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Abstract Let n be a positive integer. An n-stage Galois NFSR has n registers
and each register is updated by a feedback function. Then a Galois NFSR is called
nonsingular if every register generates (strictly) periodic sequences, i.e., no branch
points. In this paper, a generic method for investigating nonsingular Galois NFSRs
is provided. Two fundamental concepts that are standard Galois NFSRs and the
simplified feedback function of a standard Galois NFSR are proposed. Based on
the new concepts, a sufficient condition is given for nonsingular Galois NFSRs. In
particular, for the class of Galois NFSRs with linear simplified feedback functions,
a necessary and sufficient condition is presented. Hopefully, some new insights are
provided on determining nonsingular Galois NFSRs.

Keywords Stream ciphers · nonlinear feedback shift registers · Galois configura-
tion · periodic sequences

1 Introduction

Shift registers, including linear feedback shift registers (LFSRs) and nonlinear feed-
back shift registers (NFSRs), were popular building blocks for hardware-oriented
stream ciphers. Since primitive linear feedback shift register sequences were proven
to have large periods and balancedness, early stream ciphers such as A5/1 used in
the GSM, E0 used in the Bluetooth protocol, and SNOW-3G which is one of 3GPP
LTE cryptographic algorithms were designed based on LFSRs. Over the years, it
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Fig. 1: An n-stage Fibonacci NFSR

is found that LFSR-based stream ciphers were susceptible to correlation attack-
s [1–4] and algebraic attacks [5,6]. Therefore, recent lightweight stream ciphers all
turn to nonlinear feedback shift registers (NFSRs). Trivium, an International Stan-
dard of lightweight stream ciphers (ISO/IEC 29192-3:2012) and one of eSTREAM
hardware-oriented finalists, is built on a 288-stage NFSR [7]. Grain-128a [8], an In-
ternational Standard for air interface for RFID systems (ISO/IEC 29167-13:2015),
is built on a 256-stage NFSR. Besides, Kreyvium [9], Grain-v1 [10], and Acorn [11]
are all well-known NFSR-based stream ciphers.

There are two configurations to implement NFSRs, say the Fibonacci con-
figuration and the Galois configuration. Let n be a positive integer. A typical
n-stage Fibonacci NFSR is depicted in Figure 1, where the Boolean function
g(x0, x1, . . . , xn−1) is called the feedback function of this Fibonacci NFSR. It can
be seen that for the Fibonacci NFSR in Figure 1, at each time instance, the con-
tent of xi is transferred into xi−1 for 1 ≤ i ≤ n−1 and a new bit computed by the
feedback function g is used to update xn−1. Thus for a Fibonacci NFSR which is
not a cycling register, there is one and only one register updated by a feedback
function while all the other registers are updated by shifting. A diagram of an
n-stage Galois NFSR is shown in Figure 2, and the vector Boolean function

F = (f0(x0, x1, . . . , xn−1), f1(x0, x1, . . . , xn−1), . . . , fn−1(x0, x1, . . . , xn−1))

is called the feedback function of this Galois NFSR. It can be seen from Figure 2
that the Galois configuration is more complex and generalized than the Fibonac-
ci configuration, since for a Galois NFSR every register could be updated by a
nontrivial feedback function. This yields that Galois NFSRs are more difficult to
analyze.

Recall that for a binary sequence s = (s(t))∞t=0, it is called a (strictly) periodic
sequence if there is a positive integer T such that s(t + T ) = s(t) for all t ≥ 0.
We say a Galois NFSR is nonsingular if and only if the outputting sequence of
every register is periodic. It is a fundamental principal in stream ciphers that only
nonsingular Galois NFSRs could be used as a main register. Although so far all
particular Galois NFSRs used in stream ciphers, such as Trivium and Grain-128a,
were shown to be nonsingular, there is no general theory on the problem how to
determine a Galois NFSR is nonsingular from a mathematical standpoint.

In [12, Chapter VI], Golomb gave a classic result on nonsingular Fibonacci
NFSRs. It was proved in [12, Chapter VI] that a Fibonacci NFSR with the feed-
back function g(x0, x1, . . . , xn−1) shown in Figure 1 is nonsingular if and only if
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Fig. 2: An n-stage Galois NFSR

g(x0, x1, . . . , xn−1) can be decomposed into

g(x0, x1, . . . , xn−1) = x0 ⊕ g1(x1, x2, . . . , xn−1).

As for identifying nonsingular Galois NFSRs, Golomb just mentioned two criteria
in [12, Page 22]1. One criterion is that the “Jacobian” of the feedback function is
nonzero. The other one is very vague which said that there was a criterion which
involves conditions on expressions of the type fj(x1, x2, . . . , xn)⊕xi. Since the non-
singular property of Fibonacci NFSR is adequately understood, if a Galois NFSR
is equivalent to a Fibonacci NFSR, then the nonsingularity property inherently
follows from the Fibonacci NFSR. In [13], the author proposed a transformation
from a given Fibonacci NFSR to a Galois NFSR. When the given Fibonacci NFSR
is nonsingular, a class of nonsingular Galois NFSRs can be obtained. Very recently,
in [14] the authors proposed two types of Galois NFSRs called Triangulation-I and
Triangulation-II and identified nonsingular NFSRs included in them respectively.

