and a CP from combinesid

• VERIFCONTRIB: message send by a slave that contains a partial signature of aggregated contributions from

siдn.

Combine Proof. A Combine Proof for a stage SID is a data type that contains the aggregation of individual ZK

proofs of correct slave’s contributions. Given a Combine Proof cp, we use cp.kinдNb, cp.sid , cp.value , cp.proo f to refer

respectively to the king number, to the stage in which the computation was carried out, to the aggregated result of

this computation, and finally to the aggregated proof of correct computation. We note sid .aддreдate the aggregation

function. This proof ensures the correctness of the computation.

Quorum Verification Certificates. A Quorum Verification Certificate (QVC) over a tuple ⟨kinдNb, SID, value , cp⟩

is a data type that aggregates a collection of signatures for the same tuple signed by t + 1 slaves. Given a QVC qvc , we

use qvc .kinдNb, qvc .sid , qvc .value , qvc .cp to refer to the matching fields of the original tuple. A tuple associated with

a valid QVC is said to be a verified stage output.
32



Almost-Asynchronous MPC under Honest Majority, Revisited

B.1 Pseudocode of the structure of computation

The protocols are given in Algorithms 4 and 5. Every party performs a set of instruction based on its role, described as a

succession of "as" blocks. Note that a party can have more than one role simultaneously and, therefore, the execution of

as blocks can be proceeded concurrently across roles. Algorithm 2 gives utilities functions used by all parties to execute

the protocol and algorithm 3 describes specific functions used by the king.

Utilities

Function 1MSG(type , sid , party, value , siд, proo f )

(1) m.type ← type
(2) m.sid ← sid
(3) m.value ← value
(4) m.siд← siд
(5) m.proo f ← proo f
(6) returnm

Function 2 veri f y(m)
(1) ifm.type == ”VERIFCONTRIB” orm.type == ”VERIFIED −OUTPUT ” :
(2) return SiдVeri f y(m.siд)
(3) ifm.type == ”CONTRIBMSG” orm.type == ”COMBMSG”:
(4) return Πsid .Veri f y(m.value,m.proo f )

Function 3 contribsid ({mi }i ∈sid .prev , secretMaterial)

(1) V = {}
(2) for i in sid .prev :
(3) if veri f y(mi ) is True:

(4) V .insert(mi )

(5) m ← MSG(CONTRIBMSG, sid,⊥, {mi .siд}mi ∈V ,⊥)

(6) m.value ←m.sid . f unction(V , secretMaterial)
(7) m.proo f ← Πsid .Prove(V , secretMaterial)
(8) returnm

Function 4 siдn(value, sj )
(1) m ← MSG(VERIFCONTRIB,m.sid .number ,m.value , ⊥ , ⊥)

(2) m.siд← siдnj (m.kinдNb,m.type ,m.sid .number , ,m.value , ,m.proo f )
(3) returnm

Fig. 2. Utilities

Lemma 14. (Signature Phase) For Every possible A and for every possible scheduler, the Signature Phase achieves: (1)
TERMINATION: All honest party will eventually terminate. (2) CORRECTNESS: For an honest king, the phase outputs a

Quorum Verification Certificate.
33



Matthieu Rambaud and Antoine Urban

king utilities

Function 5 veri f Output(V )
(1) qvc .sid ←m.sid .next :m ∈ V
(2) qvc .value ←m.value :m ∈ V
(3) qvc .siд← {m.siд | m ∈ V })
(4) return qvc .value,qvc

Function 6 combinesid (V )

(1) cp.sid ←m.sid :m ∈ V
(2) (cp.value, cp.proo f ) ←m.sid .aддreдate({(m.value,m.proo f ) | m ∈ V })
(3) return cp

Fig. 3. King Utilities

Signature Phase

(1) as a king:
(2) V = {}
(3) Upon receiving a VERIFCONTRIB message m:

(4) if veri f y(m) is True:
(5) V .insert(m)
(6) Wait for t + 1 successful verification:
(7) out,qvc ← veri f Output(V )
(8) MulticastsMSG(VERIFIED −OUTPUT ,m.sid,out,qvc .siд,⊥)
(9) as a slave:
(10) Upon receiving a COMBMSG message m:

