
Almost-Asynchronous MPC under Honest Majority, Revisited
Matthieu Rambaud and Antoine Urban

Télécom Paris and Institut polytechnique de Paris

Palaiseau, France

matthieu.rambaud,antoine.urban@telecom-paris.fr

Abstract
Multiparty computation does not tolerate n/3 corruptions under a
plain asynchronous communication network, whatever the compu-

tational assumptions. However, Beerliová-Hirt-Nielsen [BTHN10,

Podc’10] showed that, assuming access to a synchronous broad-

cast at the beginning of the protocol, enables to tolerate up to

t < n/2 corruptions. This model is denoted as “Almost asynchro-

nous” MPC. Yet, their work [BTHN10] suffers from limitations: (i)

Setup assumptions: their protocol is based on an encryption scheme,

with homomorphic additivity, which requires that a trusted entity

gives to players secret shares of a global decryption key ahead of

the protocol. It was left as an open question in [BTHN10, Podc’10]

whether one can remove this assumption, denoted as “trusted setup”.

(ii) Common Randomness generation: the generation of threshold

additively homomorphic encrypted randomness uses the broad-

cast, therefore is allowed only at the beginning of the protocol (iii)

Proactive security: the previous limitation directly precludes the

possibility of tolerating a mobile adversary. Indeed, tolerance to

this kind of adversary, which is denoted as “proactive” MPC, would

require, in the above setup, a mechanism by which players refresh

their secret shares of the global key, which requires on-the-fly gen-

eration of common randomness. (iv) Triple generation latency: The
protocol to preprocess the material necessary for multiplication

has latency t , which is thus linear in the number of players. We

remove all the previous limitations.

Of independent interest, the novel computation framework that

we introduce for proactivity, revolves around players denoted as

“kings”, which, in contrast to Podc’10, are now replaceable after
every elementary step of the computation.

1 Introduction
Secure multiparty computation (MPC) allows a set of n players

holding private inputs to securely compute any arithmetic circuit

over a (small) fixed finite field Fp on these inputs, even if up to t
players, denoted as “corrupted”, are fully controlled by an adversary

A which we assume computationally bounded. MPC protocols in

the synchronous model are extensively studied ([BTH08; Esc+20]).

The underlying assumption there is that the delay of the messages

in the network is bounded by a known constant. However, the

safety of these protocols fails when this assumption is not satisfied.

Thus, protocols [Gär99; Dam+09; HNP05; CHP13; Bac+14] were

developed for the asynchronous communication model. This set-

ting comes with limitations: Ben-Or, Kelmer, and Rabin [BOKR94]

proved that AMPC protocols are possible if and only if t < n/3,
while we can tolerate t < n/2 in a synchronous environment. More-

over, Canetti [Can96] showed that it is impossible to enforce input
provision, i.e. the inputs of all the (honest) parties are considered

for the computation, which obviously, can represent an important

setback for practical applications.

In [BTHN10], Beerliová-Trubíniová, Hirt and Nielsen observed

that one initial synchronous broadcast round is sufficient to enforce

input provision and tolerate t < n/2 corruptions in an almost-

asynchronous network. More precisely, they show that the min-

imum assumption is that players start with a consistent view of

encrypted inputs. This is relevant in a use-case where players pub-

lish encryptions of their inputs on a ledger, to demonstrate their

interest in taking part to a MPC computation. Then the actual com-

putation can go offline and asynchronously In their protocol, the

circuit is evaluated using the King/Slaves paradigm [HNP05], in n
parallel instances. Every player simultaneously acts as a king to

evaluate its own computation instance with the help of the other

players, and as a slave for other n − 1 instances computing the

same circuit. Players in their protocol broadcast threshold encryp-

tions of their inputs along with proofs of plaintexwt knowledge,

precompute threshold ciphertexts of multiplication triples, then

perform additively homomorphic operations on these ciphertexts.

This computation structure guarantees that every (recipient) player

ultimately learns at least t + 1 identical plaintext outputs of the cir-
cuit (with respect to the instances of honest kings), then terminates

within a constant number of interactions. The problem is that, to

implement the threshold additive encryption required in their pro-

tocol, they need that a trusted entity assigns secret keys to players

ahead of the execution. But, under asynchrony, it is impossible to

implement such a trusted entity with an asynchronous distributed

protocol (see [Abr+21] for a state of the art) under honest major-

ity. The reason is that Byzantine agreement is impossible beyond

t < n/3.
It was left as an open problem how to remove this “trusted

setup”: in [BTHN10, §4.3 ”our protocol requires quite strong setup
assumptions, and it is not clear whether they are necessary.”]. The
main contribution of the present paper is to remove it.

In detail, recall that a protocol is called transparent (or “ad hoc”

[Daz+08; RSY21]) if it does not require a trusted setup phase, i.e., all

public parameters are random coins. Our protocol has transparent

setup since we only make the two standard assumptions FPKI and

FZK detailed in §2.3. The first is a public bulletin board where

players can publish their public key ([BCG21; TLP20]) ahead of the

execution. The second enables to prove knowledge of a witness

satisfying some relation, without revealing more about it. Let us

mention that these are the necessary and sufficient functionalities

for decentralized confidential transaction systems [Lai+19].

Theorem 1. (Informal) Assuming n = 2t +1 players in an asynchro-
nous communication network, of which t are maliciously corrupted by
a polynomial adversary, in the FPKI and FZK hybrid model; Given
consistent views of the encrypted inputs ("input predistribution"), then

1

Matthieu Rambaud and Antoine Urban

any arithmetic circuit over any (small) finite field Fp can be securely
computed over an asynchronous network, with input provision.

Furthermore, augmenting the model with FN IZK , then input pre-
distribution can be trivially implemented in one synchronous broad-
cast round, of size O(n3) bits sent per player.

In what follows (§1.1 and §1.2.2) we highlight the technical hur-

dles with respect to previous works, and give an overview of the

proof of Theorem 1. Then in §1.2 we show how we solve all the

other limitations presented in (ii) (iii) and (iv) of the abstract.

1.0.1 Roadmap of the Proof of Theorem 1 We first stress in §1.1.1,

§1.1.2 that, in our demanding model of transparent setup with asyn-

chrony, then previous transparent threshold encryption schemes

support only a finite number of homomorphic additions, due to

growth of the plaintexts, and, in §1.1.3, that known techniques for

fixing this problem, known as “bootstrap” or “refresh”, fail here. We

then sketch in §1.1.1 the main novel ingredient that we introduce

to solve Theorem 1. Namely: a threshold encryption scheme (TAE)
operating in our demanding model, that supports an unlimited

number of additively homomorphic operations, at the cost that

these operations are now performed by a (t + 1)-threshold mecha-

nism. In particular, instead of a single global public key generated

by a trusted setup, TAE takes as parameters all the n public keys

published by the players ahead of the execution (adapting it to the

case where up to t keys are not published is straightforward). In

§2.1 we detail the model, in §2.2 we recall the baseline protocol of

[BTHN10], in 2.3 we present our new transparent setup and in §2.4

we recall basic cryptographic primitives. In §3 we specify TAE, then
in §3.4 we deduce the proof of Theorem 1 by recasting the baseline

protocol with these new ingredients.

1.1 Main contribution: Threshold-Additive
Encryption (TAE) with Transparent Setup

1.1.1 Previous Works: PVSS as Threshold Encryption with Transpar-
ent Setup Let us first recall what is a verifiable threshold encryption

scheme. It is a public key cryptosystem between n fixed players,

that comes with: a public algorithm, denoted PubDec.Contrib, that
enables any of these players, on input a ciphertext and his secret

key, to ouput a “decryption share” along with a ZK proof of correct-

ness; and a public algorithm denoted PubDec.Combine that, on
input any t + 1 decryption shares, reconstructs the plaintext. This

is often achieved assuming a trusted dealer, that publishes a global

encryption key and and privately gives shares of the decryption

key to players as their secret keys ([CDN01; Cho+13]). On the other

hand, how to achieve threshold encryption with a transparent setup
follows from an old idea. Namely: generate a secret sharing of the

plaintext with threshold (t + 1), for instance with Shamir’s scheme.

Then, output the encryption of the shares under the public keys of

the players (the i-th under the public key of the i-th player), along

with a ZK proof of correctness. This is suggested for the first time by

Goldreich et al. [GMW91, §3.3], where it appears as wrapped into a

scheme to verifiably share a secret in one single round of broadcast.

Remarkably, this has been independently re-discovered by three

other research streams: first by [Sta96], in which it is formalized

as Publicly Verifiable Secret Sharing scheme (PVSS), followed by

[FO98; Sch99; BT99; YY01] [CS03, §1.1] [RV05; HV08; JVS14]; then

rediscovered by Fouque and Stern [FS01, §4] as the main tool for a

one-round discrete-log key generation protocol; and finally redis-

covered as threshold broadcast encryption by Daza et al [Daz+08],

followed by [CFY16] [RSY21, Appendix E].

1.1.2 Previous Limitations in the Number of Homomorphic Addi-
tions, due to Growth of Size of the Plaintext Since we follow the

blueprint of the MPC protocol [BTHN10], we need to support ho-

momorphic additions on the ciphertexts. The straightforward idea

to achieve this is to instantiate the previous PVSS, with additive

encryption. Unfortunately, all of the previous works which applied

this idea, ended up with supporting only a limited number of addi-

tions. So this is incompatible with secure MPC evaluation of circuits

of unlimited size. These works are either based on the additive vari-

ant of el Gamal, which we denote as “in-the-exponent”, or Paillier

encryption: we recall and formalize both in §B.2.2. Let us illustrate

the roadblock encountered by these previous works.

A. el Gamal-in-the exponent the PVSS of [Sch99, §5], which
is applied to electronic voting, is instantiated with the el Gamal in

the exponent scheme. But in this scheme, decryption is performed

by computation of discrete logarithm, which is a computationally

hard task (although denoted by “can be computed efficiently” in

[Sch99, bottom of page 11]). Since the size of the plaintext grows

at each addition, decryption is thus computationally untractable

above a certain plaintext size, and thus, after a certain number of

additions. This is stressed by [RSY21]: “In Shamir-and-ElGamal we

are limited to polynomial-size message spaces since final decryption

uses brute-force search to find a discrete log.”.

B. Paillier The additive PVSS of [RSY21, Appendix E.2], is

instantiated with Paillier encryption. Since players have different
public keys Ni , they have different plaintext spaces Z/NiZ. Thus,
homomorphic additions of PVSS are guaranteed to decrypt correctly

only if the plaintexts’ sizes remain smaller than N /2, where N is

the minimum of the Ni . This is why it is said in [RSY21] that this

PVSS "supports a limited number (currently set to n) of homomorphic
additions".

C. Contrast with trusted setup. Notice that this issue does not
happen when assuming a trusted setup. For instance in the Paillier

additive threshold scheme considered in [CDN01; BTHN10], then all

plaintexts belong to a fixed Z/NZ with unique N . This guarantees

unlimited homomorphic additions modulo N in this single ring of

plaintexts. This thus enables MPC over Z/NZ.

D. Semi Homomorphic Encryption (SHE) Bendlin et al.[Ben+11,

Section 2] coined the notion of SHE, to denote any public key en-

cryption scheme, not necessarily threshold, that supports a limited

number of additions. Namely, a SHE guarantees correct decryp-

tion modulo p as long as the size of plaintext is below a bound.

Concretely, in Paillier, when many additions bring the size of the

plaintext above N then the decryption modulo p is not equal to the

plaintext modulo p (in fact the bound is (N − 1)/2, for sign reasons).

Such limitation also concerns Regev’s LWE based cryptosystem

[Reg09] or Gentry, Halevi and Vaikuntanathan’s scheme [GHV10]

(which have also a bound on the randomnessfor correct decryption

modulo p). To this list we add what we denote as ElGamal in the

exponent (see §B.2).

2

Almost-Asynchronous MPC under Honest Majority, Revisited

1.1.3 Technical Hurdles with Maintaining Small Plaintexts Sizes
under Asynchrony Recall that a PVSS ciphertext is, itself, a vector

of n ciphertexts of shares. To maintain the plaintexts of the PVSS

shares of small sizes, and thus overcome the previously mentionned

issues, one could think of the following mechanism.

First attempt. At regular intervals, each honest player i would
decrypt his share (the i-th) of the PVSS, reduce it modulop to reduce
the size of the plaintext (plaintexts being meaningful (mod p)),
then re-encrypt it with his public key, and send it to the other

players. This however fails in our asynchronous model. Indeed, a

honest player i (even up to t of them) could be isolated from the

network for an arbitrarily long time, while many noninteractive

homomorphic additions are performed on the PVSS ciphertexts by

the other players. Thus, the plaintext sizes of the i-th shares of the

PVSS have grown very large. Thus when i is online again, he is
unable to perform the correct decryption modulo p of his PVSS

share (due to the limitation of SHE).

Second attempt. One could think of the interactive mechanism,

proposed byChoudhury-Loftus-Orsini-Patra-Smart, under the name

“refresh” in Figure 3 of [Cho+13]. However, their mechanism leaves

unchanged the plaintext: it reduces only the noise. Thus, it is or-

thogonal to our concern. Notice also that, since [Cho+13] assume a

trusted setup, their scheme enjoys a single public encryption key,

which we cannot in our setting.

1.1.4 Our solution: bivariate PVSS for unlimited threshold additions

Overall idea From the first attempt, we see that the challenge

is to make possible that, after an unlimited number of additions,

the PVSS share of every player remains of small size. To achieve

this, instead of a PVSS equal to a vector of shares, as in all previ-

ous schemes, we introduce in §3.3 a novel construction of PVSS,

that uses for the first time a double-sharing. This PVSS allows the
construction of a mechanism for unlimited homomorphic additions

of ciphertexts. In detail, addition of ciphertexts is now a threshold

mechanism, just as threshold decryption. Namely, on input two

ciphertexts, any player can output what we denote an “addition

share”, using an algorithm denoted as Add.Contrib, along with a

ZK proof of correctness. Then, there is a public algorithm, denoted

Add.Combine, that, on input correct addition shares of the same

two ciphertexts from any t + 1 distinct players, outputs a ciphertext
of the sum.

Thanks to the bivariate structure of the PVSS, the addition shares

produced by any t + 1 players, after any arbitrarily large number
of additions, contain enough material to enable the t remaining

players to reconstruct their share of the sum, such that these shares

also have small plaintext sizes.
Furthermore, one can actually remove most of the interactions,

by instantiating with a semi homomorphic encryption scheme (SHE:

see above). We denote the overall scheme as “Threshold Additive

Encryption” (TAE), for which we provide the details in Section 3.

Details of the technique In detail, each share of our PVSS, now,

comes now as a n-sized column vector of ciphertexts, such that

we have the following symmetry. For every player j, then for each

index i , then the plaintext of the i-th entry of his column is equal

to the plaintext in the j-th entry of the column of player i . Thus,

when t + 1 players add modulo p the plaintexts of their columns of

ciphertexts, then by symmetry, they are also able to fill the (t + 1)-
corresponding lines. This maintains the invariant that each column

contains at least t + 1 entries with plaintexts reduced modulo p, and
thus, that any player can decrypt t + 1 plaintexts on his column,

which is enough to recover his whole column, by interpolation.
Next, one can instantiate the baseline encryption scheme with

a SHE (see above, such as Paillier, or el Gamal in the exponent).

This, in turn enables noninteractive homomorphic additions on TAE
ciphertexts, up to a certain bound on the sizes of plaintexts. When

the bound is reached, then players perform again an interactive

additions with the previous mechanism. Thus, the plaintext of the

output is again brought back to small size [0, . . . ,p − 1]. Thus,

further noninteractive additions are again enabled.

1.1.5 Epilogue: another tradeoff, with BGV. Let us make here the

simple but apparently new observation that, instantiating PVSS

with the encryption scheme of [BGV12], enables unlimited addi-

tions, without the need of any interactive mechanism. Of, course

multiplications still require interactions, because they involve thresh-

old decryptions (of the inputs masked by the two first elements of

a triple). The reason of the observation is that the scheme [BGV12]

has a single plaintext space: Fp (embedded in a large lattice FN
p) in-

dependent of private keys, and that ciphertexts enjoy an unlimited

number of noninteractive additions.

However, BGV ciphertexts are very large, since typical lattice

dimensions N are at least 2
12
, in order to guarantee hardness of

LWE.

1.2 Advanced contributions
1.2.1 Constant time triples generation In order to multiply secrets,

a mainstream approach, since Beaver [Bea91], consists in having

players precompute random secret multiplication triples in an input-

independent offline phase, that are later used in the so-called online
phase to evaluate a circuit. This preprocessing is achieved asyn-

chronously in [BTHN10] at a cost of a number of consecutive in-

teractions linear in the number of players. We bring this latency

down from linear to a small constant, by leveraging the initial

round of synchronous broadcast and an innovative method from

Choudhury-Hirt-Patra [CHP13], that extracts fresh random triples

from triples coming from different players. However, their method

is inherently limited to t < n/4, due to usage of Byzantine agree-

ment, i.e., consensus, on the set of input triples taken into account.

We push this limit to t < n/2, thanks to two technical novelties, as

detailed in §4.1. First, we require every player to append a NIZK

proof to the encrypted triple that it broadcasts, in order to prove

its multiplicativity. Second, we make the following structural modi-

fication. Where, in [CHP13], the number of input triples taken into

account in the extraction is fixed equal to n − t , by contrast we take

into account all the n − t + t ′ = t + t ′ + 1 correct triples broad-

casted, where t ′ is the variable number of corrupted players who

broadcasted correct triples. This enables extraction of (t + t ′)/2− t ′

unpredictable triples, and thus of at least one.

Theorem 2. (Informal) Assuming an initial round of broadcast,
possibly the same as the one of Theorem 1, then players can produce

3

Matthieu Rambaud and Antoine Urban

common encrypted random multiplication triples unknown to the
adversary, in a fixed (constant) number of consecutive interactions.

1.2.2 Computationmethod Wepropose a novel computation frame-

work suited for asynchronous MPC with proactive security. We

abstract out the structure of computation of [BTHN10], as fol-

lows, which defines our baseline. The circuit is evaluated using

the King/Slaves paradigm [HNP05], in n parallel instances. Every

player simultaneously acts as a king to evaluate its own computa-

tion instance with the help of the others, and as a slave for other

n − 1 instances computing the same circuit. This model of computa-

tion guarantees that all instances relating to an honest king give at

the end of the protocol all correct outputs are the result of the same

set of instructions. This is further enriched with a new verification

structure. In more detail, we define an atomic step of computations,

which we denote as “Stage”. It maintains the invariant that it out-

puts a result signed as valid by t + 1 players and takes as input

validly signed outputs of other stages. In other words, checks are

chained throughout the process and not pushed at the end of the

protocol as formally explained in §4.2.1. This is the main difference

with [BTHN10]. We motivate this choice of intermediary checking

for two reasons. First, it simplifies the termination process. Unlike

in [BTHN10], upon receiving a correct output, a player multicasts

it and immediately terminates. Second, it enables proactive secu-

rity. To this end, it is indeed necessary that any player can take

over the role of the king while being certain of the validity of the

calculations undertaken so far. More details are provided in section

4.4.

1.2.3 On-the-fly generation of threshold-additive encrypted random-
ness The generation of a common random encrypted secret was

proposed in [BTHN10]. It naively consists of asking each player to

generate a random element, broadcast an additive encryption of it

in the first round, which are then summed together. We remove the

dependency on the broadcast. Our protocol, described in section 4.3

can indeed be executed at any moment in an asynchronous setting.

Let us sketch the idea.

In a first attempt, one could think of building on the mainstream

coin-tossing scheme introduced by Cachin et al. in [CKS05]. Recall

that this scheme enables players to locally generate shares of a

random coin. The problem is that these are multiplicative shares,
namely, they live in the exponent of a group with hard discrete

log. Thus, multiplicative reconstruction does not commute with

computing additively homomorphic encryption.

Thus, we take instead advantage of the scheme introduced by

Cramer et al. [CDI05], denoted as pseudo-random secret sharing

(PRSS). PRSS enables each player to produce directly the Shamir

share of a random value. The linearity of the reconstruction of

Shamir, and the additive homomorphic property of TAE, make it

possible to encrypt the Shamir shares obtained locally at each

player, then apply Shamir’s linear reconstruction on these en-

crypted shares, to deduce an encryption of the reconstruction of

the coin. Finally, we augment this scheme with ZK proofs to add

the robustness which was missing in [CDI05].

1.2.4 Proactive security Ostrovsky and Yung [OY91] introduced

the notion of proactive security, in which the life span of a pro-

tocol is divided into separate time periods denoted “epochs” and

we assume that the adversary can corrupt at most t players in two

consecutive epochs. The set of corrupted players may change from

one period to the next, so the protocol must remain secure, even

though every player may have been corrupt at some point. In the

context of our encryption scheme, which is a vector of n ((t + 1)-
sized) encrypted shares, this model adds a triple threat. First, if

players do not change their secret keys and reencrypt the shares at

regular intervals, then, the adversary may use the keys of newly

corrupted players, to decrypt their share of a ciphertext of which

he previously gained knowledge of t other shares. To address this

first threat, we deduce an on-the-fly new keys generation mech-

anism, without setup, from the encrypted randomness generator

introduced above. The second threat is that the model assumes

that newly de-corrupted players lost all their memory, in particular

their secret keys. To address the latter issue, each player generates

a new public / private key pair at the end of each epoch, which

leverages either our new key generation mechanism for those who

have their memory intact, or the bulletin board. Players need to be

able to decrypt their shares of the PVSS in any epoch. Following the

seminal work of [Her+95] on proactive security, different protocols,

e.g., [ZSR05] [SLL10] [Mar+19] based on resharing have been pro-

posed, but are not directly applicable in our setting as they either

require broadcast or Byzantine agreement, i.e. consensus. Finally,

the third thread is that, re-encrypting the n shares (each (t + 1)-

sized) constituting a TAE ciphertext, with freshly generated public

keys is not enough. Indeed, recall that these plaintext shares are

evaluations of a polynomial (bivariate symmetric, in our scheme).