(11) if veri f y(m) is True:
(12) Send to king siдn(m, sj )

Fig. 4. Signature Phase

Contribution Phase

(1) as a king:
(2) V = {}
(3) Upon receiving a CONTRIBMSG message m:

(4) if veri f y(m) is True:
(5) V .insert(m)
(6) Wait for t + 1 successful verification:
(7) cp ← combinesid (V )
(8) MulticastMSG(COMBMSG, sid, cp.value,m.qvc, cp.proo f )
(9) as a slave:
(10) Send to king contribsid ({m}, sj )

Fig. 5. Contribution Phase
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Proof. TERMINATION: The honest parties Pi s will terminate the protocol trivially after sending their contributions

to the king. We now argue that an honest king will terminate the protocol as well. Let A corrupts C parties, where

C ≤ t , and let further assume C1 corrupted parties send wrong contributions, C2 corrupted parties send nothing ever

and C3 corrupted parties send valid contributions, subject to C1 +C2 +C3 = C . Since C2 parties never send any value,

the king will receive t + 1 +C1 +C3 distinct contributions, of which C1 are incorrect. Since t + 1 +C1 +C3 ≥ t + 1, the

king will terminate.

CORRECTNESS : This property directly follows the termination property. We have shown above that an honest king is

guaranteed to receive at least t + 1 correct contributions. Thus it is assured to produce a Quorum Verification Certificate

and to send it to all parties. Eventually, all honest parties will receive a Quorum Verification Certificate. □

Lemma 15. (Contribution Phase) For Every possible A and for every possible scheduler, the Contribution Phase achieves

(1) TERMINATION: All honest party will eventually terminate. (2) CORRECTNESS:The phase outputs a Combine Proof

Proof. The proofs for the Contribution Phase are similar to the proofs used for the Signature Phase □
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C RELATIONS TO BE PROVEN IN ZK FOR IMPLEMENTION OF TAE

The last relation is for the contribution to multiplication by a scalar λ, which is a special case of linear combination.

Encrypt . REncrypt =
{
cm ∈ 𝒞 ; B(X ,Y ) :=

∑
i , j bi jX

iY j ∈ Fp [X ,Y ]≤t ,t :::

cm,(i , j) = Ej (B(αi ,α j )) ∀i, j ∈ [n] ∧ bi j ∈ [0, ...,p − 1] ∀i, j ∈ [n] ∧ bi , j = bj ,i ∀i, j ∈ [n]
}

PrivDec . RPr ivDecr , j =
{
Ij ⊂ {1, . . . ,n} of size t+1 , (ci , j )i ∈Ij ∈ C

t+1 ,
(
c
(out )
(i , j)

)
i=1...n ∈ C

n
;

Bj [X ] =
∑t
i=0 bi , jX

i ∈ Fp [X ]≤t , (dci , j )i ∈Ij ∈ Ft+1p :::

ci , j ∈ E(d
c
i , j ) ∀i ∈ Ij ∧ Bj (αi ) = d

c
i , j ∀i ∈ {1, . . . ,n} ∧ c

(out )
i , j = Er (d

c
i , j ) ∀i ∈ {1, . . . ,n}

}
.

Add . RAdd =
{
Ij ⊂ {1, . . . ,n} of size t+1 ,I

′

j ⊂ {1, . . . ,n} of size t+1 , (c(i , j))i ∈Ij ∈ Ct+1 , (c
′

(i , j))i ∈I
′

j
∈

Ct+1 , (c
(out )
(i , j) )i=1...n ∈ C

n
;;; Bj [X ] =

∑t
i=0 bi , jX

i ∈ Fp [X ]≤t , B
′

j [X ] =
∑t
i=0 b

′

i , jX
i ∈ Fp [X ]≤t , (dci , j )i ∈Ij ∈

Ft+1p , (dc
′

i , j )i ∈I′j
∈ Ft+1p :::

ci , j ∈ E(d
c
i , j ) ∀i ∈ Ij ∧ c

′

i , j ∈ E(d
c
′

i , j ) ∀i ∈ I
′

j ∧ Bj (αi ) = d
c
i , j ∀i ∈ {1, . . . ,n} ∧ B

′

j (αi ) = d
c
′

i , j ∀i ∈ {1, . . . ,n}

∧ c
(out )
i , j = Ei (Bj (αi ) + B

′

j (αi )) ∀i ∈ {1, . . . ,n}
}

D PROOFS AND COMPLEMENTS OF TRIPLE GENERATION METHOD

D.1 TripVerif

Protocol TripVeri f ({X (i),Y (i),Z (i)}i ∈[n],Π)

(1) The parties create an accumulative setU.

(2) For all i ∈ [n], the parties executeMultVeri f (X (i),Y (i),Z (i), π (i)). If all instances terminate for a given i ,
include Pi inU.

Fig. 6. Triple verification

D.2 Proof of TripTrans

Transformation of independent multiplication triples to co-related triples:

Lemma 16. Let {(A(j),B(j),C(j))}j ∈[t+1+t ′] be a set of t + 1 + t ′ shared triples. Then for every possible adversary A and

every possible scheduler, protocol TripTrans achieves: (1) TERMINATION: All the honest parties eventually terminate the

protocol (2) CORRECTNESS: The protocol outputs t+1+t ′ shared triples {(X (j),Y (j),Z (j))}j ∈[t+1+t ′] such that the following
holds (a) There exist polynomials x(.), y(.) and z(.) of degree t+t ′

2
, t+t

′

2
and t + t ′ respectively. With X(αi ) = E(x(αi ) for

i ∈ [t + 1 + t ′] (resp Y,Z), it holds: X(αi ) = X (i),Y(αi ) = Y (i) and Z(αi ) = Z (i). (b) Z(.) = X(.) ⊠ Y(.) 5 holds iff all the

input triples are multiplication triples. (3) PRIVACY: If A knows t ′ ≤ t+t ′
2

un-encrypted input triples then A learns t ′

values on x, y and z

Proof. TERMINATION: This property follows from the termination property of EncBeaver (see Lemma 17).

5
For the rest of the proofs, ⊠ denotes the homomorphic multiplication
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Protocol TripTrans({(A(j),B(j),C(j))}j ∈[t+1+t ′])

(1) For each j ∈ [ t+t
′

2
+ 1], the parties locally set X (j) = A(j), Y (j) = B(j), and Z (j) = C(j).

(2) Let the points {α j , x
(j)}j ∈∈[ t+t

′

2
+1]

and the points {α j ,y
(j)}j ∈∈[ t+t

′

2
+1]

define the polynomials x(.) and y(.)

respectively of degree at most ( t+t
′

2
).

(3) The parties computeX (j) = X(α j ) and Y (j) = y(α j ) for each j ∈ [ t+t
′

2
+2, t +1+ t ′]. Computing a new point

on a polynomial of degree
t+t ′
2

is a linear function of
t+t ′
2
+ 1 given unique points on the same polynomial.

(4) The parties execute EncBeaver ({X (j),Y (j),A(j),B(j),C(j)}j ∈[ t+t ′
2
+2,t+1+t ′] to compute

t+t ′
2

values

{Z (j)}j ∈[ t+t ′
2
+2,t+1+t ′]. Let the points {α j , z

(j)}j ∈∈[t+1+t ′] define the polynomial z(.) of degree at most

t + t ′. The parties output {(X (j),Y (j),Z (j))}j ∈[t+1+t ′] and terminate.

Fig. 7. Triple transforamtion

CORRECTNESS: By construction, it is ensured that the polynomials x, y and z are of degree
t+t ′
2
, t+t

′

2
and t + t ′

respectively and X(αi ) = X (i),Y(αi ) = Y (i) and Z(αi ) = Z (i) holds for i ∈ [t + 1 + t ′]. To argue the second statement in

the correctness property, we first show that if the input triples are multiplication triple then Z(.) = X(.) ⊠ Y(.) holds.