Thus, a mobile adversary can decrypt, after 2 epochs, enough eval-

uations of the polynomial to interpolate the value at (0, 0), which

is equal by definition to the TAE-encrypted value. In section 4.4 we

detail an interactive protocol to deal with these last two threats

simultaneously as follows: it first re-randomize the polynomial, and

then reencrypt it with the new keys.

Notice that the bivariate structure of our PVSS makes it possible

for any t + 1 players to securely generate the new encrypted share

of any player P . By contrast, with a classical univariate PVSS, this

would have lead to disclose their own encrypted share under P ’s
public key.

1.3 Related Work since [BTHN10]
Following the initial result of Beerliová-Trubíniová, Hirt andNielsen

[BTHN10] to achieve security for an honest majority in the almost-

asynchronous model, different improvements have been proposed.

On the one hand, Cohen [Coh16] removes the need for the costly

king/slaves communication paradigm, but requires a trusted setup

for its threshold encryption, whichwewant to remove. Also, [Bac+14]

assumes trusted hardware to reach honest majority. On the other

hand, advances have been made to reduce the setup assumptions

of threshold homomorphic encryption schemes. Recently Damgård

at al [Dam+21] proved that the threshold encryption scheme of

Gordon et al. [DGLS15] satisfies our setting of an almost asynchro-

nous network, with only a PKI and CRS. Noticeably, they build on

the malicious-security compiler of [Ash+12], which itself uses the

UC NIZK-PoK of [DS+01] that we recall in 2.3.2. However, their

”expanded” ciphertexts consist of vectors of dimension the number

of players, whose entries are so-called “expanded ciphertexts”, of

4

Almost-Asynchronous MPC under Honest Majority, Revisited

size quadratic in the number of players and polynomial in the depth

of the circuit. Recall that a minimum order of magnitude is that

ciphertexts are contained in lattices of dimension 2
12

(for hardness

of LWE). Finally, we observed that the threshold FHE scheme with-

out trusted setup of Badrinarayanan et al [Bad+20] could be used

in the almost asynchronous setting, but its ciphertexts are of size

polynomial in both the number of players
1
and in the depth of the

circuit, which is a significant space overhead.

2 Model and Definitions
2.1 Overall Goal
We consider n = 2t+1 players P = {P1, . . . , Pn }, which are a proba-
bilistic polynomial-time (PPT) interactive Turing machines, of fixed

and public identities. They are connected by pairwise authenticated

channels. We consider a PPT entity denoted as the “adversary” who

can take full control of up to t players, which are then denoted

as “corrupt”, before the protocol starts. For this reason we denote

it as “static”. Notice that a stronger adversary will be considered

in §4.4. It can read the content of any message sent on the net-

work. Being PPT, the adversary has however negligible advantage

in the IND-CPA games that are satisfied by the encryption schemes

considered.

2.1.1 Goal: Secure Computation of an Arithmetic Circuit over Fp ,
with Input Provision Let us make precise the terminology used in

Theorem 1. Let p ≥ n be any prime number, where n is the number

of players defined above.We denoteFp := Z/pZ the finite field with

p elements. For simplicity we state the standalone security model. A

MPC protocol takes as public parameter a fixed circuit F : Fnp → Fp
which is denoted as “arithmetic”, in the sense that it is composed of

addition gates, (bilinear or constant) multiplication gates (bilinear

or constant, i.e., “scalar”) and random values gates. For the sake

of simplicity, we assume that all players are recipients of the final

output. The robustness with input provision guarantee is that, for

any set of inputs xi ∈ Fnp , if each player starts with input xi , then

all players receive the same outputy, andy is a (random) evaluation

of F (x ′
1
, . . . , x ′n) such that x ′i = xi for all indices i of uncorrupted

players. The privacy guarantee is that the adversary learns no more

than y (and even nothing if no recipient is corrupted).

2.1.2 The Almost Asynchronous Model, after [BTHN10] We assume

that all players have access to a synchronous broadcast channel at

the starting time of the protocol. Namely, they have the guarantee

that when they send a message on this channel at time t = 0,

then it will be identically delivered to all players at time t = ∆
where ∆ is a public fixed parameter. But apart from the messages

broadcast at t = 0, the network is otherwise fully asynchronous.

Namely, messages sent by uncorrupted players are guaranteed

to be eventually delivered, but the schedule is determined by the

adversary.

2.2 Reminder of [BTHN10, PODC’10]
Let us review in more details the MPC protocol of [BTHN10] out-

lined in the introduction. It securely compute any arithmetic circuit

1
Each decryption key share embedded in the ciphertext consists of O (n4.2)

[Gol20] equivalent of a regular key in order to represent a threshold access struc-

ture in terms of monotone Boolean formula.

over Fp in the almost asynchronous model, as detailed in §2.1.1, and

tolerates t < n/2 corruptions. Moreover it enforces input provision.
Let us denote E a threshold encryption scheme with plaintext space

ZNZ with N a large composite integer, as recalled in §1.1.1, that

furthermore comes with a public noninteractive algorithm, denoted

⊞, that computes the homomorphic addition of any two ciphertexts.

The definition of such a scheme, denoted AHE, is recalled in §A.

Let F be the arithmetic circuit to be computed, which we assume

deterministic here for simplicity. How to evaluate random gates will

be discussed and improved in §4.3. The whole circuit is evaluated

n in parallel, once for every player, denoted as king, and with all

players (including the king), acting as its slaves.
(0) Trusted Setup: Taking as input the number of players n = 2t + 1,

a trusted dealer publishes a public encryption key pk for E, and
sends privately a secret key ski to each player Pi .

(1) Inputs broadcast: Each player Pi broadcasts its encrypted input

Epk(xi) with a proof of plaintext knowledge. From now on, the

communication pattern is asynchronous: each player waits for at

most t + 1 correct messages from any t + 1 distinct players before
sending new messages.

(2) Triples generation: is a subprotocol that enables players to jointly
generate, with respect to a king, a multiplicative triple of encrypted

values unknown to the adversary A. The detail is that the king

starts from a default known encrypted triple and sends a random-

ization request to every n slaves and waits for a valid answer. The

king iterates this process a total of t + 1 times. Such a chain of t + 1
consecutive randomizations guarantees that the plaintext values

of the factors of the encrypted triple, are indistinguishable to the

adversary from uniform random ones. Details of the protocol in

out model are presented in figure 3.

(3) Circuit evaluation: Each king Pj evaluates the circuit of F in a

gate-by-gate manner, with the help of all players (including the

king) acting as slaves. In particular, thanks to the multiplicative

triples, the multiplication gates are brought down to threshold de-

cryptions and homomorphic additions, by the technique of [Bea91].

At each interactive step, the slaves prove to the king that the cal-

culation is correct.

(4) Termination: Each encrypted circuit output, Epk(F (x1, x2, ..., xn)),
is jointly decrypted to the king, which thus learns the plaintext

result z. It sends z to all slaves. Players receiving z sign it and send

the signature to the king. Upon receiving signature shares from

t + 1 players, the king sends these signatures to all players. This

guarantees unicity of one (t +1)-signed output per king. Once t +1
kings have finished with the same signed output, then necessarily

this must be the correct one, and all players adopt it.

2.3 The new transparent setup for Theorem 1
We define and discuss in more detail our setup In §2.3.2 we discuss

instantiations of ZK-PoK with a transparent setup. In §2.3.3 we

compare our setup with the trusted one of [BTHN10].

2.3.1 FPKI We make use of a public “bulletin board” of public

keys ([BCG21; TLP20]) as presented in figure 1. Notice that this

is actually very close to the functionality denoted certification

authority FCA in Canetti [Can04]. Each player can give at most one

public key to this bulletin board. The bulletin board outputs, when

5

Matthieu Rambaud and Antoine Urban

queried, the public key received from any given player. Concretely

in our protocol, players are instructed to publish their public keys.

At least all honest players (≥ t+1) will do so, since the functionality
enables them to. We stress that FPKI does not perform any checks

on the registered value; it simply acts as a public bulletin board.

FPKI

Registration On input (register, sid,v) from player Pi that
has not previously registered, record the tuple (Pi ,v).

Retrieval On input (retrieve, sid, Pi) from player Pj , if there
is a previously recorded tuple (Pi ,v), then return (sid, Pi ,v)
to Pj . Otherwise return (sid, Pi ,⊥).

Figure 1: PKI functionality

2.3.2 FZK The zero-knowledge functionality FZK , as introduced

in [Can+02], is presented in figure 2. As stressed in [Can+02], it

actually specifies a proof of knowledge (PoK). Namely, if the verifer

receives a message from the functionality proving that x belongs

to the language, then, he is furthermore ensured that the prover

knows a witnessw , i.e., R(x,w) = 1.

FZK

The functionality is parameterized with an NP relation R of

an NP language L, running with a prover P , a verifier V and

an adversary A:

• Upon receiving (prove, sid, x,w) from P , ignore if R(x,w) =
0. Otherwise send (verification, sid, x) toA andV and halt.

Figure 2: Zero-knowledge functionality

Let us discuss some instantiations with transparent setup, on

the example of [DS+01], which enjoys many properties.

First, they consist in a single message from the prover, and thus

are noninteractive (NIZK).

Second, they implement FZK in the strong sense of uniform

composability (UC). This fact, which follows from the explicit

simulation-soundness properties of their scheme, was observed

independently by [Can+02], [Ash+12, p497] and [Coh16, §4.2].

Third, they require only that players are provided with a public
uniform random string, which needs not be generated with any

trapdoor. This minimal assumption is also the one required by

[AC20; ACR21] (random groups elements being necessary to imple-

ment Pedersen commitment). See §B.3 for a concrete illustration of

[ACR21], which has logarithmic size in the statement proven, in our

setting. This minimal assumption is also the one of [BS+18], which

is the proof system deployed in Ethereum. As nailed by the latter

(footnote 8), randomness is actually necessary in any ZK proof sys-

tem. How to implement a public distributed random beacon with

transparent setup is well studied [CD20; Das+21].

Fourth, the public uniform string can be safely re-used identically

in multiple executions. Thus they achieve the stronger primitive

which [Can+02] formalize as the “multi-session” F̂ZK .

Notice that these implementations are provably UC in a local
setup, where concretely a fresh random string is initially queried by

players to the beacon. This enables the simulator to sample it with

a trapdoor. Alternatively, in a model where the random oracle is

initialized by players (e.g., drawn from a hash function family using

a random beacon), which enables the simulator to reprogram it (in

order to simulate Fiat-Shamir). These assumptions are discussed

in [Pas03; Can+07]. Although implementing FZK is orthogonal to

this work, since it is part of our model, for completeness we discuss

in §B.8 implementations of it with a global setup.

2.3.3 Comparison with the setup of [BTHN10] The setup in [BTHN10]

assumes a trusted entity that generates secret keys (shares) and gives
them to players. If the adversary learns these secrets, then the se-

curity is ruined. By contrast, the FPKI that we use manipulates no

secret information.

Let us also observe, although this is orthogonal to our concern,

that all the instantiations of ZK proofs specified in [BTHN10] also

require a trusted setup, by contrast with the ones recalled in §2.3.2.

First, [BTHN10, §5.1-5.2] assumes a secret sharing of a secret key

by a trusted authority. Then, in [BTHN10, §2.4], they use [Dam00],

which requires a public string generated with a secret trapdoor
that the adversary should not learn. This setup, also known as

“structured common reference string” (also used in [GOS12] and

SNARKS), is therefore not transparent. Recall by contrast that the

random string mentionned in §2.3.2 is a mere public coin. Namely,

it needs only be uniform, so needs not be generated with a secret

trapdoor.

2.4 Cryptographic primitives
2.4.1 Shamir secret sharing We denote Fp [X ,Y](t ,t) the ring of

bivariate polynomials with coefficients in Fp , of degree bounded
by t in both X and Y . Let us recall quickly the secret sharing scheme
of Shamir over Fp . We consider α1, . . . ,αn fixed public nonzero

distinct values in Fp , denoted as the evaluation points. For instance:
[1, . . . ,n]. On input a secretm ∈ Fp , sample at random a polynomial

f (X) ∈ Fp [X]t , so of degree at most t , with nonconstant coeffi-

cients varying uniformly at random in Fp , and such that f (0) =m,

i.e., the constant coefficient ism. Then, output the n-sized vector

[f (α1), . . . , f (αn)], denoted the “shares”. It has the property that,

for any fixed secret m, then any t shares vary uniformly. While

any t + 1 shares linearly determinem as follows. For any subset

I ⊂ {1, . . . ,n} of t + 1 distinct indices, there exists t + 1 elements

λi ∈ Fp , denoted the Lagrange reconstruction coefficients, such that

for every polynomial f (X) ∈ Fp [X]t we have f (0) =
∑
i ∈I λi f (i).

2.4.2 Public key encryption with common plaintext space Fp We

say that a public key encryption scheme has common plaintext

space Fp if all plaintext spaces contain Fp . In what follows we

actually formalize it as if the plaintext space is Fp . We provide the

two main examples (Paillier and el Gamal) in §B.2. Precisely, such a

scheme consists in the following triple of algorithms (KeyGen, E,Dec).
Let (sK,pK) be spaces, denoted as the secret and public key spaces.
To each pk ∈ pK corresponds what is denoted Cpk the “cipher-

text space”, for instance (Z/pk2Z)∗ in Paillier. Let KeyGen : ∅ →

(sK,pK) a PPT algorithm.

Let E be an efficiently computable PPT algorithm with source

equal to (pK,Fp), and target Cpk. Fix any pk output by KeyGen.
Let Dec be an efficiently computable algorithm, with source the

6

Almost-Asynchronous MPC under Honest Majority, Revisited

union of all (sk,Cpk), where (sk, pk) is an output of KeyGen, and
with target Fp ∪ {abort}. We require the completeness condition,

that Dec(sk, E(pk,m ∈ Fp)) = m. We require the classical IND-

CPA privacy property, defined by the negligible advantage of an

adversary to guess between two plaintexts in Fp of his choice, upon

being given encryption of one of them.

3 Proof of Theorem 1
3.1 Overview of Threshold-Additive

Encryption (TAE) with Transparent Setup
We sketch a Threshold-Additive Encryption (TAE) scheme with trans-
parent setup (TAE), following the program presented in §1.1.4. We

first sketch below a toy model where the plaintext space is Fp , but
every additions are interactive. From the description below it is

easily seen that a linear combination can actually be done at once.

The formalism of the specifications are provided in §3.2, and the

details of the implementation in §3.3, but the following paragaphs

should be enough for the comprehension. The advantage of this toy

model is that it can be instantiated from any public key encryption

scheme E (with plaintext space containing Fp , as in §2.4.2) and

is also easier to describe. Then in 3.1.2 we sketch how to enable

noninteractive additions, when using a baseline encryption which

is semi-homomorphic.

3.1.1 Toy model of TAE with interactive additions To encrypt a

plaintext s , sample at random the nonzero coefficients of a symmet-

ric bivariate polynomial B of bidegree ≤ (t, t), i.e., in Fp [X ,Y](t ,t).
Set the zero coefficient of B as s . Finally, output the cs consisting
in the n × n array of E-ciphertexts of evaluations of B: Epkj

(
B(i, j)

)
,

where only t + 1 rows need to be actually computed. The entries

on the other rows are set to the empty string ⊥. We denote as

TAE.ciphertext this data structure. Such t+1 filled rows will actually
be an invariant of all TAE.ciphertexts, including the TAE.ciphertexts
output by interactive operations. The interesting point is that the

indices of the filled rows may possibly be different between two

different TAE.ciphertexts. This invariant is formalized in Def 5 and

Prop 9. It is that all TAE.ciphertexts, have (exactly) t + 1 filled

rows. They furthermore consist in encryptions of the evaluations

in [0, . . . ,p − 1] of a single bivariate polynomial in Fp [X ,Y](t ,t).
Let us describe how any t + 1 players can produce, in one round,

a homomorphic addition of two TAE.ciphertext ca and cb of some

a,b ∈ Fp . Let us denote K the entity who is meant to obtain the

resulting TAE.ciphertext ca+b (the “king” in our protocol). Denote

Ba and Bb the underlying bivariate polynomials. Players do not

know them since evaluations are encrypted. But their goal is to

collectively produce a n×n array of evaluations of Ba+b = Ba +Bb ,
such that t + 1 rows are nonempty. Each player i decrypts the
t + 1 nonempty entries on its column i of ca and of cb . Notice
that the t + 1 indices may possibly not be the same on ca and

cb . From these, it interpolates the degree t polynomials Ba (X , i)
and Bb (X , i). By evaluation, it is thus able to reconstruct all the t
missing entries on both i-th columns. Notice here, that this i-th
plaintext column

[
Ba (i

′, i)
]
i′∈[n] actually constitutes a decryption

share of ca (likewise for cb). We denote later the previous steps as

“PubDec.Contrib”, whose output is this decryption share. Indeed,

from t +1 such shares, it is possible to interpolate the whole Ba , and

thus recover a. But in our concern of computing a homomorphic

addition, players are not meant to learn a nor b. Thus, they continue
local computations as follows, without revealing these decryption

shares.

Summing coordinate by coordinate modp, these two (now full)

i-th columns, it deduces the full column of evaluations of Ba+b (X , i).
Which is, by symmetry of Ba+b , equal to the row of evaluations of

Ba+b (i,Y). It thus sends to K its addition share, which consists of

the encrypted i-th row

[
Epkj

(
Ba+b (i, j)

)]
j ∈[n]. We denote later as

“Add.Contrib”, whose output is this addition share. Upon receiving

t + 1 addition shares, K puts them in one single n×n array , leaving

the remaining t rows empty. This constitutes an array of evalua-

tions of Ba+b , of which t + 1 rows are filled, thus by definition a

TAE.ciphertext cx+y .
Notice that previously considered PVSS / ad hoc encryption

(§1.1.1) operated instead with a univariate polynomial and encryp-

tions consisting in one n-sized vector of encrypted evaluations. In

this setting, assuming that cx and cy each contain t + 1 nonempty

entries, the previous method would have failed to return a vector

with t + 1 entries, since possibly they have only one nonempty

entry in common, so then only one player would have been able to

compute the sum of its shares.

3.1.2 Making additions noninteractive. The basic idea is that In-
stantiating the previous TAE with a baseline additive encryption

scheme E enables anyone having ca and cb with same t + 1 filled
rows to compute their homomorphic sum. On the face of it, this

simplifies a lot the previous construction. But many pitfalls re-

main. The flagship example is Paillier encryption: recall that in

our setting players have different public keys, so different actual

plaintext spaces Z/NiZ. Thus, the only consistent way to define

a bivariate polynomial is to consider a common additive subset of
all these plaintext spaces, which in our case is a (small) field Fp ,
identified with [0, . . . ,p − 1] ⊂ [0, . . . ,Ni − 1]. But then, if too

much noninteractive additions are done, then the plaintexts may

go large then wraparound modulo one of the Ni . Then, decryption

is not guarantees anymore correct modulo p. This limitation on the

plaintext size, wrt correct decryption modulo p, is what [Ben+11]
denote as “semi homomorphic” encryption (SHE). In the appendix

§B.2 we also observe that a variant of el Gamal, when plaintexts

are encoded in the exponent, is also a SHE. Indeed, decryption is

computable up to a certain plaintext size. To overcome this issue,

players have to make sure to regularly bring back down the size of

the plaintexts after many noninteractive addition gates. This can be

done simply by any t + 1 player. Each player i decrypt its column of

ca , interpolate the univariate polynomial Ba (X , i) = Ba (i,Y) mod-

ulo p, then compute its evaluations modulo p and re-encrypt them.

Said otherwise, perform an interactive addition with a ciphertext of

0. The collective output of this operation is an encrypted array c ′a ,
whose plaintext entries are now brought back to [0, . . . ,p − 1], and
whose underlying bivariate polynomial B′a is equal to Ba modulo p.
Thus, the plaintext a remains the same modulo p, which is what we

wanted. We can formalize this as an interactive “Resizing” mecha-

nism. Notice that this Resizing mechanism must be done at once
on all ciphertexts that may serve later. Indeed, it is important that

all Resized TAE.ciphertext output contain the same t + 1 nonempty

rows. Otherwise, noninteractive additions between them would

7

Matthieu Rambaud and Antoine Urban

not be possible. Thus, this is a stronger invariant than the previous

one, where the t + 1 nonempty rows could be different from one

ciphertext to another.

Notice that [Cho+13] also describe an interactive bootstrapping

mechanism, but the comparison stops here. Indeed, what they re-

duce is the size of the noise, not of the plaintext. Notice also that

they assume a trusted setup, which enables a single public threshold

encryption key in their scheme.