For this, it is enough to show the multiplicative relation Z(αi ) = X(αi ) ⊠ Y(αi ), which is the same as Z (i) = X (i) ⊠ Y (i),

holds for i ∈ [t + 1 + t ′]. For i ∈ [ t+t
′

2
+ 1], the relation holds since we have X (i) = A(i),Y (i) = B(i),Z (i) = C(i) and

the triple (A(i),B(i),C(i)) is a multiplication triple by assumption. For i ∈ [ t+t
′

2
+ 2, t + t ′ + 1], we have Z (i) = X (i)Y (i)

due to the correctness of the protocol EncBeaver and the assumption that the triples used in EncBeaver , namely

{(A(i),B(i),C(i))}i ∈[ t+t ′
2
+2,t+1+t ′] are multiplication triples. Proving the other way, that is, if Z(.) = X(.) ⊠ Y(.) is true

then all the input triples are multiplication triples is easy. Since Z(.) = X(.) ⊠ Y(.), it implies that Z (i) = X (i) ⊠ Y (i) for

i ∈ [t + 1 + t ′]. This trivially implies {(A(i),B(i),C(i))}i ∈[ t+t ′
2
]
are multiplication triples. On the other hand, if some

triple in {(A(i),B(i),C(i))}i ∈[ t+t ′
2
+1,t+1+t ′], say (A

(j),B(j),C(j)) is not a multiplication triple, then (X (j),Y (j),Z (j)) is not

a multiplication triple as well (by the correctness of the Beaver’s technique), which is a contradiction.

PRIVACY: First note that ifA knows more than
t+t ′
2

input triples, then it knows all the three polynomials completely.

Now to prove the privacy, we show that if A knows the un-encrypted input triple (a(i),b(i), c(i)), then it also knows

the un-encrypted output triple (x (i),y(i), z(i)). If i ∈ [ t+t
′

2
+ 1], this follows trivially since (x (i),y(i), z(i)) is the same as

(a(i),b(i), c(i)). Else if i ∈ [ t+t
′

2
+ 2, t + 1 + t ′], then A knows the triple (a(i),b(i), c(i)) which is used to compute Z (i)

from X (i) and Y (i). Since the values (x (i) + a(i)) and (y(i) + b(i)) are disclosed during the computation of Z (i),A knows

x (i),y(i) and hence z(i)6.

□

D.2.1 Proof of EncBeaver .

Lemma 17. For every possible A and for every possible scheduler, protocol EncBeaver achieves: (1) TERMINATION: All

the honest parties eventually terminate. (2) CORRECTNESS: The protocol outputs {E(x (j).y(j))}j ∈[l ]. (3) PRIVACY: The
view of A is distributed independently of the x (j)s and y(j)s.

6
We recall that Z (j ) = E(f (j )д(j )) ⊞ (−f (j ) ⊡ B(j )) ⊞ (−д(j ) ⊡ A(j )) ⊞C (j ) , where F (j ) = X (j ) ⊞ A(j ) and G (j ) = Y (j ) ⊞ B(j )
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EncBeaver ({X (j),Y (j),A(j),B(j),C(j))}j ∈[l ])

• We recall that ⊞ denotes the homomorphic addition and ⊡ the homomorphic multiplication by a constant.

(1) For each j ∈ [l], each party Pj computes F (j) = X (j) ⊞A(j) and G(j) = Y (j) ⊞ B(j).

(2) For all j ∈ [l], the parties invoke PubDec(F (j),G(j)) to publicly decrypt { f (l ),д(l )}j ∈[l ].

(3) For each j ∈ [l], the parties compute Z (j) = E(f (j)д(j))⊞ (−f (j) ⊡B(j))⊞ (−д(j) ⊡A(j))⊞C(j) and terminate.

Fig. 8. EncBeaver

Proof. TERMINATION: This property follows from the termination property of PubDec .

CORRECTNESS: This property follows from the fact that for each j ∈ [l], we have x (j)y(j) = ((x (j) + a(j)) − a(j))((y(i) +

b(j)) −b(j)) = f (j).д(j) + (−f (j)b(j))+ (−д(j)a(j))+ c(j). In particular, we have E(x (j)y(j)) = E(f (j)д(j))⊞ (−f (j) ⊡B(j))⊞

(−д(j) ⊡A(j)) ⊞C(j).

PRIVACY: This property is argued as follows: the only step where the parties communicate is during the decryption of

f (j) and д(j). Now f (j) = x (j) − a(i) and the fact that a(i) is random and unknown to A implies that even after learning

f (j), the value x (j) remains as secure as it was before from the view point ofA. A similar point can be made for д(j). □

Randomness extraction:

Protocol TripExt({(X (j),Y (j),Z (j))}j ∈[t+1+t ′])

(1) The parties execute the protocol TripTrans({(X (j),Y (l j),Z (j))}j ∈[t+1+t ′] and let x(.), y(.) and z(.), respec-

tively of degree
t+t ′
2

,
t+t ′
2

and t + t ′ be the associated polynomials.

(2) The parties compute A = X(β),B = Y(β) and C= Z(β) and terminate.

Fig. 9. Randomness extraction

Lemma 18. For every possible A and for every possible scheduler, protocol TripExt achieves: (1) TERMINATION: All the

honest parties eventually terminate the protocol (2) CORRECTNESS: The output triple (A = X(β),B = Y(β) and C = Z(β)) is

a multiplication triple (3) PRIVACY: The view of A in the protocol is distributed independently of the output multiplication

triple {(A = X(β), B= Y(β), C = Z(β))}

Proof. TERMINATION: This property directly follows from the termination property of the protocol TripTrans .

CORRECTNESS: To argue correctness, we have to show that the triple (A, B, C) is a valid multiplication triple. We

recall that (A = X(β),B = Y(β) and C = Z(β)). To complete the proof, it is enough to show that the protocol ensures

the multiplicative relation Z(.) = X(.) ⊠ Y(.) holds. However, this immediately follows from the correctness property of

TripTrans and the fact that all the t + 1 + t ′ input triples are multiplication triples.

PRIVACY: We show that the view of the adversary A in the protocol TripExt is distributed independently of

the multiplication triple (A, B, C). In other words, for A all possible multiplication triples output by TripExt are

equiprobable. We first recall that, by following the privacy property of protocol TripTrans , A learns at most t ′ points

on the polynomials x(.), y(.) and z(.). Specifically,A knows t ′ points out of {(α j , x
(j))}j ∈[t+1+t ′]. Since degree of x is at

most
t+t ′
2

, for all choice of A there exist a unique polynomial x(.) of degree at most
t+t ′
2

which will be consistent with

this point (X(γ ) =A) and with the prior knowledge of A. Thus, X(β) = A will be random to A. The same argument
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allows us to claim that B and C will be random to A subject to Z(β) = X(β) ⊠ Y(β). The security property of the

encryption scheme allows us to claim that (a, b, c) are unknown to A. □

D.3 The Preprocessing phase protocol

Protocol PreProc
First synchronous broadcast round

(1) Triple sharing - For i ∈ [n], evey party Pi executes the following code:
• Act as a dealer D and execute and instance of Share to share a random multiplication triples

{(X (i),Y (i),Z (i)}.

The remaining asynchronous protocol

(2) Triple verification - For i ∈ [n], every party Pi executes the following code:

• The parties execute TripVeri f ({(X (i),Y (i),Z (i)}i ∈[n]) and output a setU consisting of t + 1 + t ′ parties
(3) Triple extraction and termination- The parties execute the following code:

• The parties execute TripExt({(X (j),Y (j),Z (j))}j ∈U ), output a triple {(A, B, C)} and terminate.

Fig. 10. Preprocessing overview

Lemma 19. For every possible A and every possible scheduler, protocol PreProc achieves: (1) TERMINATION: All honest

parties terminate the protocol. (2) CORRECTNESS: The output triple will be multiplication triple. (3) PRIVACY: The output
triple is random and unknown to A

Proof. TERMINATION: The sharing instances will terminate following the assumption of an initial synchronous

round of broadcast. The termination of TripExt ensure that all honest parties will terminate the protocol PreProc

CORRECTNESS: This property follows from the correctness property of TripVeri f and TripExt .

PRIVACY: Given that there will be at least t + 1 honest parties in setU and that the multiplication triples shared by

the honest parties are random and unknown to A, the privacy property of TripExt ensures that the output triple in

PreProc is random and unknown to A.

□
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