3.1.3 No Robustness We do not require for Robustness in our spec-

ification of TAE Namely, we do not require that the validity of

contribution can be verified, nor that K cannot exhibit a cipher-

text with two distinct sets of decryption shares opening it to two

distinct plaintexts. This is a requirement of verifiable threshold

homomorphic encryption, as used in [CDN01] and recalled in ap-

pendix §A. The reason is that robustness will be trivially enforced

at the level of the MPC protocol, by having players ZK prove that

they correctly computed their encryptions and contributions (see

also above) The reason for this modularity is that we need different

levels of robustness. For the purpose of Theorem 1 only, it will

be specified in the MPC protocol that players prove in ZK to the

king K that they correctly computed their shares (of decryption

or addition). But there, as in the MPC protocol of [BTHN10], it

will not be needed that the king prove to slaves the correctness of

his decryptions, he needs not even exhibit the shares from which

he claims to have computed the decryption. By contrast, in the

proactive MPC protocol (§4), both players and K will incorporate

NIZK proofs of correctness in their shares and aggregation. This

will enable a quorum of t + 1 players to validate well-formedness

of ciphertexts output by a gate by putting their signature. These

validations will enable freshly decorrupted players to take over the

computation on the fly.

3.2 Specification of a TAE (toy model)
We formalize the specification required for the above toy model

of TAE (3.1.1) where all additions are interactive. In §3.3 we detail

the implementation sketched above of the toy TAE from any public

key encryption scheme in the sense of 2.4.2. The reason is that

specifying a TAE with noninteractive additions (as in §3.1.2) would

require more formalism: as [Ben+11], specifying that plaintexts are

in Z, to parametrise the growth of their size after additions, and

to specify that correctness of decryption modulo p is guaranteed

up to a certain plaintext size; plus, specifying a Resize mechanism

as sketched above. The latter would require the formalism of a

"Well Formed Circuits" introduced by Choudhury et al [Cho+13], to

specify the inclusion of interactive bootstrapping gates in the circuit

(see the discussion above §3.1.2). In addition, the implementation,

although intuitive (§3.1.2) would be more delicate to describe, since

bivariate polynomials would have coefficients in Z but would be

well defined only modulo p.
We firstly require that TAE is a threshold encryption scheme

with transparent setup, as recalled in §1.1.1. Namely, we specify

an encryption algorithm, which takes as parameter the n public

keys that are on the bulletin board. We leave the reader to make the

straightforward adaptation in the algorithms, for the cases where

up to t keys were not published. Notice that all honest players

(≥ t + 1) do publish their public keys, since they are instructed to,

and are always able to do so.

We consider a finite field Fp of prime order p. In practice, Fp is

the field of the definition of the arithmetic circuit to be computed

in MPC. For instance, in the case of an implementation using the

ElGamal encryption “in the exponent” as baseline (defined in §B.2),

then p is small enough so this baseline (cf §2.4.2) has efficient

decryption. We fix E any public key encryption scheme as in §2.4.2.

We abuse notations and also denote as pki the public keys used for

E . This abuse is because, in our implementation §3.3, E will be the

baseline public key encryption scheme, thus the public keys will

coincide.

Anticipating on the long list below, let us simplify a bit the task of

the reader. First, PrivDec outputs the plaintext only to a designated
recipient. The implementation will be simple from a conceptual

perspective: each player applies PubDec.Contrib on the ciphertext,

then encrypts the output under the recipient’s public key. Also,

notice that Add is just a particular case of LinComb, which we

single-out for clarity.

Definition 3. A (t + 1)-out-of n threshold encryption scheme with
transparent setup over Fp is the data of a space 𝒞 denoted as the

global ciphertext space, spaces sK and pK denoted as the “secret

keys” and “public keys” spaces, and of the following algorithms.

The {0, 1}∗ denotes binary strings of unspecified lengths, but in our

implementation it will be a vector of n elements of the E plaintext

or E-ciphertextspace (a row of the total n × n ciphertext matrix).

KeyGen(): ∅ → (sK,pK)
Encrypt: pKn × Fp → 𝒞
PubDec.Contrib: sK × 𝒞 → {0, 1}∗ ∪ abort, denoted as “decryp-

tion share”.

PubDec.Combine: ({0, 1}∗)t+1 → Fp ∪ abort.
PrivDec.Contrib : pK × sK × 𝒞 → {0, 1}∗ ∪ abort. On input pkr ,
which is the recipient’s public key, ski and c , outputs
E(pkr ,PubDec.Contrib(ski , c)) , or abort. Notice that the nota-
tion {0, 1}∗ is because the length is unspecified, but in our imple-

mentation it will be a vector of n Epkr -ciphertexts of elements of

Fp .

PrivDec.Combine : ({0, 1}∗)t+1 → {0, 1}∗ ∪ abort takes t + 1

outputs of PrivDec.Contrib and outputs in ({0, 1}∗) or abort. In
our implementation, the output will be an array of size n × n,
partially filled with Epkr -ciphertexts of elements of Fp

Add.Contrib : pKn × sK × 𝒞2{0, 1}∗ ∪ abort, denoted as addition
share if not abort.

Add.Combine : ({0, 1}∗)t+1 → 𝒞 ∪ abort takes t + 1 outputs of

Add.Contrib and outputs in 𝒞 or abort.
LinComb.Contrib with public parametersL ∈ N∗ and

(
λ1, . . . , λL

)
∈

FL
p : pKn × sK × 𝒞L{0, 1}∗ ∪ abort.

LinComb.Combine : ({0, 1}∗)t+1 → 𝒞 ∪ abort takes t + 1 outputs
of LinComb.Contrib and outputs in 𝒞 or abort.

That satisfy completeness, privacy: IND-CPA and simulatability of
decryption shares as defined below.

3.2.1 Completeness. We firstly introduce the following recursive

definition.

8

Almost-Asynchronous MPC under Honest Majority, Revisited

Definition 4 (TAE.ciphertext). First, any correctly computed

Encrypt(x), for all x ∈ Fp , is a TAE.ciphertext of x . Then, for any
TAE.ciphertext cm , cm′ , ofm, m

′ ∈ Fp , and any t +1 correctly com-

puted addition shares output by distinct players, then, the output of

Add.Combine on these shares is by definition a TAE.ciphertext of
m+m′ ∈ Fp . More generally, for any t+1 correctly computed linear

combination shares, output by distinct players on the same inputs

and parameters, then the LinComb.Combine of these shares is by
definition a TAE.ciphertext of the linear combination.

Then, the completeness requirement is that for any m ∈ Fp ,
then any TAE.ciphertext cm ofm decrypts tom. Namely,m is the

output ofPubDec.Combine applied on any t+1 correctly computed

decryption shares output by distinct players from PubDec.Contrib
on input cm . Likewise, we require that the PrivDec.Combine of
any t + 1 correctly computed outputs of PubDec.Contrib on input

the same TAE.ciphertext cm , be equal to a ofm encrypted with E
under the recipient’s public key.

3.2.2 IND-CPA Is defined by the following game. Consider a PPT

adversary playingwith a challenger, who runs (ski , pki) := KeyGen()
∀i ∈ [n] and gives all the pki to the adversary. Then, the adversary

can initially request “corruption” of any index i , up to a total of t
corruptions, in the following sense. Upon corruption request for

any i0, the challenger then reveals ski0 to the adversary. When this

happens, the adversary can, in addition, replace pki0 by one of his

choice.

Throughout the game, including after he received the challenge

ciphertext below, we also allow the adversary to query the correctly

computed output of PrivDec.Contrib or LinComb.Contrib by any
(possibly honest) player, on any inputs in 𝒞 of his choice. The only

limitation is that in , the recipient is an uncorrupt player.
IND-CPA means that, upon submitting two plaintextsm0,m1 to

the challenger, then being issued c the encryption of one of them,

the adversary has a negligible advantage in distinguishing whether

c is an encryption ofm0 orm1.

Further comments on the power of the adversary in the IND-CPA
game. Notice that we allowed the adversary to query contributions

of PrivDec, and LinComb. But actually, the adversary and the

simulator have no more power than in the definition of threshold

homomorphic encryption in [CDN01] (see also Definition 8 in the

appendix). Indeed, in [CDN01] the adversary can locally compute

the homomorphic linear combinations of any ciphertexts of his

choice. Whereas in our definition, computation of homomorphic

linear combinations require the contribution of at least one uncor-

rupt player.

Also, we made the limitation that the recipient of the queries to

PrivDec.Contrib is an uncorrupt player because, otherwise, this

would enable the adversary to obtain the decryption of any cipher-

text, i.e. as in IND-CCA, which we do not guarantee.

3.2.3 Simulatability of public decryption shares. Is defined as in ap-

pendix §A. Briefly: there exists a simulator that, on input a plaintext

m, a correctly computed Encrypt cm of it, and correctly computed

decryption shares from a set of t player indices denoted as “corrupt”,
outputs n − t strings that are computationally indistinguishable

from valid decryption shares from the remaining player indices,

even for an adversary holding the secret keys of the corrupt indices.

3.3 Implementing TAE
We use the notations of §2.4. We consider a public key encryption

scheme (KeyGen, E,Dec) over Fp as defined in §2.4.2, with the no-

tations that we recall as follows. Let ⊥ denote the empty value.

Given n public keys pk
1
. . . , pkn , denote Ci the corresponding ci-

phertext space. For brevity, we simplify the encryption notation

E(pki , x) to Ei (x). Then, we define the global ciphertext space of the
TAE, denoted as 𝒞, as the subset of n × n arrays such that each row

i either consists in a vector in [C1, . . . ,Cn], or, the empty vector

⊥n . We now introduce the following intrinsic definition. As stated

in Proposition 9, with respect to the following implementation of

TAE, this definition will turn out to be synonymous Definition 4 of

a TAE.ciphertext. In short, as sketched in §3.1.1, a ciphertext is a

n × n array, of which t rows are empty, while the remaining t + 1
rows consist of ciphertexts of evaluations of a bivariate symmetric

polynomial.

Definition 5. Awell formed ciphertext c ∈ 𝒞 is an array such that

there exists a bivariate symmetric polynomialB(X ,Y) ∈ Fp [X ,Y]t ,t ,
and t + 1 row indices, denoted I ⊂ [1, . . . ,n], such that the entries

on these rows are encryptions of evaluations of B:

(1) ci , j := Ej (B(αi ,α j)) ,∀i ∈ I , j ∈ [n]

The other t rows are empty.We say that c ∈ 𝒞 is awell formed ciphertext
of plaintext x if x = B(0, 0)

The first important property of a well formed ciphertext is that,
for every fixed column index j, then the nonempty entries on

the j-th plaintext column are t + 1 evaluations of the polynomial

Bj (X) := B(X ,α j), which is of degree t+1, and thus, by Lagrange in-
terpolation are enough to interpolate the whole polynomial Bj (X).

The second important property of a well formed ciphertext is
that, by symmetry ofB, we have equality of the plaintextsB(αi ,α j) =
B(α j ,αi) when the entry (i, j) is nonempty.

3.3.1 Encrypt Let (pk ∈ pKn,m ∈ Fp) be the inputs.
Sample a random symmetric bivariate polynomial B(X ,Y) ∈

Fp [X ,Y]t ,t , such that B(0, 0) =m. Choose any subset of t+1 indices
I ⊂ [1, . . . ,n]. Output the n × n array, with the rows with indices

in I as follows, and the other rows empty: cm,(i j) := Ej (B(αi ,α j)),
∀i ∈ I , j ∈ [n],

3.3.2 Threshold decryption PubDec.Contrib: Let (skj , c) be the in-

puts. By Definition 5, if c is a well formed ciphertext, then there are

at least t + 1 nonempty entries on column j, and all of them are

correctly decryptable. Denote (dci , j)i ∈Ij , these decryptions, where

Ij denotes the set of row indices of these entries.

PubDec.Combine: on input t + 1 (correct) decryption shares,

deduce the unique symmetric polynomial B[X ,Y] ∈ Fp [X ,Y]t ,t ,
such that, for all those t + 1 correct decryption shares, we have:

B(αi ,α j) = d
c
i , j ∈ Fp . Then outputm := B(0, 0) ∈ Fp .

PrivDec.Contrib Let (pkr , skj , c) be the inputs. By Definition 5,

if c is a well formed ciphertext, then there are t + 1 nonempty rows,

of which we denote the indices I ⊂ [1, . . . ,n]. Denote (dci , j)i ∈I the

decryptions of the t+1 entries in column j . Then, output encryption
the list of their encryptions with pkr : [Er (d

c
i , j) , i ∈ I]

9

Matthieu Rambaud and Antoine Urban

PrivDec.Combine Initialize an empty n × n array. For each cor-

rectly checked contribution [c
(out)
i , j , i ∈ I], from Pj , copy the ele-

ments of this list at their positions (i, j) in the array. After receiving

t + 1 contributions , output the array.

3.3.3 Threshold Homomorphic Linear Operations We describe only

the threshold addition (Add), of which the threshold linear combi-

nation LinComb is a straightforward generalization.

Add.Contrib: Let (skj , c, c ′) be the inputs of player j. By Defini-

tion 5, if c and c ′ are two well formed ciphertexts, then let I and

I ′ be the corresponding sets of t + 1 nonempty row indices. For

each c and c ′, compute the decryption of those t + 1 nonempty en-

tries on column j , which we denote:

(
dci , j

)
i ∈I and

(
dc
′

i , j
)
i ∈I′ . Then,

compute the t missing entries on each of these (n = 2t + 1)-sized
columns j, by polynomial interpolation. Next, add together these

two n-sized columns, into the column denoted as [dc+c
′

i , j , i ∈ [n]].

Finally, output encryptions of its entries, into the form of a n-sized
row vector, namely:

(2) c
(out)
j :=

[
Ei (d

c+c ′
j ,i) , i ∈ [n]

]
.

Add.Combine: Initiate an empty n×n array, that is, filled with⊥.

For each contribution c
(out)
j , i.e., addition share, from some player

Pj , that comes with a correct proof, then copy this contribution,

which we recall is a row vector, into the j-th row of the array. Af-

ter receiving t + 1 such (correct) addition shares,output the array

computed so far.

A proof that the above satisfies completeness, IND-CPA & shares

simulatability is given in §B.1.

3.4 Proof of Theorem 1
We consider the baseline protocol of [BTHN10] reminded in §2.2

and our above toy definition and implementation of TAE.

3.4.1 Protocol We now present the overall protocol, that is fur-

ther formalized in Appendix B.4. Note that we later introduce im-

provements for the triples generation (2) and the termination (4)

in Sections 4.1 and 4.2 respectively, but they are in no way neces-

sary for theorem 1. The structure is the same as in [ZBT08] but we

modify the baseline by using TAE with transparent setup instead

of their additively homomorphic encryption with trusted setup.

To formalize the input predistribution, we define an ideal func-

tionality FEncInput , that receives the inputs from players and, on

request, gives all the inputs it has received, encrypted using TAE.
This functionality is further detailed in Appendix B.3, it is trivially

implemented by having players broadcast their inputs, along with

a non-interactive proof of plaintext knowledge, which we denote

“NIZK-PoPK”. In §B.3 we implement an example of such a NIZK-

PoPK. It is conceptually as simple as openingO(n2) linear forms on

a commitment in a DDH-hard group (noted additively). An applica-

tion of the basic compression mechanism of [ACR21] then enables

to compress the total size in O(log(n)).

(0) Transparent Setup: Taking as input the number of players, each

player generates locally a public/private key pair and sends the

public key to FPKI . Then it obtains all the submitted public keys.

(1) Inputs distribution: Players give their inputs to FEncInput , then
retrieve all encrypted inputs from FEncInput (see above, and the

implementation in appendix B.3). Thus for every input wire, the

players have agreement on the ciphertext X = TAE.Encrypt(x)
of the input value. Note that theses ciphertexts can possibly be

empty strings.

(2) - (3) Triples generation and Circuit evaluation: The structure
of these steps is unchanged compared to [BTHN10], of which we

recall the triple generation for convenience in Figure 3 of §B.5.1

(formalized in the FZK -hybrid model). The difference is that ho-

momorphic linear combinations, which were computed locally

on E−ciphertexts, are now replaced by our threshold mechanism.

Namely, on input TAE.ciphertexts and scalar coefficients, each

player proves to the king that he correctly performedLinComb.Contrib
on the ciphertexts. Concretely, it sends to FZK the secret witnesses

necessary to verify the computation: its secret key, the random-

ness used for encryption. We describe in the appendix B.4.1 the

details of the relations proven in the case of our TAE, where for
convenience we included in the witness some intermediary steps,

such as the player’s decrypted share. Upon receiving any t+1 such
correct contributions, the king computes LinComb.Combine on
them then sends the result to all slaves. Note that in this first

simplified approach, the computations of linear combinations are

interactive. We sketched in §3.1.2 how our TAE instantiated with

a SHE can enable noninteractive additions.

(4) Termination: This stage is unchanged from [BTHN10].

3.4.2 Proof: The purpose of the proof is to demonstrate that there

is a simulator Sim such that no non-uniform PPT environmentZ

can distinguish between i) the real execution of the protocol by

the players P = {P1, P2, ..., PN } with some of them controlled by a

malicious adversaryA and ii) the ideal execution where the players
interact with an ideal functionality F and corrupted players are

controlled by the simulator Sim. As in [BTHN10], the simulator

follows the protocol. The simulation is presented in appendix B.7.1.

For simplicity, we do the proof as if players initialized FPKI at

the beginning of every execution (parametrised by the “session-

id” (sid)). This model, known as local setup, is also assumed in

the proof of [ZBT08]. It enables the simulator to simulate FPKI ,

and thus provide fake keys to the adversary on behalf of honest

players. We explain in §B.8 how to to switch to a global setup.

In a nutshell, as formally explained in B.7.1, the simulator then

extracts the decryption shares from the adversary, since it still

simulates FZK . Furthermore, we detail in appendix B.3 how to

implementFEncInput from a broadcast and explicit NIZK.

The simulator Sim i) simulates a key setup with FPKI ii) then

plays the whole protocol to the simulated honest players with

inputs 0, using the simulated keys. iii) Finally it uses the share

simulatability introduced in §3.3 to send decryption shares to the

adversary kings, which he accompanies with a fake proof. This is

a key difference compared to [BTHN10]. It is able to do this fake

proof because it simulates FZK . This is the only place where the

simulator produces a fake proof. We refer the reader to appendix

B.6 for more details.

10

Almost-Asynchronous MPC under Honest Majority, Revisited

3.5 Complexity analysis
Let cI (resp cO , cM , cl) the number of inputs (resp outputs, multipli-

cation and linear combination gates). All ZK proofs with transparent

setup considered in 2.3.2 have size at most linear in the circut to be

proven. Furthermore, those of [AC20; ACR21] have size logarithmic

in the circuit to be proven, and can be made noninteractive by Fiat-

Shamir. Therefore, we will omit the ZK proofs from the complexity

analysis. We now analyze the overall protocol complexity.

Input distribution (synchronous) In the first step, each player

sends its input to FEncInput . Implemented with a broadcast + NIZK

PoPK, this represents O(cIn
3) elements communicated per player,

vs O(n) in [BTHN10].

Triple generation from [BTHN10] (asynchronous) The generation
of a triple requiresO(n2) randomizations, which themselves commu-

nicatesO(n) ciphertexts. A basic optimization presented in [ZBT08,

Appendix A.2] allows to reduce the amortized number of random-

izations to n. Since each of the n kings need one triple per multi-

plication stage, the total communication complexity of generating

triples is O(cMn5).

Circuit evaluation (communication size) Each linera combination

gates in the toy model of TAE requires one interaction and each

multiplication gates require two decryptions and a linear combi-

nation. Each decryption communicates O(n3) elements. Recall that

each stage is handled by each of the n kings, for a total of O(n4)
elements per stage. The evaluation of the circuit thus communi-

catesO((cM +cl)n
4) elements. However as sketched in §3.1.2, linear

combinations can be made noninteractive, which removes the term

in cl .

Circuit evaluation (latency) The evaluation of a circuit require

O(dM +dl) consecutive interactions, where dM and dl are the depth
in terms of multiplications and linear combinations. However as

sketched in §3.1.2, linear combinations can be made noninteractive,

which brings down the latency to O(dM).

Termination from [BTHN10] The termination step requires each

encrypted circuit output to be jointly decrypted to the king us-

ing PubDec.Combine, which thus learns the plaintext result z and
sends it to all slaves. Each player receiving z signs it and sends the

signature to the king. Upon receiving signature shares from t + 1
players, the king sends these signatures to all players. This guaran-

tees unicity of one (t + 1)-signed output per king. Once t + 1 kings
have finished with the same signed output, then necessarily this

must be the correct one, and all players adopt it. Each decryption

communicatesO(n3) elements and the termination process in itself

communicates O(cOn
3) elements.

4 Overview of advanced contributions
We now discuss some extensions to the Main Theorem 1. This sec-

tion is intended to give a high-level overview of our more advanced

results. Most details can be found in the appendices. Specifically,

we first detail in Section 4.2 an extension of the communication

model of [BTHN10] presented in §2.2. It enables, with the on-the-

fly encrypted randomness generation presented in section 4.3, to

achieve proactive security as detailed in section 4.4.

4.1 Proof of theorem 2
We first outline, in §4.1.1, our new triples generation protocol, de-

noted as PreProc , and details in appendix C.1 how that allows all

the honest players to terminate the protocol and to output
t+t ′
2
− t ′

random multiplication triples unknown to the adversary. We then

describe in 4.1.2 the main building blocks used to build the proto-

col. Note that the latter is independent of the threshold additive

encryption scheme. It can be instantiated either with the one con-

sidered in [CDN01; BTHN10], which requires trusted setup, or ours

in §3, which does not. Thus, we adopt generic notations: E de-

notes any threshold encryption scheme that enables (possibly with

interactions) the addition of ciphertexts (noted ⊞) and the scalar

multiplication (noted ⊡). in order to show that the generation of

multiplication triples requires a constant number of consecutive

interactions, which is independent of the number of players.

4.1.1 Outline of PreProc The triples generation protocol, presented

in figure 7, is in three steps as follows:

(1) Triple distribution In the initial broadcast round, each

player Pi broadcasts one or several triples, encrypted with

a threshold additive scheme, each of them appended with

NIZK proofs of multiplicativity.

(2) Verifiable transformation of triples Each player then ver-
ifies the correctness of the multiplication triples as detailed

in §4.1.2.A and outputs the setU of the players who broad-

casted correct multiplicative triples. Let us denote |U| := t +
1+t ′ their number

2
. Notice that, by contrast to [CHP13], this

verification is local and deterministic, thus all honest players

output the same U without needing Byzantine Agreement.

(3) Randomness extraction Finally, each player executes the

triple extraction protocol TripExt , presented in §4.1.2.C, on

the set of triples broadcasted by players in U to extract

t+t ′
2
− t ′ random multiplication triples unknown toA. This

mainly uses the triple transformation protocol presented

in §4.1.2.B. Noticeably, unlike in [CHP13], this number of

triples taken into account is variable.

This protocol only involves one broadcast and two interactive

decryptions during the extraction.

4.1.2 Main building blocks
A. Non-interactive Proof of plaintext multiplication: We first need

a protocol that allows a prover P to give a Zero-Knowledge proof

of plaintext multiplication (ZKPoPM) such that all players agree

on the outcome of the proof. A verifier V wants to verify that,

considering a triple (X ,Y ,Z), the third component Z is indeed the

product of the first two components (specifically that Z = E(x .y)
with X = E(x) (resp Y)). More formally, the prover issues a proof

a the relation Rtr ip that we formalize in the Appendix B.4.1. This

proof can also be constructed from the general circuitry techniques

detailed in §B.5, and such as examplified in §B.3, same as for the

other relations formalized in §4.1.2 which we used to construct

TAE. Recall that these generic techniques consist in exhibiting a

commitment, then proving equality between the plaintext and the

committed value, then proving the relation on the committed val-

ues. For sake of completeness, let us recall that direct proofs also

2
Recall that t ′ denotes the number of correct triples broadcast by the adversary.

11

Matthieu Rambaud and Antoine Urban

already exist in the literature for this specific purpose of multiplica-

tive relation between encrypted values. For instance: [DJ01, §4.2]

"Protocol Multiplication-mod-ns " for Paillier ciphertexts, and also

in general: [Ben+11, Fig 1] for any semi homomorphic encryption

scheme, such as Paillier or ElGamal in the exponent (§B.2.2).

B. Triples transformation: The idea is to interpolate three polyno-
mials x(.), y(.) and z(.) from the broadcasted triples and use them

to produce new values. Our protocol is adapted from the protocol

for the transformation of t-shared triples proposed in [CHP13]. The

main difference is that we don’t consider shares, but we work in-

stead on values encrypted using a threshold additive homomorphic

encryption scheme. This enables all players in an instance led by a

king Pk to run the same protocol with the same inputs and produce

the same outputs.

In greater detail, protocolTripTrans takes as input t+1+t ′ correct
triples, say {(A(j),B(j),C(j))}j ∈[t+1+t ′], whereA

(j) = E(a(j)),B(j) =

E(b(j)) and C(j) = E(c(j)) and where, for all j, it holds that c(j) =
a(j).b(j). Note the here t ′ denotes the number of correct triples
broadcasted by A. TripTrans outputs t + 1 + t ′ triples, say

{(X (j),Y (j),Z (j))}j ∈[t+1+t ′]
3
, such that the following holds: (1)

there exist polynomials x(.), y(.) and z(.) of degree atmost
t+t ′
2
, t+t

′

2

and t + t ′ respectively, such that x(αi) = x (i), y(αi) = y(i) and

z(αi) = z(i) holds for i ∈ [t + 1 + t ′]. (2) The ith output triple

(X (i),Y (i),Z (i)) is a multiplication triple ii f the ith input triple

(A(i),B(i),C(i)) is a multiplication triple. (3) If A knows t ′ input

triples and if t ′ ≤ t+t ′
2

, then he learns t ′ distinct values of x(.), y(.)

and z(.), implying
t+t ′
2
+ 1− t ′ degrees of freedom, i.e remaining in-

dependent distinct values of x(.), y(.) and z(.) that would be needed
to uniquely determine these polynomials.

The core functionality of this protocol that enables to build the

three polynomials x(.), y(.) and z(.) is inherited from the verification

of the multiplication triples from [BSFO12]. Specifically, the two

polynomials x and y are entirely defined by the first and second

components (a(i),b(i)) of the first t+t
′

2
+ 1 triples. The construction

of z(.) is not as straightforward due to the difference in degree.

We use x(.) and y(.) to compute
t+t ′
2

"new points" and use the

remaining
t+t ′
2

available triples (A(i),B(i),C(i))i ∈[t+t ′
2
+2,t+1+t ′] to

compute their products . Ultimately, z(.) is both defined by the last

components of the first
t+t ′
2
+ 1 triples and by the

t+t ′
2

computed

products. Details are presented in figure 4.

C. Randomness extraction: We present a protocol called TripExt

that extracts
t+t ′
2
− t ′ random triples unknown to A from a set

of (t + 1 + t ′) triples. The idea of the protocol is inherited from

[CHP13] and summed up as follows: from t + 1 + t ′ correct triples,
the transformation protocol is executed to obtain three polynomials

x(.), y(.) and z(.) of degree t+t ′
2

,
t+t ′
2

and t + t ′, where z = x(.)y(.)
holds. The random outputs, unknown to A, are then extracted as

{(X(βj),Y(βj),Z(βj))}j ∈[t+t ′
2
−t ′]. Details are presented in C.

3
Following our notations, X (j) = E(x (j)), Y (j) = E(y (j)) and Z (j) = E(z(j))

4.2 Novel Computation Structure
We present the new computation structure to evaluate a circuit

introduced in §1.2.2. It is not necessary for Thm 1, but is for proac-

tivity. We detail in Appendix D.6, how to wrap our TAE in this novel

computation structure.

4.2.1 Stage, and speedup wrt [BTHN10]
We break down the actual computation of a circuit into a series

of intermediary functions denoted as Stages. They represent the

incompressible steps in our protocol and are entirely defined by a

public Stage Identification tag (SID) as follows. The identity of the

king is encoded as SID.kinдNb. The function to be computed is

denoted as SID. f unction. Finally, SID.prev contains a list of SID’s

whose outputs are used as input of this stage. A stage takes as inputs

outputs from previous stages and produces an output that we call a

verified stage output (Verif0ut in short), which consists of two

elements: the result of the function SID. f unction applied to the

inputs from SID.prev and a Quorum Verification Certificates
(QVC in short) which consists in the concatenation of t + 1 signa-
tures on the result. Given a Verif0ut, we use Verif0ut.value and
Verif0ut.QVC to refer to the above-mentioned elements. Through-

out the computation, we maintain the following invariant from the

distribution to the termination:

Inv_staдe : any output of a stage signed by at least t + 1

players is a correct verified stage output. (3)

This essentially forms a chain of correctness from distribution to

termination. Note that a player cannot terminate until it knows that

all honest parties will also terminate. In [BTHN10], this requires

every player towait until they receive t+1 identical results to be sure
that at least one honest king learns the correct result. In our protocol

a signed value is correct (per Inv_staдe). Upon receiving one correct
output a player multicasts it and immediately terminates.

4.2.2 Overall structure of a Stage
In summary, a stage takes as inputs a set of verified stage out-

puts {Xi }i and produces another VerifOut whose value is equal
to SID. f unction({Xi }i). The computation of this output follows a

threshold mechanism in two steps.

contribsid : 4
a contribution function for stage SID applied by each

slave Pj on: the stage input and its private input, denoted sj,
typically its secret key.

combinesid : a public function applied on any t + 1 correct contri-
butions, such that:

from any set S of t + 1 slaves, we have

(4) Verif0ut.value = combinesid ({contribsid ({Xi }i , sj }j ∈S).

The execution of a Stage for a player is presented in figure 8 in Ap-

pendix D, along a more complete description of the data structures

used and the pseudocodes.

A king drives a Stage in two exchanges of messages called phases.
The first one is denoted as contribution phase. Each slave computes

locally the function contribsid on the inputs of the stage along with

its secret input sj . It sends the result, denoted “contribution” to the

king, appended with a NIZK proof of correctness. Upon receiving

t + 1 correct “contributions” from t + 1 distinct slaves, appended

4
To simplify notation, here sid denotes SID .f unction

12

Almost-Asynchronous MPC under Honest Majority, Revisited

with the NIZK proofs, the king Combines these t + 1 contributions
into the stage output, and appends to it a concatenation of the

proofs (denoted Combine Proof).
In the second one, denoted verification phase, the king multicasts

the above stage output appended with the concatenation of the

proofs. Upon receiving it, each slave checks correctness of the NIZK

then signs the stage output if correct. The king collects any t + 1
signatures then concatenates them. Notice that this could be re-

duced to logarithmic size, thanks to the threshold signature without

trusted setup of [ACR21, §5]. It appends them to the stage output:

altogether, this constitutes what we denote the verified stage out-
put. Noticeably, these t +1 signatures by themselves guarantee that

at least one honest player checked correctness of the stage output,

and thus guarantee its correctness. Remarkably, this is why this

data structure Verif0ut needs not to be further appended with the

previous t + 1 NIZK proofs to guarantee its correctness. Finally

note that this verification mechanism, enable any new king to take

over the computation, from the point where a former king became

corrupt and stopped, which serves to enforce proactive security.

4.3 On-the-fly Generation of
Threshold-Additive Encrypted Random
Value

We propose a linear threshold construction to produce an encrypted

random value without setup. This leverages the construction intro-

duced by Cramer-Damgård-Ishai [CDI05, §4] and denoted pseudo-
random secret sharing (PRSS) and our TAE. The former enables play-

ers to generate, without interaction, an unlimited number of shared

unpredictable random values, that come in the form of Shamir

shares, that players generate locally. We introduce the following

theorem.

Theorem 6. In the same model than Theorem 1, the player can
produce encrypted random values unknown to the adversary, in a fix
(constant) number of consecutive interactions.

We give details of Theorem 6 in appendix E as well of security

proofs. In brief, the main idea of this construction is to combine

the linearity of the PRSS with the homomorphic properties of the

TAE. This enables to generate key pairs on-the-fly which would be

used in section 4.4 to enable proactive security.

4.4 Proactive security
In §4.4.1 we define the model, denoted as “proactive”. We then

address the three threats mentionned in the introduction. Namely,

we describe in §4.4.2 how to refresh the keys, both for encryption

and for the randomness generation (§4.3), then in §4.4.3 how to

refresh the plaintext shares constituting the ciphertexts. Note that

we also provide further explanations about how our model stands

compared to previous works [SLL10] [Bar+14] [Cac+02] in F.1.

4.4.1 Model We define locally, at each player, a monotonically

increasing counter denoted as epoch number: e = 1, 2, Further-

more, we denote that a player is performing a “closing operation”

if he is currently participating to one of the sub-protocols, detailed

in §4.4.2 and §4.4.3, which consist in refreshing the keys and the ci-

phertexts. The adversary can corrupt any player at any time, but for

each positive number e , then no more than a total of t distinct play-
ers can ever be corrupted while they are in epoch e . Furthermore,

a player performing a closing operation of some epoch e which

is corrupted, counts also a corrupted with respect to epoch e + 1.
Each player has in memory: his secret key relatively of the current

epoch, his set of secret keys (rA)j ∈A for the PRSS relatively to the

current epoch, and the TAE.ciphertexts on which he is currently

operating (as a slave or king, in n simultaneous instances). The

adversary learns the memory of every player at the instant when

he becomes corrupt, and stores this information forever (even after

the player is decorrupted). Thus, to prevent the adversary to gain

too much knowledge, we assume that players are able to erase all
the material not needed anymore of their memories. Let us outline

the chronology of a closing

4.4.2 Closing of an epoch (A) The first task is to have all players in

epoch e obtain a new public / private key pair, relatively to epoch

e + 1. On the one hand, for the subset of players who still have

their keys of epoch e , we have two options to achieve this task.

(i) The simple one is to have these players erase all their memory,

generate a new key pair and publish the public key on the bulletin

board. So this requires a global clock such that, after a timeout,

players who did not publish a new key are treated as dishonest.

(ii) The more complicated option, which has the advantage not to

use the bulletin board, is to perform the Keygen protocol of §E.0.2,

once for each recipient player. This creates, for each player j , a new
key pair, such that: the private key comes as TAE.ciphertexts, with
the signature of t + 1 players attesting its correctness, which is

furthermore privately opened to j, and, such that the public key is

publicly opened. On the other hand, freshly decorrupted players

have had their memory erased, including their secret key of epoch

e , which precludes the second option. Thus, only the first option (i)

is available for them.

(B) Next, players generate new PRSS keys. For this they perform(n
n−t

)
executions of the Keygen protocol of §E.0.2. Each execution

has parameter a set A of n − t recipient players.
(C) Finally, players refresh the ciphertexts which are to be used

in future epochs, as sketched in §1.2.4 and detailed below in §4.4.3.

Note that output ciphertexts are encrypted with the fresh set of

keys. Only then, they can erase from their memory their secret

keys of previous epochs, and all plaintexts and ciphertexts related

to previous epochs.

4.4.3 Refresh of the (encrypted) shares We recall that awell formed
ciphertext cs of some secret plaintext s ∈ Fp , is an array of en-

cryptions of evaluations of a symmetric bivariate polynomial B ∈
Fp [X ,Y]t ,t such that B(0, 0) = s . Our solution is that players col-

lectively generate a ciphertext c0 of 0, in the form of an array of

encryption of evaluations of a random symmetric bivariate polyno-

mialQ ∈ Fp [X ,Y]t ,t such thatQ(0, 0) = 0. Finally, players perform

TAE.Add of cs and c0, which outputs a new ciphertext c ′s of s en-
crypted with the new keys. In detail, generation of such aQ , which

we denote as TAE.RandZero, along with summation with cs , con-
sists in two stages. Firstly each player l generates a random bivariate

polynomial Ql (X ,Y) with zero constant coefficient, then sends the

array of encryptions Ql (αi ,α j) (with exactly t + 1 nonempty rows)

to the king along with a ZK proof that the constant coefficient is

13

Matthieu Rambaud and Antoine Urban

indeed 0, that is, that Ql (0, 0) = 0. The output of this first stage

is the concatenation of any t + 1 such valid contributions. Then

in the next stage, players execute TAE.LinComb to compute the

summation of these t + 1 contributions, which is denoted c0, along
with cs . The proof of the following lemma in Appendix F.2 ensures

the privacy of this refresh.

Lemma 7. IfA corrupts no more than t parties performing a "closing
operation", the view of A during the refresh operation is distributed
independently of the plaintext s and of its view in previous epochs.

References
[Abr+21] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah

Meiklejohn, Gilad Stern, and Alin Tomescu. “Reaching

Consensus for Asynchronous Distributed Key Gener-

ation”. In: ACM PODC. 2021.
[AC20] Thomas Attema and Ronald Cramer. “Compressed

Σ-Protocol Theory and Practical Application to Plug

& Play Secure Algorithmics”. In: CRYPTO. 2020.
[ACR21] Thomas Attema, Ronald Cramer, and Matthieu Ram-

baud. “Compressed Σ-Protocols for Bilinear Group
Arithmetic Circuits and Application to Application

to Logarithmic Transparent Threshold Signatures”.

In: accepted to ASIACRYPT 2021. Cryptology ePrint

Archive, Report 2020/1447. 2021.

[Ash+12] GiladAsharov, Abhishek Jain, Adriana López-Alt, Eran

Tromer, Vinod Vaikuntanathan, and Daniel Wichs.

“Multiparty Computation with Low Communication,

Computation and Interaction via Threshold FHE”. In:

EUROCRYPT. 2012.
[Bac+14] Michael Backes, Fabian Bendun, Ashish Choudhury,

and Aniket Kate. “Asynchronous MPC with a Strict

Honest Majority Using Non-equivocation”. In: PODC.
2014.

[Bad+20] Saikrishna Badrinarayanan, Aayush Jain, NathanManohar,

andAmit Sahai. “SecureMPC: Laziness Leads to GOD”.

In: ASIACRYPT. 2020.
[Bar+14] Joshua Baron, Karim El Defrawy, Joshua Lampkins,

and Rafail Ostrovsky. “How toWithstandMobile Virus

Attacks, Revisited”. In: ACM PODC. 2014.
[BCG21] Elette Boyle, Ran Cohen, and Aarushi Goel. “Break-

ing the sqrt(n)-Bit Barrier: Byzantine Agreement with

Polylog Bits Per Party”. In: ACM PODC. 2021.
[Bea91] Donald Beaver. “Foundations of Secure Interactive

Computing”. In: CRYPTO. 1991.
[Ben+11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and

Sarah Zakarias. “Semi-homomorphic Encryption and

Multiparty Computation”. In: EUROCRYPT. 2011.
[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-

tanathan. “(Leveled) Fully Homomorphic Encryption

without Bootstrapping”. In: Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference.
ITCS ’12. 2012.

[BOKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. “Asyn-

chronous Secure ComputationswithOptimal Resilience

(Extended Abstract)”. In: ACM PODC. 1994.

[BS+18] Eli Ben-Sasson, Iddo Bentov, YinonHoresh, andMichael

Riabzev. Scalable, transparent, and post-quantum se-
cure computational integrity. iacr eprint 2018/046. shorter
version in CRYPTO’19. 2018.

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. “Near-

Linear Unconditionally-Secure Multiparty Computa-

tion with a Dishonest Minority”. In: CRYPTO. 2012.
[BT99] Fabrice Boudot and Jacques Traoré. “Efficient Pub-

licly Verifiable Secret Sharing Schemes with Fast or

Delayed Recovery”. In: Information and Communica-
tion Security, Second International Conference, ICICS’99.
1999.

[BTH08] Zuzana Beerliová-Trubíniová andMartinHirt. “Perfectly-

SecureMPCwith Linear Communication Complexity”.

In: IACR TCC. 2008.
[BTHN10] Zuzana Beerliová-Trubíniová, Martin Hirt, and Jes-

per Buus Nielsen. “On the theoretical gap between

synchronous and asynchronous MPC protocols”. In:

ACM PODC. 2010.
[Cac+02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya,

and Reto Strobl. “Asynchronous Verifiable Secret Shar-

ing and Proactive Cryptosystems”. In: ACM CCS. 2002.
[Can+02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and

Amit Sahai. “Universally Composable Two-Party and

Multi-Party Secure Computation”. In: STOC. 2002.
[Can04] Ran Canetti. “Universally Composable Signature, Cer-

tification, and Authentication”. In: CSFW. IEEE Com-

puter Society, 2004, p. 219.

[Can+07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi

Walfish. “Universally Composable SecuritywithGlobal

Setup”. In: IACR TCC. 2007.
[Can96] Ran Canetti. Studies in Secure Multiparty Computation

and Applications. 1996.
[CD20] Ignacio Cascudo and Bernardo David. “ALBATROSS:

Publicly AttestabLe BATched Randomness Based On

Secret Sharing”. In: ASIACRYPT. 2020.
[CDI05] Ronald Cramer, IvanDamgaard, and Yuval Ishai. “Share

Conversion, Pseudorandom Secret-Sharing and Appli-

cations to Secure Computation”. In: IACR TCC. 2005.
[CDN01] Ronald Cramer, Ivan Damgaard, and Jesper B. Nielsen.

“Multiparty Computation from Threshold Homomor-

phic Encryption”. In: EUROCRYPT. 2001.
[CFY16] R. K. Cunningham, Benjamin Fuller, and Sophia Yak-

oubov. “Catching MPC Cheaters: Identification and

Openability”. In: Information Theoretic Security. 2016.
[Cho+13] Ashish Choudhury, Jake Loftus, Emmanuela Orsini,

Arpita Patra, and Nigel P. Smart. “Between a Rock and

a Hard Place: Interpolating Between MPC and FHE”.

In: ASIACRYPT. 2013.
[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra.

“Asynchronous Multiparty Computation with Linear

Communication Complexity”. In: DISC. 2013.
[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup.

“Random Oracles in Constantinople: Practical Asyn-

chronous Byzantine Agreement Using Cryptography”.

In: J. Cryptol. (2005).

14

Almost-Asynchronous MPC under Honest Majority, Revisited

[CKS11] Jan Camenisch, Stephan Krenn, and Victor Shoup.

“A Framework for Practical Universally Composable

Zero-Knowledge Protocols”. In: ASIACRYPT. 2011.
[Coh16] Ran Cohen. “Asynchronous Secure Multiparty Com-

putation in Constant Time”. In: IACR PKC. 2016.
[CS03] Jan Camenisch and Victor Shoup. “Practical verifiable

encryption and decryption of discrete logarithms”. In:

CRYPTO. 2003.
[Dam00] Ivan Damgård. “Efficient Concurrent Zero-Knowledge

in the Auxiliary String Model”. In: Eurocrypt. 2000.
[Dam+09] I. Damgård, M. Geisler, M. Kroigaard, and J.B. Nielsen.

“Asynchronous multiparty computation: Theory and

Implementation”. In: IACR PKC. 2009.
[Dam+21] Ivan Damgård, Bernardo Magri, Divya Ravi, Luisa

Siniscalchi, and Sophia Yakoubov. “Broadcast-Optimal

TwoRoundMPCwith anHonestMajority”. In:CRYPTO.
2021.

[Das+21] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and

Ling Ren. SPURT: Scalable Distributed Randomness Bea-
con with Transparent Setup. iacr eprint 2021/100. 2021.

[Daz+08] V. Daza, J. Herranz, P. Morillo, and C. Ràfols. “Ad-

Hoc Threshold Broadcast Encryption with Shorter

Ciphertexts”. In: Electron. Notes Theor. Comput. Sci.
192 (2008), pp. 3–15.

[DGLS15] S. DovGordon, Feng-Hao Liu, and Elaine Shi. “Constant-

Round MPC with Fairness and Guarantee of Output

Delivery”. In: CRYPTO. 2015.
[DJ01] Ivan Damgård and Mads Jurik. “A Generalisation,

a Simplification and Some Applications of Paillier’s

Probabilistic Public-Key System”. In: IACR PKC. 2001.
[DS+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Os-

trovsky, Giuseppe Persiano, andAmit Sahai. In:CRYPTO.
2001.

[Esc+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul

Rachuri, and Peter Scholl. “Improved Primitives for

MPC overMixedArithmetic-Binary Circuits”. In:CRYPTO.
Ed. by Daniele Micciancio and Thomas Ristenpart.

2020.

[FO98] Eiichiro Fujisaki and Tatsuaki Okamoto. “A Practical

and Provably Secure Scheme for Publicly Verifiable

Secret Sharing and Its Applications”. In: EUROCRYPT.
1998.

[FS01] Pierre-Alain Fouque and Jacques Stern. “One Round

Threshold Discrete-Log Key Generation without Pri-

vate Channels”. In: IACR PKC. 2001.
[Gär99] Felix C Gärtner. “Fundamentals of fault-tolerant dis-

tributed computing in asynchronous environments”.

In: ACM Computing Surveys (CSUR) (1999).
[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.

“A Simple BGN-Type Cryptosystem from LWE”. In:

EUROCRYPT. 2010.
[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson.

“Proofs That Yield Nothing but Their Validity or All

Languages in NP Have Zero-Knowledge Proof Sys-

tems”. In: J. ACM (1991).

[Gol20] OdedGoldreich. “On (Valiant’s) Polynomial-SizeMono-

tone Formula for Majority”. In: Computational Com-
plexity and Property Testing. 2020.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “New

Techniques for Noninteractive Zero-Knowledge”. In:

J ACM (2012).

[Her+95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk,

and Moti Yung. “Proactive Secret Sharing Or: How to

Cope With Perpetual Leakage”. In: CRYPTO. 1995.
[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przy-

datek. “Cryptographic AsynchronousMulti-party Com-

putationwithOptimal Resilience (ExtendedAbstract)”.

In: EUROCRYPT. 2005.
[HV08] Somayeh Heidarvand and Jorge L. Villar. “Public Ver-

ifiability from Pairings in Secret Sharing Schemes”.

In: Selected Areas in Cryptography, 15th International
Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers. 2008.

[JVS14] Mahabir Prasad Jhanwar, Ayineedi Venkateswarlu,

and Reihaneh Safavi-Naini. “Paillier-based publicly

verifiable (non-interactive) secret sharing”. In:Designs,
Codes and Cryptography (2014).

[Lai+19] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Do-

minique Schröder, Sri Aravinda Krishnan Thyagara-

jan, and Jiafan Wang. “Omniring: Scaling Private Pay-

ments Without Trusted Setup”. In: ACM CCS. 2019.
[Mar+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang,

Andrew Low, Yupeng Zhang, Ari Juels, and Dawn

Song. “CHURP: Dynamic-Committee Proactive Secret

Sharing”. In: ACM CCS. 2019.
[OY91] Rafail Ostrovsky and Moti Yung. “How to Withstand

Mobile Virus Attacks (Extended Abstract)”. In: ACM
PODC. 1991.

[Pas03] Rafael Pass. “OnDeniability in the Common Reference

String and Random Oracle Model”. In: CRYPTO. 2003.
[Reg09] Oded Regev. “On Lattices, Learning with Errors, Ran-

dom Linear Codes, and Cryptography”. In: J. ACM
(2009).

[RSY21] Leonid Reyzin, Adam Smith, and Sophia Yakoubov.

“Turning HATE Into LOVE: Homomorphic Ad Hoc

Threshold Encryption for Scalable MPC”. In: Interna-
tional Symposium on Cyber Security Cryptology and
Machine Learning. 2021.

[RV05] Alexandre Ruiz and Jorge Luis Villar. “Publicly Ver-

fiable Secret Sharing from Paillier’s Cryptosystem”.

In: WEWoRC 2005 - Western European Workshop on
Research in Cryptology, July 5-7, 2005, Leuven, Belgium.

2005, pp. 98–108.

[Sch99] Berry Schoenmakers. “A Simple Publicly Verifiable Se-

cret Sharing Scheme and its Application to Electronic

Voting”. In: CRYPTO. 1999.
[SLL10] David Schultz, Barbara Liskov, andMoses Liskov. “MPSS:

Mobile Proactive Secret Sharing”. In: ACM Trans. Inf.
Syst. Secur. (2010).

[Sta96] Markus Stadler. “Publicly Verifiable Secret Sharing”.

In: EUROCRYPT. 1996.

15

Matthieu Rambaud and Antoine Urban

[TLP20] Georgios Tsimos, Julian Loss, and Charalampos Papa-

manthou. Nearly Quadratic Broadcast Without Trusted
Setup Under Dishonest Majority. Cryptology ePrint

Archive, Report 2020/894. https://eprint.iacr.org/2020/

894. 2020.

[Yin+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy

Golan Gueta, and Ittai Abraham. “HotStuff: BFT Con-

sensus with Linearity and Responsiveness”. In: PODC.
2019.

[YY01] Adam L. Young and Moti Yung. “A PVSS as Hard as

Discrete Log and Shareholder Separability”. In: IACR
PKC. 2001.

[ZBT08] Jesper BuusNielsen Zuzana Beerliova-TrubiniovaMar-

tin Hirt. Almost-Asynchronous MPC with Faulty Mi-
nority. Cryptology ePrint Archive, Report 2008/416.

https://ia.cr/2008/416. 2008.

[ZSR05] Lidong Zhou, Fred B. Schneider, and Robbert Van Re-

nesse. “APSS: Proactive Secret Sharing in Asynchro-

nous Systems”. In: In preparation (2005).

A Reminder of Verifiable Threshold Additive
Homomorphic Encryption

We first recall the notion of threshold additive homomorphic en-

cryption (AHE), as implemented in [CDN01; BTHN10], at the cost

of a trusted setup.

Definition 8. (Threshold Additive Homomorphic Encryption)

Let the message space M be a finite group, and let λ be the

security parameter. A threshold additive homomorphic cryptosys-

tem onM is a septuplet (AHE.Setup,AHE.Encrypt,AHE.PartDec,
AHE.Combine,AHE.Veri f y,AHE.Add,AHE.ConstMult) of proba-
bilistic, expected polynomial time algorithms, satisfying the follow-

ing functionalities:

• AHE.Setup is a randomized procedure that takes as input the

number of parties n, a threshold t where 0 ≤ t < n, and a se-

curity parameter λ ∈ Z. It outputs a vector (pk, sk1, ..., skn)
and a verification key vk . We call pk the public key and call

ski the private key share of party i . Party i is given the

private key share (i, ski) and uses it to derive a decryption

share for a given ciphertext.

• AHE.Encrypt is a deterministic procedure that returns a

ciphertext c ← AHE.Encrypt(pk, x) for any plaintext x ∈ M .

Let C denotes the ciphertext space. For brevity, let note c =
Epk(x).
• AHE.PartDec is a deterministic procedure that returns, on

input an element c ∈ C and one of the n private key share

ski , an element µi denoted as decryption share.
• AHE.Combine is a deterministic procedure that returns,

on input t + 1 decryption shares {µ1, ..., µt+1}, an element

x ← AHE.Combine({µ1, ..., µt+1}).
• AHE.Verify is a deterministic procedure that, on input the

public key pk , the verification key vk , a ciphertext c and a

decryption share µ, outputs valid or invalid. When the output

is valid we say that µ is a valid decryption share of c (and
that c is a valid ciphertext).

• AHE.Add is a deterministic procedure that, on input ele-

ments c1 ∈ Epk(x1) and c2 ∈ Epk(x2), returns an element

c3 ∈ Epk(x1 + x2). Let represent AHE.Add by ⊞, and note

Epk(x3) = Epk(x1) ⊞ Epk(x2).
• AHE.Mult is a direct extension of AHE.Add, that for any
integer a ∈ ZN and for a ciphtertext c ∈ Epk (x), returns
c ′ ∈ Epk(a.x). Let us write Epk(a.x) = a ⊡ Epk(x) .

and such that we have privacy (IND-CPA and simulatability of

decryption shares) and decryption consistency as defined below.

Privacy: IND-CPA Let us introduce the following game between

a challenger and a static adversary A. Both are given n, t , and a

security parameter λ ∈ Z as input.

Setup : The challenger runsAHE.Setup(n, t, λ) to obtain a random

instance (pk, sk1, ..., skn). It gives the adversary pk and all skj
for j ∈ S

Corruption : The adversary outputs a set S ⊂ {1, ...,n} of at most

t parties, then receives their secret keys from the challenger.

Challenge : The adversary sends two messagesm0,m1 of equal

length. The challenger picks a random b ∈ {0, 1} and lets cb =

AHE.Encrypt(pk,mb). It gives c
b
to the adversary.

Guess Algorithm A outputs its guess b ′ ∈ {0, 1} for b and wins

the game if b = b ′

The IND-CPA requirement is that the functionAdvCPAA,n,t (λ) :=��Pr [b = b ′] − 1

2

��
, denoted as the advantage of A, is negligible in λ.

Privacy: Simultability of decryption shares There exists a PPT

simulator Sim which, on input a set of indices I ⊂ [n] of size
at most t , a plaintext m, a correctly computed encryption cm of

it, and any set of valid decryption shares {µi , i ∈ I}, produces
simulated decryption shares {µ ′i }i ∈[n]\I ; such that on input: any

output (pk, sk1, ..., skn) of AHE.Setup, any set I ⊂ [n] of at most

t indices, anym, any valid ciphertext cm that decrypts tom (via

AHE.PartDec then Combine) and correctly computed decryption

shares

{
µi := PartDec(cm, ski), i ∈ I

}
, then, for any

{
µi :=

PartDec(cm, ski), i ∈ [n]\I
}
correctly computed decryption shares

for the remaining indices we have that the adversary has a negligi-

ble advantage, in λ, in distinguishing between the two distributions{
cm,m, {µi }i ∈I, Sim

(
cm,m, {µi }i ∈I

)}
and

{
cm,m, {µi }i ∈I, {µi }i ∈[n]\I

}
(5)

Decryption consistency We consider a challenger that runs

AHE.Setup(n, t, λ) to obtain a random instance (pk, sk1, ..., skn).,
then gives all this to the adversary. Then the requirement is that the

adversary has negligible probability (in λ) in producing any valid

ciphertext c along with two sets of t + 1 valid decryption shares

for c , such that their corresponding decryptions (via PartDec then

Combine) plaintexts are different.

B Complements on the proof of Theorem 1
B.1 Proof of the implementation of TAE in §3.3

Completeness We first show that the correctly computed Add
of two well formed ciphertexts c and c ′, corresponding to polyno-

mials B and B′, is itself a well formed ciphertext, corresponding to

polynomial B + B′, and thus with plaintext equal to the sum of

the plaintexts B(0) + B′(0). First, notice that, by symmetry of the

polynomials B and B′, we have that the plaintexts of the row vector

output by the Add.Contrib of player j, are exactly the evaluations

16

https://eprint.iacr.org/2020/894
https://eprint.iacr.org/2020/894
https://ia.cr/2008/416

Almost-Asynchronous MPC under Honest Majority, Revisited

[
(B + B′)(α j ,αi), i ∈ [n]

]
. Thus, considering the t + 1 filled rows

of the array output by Combine, and switching the indices i and j
in the previous formula, we have that the i-th row of this array has

its plaintexts which are equal to

[
(B + B′)(αi ,α j), j ∈ [n]

]
. Thus

by construction and Definition 5, the array output by Add.Contrib
is a well formed ciphertext of plaintext (B + B′)(0).

We do not formalize the similar statement that the LinComb of

a well formed ciphertext, is a well formed ciphertext of the linear
combination. We deduce the following proposition, which con-

cludes the proof of the first requirement of completeness:

Proposition 9. With respect to the implementations of Encrypt,
Add and more generally LinComb above, we have that the property
of being a TAE.ciphertext (Definition 4) is synonymous of being a
well formed ciphertext.

Proof. In one direction, consider a well formed ciphertext cm
of somem ∈ Fp . Then by construction of Encrypt, we have that
cm is a possible output of Encrypt(m). Thus by definition cm is a

TAE.ciphertext.
In the other direction, we have by Definition 5 that any Encrypt

of any m ∈ Fp is a well formed ciphertext. Then, by the consid-

erations above, the outputs of correctly computed Add and more

generally LinComb, when applied on well formed ciphertexts, re-
tain this property. In conclusion, by the recursive Definition 4, any

TAE.ciphertext is a well formed ciphertext. □

The second completeness criterion is that the proofs attached

to correctly generated Contributions are always accepted, which
follows from completeness of the ZK proof system.

Privacy: IND-CPA For privacy we consider for simplicity the ide-

alized model where, in all arrays in 𝒞 seen by the adversary, then

any entry which is E-ciphertext under an honest public key, can

be replaced by ⊥. First, throughout the game, each time the adver-

sary makes Add.Contrib, it is returned an array with t + 1 empty

columns and, on the t columns of which he knew the plaintexts,

the encryption of the sum of these columns under the t corrupt
public keys. Likewise for LinComb.Contrib. For PrivDec.Contrib
he receives an empty vector (⊥n). Thus, it could compute what

it receives from its requests. Second, denote JA the set of indices

of the t corrupt players. We have that the challenge ciphertext

Encrypt(mb) received by the adversary is by definition an array

with exactly t + 1 nonempty rows, of which we denote I the set

of indices. By our idealized model above, the array, as seen by the

adversary, has t + 1 empty columns. Privacy then follows from the

following Lemma 10.

Lemma 10. Fixm ∈ Fp , and consider the subset Bm of polynomials
B ∈ Fp [X ,Y](t ,t) such thatB(0, 0) =m. Consider any subsetJ ⊂ [n]
of t column indices and any subset I ⊂ [n] of t + 1 row indices. Then,
when the polynomial B varies inBm such that the nonzero coefficients
are sampled uniformly at random, then the subarray of evaluations{
B(αi ,α j)i ∈I, j ∈J

}
varies uniformly at random in a subspace of

F(t+1)×tp , which is the same for everym.

Proof. We first have that, (i) for any fixed m ∈ Fp , then the

vector of t evaluations [B(0,α j), j ∈ J] varies uniformly when

the nonzero coefficients of B vary uniformly at random. This is by

invertibility of the Vandermonde determinant. (ii) Next, in each

column j ∈ J , the t + 1 entries in I are the evaluations at the

(αi ∈I) of the polynomial B(X ,α j), which varies uniformly in the

set of polynomials of degree at most t + 1 evaluating to B(0,α j)
at 0. Thus these t + 1 entries vary uniformly in a hyperplane of

Ft+1p (since a t × t submatrix has full rank, by invertibility of the

Vandermonde determinant) which depends only on the value of

B(0,α j) Combining with (i) concludes the proof of lemma 10. □

Privacy: shares simulatability By proposition 9, since cm is a

TAE.ciphertext, we have both: exactly t + 1 rows of c are nonempty,

of which we denote I the indices, and, there is a unique symmetric

bivariate polynomial B ∈ Fp [X ,Y]t ,t such that the plaintexts on

these rows, are equal to evaluations of B. Denote J ⊂ [n] the set of
the t “corrupt” column indices. The starting point is that the simu-

lator knows the decryption share for each j ∈ J . By definition, this

decryption share is the set of the t + 1 plaintexts of the nonempty

entries of the j-th column of cm , namely, of the entries on rows

in I. They linearly determine the polynomial B(X ,α j). Thus the
simulator knows all evaluations B(αi ,α j)i ∈I, j ∈J . Thus be symme-

try of B, he knows all evaluations B(α j ,αi)i ∈I, j ∈J . In particular,

for every uncorrupt column index j ′, he knows t evaluations on
it. In order to fully determine the polynomial B(X ,α j′), and thus

all its evaluations on column j ′, it thus remains to know one more

evaluation. But, let us notice thatm and the t corrupt decryption
shares are t + 1 evaluations of the degree t + 1 polynomial B(0,Y).
Thus, they linearly determine B(0,Y). Thus, the simulator knows

the evaluations at 0 of all polynomials B(X ,α j′): this provides the
missing (t + 1)-th evaluation, as desired.

Consistency of decryptions By proposition 9, for any TAE.ciphertext
c , we have both: exactly t + 1 rows of c are nonempty, of which we

denote I the indices, and, there is a unique symmetric bivariate

polynomial B ∈ Fp [X ,Y]t ,t such that the plaintexts on these rows

are equal to evaluations of B. Since both sets of PubDec.Contrib
are valid, soundness of the ZK proofs guarantees that they are both

correct decryptions of the entries on I of t+1 column indices. Thus,

they are evaluations of the same symmetric bivariate polynomial B,
so in both cases the output of PubDec.Combine is the same B(0).

B.2 Two examples of Semi Homomorphic
Encryption (SHE) for Noninteractive
Additions in TAE

B.2.1 Example: Paillier The Paillier encryption scheme, as e.g.,

recalled in [Ben+11, §2.1], has plaintext space Z/NZ with public

key pk := N a large product of two secret primes, which themselves

constitute the secret key, and ciphertext space (Z/N 2Z)∗. For our
purpose we need that p be smaller than any such N generated

with KeyGen. Thus, if a published public key Ni is smaller than p,
then players do as if Pi did not publish a key at all, as e.g., could

happen if Pi is corrupt. Decryption in Fp returns by definition

the plaintext output by Paillier decryption if this plaintext is in

[0, . . . ,p − 1] ⊂ [0, . . . ,N − 1], else it returns abort.

B.2.2 Example: ElGamal in-the-exponent The following scheme

was used in [Sch99, §5] to instantiate a PVSS applicable to elec-

tronic voting. Notice that, although it supports a limited number

17

Matthieu Rambaud and Antoine Urban

of homomorphic additions, this scheme was not yet formalized, to

our knowledge, as a “semi-homomorphic encryption” as defined in

[Ben+11]. Let (G,д) be a group of prime order q, along with a public
fixed generator д. Precisely, we assume that the DDH problem is

hard in G, while д can be any element different from the unit. We

denote G additively, as in [ACR21]. The plaintext space of the base-

line ElGamal encryption is G, which is isomorphic to Z/qZ. The
ciphertext space is also G. KeyGen is as follows. Sample sk ∈ Z∗q at

random, and define pk := sk.д as the public key (with a multiplica-

tive notation, this would read дsk). Now, to encrypt γ ∈ G under

public key pk, sample r ∈ Fq at random and output (r .pk,γ + r .д).
Decryption is Dec

(
sk, (ciph1, ciph2)

)
:= ciph2 − 1/sk .(ciph1).

We modify this baseline scheme in order to obtain a plaintext

space equal to Fp . We consider Fp as the subset [0, . . . ,p − 1] ⊂ Fq .
Then, in turn, we map Fq to G by x → x .д (which reads дx with a

multiplicative notation), then apply the previously defined ElGamal.

This is where our terminology “in-the-exponent” comes from. Now,

decryption of a ciphertext c ∈ G consists in: applying the decryption

of the baseline ElGamal to obtain some x .д ∈ G, then try to compute

the discrete logarithm x . (Notice that this step is denoted as “can be

computed efficiently” in [Sch99], bottom of page 11.) If a discrete

logarithm x ∈ [0, . . . ,p − 1] is found, then output x mod p ∈ Fp .
Else, output abort. Thus, to enable decryption, we have another

requirement on p to require, which is that p is small enough such

that every discrete log of absolute value smaller than p can be

efficiently computed.

B.3 Implementation of Input predistribution
FEncInput is the functionality that receives plaintext inputs from

players, and broadcasts to all players a TAE.ciphertext of the re-

ceived inputs. To implement it is trivial assuming an initial broad-

cast round and the ideal functionality FN IZK for noninteractive

zero knowledge proofs, as defined in [GOS12]. Namely, players

broadcast TAE.ciphertext of their inputs along with a NIZK proof

of plaintext knowledge (PoPK).

For completeness, let us give an explicit example of succint NIZK
PoPK in the case of TAE with el Gamal in-the-exponent encryption.

The prover has a secret plaintext s ∈ Fq . Let (pki)i be the public
keys of the n players. The prover samples B =

∑
αk ,lX

kY l a secret
bivariate polynomial of degree at most t , such that α0,0 := s . He
computes the TAE.ciphertext consisting in the n × n array cs of

the el Gamal in-the-exponent ciphertexts ci , j = Epkj (B(i, j)) for all

i, j ∈ [n] (actually only t + 1 nonempty lines out of n are required).

The goal of the prover is to prove knowledge of some bivariate poly-

nomial B′ of bidegree degree smaller than (t, t), such that (ci , j)i , j
are encryptions of B′(i, j).

For each i, j, denote ri , j secret random elements of Fq sampled

by the prover to compute them. The key point is that the n × n el

Gamal ciphertexts ci , j are obtained by linear forms in the secrets

inputs of the prover, namely, the (ri , j) and (αk ,l):

(6) Epkj (B(i, j)) =

{
ri , j .pkj ,

(∑
k ,l

αk ,l i
k jlαk ,l

)
.д + ri , j .д

}
∀(i, j)

The prover is left with computing a public single compact com-

mitment P = Com

(
(αk ,l)k ,l ≤t , (ri , j)i , j≤n

)
and ZK proves that the

content of the public P satisfies the n × n affine forms (6).

Concretely, Com denotes the Pedersen vector commitment, which

is a randomized transformation Fq → G where G (of cardinality

q) is chosen to be the same group as for the el Gamal encryption

scheme. Namely, as recalled in [ACR21], this commitment scheme

uses as setup several random elements of G. They can be derived

from any public uniform random source. These elements are gener-

ators of G, which, by uniformity of the sampling, have statistically

no nontrivial linear relation between them. Thus, they enable to

commit to a vector of elements of Fq in a single compact commit-

ment.

To prove that P opens to the n × n affine forms of (6), the prover

can open each of these affine forms by the basic Σ-protocol of
[ACR21, §4.1] (which is an easy variation on Chaum-Pedersen),

made noninteractive with Fiat-Shamir. Each proof size isO(n2): the
number of inputs of the affine form. Better: recall that this basic

Σ protocol can be compressed into a proof of log(n) size, by the

mechanism of [ACR21, §4.1]. Last, recall that the size of opening

the n × n affine forms (6) can be brought down to the one of one
single linear form, i.e. O(log(n)), by the standard trick of opening

a linear combination of them by powers of a random challenge

([ACR21, p. 4.5], [AC20, §5.1]).

B.3.1 Remarks . A direct PoPK (in the univariate case) is described

in [Sch99, §3]. However, it is simpler to construct since he does not

need a blinding factor in the Pedersen commitment to the plaintext,

since he assumes that the plaintext is uniformly distributed in Fq .
Also, unlike ours, the size is not compressed nor amortized (from

O(n4) down toO(log(n))). The other remark is that there is a hidden

difficulty, which is not addressed in [Sch99, §3], and which is, in

our setting, that the prover must also provide a range proof that the

coefficients of B, αk ,l , are in the small range [0, . . . ,p − 1], in order

to guarantee that decryption of ci , j is tractable. This range proof
can be done on the same commitment P , with equally compressed

size, using the range proof detailed in [AC20].

For the case of Paillier encryption, in [FS01] they provide a NIZK

proof of equality between the plaintext of a Paillier ciphertext, and

the opening of a Pedersen commitment. An interesting question

would be to compress their proof.

B.4 Protocol details
B.4.1 Relations to be proven in ZK in the protocol

Encrypt

REncrypt =
{
cm ∈ 𝒞 ; B(X ,Y) :=

∑
i≤j

bi j (X
iY j + X jY i) ∈ Fp [X ,Y]≤t ,t :::

cm,(i , j) = Ej (B(αi ,α j)) ∀i, j ∈ [n]

∧ bi j ∈ [0, ...,p − 1] ∀i, j ∈ [n]
}

18

Almost-Asynchronous MPC under Honest Majority, Revisited

PrivDec

RPr ivDecr , j =
{
Ij ⊂ {1, . . . ,n} of size t+1 , (ci , j)i ∈Ij ∈ C

t+1 ,(
c
(out)
(i , j)

)
i=1...n ∈ C

n
;Bj [X] =

t∑
i=0

bi , jX
i ∈ Fp [X]≤t ,

(dci , j)i ∈Ij ∈ Ft+1p :::

ci , j ∈ E(d
c
i , j) ∀i ∈ Ij

∧ Bj (αi) = d
c
i , j ∀i ∈ {1, . . . ,n}

∧ c
(out)
i , j = Er (d

c
i , j) ∀i ∈ {1, . . . ,n}

}
Add

RAdd =
{
Ij ⊂ {1, . . . ,n} of size t+1 ,I

′

j ⊂ {1, . . . ,n} of size t+1 ,

(c(i , j))i ∈Ij ∈ C
t+1 , (c

′

(i , j))i ∈I′j
∈ Ct+1 , (c

(out)
(i , j))i=1...n ∈ C

n
;;;

Bj [X] =
t∑
i=0

bi , jX
i ∈ Fp [X]≤t , B

′

j [X] =
t∑
i=0

b
′

i , jX
i ∈ Fp [X]≤t ,

(dci , j)i ∈Ij ∈ Ft+1p , (dc
′

i , j)i ∈I′j
∈ Ft+1p :::

ci , j ∈ E(d
c
i , j) ∀i ∈ Ij

∧ c
′

i , j ∈ E(d
c
′

i , j) ∀i ∈ I
′

j

∧ Bj (αi) = d
c
i , j ∀i ∈ {1, . . . ,n}

∧ B
′

j (αi) = d
c
′

i , j ∀i ∈ {1, . . . ,n}

∧ c
(out)
i , j = Ei (Bj (αi) + B

′

j (αi)) ∀i ∈ {1, . . . ,n}
}

MultVerif

Rtr ip =
{
ca ∈ 𝒞 , cb ∈ 𝒞 , cd ∈ 𝒞 ;

A(X ,Y) :=
∑
i , j

ai jX
iY j ∈ Fp [X ,Y]≤t ,t ,

B(X ,Y) :=
∑
i , j

bi jX
iY j ∈ Fp [X ,Y]≤t ,t ,

D(X ,Y) :=
∑
i , j

di jX
iY j ∈ Fp [X ,Y]≤t ,t :::

REncrypt (a) ∧ REncrypt (b) ∧ REncrypt (d) ∧ a.b = d
}

In more details:

Rtr ip =
{
ca ∈ 𝒞 , cb ∈ 𝒞 , cd ∈ 𝒞 ;

A(X ,Y) :=
∑
i≤j

ai j (X
iY j + X jY i) ∈ Fp [X ,Y]≤t ,t ,

B(X ,Y) :=
∑
i≤j

bi j (X
iY j + X jY i) ∈ Fp [X ,Y]≤t ,t ,

D(X ,Y) :=
∑
i , j

di j (X
iY j + X jY i) ∈ Fp [X ,Y]≤t ,t :::

ca,(i , j) = Ej (A(αi ,α j)) ∀i, j ∈ [n]

∧ ai j ∈ [0, ...,p − 1] ∀i, j ∈ [n]

∧ cb ,(i , j) = Ej (B(αi ,α j)) ∀i, j ∈ [n]

∧ bi j ∈ [0, ...,p − 1] ∀i, j ∈ [n]

∧ cd ,(i , j) = Ej (D(αi ,α j)) ∀i, j ∈ [n]

∧ di j ∈ [0, ...,p − 1] ∀i, j ∈ [n]

∧ A(0, 0).B(0, 0) = D(0, 0)
}

B.5 Triple Generation
B.5.1 Triple Generation Protocol from [BTHN10] We detail in fig-

ure 3 the triple generation protocol that we use.

B.6 Complement on the proof of the protocol
To prove security, we show that our protocol is secure in the UC

model. Specifically, we construct a simulator Sim such that no

non-uniform PPT environmentZ can distinguish between i) the
real execution REALΠ where the players P = {P1, P2, ..., PN } run
the protocol Π and the the corrupted players are controlled by a

malicious adversary A and ii) the ideal execution IDEALF where

the players interact with functionality F and corrupted parties are

controlled by the simulator Sim. The functionality F can be seen as

a trusted party that handles the entire protocol execution and tells

the players what they would output if they executed the protocol

correctly. The environment Z chooses the inputs of the players,

may interact with the ideal / real adversary during the execution,

and at the end of the execution need to decide whether a real or

ideal execution has been taken place. The environment learns the

output of the honest players.

Recall the setup assumptions presented in §2.3, namely that there

exists functionalities FPKI and FZK that will be used to prove the

security of the protocol presented in B.4. In B.5, we give security

proofs of the triple generation mechanism before proving in B.7.1

the overall protocol.

B.6.1 Security of triple generation Although there is no agreement

among the players on the multiplication triples (A,B,C), we are
given certain guarantees about the triples (except with negligible

probability):

A. Guarantee 1: If (A,B,C) is accepted triple, then A and B are

encryptions of values a and b, andC is an encryption of ab and the

adversary is not be able to distinguish a and b from uniformly ran-

dom values. Thus, to prove security, let us consider an experiment

TripleA between an adversary A and a challenger defined as:

19

Matthieu Rambaud and Antoine Urban

Protocol GenTriple in the FZK -hybrid model

Code for slave Pi :

• Upon receiving (Pk , sid, j, (Aj ,Bj ,Cj)), player Pi :

(1) Samples uniformly random plaintexts u,v ∈ ZN
and compute U ← E(u),V ← E(v),X ← [u ⊡
Bj],Y ← [v ⊡ Aj] and Z ← [u ⊡ V] and sends

(prove, sid, (U ,u), (V ,v), (X ,Y ,Z)) to FZK .

(2) Requests output from FZK until receiving

(verification, sid, 1) that proves that : 1) u such

that U ∈ E(u) and X ∈ [u ⊡ Bj] 2) v such that

V ∈ E(v) and Y ∈ [v ⊡ Aj] 3) u such that U ∈ E(u)
and Z ∈ [u ⊡V].

(3) Sends (Aj ,Bj ,Cj ,U ,V ,X ,Y ,Z) to all parties.

• Upon receiving (Aj ,Bj ,Cj ,U ,V ,X ,Y ,Z) from Pl , player
Pi :

(1) Requests the output from FZK until receiving

(verification, sid, , 1) for (Aj ,Bj ,Cj ,U ,V ,X ,Y ,Z) and
computes Aj+1 = Aj ⊞ U ,Bj+1 = Bj ⊞ V ,Cj+1 =

Cj ⊞ X ⊞ Y ⊞ Z and sends back a signature share

σi on ((Aj ,Bj ,Cj), (Pk , sid, j, Pl), (Aj+1,Bj+1,Cj+1))

to Pl . Otherwise do nothing.

• Upon receiving t + 1 signature shares σl on

((Aj ,Bj ,Cj), (Pk , sid, j, Pi), (Aj+1,Bj+1,Cj+1)),

computes a signature σ and sends

((Aj ,Bj ,Cj), (Pk , sid, j, Pi ,σ), (Aj+1,Bj+1,Cj+1)).

Code for king Pk :

• Initialize (A0,B0,C0) = (E(1, ϵ), E(1, ϵ), E(1, ϵ)) and an

empty set Dtr iple ,sid .

• For j = 0,, t :

(1) Send (Pk , sid, j, (Aj ,Bj ,Cj)) to all players not in

Dtr iple ,sid .

(2) Upon receiving ((Aj ,Bj ,Cj), (Pk , sid, j, Pi ,σ), (Aj+1,

Bj+1,Cj+1)) with a valid signature from a player

not in Dtr iple ,sid , store this answer and add Pi to
Dtr iple ,sid .

• Send ((Aj ,Bj ,Cj), (Pk , sid, j, Pi ,σ
(j)), (Aj+1,Bj+1,Cj+1))

for j = 0, ..., t to every player.

Figure 3: Triple generation protocol

(1) Challenger runs (pki , ski) ← KeyGen()∀i ∈ [n] and gives all
the pki to A.

(2) A adaptively outputs a set S ⊂ [n] of at most t parties, and
receives their secret keys. Then he executes the triple gener-

ation protocolGenTriple and gives (A,B,C) to the challenger.
(3) The challenger chooses a random bit β ← {0, 1}.
• If β = 0, it chooses (a,b) ∈ R2 uniformly and outputs (a,b,

ab).

• If β = 1, it generates a valid outputDec(A),Dec(B),Dec(C).
(4) A gets the output and outputs a bit β ′.

The output of the experiment is 1 if β = β ′(A wins), and 0 otherwise

(A loses).

Proof. This follows from the fact that A and B are the result of

t + 1 randomizations, which implies that they were randomized by

at least one honest player Pi . Recall that a and b is the sum over t+1
randomizers uj (resp vj) with one of them being from the honest

player Pi . Moreover, every randomizing player Pj proves knowledge
of its randomizer uj (resp vj). Hence we can, by rewinding, extract

the uj and vj from the view of the adversary. Thus, distinguishing

a and b from uniformly random is equivalent to distinguishing ui
and vi from uniformly random for at least one honest Pi , which is

impossible by the semantic security of the cryptosystem. □

B. Guarantee 2: When a triple (A,B,C) for a stage sid is ac-

cepted, then the plaintexts of A and B are indistinguishable from

uniformly random values which are statistically independent from

the plaintexts of any triple accepted for any other stage sid ′ , sid .

Proof. This follows from the fact that honest parties use dif-

ferent randomizers when contributing to different multiplication

stages sid . □

C. Guarantee 3: When for the same multiplication stage sid ,
two honest parties accept the triples (A,B,C) and (A′,B′,C ′), re-
spectively, then either the plaintexts of (A,B,C) and (A′,B′,C ′) are
indistinguishable from uniformly random, statistically independent

values to the adversary, or the adversary knows the plaintexts of

A −A′ and B − B′ .

Proof. This follows from the fact that either there is at least one

honest player Pi that has randomized, with the same (ui ,vi), one
triple in some position, but not the other one in another position,

or both triples have been randomized by exactly the same set of

honest player Pi in exactly the same positions with exactly the same

(ui ,vi). In this case only the adversarially chosen randomizers are

different, and they are known to the adversary in the sense that

they can be extracted from the adversary in expected polynomial

time. □

B.7 Security of multiplication
Lemma 11 (From [BTHN10]). Assume that party Pi (resp Pj) holds
encryptionsX (i) andY (i) (respX (j) andY (j)), and gets the multiplica-
tion triple (A(i),B(i),C(i)) (resp (j)) from Pk . Then, the multiplication
protocol (recalled in Figure 5) leaks no information to the adversary.

Proof. During the protocol, Pk might learn the decryptions

f (i) = x (i)+a(i) mod N andд(i) = y(i)+b(i) mod N as well as the

decryptions f (j) = x (j)+a(j) mod N andд(j) = y(j)+b(j) mod N .

However, as X (i) and X (j) (resp Y (i) and Y (j)) are correct encryp-

tions of x andy per invariant 3, we have x (i) = x (j) = x (respy). Sim-

ilarly, (A(i),B(i),C(i)) (resp (j)) is a correct multiplication triple for a

multiplication stage sid . It follows that either 1) they encrypt values

(a(i),b(i)) and (a(j),b(j)) which are uniformly random and indepen-

dent, or 2) they encrypt values (a(i),b(i)) and (a(j),b(j)) which are

individually uniformly random and (a(j),b(j)) = (a(i),b(i))+(δa, δb)

for (δa, δb) known to the adversary. In the first case, (f (i),д(i)) and

(f (j),д(j)) are uniformly random and independent and thus together

leak no information to the adversary. In the second case, (f (i),д(i))
is uniformly random, and therefore leaks no information to the ad-

versary, and (f (j),д(j)) = f (i),д(i))+ (δa, δb) and therefore leaks no

20

Almost-Asynchronous MPC under Honest Majority, Revisited

more information than (f (i),д(i)) to the adversary, as the adversary

can compute it from (f (i),д(i)) in expected poly-time. □

B.7.1 Simulation

A. Simulating the Input distribution The simulator Sim starts

by simulating FPKI and generates the cryptographic keys by com-

puting (pki , ski) ← KeyGen(1λ) for i ∈ [N] \ I, and define pk =
(pk1, ...,pkn), where {pki }i ∈I are submitted by A for each cor-

rupted party Pi (i ∈ I). Next, Sim simulates the operations of all

honest players in the input distribution phase. Since it does not

know the input of the honest players, Sim usesm
′

j = 0 as plaintext

for every j < I and compute c j = TAE.Encrypt(pk, 0) with a simu-

lated proof πj of validity. When the adversary sends a request to

FZK for j < I on behalf of a corrupted player, Sim responds with a

confirmation of the validity of the ciphertext c j . When a corrupted

player Pi (i ∈ I) sends (prove, sid, (ci , pk), (mi , ri)) to FZK , Sim
confirms that indeed ci = TAE.Encrypt(pk,mi , ri) and storemi .

B. Simulating the Computation and Threshold-Decryption Stage
In order to simulate the honest parties in this stage, Sim proceeds

as follows. Initially, Sim computes the evaluated ciphertext c based
on the input ciphertexts of the input providers. Specifically, Sim
runs the protocol honestly for additions. Multiplications are eval-

uated using the Beaver [Bea91] technique recalled in Figure 5.

Sim runs the protocol honestly for multiplications and, as before,

aborts if some share from a corrupted player is not correct. For

every i ∈ I, Sim uses ski to compute the partial decryption share

pi = TAE.PubDec.Contrib(ski , F) (resp G). Next, for every i < I,
Sim simulated the decryption shares of F and G by leveraging the

share simulatability of the TAE as explained in §3.3 and therefore

computing pj = TAE.SimPubDec(F , {pi }i ∈I) (resp G) When the

adversary sends a request to FZK for j < I on behalf of a corrupted

player, Sim responds with a confirmation of the validity of the par-

tial decryption share pj . This is called a simulated decryption of F
(resp G)

Next, for every i ∈ I, Sim uses ski to compute the partial decryp-

tion share pi = TAE.PubDec.Contrib(ski , c). Next, considering the
output valuem, Sim leverages the simulatability of the decryption

shares of the honest party, and does a simulated decryption of c .
We go through a series of hybrid games that will be used to prove

the indistinguishability of the real and ideal worlds. The output of

each game is the output of the environment.

C. The Game REALΠ,A,Z This is exactly the execution of the

protocol Π in the real-model with environmentZ and adversary

A (and ideal functionalities (FPKI , FZK).

D. The Game Hyb1
Π,A,Z

In this game, we modify the real-

model experiment in the input distribution stage. Every honest

players Pi encrypt they actual inputs ci = TAE.Encrypt(pk,mi)

Claim 11.1. REALΠ,A,Z ≡ Hyb1
Π,A,Z

Proof. This follows from the IND-CPA security of the cryp-

tosystem. □

E. The Game Hyb2
Π,A,Z

This game is just like an execution of

Hyb
1

Π,A,Z
except for for the computation of the decryption shares

of F andG from honest players during the computationwherewe do

a simulated decryption of F and G to TAE.PubDec.Contrib(sk, F)
and TAE.PubDec .Contrib(sk,G) instead of a doing a simulated de-

cryption of F and G to the random elements f and д.

Claim 11.2. Hyb1
Π,A,Z

≡ Hyb2
Π,A,Z

Proof. This follows from lemma 11 in which we argued that the

multiplication protocol leaks no information to the adversary. □

F. The Game Hyb3
Π,A,Z

This game is just like an execution

of HybΠ,A,Z2 except for for the computation of the decryption

shares of F and G from honest players during the computation

where we do a real decryption instead of a simulated one.

Claim 11.3. Hyb2
Π,A,Z

≡ Hyb3
Π,A,Z

Proof. Recall that we are nowusing the correct inputs F (respG).
Therefore, except with negligible probability, F (resp G) contains
the value f (resp д) returned by the ideal functionality and the

simulated output is indistinguishable from the honest decryption

of F (resp G). □

G. The Game Hyb4
Π,A,Z

This game is just like an execution

of Hyb
3

Π,A,Z
except for the following difference. Whenever a cor-

rupted party requests output from FZK for sid (for j < I), the
response from FZK is (verification, sid, 1), without checking if Pj
sent a valid witness.

Claim 11.4. Hyb3
Π,A,Z

≡ Hyb4
Π,A,Z

Proof. This follows since in the execution of Π, honest parties
always send a valid witness to FZK , and so the response from FZK
is the same in both games. □

H. The Game Hyb5
Π,A,Z

This game is just like an execution

of Hyb
4

Π,A,Z
except for for the computation of the decryption

shares of honest players where we do a real decryption instead of

a simulated one.

Claim 11.5. Hyb5
Π,A,Z

≡ IDEALf ,A,Z

Proof. Recall that we are now using the correct inputsmj on

behalf of the honest players Pj (j < I). Therefore, the ideal func-
tionality and the protocol are computing on the same input values.

Thus, except with negligible probability, c contains the value m
returned by the ideal functionality and the simulated output is

indistinguishable from the honest decryption of c . □

B.8 Theorem1: Moving to a global setup
The proof of our protocol in 3.4 leverages the fact that FPKI is

initialized at the beginning of the execution, and thus that it can

be simulated by Sim. This is what enables Sim to generates fake

keys on behalf of honest players, and thus decrypt the ciphertexts

encrypted by the adversary with these keys (just as in [ZBT08, B]).

On the one hand, removing this assumption is quite simple. Indeed,

even if the actual public keys of honest players are imposed to Sim,

it can anyway extract the plaintexts to the adversary since Sim also
simulates the proof of knowledge functionality FZK (and also from

FEncInput or FN IZK , depending is we are in the pre-distributed

inputs model or in the initial round of broadcast model). Notice that

21

Matthieu Rambaud and Antoine Urban

Sim actually needs to extract all decryption shares, concretely, the

bivariate polynomial in our implementation of TAE. The reason for

this precision is that Sim needs to maintain the invariant that each

ciphertext corresponds to evaluations of a bivariate polynomial of

degree ≤ (t, t). So this makes non black box use of our implemen-

tation (or, we could specify in the protocol that decryption shares

should be extractable from the ZK proofs sent, which is the case in

the explicit relations that we specify above).

Of independent interest, one could possibly also like to imple-

ment FZK with a global setup. Concretely, instead of obtaining the

random string by a call to a random beacon, have it instead as a

fixed public parameter, known a priori by the Environment. For

instance, the decimals of Pi, or a 2009 NYT cover (as in Bitcoin).

[Pas03, p18-19] achieves it in two rounds, provided a simulator

with access to the RO queries of the adversary. [Can+07] achieves it

from a key registration that requires players to prove knowledge of
a secret key (the “FKRK ”). However, strong impossibility results for

ZK under global setup are stated by [Pas03; Can+07]. Fortunately,

lighter primitives than FZK are sufficient for MPC (as the ones of

[CKS11]).

C Proof of theorem 2
Triples transformation:

Protocol TripTrans({(A(j),B(j),C(j))}j ∈[t+1+t ′])

(1) For each j ∈ [t+t
′

2
+ 1], the parties locally set X (j) =

A(j), Y (j) = B(j), and Z (j) = C(j).
(2) Let the points {α j , x

(j)}j ∈∈[t+t
′

2
+1]

and the points

{α j ,y
(j)}j ∈∈[t+t

′

2
+1]

define the polynomials x(.) and

y(.) respectively of degree at most (t+t
′

2
).

(3) The parties compute X (j) = X(α j) and Y (j) = y(α j) for
each j ∈ [t+t

′

2
+ 2, t + 1 + t ′]. Computing a new point

on a polynomial of degree
t+t ′
2

is a linear function of

t+t ′
2
+ 1 given unique points on the same polynomial.

(4) The parties execute

EncBeaver ({X (j),Y (j),A(j),B(j),C(j)}j ∈[t+t ′
2
+2,t+1+t ′]

to compute
t+t ′
2

values {Z (j)}j ∈[t+t ′
2
+2,t+1+t ′]. Let

the points {α j , z
(j)}j ∈∈[t+1+t ′] define the polynomial

z(.) of degree at most t + t ′. The parties output

{(X (j),Y (j),Z (j))}j ∈[t+1+t ′] and terminate.

Figure 4: Triple transforamtion

Lemma 12. Let {(A(j),B(j),C(j))}j ∈[t+1+t ′] be a set of t + 1 + t ′

broadcasted triples. Then for every possible adversary A and every
possible scheduler, protocol TripTrans achieves: (1) TERMINATION:
All the honest parties eventually terminate the protocol (2) CORRECT-
NESS: The protocol outputs t+1+t ′ triples {(X (j),Y (j),Z (j))}j ∈[t+1+t ′]
such that the following holds (a) There exist polynomials x(.), y(.) and
z(.) of degree t+t ′

2
, t+t

′

2
and t+t ′ respectively. With X(αi) = E(x(αi)

for i ∈ [t + 1 + t ′] (resp Y,Z), it holds: X(αi) = X (i),Y(αi) = Y (i)

and Z(αi) = Z (i). (b) E(z(.)) = E(x(.)y(.)) holds iff all the input

triples are multiplication triples. (3) PRIVACY: If A knows t ′ ≤ t+t ′
2

un-encrypted input triples then A learns t ′ values on x, y and z

Proof. TERMINATION: This property follows from the termi-

nation property of EncBeaver (see Lemma 13).

CORRECTNESS: By construction, it is ensured that the poly-

nomials x, y and z are of degree
t+t ′
2
, t+t

′

2
and t + t ′ respectively

and X(αi) = X (i),Y(αi) = Y (i) and Z(αi) = Z (i) holds for i ∈
[t + 1 + t ′]. To argue the second statement in the correctness

property, we first show that if the input triples are multiplication

triple then E(z(.)) = E(x(.)y(.)) holds. For this, it is enough to

show the multiplicative relation E(z(αi)) = E(x(αi)y(αi)) holds for
i ∈ [t + 1 + t ′]. For i ∈ [t+t

′

2
+ 1], the relation holds since we have

X (i) = A(i),Y (i) = B(i),Z (i) = C(i) and the triple (A(i),B(i),C(i)) is

a multiplication triple by assumption. For i ∈ [t+t
′

2
+ 2, t + t ′ + 1],

we have E(z(αi)) = E(x(αi)y(αi)) due to the correctness of the

protocol EncBeaver and the assumption that the triples used in

EncBeaver , namely {(A(i),B(i),C(i))}i ∈[t+t ′
2
+2,t+1+t ′] are multipli-

cation triples. Proving the other way, that is, if E(z(.)) = E(x(.)y(.))
is true then all the input triples are multiplication triples is easy.

Since E(z(.)) = E(x(.)y(.)) , it implies that E(z(αi)) = E(x(αi)y(αi))
for i ∈ [t + 1 + t ′]. This trivially implies {(A(i),B(i),C(i))}i ∈[t+t ′

2
]

are multiplication triples. On the other hand, if some triple in

{(A(i),B(i),C(i))}i ∈[t+t ′
2
+1,t+1+t ′], say (A

(j),B(j),C(j)) is not a mul-

tiplication triple, then (X (j),Y (j),Z (j)) is not a multiplication triple

as well (by the correctness of the Beaver’s technique), which is a

contradiction.

PRIVACY: First note that if A knows more than
t+t ′
2

input

triples, then it knows all the three polynomials completely. Now

to prove the privacy, we show that if A knows the un-encrypted

input triple (a(i),b(i), c(i)), then it also knows the un-encrypted

output triple (x (i),y(i), z(i)). If i ∈ [t+t
′

2
+ 1], this follows triv-

ially since (x (i),y(i), z(i)) is the same as (a(i),b(i), c(i)). Else if i ∈

[t+t
′

2
+2, t +1+t ′], thenA knows the triple (a(i),b(i), c(i))which is

used to computeZ (i) fromX (i) andY (i). Since the values (x (i)+a(i))

and (y(i) + b(i)) are disclosed during the computation of Z (i), A

knows x (i),y(i) and hence z(i)5.

□

C.0.1 Proof of EncBeaver

Lemma 13. For every possible A and for every possible scheduler,
protocol EncBeaver achieves: (1) TERMINATION: All the honest par-
ties eventually terminate. (2) CORRECTNESS: The protocol outputs
{E(x (j).y(j))}j ∈[l]. (3) PRIVACY: The view of A is distributed inde-
pendently of the x (j)s and y(j)s.

Proof. TERMINATION: This property follows from the termi-

nation property of PubDec .
CORRECTNESS: This property follows from the fact that for each

j ∈ [l], we have x (j)y(j) = ((x (j) + a(j)) − a(j))((y(i) + b(j)) − b(j)) =

5
We recall that Z (j) = E(f (j)д(j))⊞ (−f (j) ⊡B(j))⊞ (−д(j) ⊡A(j))⊞C (j) , where

F (j) = X (j) ⊞ A(j) and G (j) = Y (j) ⊞ B(j)

22

Almost-Asynchronous MPC under Honest Majority, Revisited

EncBeaver ({X (j),Y (j),A(j),B(j),C(j))}j ∈[l])

• We recall that ⊞ denotes the homomorphic addition

and ⊡ the homomorphic multiplication by a constant.

(1) For each j ∈ [l], each party Pj computes F (j) = X (j) ⊞

A(j) and G(j) = Y (j) ⊞ B(j).
(2) For all j ∈ [l], the parties invoke PubDec(F (j),G(j)) to

publicly decrypt { f (l),д(l)}j ∈[l].

(3) For each j ∈ [l], the parties compute Z (j) =

E(f (j)д(j)) ⊞ (−f (j) ⊡ B(j)) ⊞ (−д(j) ⊡A(j)) ⊞C(j) and
terminate.

Figure 5: EncBeaver

f (j).д(j) + (−f (j)b(j)) + (−д(j)a(j)) + c(j). In particular, we have

E(x (j)y(j)) = E(f (j)д(j)) ⊞ (−f (j) ⊡ B(j)) ⊞ (−д(j) ⊡A(j)) ⊞C(j).
PRIVACY: This property is argued as follows: the only step where

the parties communicate is during the decryption of f (j) and д(j).

Now f (j) = x (j)−a(i) and the fact that a(i) is random and unknown

toA implies that even after learning f (j), the value x (j) remains as

secure as it was before from the view point of A. A similar point

can be made for д(j). □

Randomness extraction:

Protocol TripExt({(X (j),Y (j),Z (j))}j ∈[t+1+t ′])

(1) The parties execute the protocol

TripTrans({(X (j),Y (j),Z (j))}j ∈[t+1+t ′] and let

x(.), y(.) and z(.), respectively of degree t+t ′
2

,
t+t ′
2

and

t + t ′ be the associated polynomials.

(2) The parties compute Ai = X(βi),Bi = Y(βi) and Ci
= Z(βi) for i ∈ [t+t

′

2
− t ′] and terminate.

Figure 6: Randomness extraction

Lemma 14. For every possible A and for every possible scheduler,
protocol TripExt achieves: (1) TERMINATION: All the honest parties
eventually terminate the protocol (2) CORRECTNESS: The t+t ′

2
− t ′

output triples (Ai = X(βi),Bi = Y(βi) and Ci = Z(βi)) for i ∈
[t+t

′

2
− t ′] are multiplication triples. (3) PRIVACY: The view of A in

the protocol is distributed independently of the output multiplication
triples {(Ai = X(βi), Bi = Y(βi), Ci = Z(βi))} for i ∈ [t+t

′

2
− t ′].

Proof. TERMINATION: This property directly follows from the

termination property of the protocol TripTrans .
CORRECTNESS: To argue correctness, we have to show that the

triples (Ai , Bi , Ci) are valid multiplication triples for i ∈ [t+t
′

2
− t ′].

We recall that (Ai = X(βi),Bi = Y(βi) and Ci = Z(βi)). To com-

plete the proof, it is enough to show that the protocol ensures the

multiplicative relation E(z(.)) = E(x(.)y(.)) holds. However, this
immediately follows from the correctness property of TripTrans
and the fact that all the t + 1 + t ′ input triples are multiplication

triples.

PRIVACY: We show that the view of the adversary A in the

protocol TripExt is distributed independently of the multiplication

triples (Ai , Bi ,Ci). In other words, forA all possible multiplication

triples output by TripExt are equiprobable. We first recall that, by

following the privacy property of protocol TripTrans , A learns at

most t ′ points on the polynomials x(.), y(.) and z(.). Specifically,
A knows t ′ points out of {(α j , x

(j))}j ∈[t+1+t ′]. Since degree of x

is at most
t+t ′
2

, for all choice of A there exist a unique polynomial

x(.) of degree at most
t+t ′
2

which will be consistent with this point

(X(γ) =A) and with the prior knowledge of A. Thus, X(βi) =
Ai will be random to A for i ∈ [t+t

′

2
− t ′]. The same argument

allows us to claim that Bi and Ci will be random to A subject to

E(z(βi)) = E(x(βi)y(βi)) . The security property of the encryption

scheme allows us to claim that (ai , bi , ci) are unknown to A. □

C.1 The Preprocessing phase protocol

Protocol PreProc

First synchronous broadcast round

(1) Triple distribution - For i ∈ [n], evey party Pi exe-
cutes the following code:

• Act as a dealer D and broadcast a random multipli-

cation triples {(X (i),Y (i),Z (i)}.

The remaining asynchronous protocol

(2) Triple verification - For i ∈ [n], every party Pi exe-
cutes the following code:

• The parties verify Rtr ip for all triples

({(X (i),Y (i),Z (i)}i ∈[n]) and output a set U

consisting of t + 1+ t ′ parties who broadcast correct
triples.

(3) Triple extraction and termination- The parties ex-
ecute the following code:

• The parties executeTripExt({(X (j),Y (j),Z (j))}j ∈U),

output
t+t ′
2
−t ′ triples {(Ai , Bi ,C)i } for i ∈ [t+t

′

2
−

t ′] and terminate.

Figure 7: Preprocessing overview

Lemma 15. For every possibleA and every possible scheduler, proto-
col PreProc achieves: (1) TERMINATION: All honest parties terminate
the protocol. (2) CORRECTNESS: The t+t ′

2
− t ′ output triples will be

multiplication triples. (3) PRIVACY: The t+t ′
2
− t ′ output triples are

random and unknown to A

Proof. TERMINATION: The sharing instances will terminate

following the assumption of an initial synchronous round of broad-

cast. The termination of TripExt ensure that all honest parties will
terminate the protocol PreProc

CORRECTNESS: This property follows from the correctness

property ofMultVeri f and TripExt .

PRIVACY: Given that there will be at least t + 1 honest parties in
setU and that the multiplication triples broadcasted by the honest

parties are random and unknown to A, the privacy property of

23

Matthieu Rambaud and Antoine Urban

TripExt ensures that the output triple in PreProc is random and

unknown to A.

□

D Novel computation method for proactive
security

D.1 Phases description
D.1.1 Contribution phase This phase contains two distinct as-

pects. On one side each player Pi evaluates a function contribsid at

stage SID, produces partial proof πi and sends a contribution mes-

sage (noted CONTRIBMSG) to the king. On the other side, upon

receiving t + 1 valid contributions messages associated to a unique

SID, the king processes them with the function combinesid in or-

der to compute a Combine Proof 6
and multicasts the result in

a COMBMSG message. Recall that any player can verify a proof

using the function Πsid .Veri f y.

D.1.2 Verification phase Upon receiving a COMBMSG Z from a

king, each player verifies it using a veri f () function and, if success-

ful, signs the value contained in the message and sends the result in

a VERIFCONTRIB message. This marks the transitions from one

stage SID to SID ′. When the king received t + 1 VERIFCONTRIB
messages on the same Z .value , he concatenates them into a Quo-
rum Verification Certificate 6

. Then, it appends it to the output

of the stage, which is Z .value , to form a verified stage outputs,
which he multicasts to the players. The function realized by the

king that produces a VerifOut is denoted veri f Output . We recall

that a player Pi can use its private key to sign a message m, as

σi ← siдni (m). Any player can verify any signature using the

public keys and the function SiдVeri f y.

D.2 Data Structures
Messages. Amessagem in the protocol has a fixed set of fields that

are populated using theMSG() utility shown in algorithm 9. Each

messagem is automatically stamped with kinдNb, the king num-

ber that leads the computation. Each message has a typem.type ∈
{CONTRIBMSG,COMBMSG,VERIFCONTRIB,VERIFIED-OUTPUT}.

m.sid contains the Stage Identification number that contains infor-
mation about the circuit to compute. Finally,m.value contains the
material used throughout the computation. There are two optional

fieldsm.siд andm.proo f . The king uses them to carry respectively

the QVC and the CP for the different stages while the slaves used

them to carry a partial signature and a ZK proof. We recall that the

function to be computed in a stage is embedded in sid . f unction. In
summary, parties can send four types of messages:

• VERIFIED-OUTPUT: message sent by a king that contains

a VerifOut build from veri f Output .
• CONTRIBMSG: message sent by a slave that contains its

partial contribution from contribsid .
• COMBMSG: message sent by a king that contains the con-

catenated contributions and a CP from combinesid
• VERIFCONTRIB: message send by a slave that contains a

partial signature of concatenated contributions from siдn.

6
See D for more details

Combine Proof. A Combine Proof for a stage SID is a data type

that contains the concatenation of individual ZK proofs of correct

slave’s contributions. Given a Combine Proof cp, we use cp.kinдNb,
cp.sid , cp.value , cp.proo f to refer respectively to the king number,

to the stage in which the computation was carried out, to the con-

catenated result of this computation, and finally to the concatenated

proof of correct computation. We note sid .concat the concatenation
function. This proof ensures the correctness of the computation.

Quorum Verification Certificates. A Quorum Verification Cer-

tificate (QVC) over a tuple ⟨kinдNb, SID, value , cp⟩ is a data type
that concatenates a collection of signatures for the same tuple

signed by t+1 slaves. Given a QVCqvc , we useqvc .kinдNb,qvc .sid ,
qvc .value , qvc .cp to refer to the matching fields of the original tu-

ple. A tuple associated with a valid QVC is said to be a verified
stage output.

D.3 Computation structure figure
We show in figure 8 how a stage is carried out for a party Pj .
Specifically, we highlight the two phases: first the contribution

and then the verification.

D.4 Optimization
At first glance, it seems that it takes 2 roundtrips for each operation.

However, this can be reduced in two ways. First, stages can be

linearly combined. For instance, thanks to the properties of our im-

plementation presented in section 3.3, the TAE.Add and TAE.Mult
can be combined into a single stage realizing a linear combination.

This can be further combined with a TAE.PubDec stage that de-
crypts the value. Secondly, similarly to what is done in [Yin+19],

one can have the player speculatively execute the stages on some

unsigned outputs of the previous stage while they are simultane-

ously performing the verification phase on these outputs. They

abort if it turns out that these outputs cannot pass the verification.

This halves the latency of a stage to just one roundtrip.

Remark 16. Our model greatly simplifies the termination phase. A

player can halt as soon as he receives the verified final stage output

from one king. Indeed, it carries the signature of t + 1 players

attesting its correctness. By contrast, in [BTHN10], he needs to

wait to receive identical signed plaintext outputs from t + 1 kings
before halting.

D.5 Pseudocode of the structure of
computation

The protocols are given in Algorithms 11 and 12. Every party per-

forms a set of instruction based on its role, described as a succession

of "as" blocks. Note that a party can have more than one role si-

multaneously and, therefore, the execution of as blocks can be

proceeded concurrently across roles. Algorithm 9 gives utilities

functions used by all parties to execute the protocol and algorithm

10 describes specific functions used by the king.

Lemma 17. (Verification Phase) For Every possible A and for every
possible scheduler, the Verification Phase achieves: (1) TERMINATION:
All honest party will eventually terminate. (2) CORRECTNESS: For
an honest king, the phase outputs a Quorum Verification Certificate.

24

Almost-Asynchronous MPC under Honest Majority, Revisited

Figure 8: Computation stage for a party Pj . It first receives two verified stage outputs X1 and X2 from stages SID1 and SID2 and
uses its secret material sj to compute its partial contribution using contribsid . The king collects t + 1 CONTRIBMSG messages
with valid proofs, combines the contributions, and sends everything in aCOMBMSG message. Finally Pj verifies the proofs and
signs the combined contributions and the king concatenates t + 1 signatures to form a valid output message.

Proof. TERMINATION: The honest parties Pi s will terminate

the protocol trivially after sending their contributions to the king.

We now argue that an honest king will terminate the protocol as

well. LetA corruptsC parties, whereC ≤ t , and let further assume

C1 corrupted parties sendwrong contributions,C2 corrupted parties

send nothing ever andC3 corrupted parties send valid contributions,

subject to C1 +C2 +C3 = C . Since C2 parties never send any value,

the king will receive t + 1+C1 +C3 distinct contributions, of which

C1 are incorrect. Since t+1+C1+C3 ≥ t+1, the king will terminate.

CORRECTNESS : This property directly follows the termination

property. We have shown above that an honest king is guaranteed

to receive at least t + 1 correct contributions. Thus it is assured to

produce aQuorum Verification Certificate and to send it to all parties.
Eventually, all honest parties will receive a Quorum Verification
Certificate. □

Lemma 18. (Contribution Phase) For Every possible A and for ev-
ery possible scheduler, the Contribution Phase achieves (1) TERMI-
NATION: All honest party will eventually terminate. (2) CORRECT-
NESS:The phase outputs a Combine Proof

Proof. The proofs for the Contribution Phase are similar to the

proofs used for the Verification Phase □

D.6 Using TAE in our computation stages
framework

We compile the specification of a TAE, of Definition 3, into a collec-

tion of stages. We denote this collection of stages as a “MPC-friendly

TAE”, not to confuse it with a plain TAE, which is a collection of

algorithms running locally. In detail, a “MPC-friendly” TAE over

Fp is the data of: a space 𝒞 that we denote as the global ciphertext

space, and of a collection of stages, each of them producing verified
stage outputs, such that they enjoy the following properties. In

the present case where the value associated with such a verified
stage output is a TAE.ciphertext, we call this output a verified
TAE.ciphertext.

• TAE.InputpKn×𝒞∗×Π∗ → {(𝒞×Π)n } is a stage that takes
as inputs the ciphertexts broadcasted in the first round, and

returns a list of n verified TAE.ciphertext with guarantees

that: (a) all kings have the same encrypted plaintexts and (b)

for each player Pi who broadcasted cmi = Encrypt(pk,mi)

with a valid ZK proof of correct encryption during the initial

round, then cmi is in the output list at index i . Note that this
stage has not Contrib function. For the Combine function,
the king simply takes the broadcasted TAE.ciphertexts with
valid proof and fills an initially empty n−dimensional vector.

For player indices j that have not broadcast: the king writes

c j := Encrypt(pk, 0) in the vector box j , and adds a proof of

correct encryption.

• TAE.PubDec sKn × 𝒞 → Fp is a stage that takes as input a

verified TAE.ciphertext c and produces a verified plaintext

m such thatm ← TAE.PubDec(Encrypt(pk,m)).

Letm ∈ Fp be a plaintext and let c . We say that c is awell formed
TAE ciphertext ofm ∈ Fp ifm = TAE.PubDec(c). We illustrate how

Add can be wrapped in interactive stages, that produce ciphertexts

signed as valid by t + 1 players. We have the straightforward gen-

eralization to a TAE.LinComb stage. Of course one could be more

efficient and pack in one single stage, e.g., a linear combination

followed by a private opening.

• TAE.PrivDec sKn × pK × 𝒞 → C∗ is a stage that takes as
input a verified TAE.ciphertext cm and a designated player

25

Matthieu Rambaud and Antoine Urban

Utilities

Function 1MSG(type , sid , party, value , siд, proo f)

(1) m.type ← type
(2) m.sid ← sid
(3) m.value ← value
(4) m.siд← siд
(5) m.proo f ← proo f
(6) returnm

Function 2 veri f y(m)
(1) if m.type == ”VERIFCONTRIB” or m.type ==

”VERIFIED-OUTPUT” :

(2) return SiдVeri f y(m.siд)
(3) if m.type == ”CONTRIBMSG” or m.type ==

”COMBMSG”:

(4) return Πsid .Veri f y(m.value,m.proo f)

Function 3 contribsid ({mi }i ∈sid .prev , secretMaterial)

(1) V = {}
(2) for i in sid .prev :
(3) if veri f y(mi) is True:

(4) V .insert(mi)

(5) m ← MSG(CONTRIBMSG, sid,⊥, {mi .siд}mi ∈V ,⊥)

(6) m.value ←m.sid . f unction(V , secretMaterial)
(7) m.proo f ← Πsid .Prove(V , secretMaterial)
(8) returnm

Function 4 siдn(value, sj)
(1) m ← MSG(VERIFCONTRIB,m.sid .number ,m.value , ⊥

, ⊥)

(2) m.siд ← siдnj (m.kinдNb,m.type ,m.sid .number , ,
m.value , ,m.proo f)

(3) returnm

Figure 9: Utilities

Pr , and produces a ciphertext E(pkr ,m) under the public key
pkr of Pr , such that cm is a well formed ciphertext ofm.

• TAE.Add pKn ×sKn ×𝒞×𝒞 → 𝒞 is a stage that takes as in-

puts two verified TAE.ciphertexts cm , of somem ∈ Fp , and
cm′ , of somem′ ∈ Fp , and produces a verified TAE.ciphertext
cm+m′ . It is such that cm+m′ is a well formed ciphertext of
m +m′.

E On-the-fly Encrypted Random Value
Generation

We propose a linear threshold construction to produce an encrypted

random value without setup that we introduce in §E.0.1. We then

show in §E.0.2 that this construction makes possible the generation

king utilities

Function 5 veri f Output(V)
(1) qvc .sid ←m.sid .next :m ∈ V
(2) qvc .value ←m.value :m ∈ V
(3) qvc .siд← {m.siд | m ∈ V })
(4) return qvc .value,qvc

Function 6 combinesid (V)

(1) cp.sid ←m.sid :m ∈ V
(2) (cp.value, cp.proo f) ← m.sid .concat({(m.value,

m.proo f) | m ∈ V })
(3) return cp

Figure 10: King Utilities

Verification Phase

(1) as a king:
(2) V = {}
(3) Upon receiving a VERIFCONTRIB message m:

(4) if veri f y(m) is True:
(5) V .insert(m)
(6) Wait for t + 1 successful verification:
(7) out,qvc ← veri f Output(V)
(8) Multicasts MSG(VERIFIED-OUTPUT,m.sid,

out,qvc .siд,⊥)
(9) as a slave:
(10) Upon receiving a COMBMSG message m:

(11) if veri f y(m) is True:
(12) Send to king siдn(m, sj)

Figure 11: Verification Phase

Contribution Phase

(1) as a king:
(2) V = {}
(3) Upon receiving a CONTRIBMSG message m:

(4) if veri f y(m) is True:
(5) V .insert(m)
(6) Wait for t + 1 successful verification:
(7) cp ← combinesid (V)
(8) MulticastMSG(COMBMSG, sid, cp.value,m.qvc,

cp.proo f)
(9) as a slave:
(10) Send to king contribsid ({m}, sj)

Figure 12: Contribution Phase

of pairs of public/private keys as well as proactive security. Finally,

in §E.0.3, we detail an implementation in our computation structure.

Let first define Fkд : Sk → K that goes from a private key space

Sk to a a public key space K , as a generic function that derives a

26

Almost-Asynchronous MPC under Honest Majority, Revisited

public key in K from a private key in Sk . Depending on the type of

keys, different circuits can be computed in Fkд . For instance, we
assume a black-box access to a Pseudorandom function (PRF) with

private key space SkPRF .

E.0.1 Encrypted Randomness Generator We define a stage, denoted

TAE.Rand, which has a specification close to a Threshold Coin, as

introduced in [CKS05, §4.3.]. Each TAE.Rand stage is parametrized

by a public coin number, which is encoded in the SID, and takes

as public inputs a vector pk of public keys. It outputs a verified
TAE.ciphertext cr of a value r ∈ Fp , that enjoys the following

properties

(1) Robustness: two distinct calls to TAE.Rand with the same

coin number, output a TAE.ciphertext of the same r .
(2) Unpredictability : consider that the Adversary A, which

maliciously controls t players, can ask a polynomial number

of executions of TAE.Rand on coin numbersCi of his choice,
and asks to TAE.PubDec for any of the outputs previously

produced by these executions. Then, upon choosing a coin

number Ci of its choice which was not previously publicly

decrypted, A has a negligible advantage in distinguishing

whether it is given a value r ′ sampled at random in Fp , or,
the actual TAE.PubDec output r of TAE.Rand executed on

the coin number Ci .

Notice in particular that robustness implies that, two stages with

different Kings executing TAE.Rand on the same coin number,

output a ciphertext of the same value r .

First implementation using broadcast This can be easily imple-

mented during the initial synchronous broadcast round by letting

every party sharing a random value; the sum of the shared random

values will be common and random to every party. Our goal is to

go beyond this naive idea and to propose a randomness generator

that works in an asynchronous network.

On-the-fly encrypted randomness generator without broadcast To
build TAE.Rand without broadcast, we leverage the construction

introduced by Cramer-Damgård-Ishai [CDI05, §4] and denoted

pseudorandom secret sharing (PRSS). It enables players to generate,

without interaction, an unlimited number of shared unpredictable

random values. They come in the form of Shamir shares, that players

generate locally.

We recall in E.1 the PRSS construction, that we enrich with, si-

multaneously: encryption of the output and public verifiability, as
follows. First, we enrich the secret keys with public keys, namely,

we consider: an algorithm Fkд : ∅ → (sKPRSS ,pKPRSS). Second,
we consider a TAE, with plaintext space Fp and ciphertext space de-

noted as 𝒞, and consider any fixed set of n public keys pk
1
, . . . , pkn .

In what follows, the TAE encryption will be implicitely performed

relatively to this set of public keys. We enrich PRSS with a proof

algorithm that, on input the set of secret keys (rA)l ∈A of some

player l and some seed a ∈ S, issues a proof that the (encrypted)
output of Encrypt(PRSS(l,a)) is correctly computed. This proof

is checked against the set of public keys of player l : (pkA)l ∈A. It
is validly checked as soon as all key pairs (rA, pkA) are correctly
generated with Fkд . For sake of concreteness,we illustrate in E.2

an implementation of the previous ingredients, based on the one of

our TAE in §3.3, and we detail an implementation of the stage in

§E.0.3.

E.0.2 Distributed Key Generation We define KeyGenj ,Fkд as a set

of stages. Informally, it produces a ciphertext Ej (sk′j) of a private
key sk′j ∈ sK and the public key pk′j ∈ K derived from sk′j . This
simple idea needs to be carried out on the p-adic decomposition

of the sk′j , since the output of TAE.Rand belongs to Fp , and not to

Sk . We denote logp |sK| the number of elements of Fp necessary

to encode an element of sK . We define KeyGenj ,Fkд as the four

followings steps:

(1) cskj ← TAE.Rand.value: use TAE.Rand to produces a vec-

tor of TAE.ciphertext denoted as (csk lj
)l ∈1, ...,logp |Sk |

(2) Invocation of TAE.PrivDecj on the (csklj
)l ∈1, ...,logp |sK | . From

the output, Pj can deduce his private key sk′j
(3) Evaluation of the circuit which implements Fkд applied on

the vector (cskj ,l)l ∈1, ...,logp |sK | to produce

(cpklj
)l ∈1, ...,logp |sK | .

(4) Invocation of TAE.PubDec to open them, and obtain pkj by
p-adic summation

E.0.3 Implementing TAE.Rand The initial step is to implement

the trusted dealer of PRSS keys, by the distributed key generation

protocol of §E.0.2. The calls to TAE.Rand required in this initial step,

can either be implemented with the broadcast, or, recursively, from

previous calls to TAE.Randwith the broadcast-free implementation

that we are describing now.

TAE.Rand comes as two consecutive stages. The first one takes no

input. The second one outputs a TAE.ciphertext, cs such that the

plaintext s ∈ Fp is unpredictable for an adversary corrupting at

most t players.
The first stage takes as parameters a fresh seed a. To be con-

crete, notice that, in the implementation sketched above in §E.0.1,

then a comes as a set of (t + 1)(t + 2)/2 fresh distinct seeds ai , j ∈
S. Its contribution function is as follows: each player outputs

Encrypt(PRSS(j,a)), along with a proof of correctness, as spec-

fied in E.0.1. Its combination function simply takes as input a set

of contributions issued by any set L ⊂ {1, . . . ,n} of t + 1 distinct

players:

{
(cl , π l), l ∈ L

}
, such that the proofs of correctness π l

are verified, and outputs the concatenation of them along with the

proofs.

The second stage takes as input such a set of t + 1 contributions

{(cl , π l), l ∈ L}. Let λl ∈L be the Lagrange linear reconstruction

coefficients associated to the subset L. Then, the output of this

second stage is the linear combination

(7) cs(a) := TAE.LinComb(λl)l∈L
(
{cl }l ∈L

)
.

Proposition 19. The output of these two consecutive stages has the
unpredictability property defined as in the game below.

A proof of proposition 19 is given in E.3.

Efficiency consideration We note that the main limitation of the

PRSS [CDI05] is that the size of the keys is in

(n
t
)
; however in most

practical applications of threshold cryptography, the number of

parties n is indeed expected to be small.

27

Matthieu Rambaud and Antoine Urban

E.1 Reminder of Pseudorandom Secret Sharing
(PRSS)

The public parameters of a PRSS over Fp , are public sets denoted
sKPRSS : the space of secret keys, and S the space of seeds, a pseu-

dorandom function (PRF) ψ : sK × S → Fp . The initialization of

a PRSS assumes that a trusted dealer gives, to each player, several

secret keys as follows. For each subsetA ⊂ {1, . . . ,n} of cardinality
n − t , sample rA ∈ sKPRSS at random, and give it to exactly the

players in A. Now, when they need to generate shares of a new ran-

dom value, then players deterministically select a new seed a ∈ S
which was not used before, then each player Pl locally outputs

(8) PRSS(l,a) :=
∑

|A |=n−t , l ∈A

ψrA (a) · fA(l)

Where fA is a fixed public polynomial that we do not specify. Then,

by Lemma 3 PRSS(a) is linearly reconstructible from any t + 1

shares.

E.2 PRSS Implementation
In this implementation, the new space of seeds is S(t+1)(t+2)/2.

Consider a player l , with inputs its set of secret keys (rA)l ∈A, a

seed a and pk
1
, . . . , pkn the set of public keys. Pl computes bli , j :=

PRSS(l,ai j) on (t + 1)(t + 2)/2 fixed public distinct seeds: ai , j ∈ S,
they are the (t + 1)(t + 2)/2 coefficients of a symmetric bivariate

polynomial Bl (X ,Y) ∈ Fp [X ,Y](t ,t). Second, it computes the the

array of its evaluations, on the (αi ,α j) for i, j ∈ [n]
2
, then encrypts

the entries in each column j with j’s public key. Third, it produces
a proof πRand, j of correct computation of the whole. Namely, of

simultaneously: correct evaluation of the PRSS(l,ai j), evaluation
at the (αi ,α j), followed by correct encryption.

E.3 Proof of proposition 19
The challenging oracle initializes n public/secret key pairs, and

samples

(n
t
)
PRSS keys rA at random. On each corruption request

for an index j ∈ [n], for a total of at most t indices, the oracle reveals
to the adversary the secret key and the (rA)A∋j . Upon request of a

seed a, the oracle returns the n−t correctly computed contributions

of uncorrupt keys, then, returns the output cs(a) of the linear recon-
struction of the ciphertext coin, as in (7). The guessing advantage of

the adversary is the difference between the probability of guessing

the value of the plaintext coin s(a), and 1/p.

Correctness Let us briefly justify that the output of the two stages
is indeed a TAE.ciphertext of the shared coin produced by the PRSS

on seed a. This is because that (7) applies linear reconstruction ho-

momorphically on TAE-encrypted Shamir shares, and therefore,

produces a TAE.ciphertext of the (linear) reconstruction of the

Shamir-shared PRSS coin.

Unpredictability Suppose by contradiction that there exists an

adversary A who has nonnegligible advantage in the following

predictability game. We are going to show how such a A can be

used to construct an adversary A ′ who has nonnegligible advan-

tage against the challenging IND-CPA oracle O′ of TAE, which
is a contradiction. A ′ initiates the adversary A, and samples

(n
t
)

PRSS keys rA at random. From now on, A ′ plays the role of the

challenging unpredictability oracle towards A. A ′ forwards to A

the public keys initialized by O′. On every corruption request for

an index j from A, A ′ forwards it to O′. Then on response of O′

the secret key skj , A ′ forwards it to A, along with the RO j . We

assume for simplicity that A makes exactly t distinct corruption
requests, and denote J ⊂ [n] their indices. After the corruption
phase, A gives to A ′ a challenge seed a. Using the PRSS keys rA
of the t + 1 uncorrupt players, A ′ computes their PRSS shares

PRSS(j,a)j ∈[n]\J and deduces the plaintext value s(a). A ′ then
gives to O′ two challenge plaintexts:m0 := a, and anym1 ∈ Fp
distinct fromm0.

Then O′ returns one challenge ciphertext cb to A ′. Now, let us

recall that, since s(a) and the t corrupt PRSS shares PRSS(j,a)j ∈J
are t + 1 evaluations of the degree t + 1 polynomial of the PRSS

Shamir sharing, then the uncorrupt PRSS shares are linear com-

bination of them. Let us denote as “Lagrange” the coefficients in-

volved. A ′ computes TAE.ciphertext of the t corrupt PRSS shares:
Encrypt(PRSS(j,a))j ∈J , and queries LinComb on cb and these

t ciphertexts, with the Lagrange coefficients, to deduce t+1 prospec-

tive uncorrupt encryptions of PRSS shares:
�PRSS(j,a)j ∈[n]\J , which

he forwards to A as the challenge. Recall that, by construction, if

cb is a TAE.ciphertext of s(a), then these prospective uncorrupt en-

cryptions are exactly TAE.Rand contributions of uncorrupt players

indices. Therefore, if we are in this case, then A has nonnegligible

distinguishing advantage.

Finally, on output a valuem fromA: ifm = s(a), thenA ′ outputs
b := 0 to O′, and otherwise he outputs b := 1 to O′.

F Proactive Security
F.1 Model
F.1.1 Similarities with [Bar+14] The model of [Bar+14], is defined

under a synchrony assumption where the time is divided into

rounds of synchronous communications. The similarity of our cor-

ruption model with theirs, is that they also consider separately the

specific time periods in which players refresh their shared secrets.

They denote these time periods as “refreshment phases”, divided

between two parts denoted as “opening” and “closing”. While in

our model above, we denote them simply as “closing”. Since there is

no global clock in our asynchronous model, it makes no more sense

to say that players are together doing a “closing”. This is why we

defined “closing” relatively to each player. The common point with

[Bar+14], is that a player corrupted while performing a “closing”

of some epoch e , counts as both corrupt in epoch e and in epoch

e + 1. Anticipating, the rationale for this is that such a player has

simultaneously in memory: his plaintexts columns in clear of all

ciphertexts relative to epoch e , and also has his secret decryption

key relatively to epoch e + 1.

F.1.2 Differences with [SLL10]

The first difference is that [SLL10] assumes that players have ac-

cess to a public-key encryption scheme E which is forward secure.

Recall that a forward secure scheme provides local algorithms to

update both the public and private keys. However, [SLL10] do not

specify how a freshly decorrupted player, who lost all his memory

including his decryption key, proceeds to inform all other play-

ers of a new public key. Hence, solving this issue would probably

28

Almost-Asynchronous MPC under Honest Majority, Revisited

require assuming anyway, like we did in §4.4.2, that freshly decor-

rupted players have access to a public bulletin board of keys at the

beginning of each epoch.

This allows us not to make the forward-security assumption. The

advantage of not making this assumption, is that we have access to

the encryption schemes of Paillier and ElGamal-in-the-exponent.

Hence, they enable efficient ZK proof systems, as required by our

implementation of 3.3, of whom we sketch an efficient instantiation

in §B.3.

The second difference is that in [SLL10], the closing operation of

an epoch is not guaranteed to take a predetermined finite number

of consecutive exchanges. Indeed, the closing of an epoch succeeds

only if a designated player, which they denote “primary”, is honest,

and benefits from a fast enough network (also known as “partial

synchrony” condition). Indeed, they explain in (6) of §5 that, if this

primary is not able to have players refresh their shares of secrets

in a timely delay, then “the group will carry out a view change,

elect a new primary, and rerun the [refresh] protocol.” By contrast,

our specification the “closing”, which includes the implementation

§4.4.3, takes a (small) constant number of stages.

F.1.3 Differences with Cachin-Kursawe-Lysyanskaya-Strobl [Cac+02]
The first difference is that they assume that encryption and decryp-

tion are performed locally at each player by a trusted hardware.

They furthermore assume that each pair of players creates a new ses-

sion key at each epoch, but that the public keys remain unchanged
7
.

So this is orthogonal with our specification of TAE, which is a

public key encryption mechanism, such that the adversary sees

every TAE.ciphertext sent on the network. There is a second rea-

son for which such a hardware assumption is incompatible with

TAE. Indeed, TAE requires players to produce complex ZK proofs of

statements that combine, e.g., correct encryption with polynomial

evaluations. Players would not be able to produce such ZK proofs

if the witness, which is the secret key corresponding to their public

key, was concealed in a hardware.

The second difference is that they assume that the adversary

obeys the constraint that all messages sent to a player relatively to

epoch e , are delivered to this player while it is in epoch e (page 18 :
“Note that this definition guarantees that the servers complete the re-

fresh only when the adversary delivers messages within [epochs]”).

Without this constraint, they stress that secrets may be lost during

the refresh (“Otherwise, the model allows the adversary to cause

the secret to be lost, in order to preserve privacy.”). By contrast,

we need not make this delivery assumption within an epoch. In-

deed, our closing requires players to stay locally in an epoch, until

they have obtained their new keys and all refreshed ciphertexts

relatively to the next epoch. Thus, since the t + 1 honest players
obey this rule, they are collectively able to continue computing on

ciphertexts (then decrypt the output).

7
“The communication link between every pair of servers is encrypted and authen-

ticated using a phase session key that is stored in secure hardware. A fresh session

key is established in the co-processor as soon as both enter a new phase, with authen-

tication based on data stored in secure hardware (if a public-key infrastructure is used,

this may be a single root certificate). Thus, even if the adversary corrupts a server, she

gains access to the phase session key only through calls to the co-processor.”

F.2 Proof of lemma 7
Proof. We consider a well formed ciphertext cs of some secret

plaintext s ∈ Fp relatively to some epoch e , and denote B the

underlying bivariate polynomial. We denote I the set of the t + 1
indices of the nonempty rows of c ′s , and JA the set of indices of

the at most t corrupt players in epoch e + 1. During the closing,

A receives an array of E-ciphertexts of evaluations of B + Q on

the rows I. We make the same idealized assumption on E as in the

proof §B.1 of privacy of our implementation of TAE. Namely, we

consider that the adversary received exactly the (t + 1) × t plaintext
evaluations of B′ := B +Q at

{
αi ,α j

}
i ∈I, j ∈J while the columns

with indices [n]\JA can be considered as empty.

Now, since at least one honest player contributed to Q (with an

additive contribution Ql
), we have that the nonzero coefficients

of B′ := B + Q vary uniformly at random, independently of the

coefficients of B. Thus by lemma 10 applied tom := 0, the subarray

of plaintext evaluations of B′ := B +Q at

{
αi ,α j

}
i ∈I, j ∈J , varies

uniformly in a subspace of F(t+1)×tp , independently of the subarray

of evaluations of B at the same points. □

29

	Abstract
	1 Introduction
	1.1 Main contribution: Threshold-Additive Encryption (TAE) with Transparent Setup
	1.2 Advanced contributions
	1.3 Related Work since podc10

	2 Model and Definitions
	2.1 Overall Goal
	2.2 Reminder of [PODC'10]podc10
	2.3 The new transparent setup for Theorem 1
	2.4 Cryptographic primitives

	3 Proof of Theorem 1
	3.1 Overview of Threshold-Additive Encryption (TAE) with Transparent Setup
	3.2 Specification of a TAE (toy model)
	3.3 Implementing TAE
	3.4 Proof of Theorem 1
	3.5 Complexity analysis

	4 Overview of advanced contributions
	4.1 Proof of theorem 2
	4.2 Novel Computation Structure
	4.3 On-the-fly Generation of Threshold-Additive Encrypted Random Value
	4.4 Proactive security

	A Reminder of Verifiable Threshold Additive Homomorphic Encryption
	B Complements on the proof of Theorem 1
	B.1 Proof of the implementation of TAE in §3.3
	B.2 Two examples of Semi Homomorphic Encryption (SHE) for Noninteractive Additions in TAE
	B.3 Implementation of Input predistribution
	B.4 Protocol details
	B.5 Triple Generation
	B.6 Complement on the proof of the protocol
	B.7 Security of multiplication
	B.8 Theorem1: Moving to a global setup

	C Proof of theorem 2
	C.1 The Preprocessing phase protocol

	D Novel computation method for proactive security
	D.1 Phases description
	D.2 Data Structures
	D.3 Computation structure figure
	D.4 Optimization
	D.5 Pseudocode of the structure of computation
	D.6 Using TAE in our computation stages framework

	E On-the-fly Encrypted Random Value Generation
	E.1 Reminder of Pseudorandom Secret Sharing (PRSS)
	E.2 PRSS Implementation
	E.3 Proof of proposition 19

	F Proactive Security
	F.1 Model
	F.2 Proof of lemma 7