In this paper, we will give a generic method for investigating nonsingular Ga-
lois NFSRs, which is distinct from the two criteria mentioned in [12, Page 22] and
also distinct from Triangulation-I and -II given in [14]. The basic idea is properly
classifying Galois NFSRs and describing some kind of standard forms. This facili-
tates us to formulate some reasonable conditions. First, we give the definition for
two Galois NFSRs being equivalent and introduce the concept of standard feed-
back functions. For a class of equivalent Galois NFSRs, it suffices to consider the
standard NFSR. Furthermore, simplified feedback functions and critical matrices
whose entries are Boolean functions are proposed. Second, based on some obser-
vations on the algebraic normal form of a general standard feedback function, a
sufficient condition for nonsingular Galois NFSRs is given. Finally, for standard
NFSRs with linear simplified feedback functions, they are proved to be nonsingular
if and only if the determinants of their critical matrices are equal to 1. Generally,
a critical matrix is very small whose size is independent of the bit length of the

1 A Galois NFSR is called an autonomous binary machine in [12]. Please refer to Fig. II-14
in [12].



4 Xiao-Juan Wang et al.

NFSR, and so its determinant is easy to compute. Some practical examples of the
application of the criterion are provided.

The paper is constructed as follows. In Sect. 2, we give some necessary intro-
ductions to Boolean functions and Galois NFSRs. Two fundamental concepts that
are standard Galois NFSRs and the simplified feedback function of a standard
Galois NFSR are proposed in Sect. 3. Meanwhile, a sufficient condition for general
Galois NFSRs is given in Sect. 4. Sect. 5 is largely devoted to the proof of our
necessary and sufficient condition for Galois NFSRs with linear simplified feedback
functions. Some applications of our main results are discussed in Sect. 6. Sect. 7
shows that our criteria are distinct from previous results. Finally, conclusions are
drawn in Sect. 8.

Throughout the paper we use the following notations. Let N∗ denote the set of
positive integers. The operations “+” and “−” denote the ordinary integer addition
and subtraction, respectively. The operation “⊕” denotes the addition modulo 2.
The finite field of two elements is denoted by F2 and for any positive integer n,
the n-dimensional vector space over F2 is denoted by Fn

2 .

2 Preliminaries

In this section, we give some basic definitions and notations on Boolean functions
and NFSRs.

2.1 Boolean functions

Let n ∈ N∗. An n-variable Boolean function f(x0, x1, . . . , xn−1) is a function from
Fn
2 into F2. In particular, 0 and 1 are constant Boolean functions. The set of all n-

variable Boolean functions is denoted by Bn, and the set of all Boolean functions is
denoted by B, i.e., B =

∪
n∈N∗ Bn. The algebraic normal form (ANF) of a Boolean

function f(x0, x1, . . . , xn−1) is given by

f(x0, x1, . . . , xn−1) =
⊕

α=(α0,α1,...,αn−1)∈{0,1}n

uf,α ·

n−1∏
j=0

x
αj

j

 ,

where uf,α ∈ F2 and xα0
0 xα1

1 · · ·xαn−1

n−1 is called a term. The algebraic degree of f ,
denoted by deg(f), is defined by

deg(f) = max{wt(α)|uf,α ̸= 0},

where wt(α) is the Hamming weight of α. If deg(f) = 1, then f is called affine;
furthermore, if f(0, 0, . . . , 0) = 0, then f is called linear.

The set of Boolean functions together with Boolean function multiplication and
addition is a ring, called the Boolean function ring. A matrix over the Boolean
function ring implies that every entry of the matrix is a Boolean function. Since
0 and 1 are constant Boolean function, it follows that the set of matrices over the
Boolean function ring includes the set of binary matrices. For a k×k square matrix
M = (fi,j)k×k, where fi,j is an n-variable Boolean function, the determinant of
M is denoted by det(M) and the rank of M is denoted by rank(M). A square
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matrix over the Boolean function ring is invertible if and only if its determinant
is equal to 1.

Let σ be a permutation on the set {0, 1, . . . , n− 1}. Then define

σ(f) = f(xσ(0), xσ(1), . . . , xσ(n−1)),

and

σ(M) = (σ(fi,j))k×k.

We note that σ(0) = 0 and σ(1) = 1, that is to say, σ(f) = f if f is a constant
Boolean function.

Finally, a mapping F from Fn
2 into Fn

2 is called an n-variable vector Boolean
function and is represented by

F = (f0(x0, x1, . . . , xn−1), f1(x0, x1, . . . , xn−1), . . . , fn−1(x0, x1, . . . , xn−1)),

where f0, f1, . . . , fn−1 are Boolean functions.

2.2 Galois NFSRs

Let n ∈ N∗ and let

F = (f0(x0, x1, . . . , xn−1), f1(x0, x1, . . . , xn−1), . . . , fn−1(x0, x1, . . . , xn−1))

be a vector Boolean function. An n-stage Galois NFSR with the feedback function
F is shown in Figure 2, where x0, x1, . . ., xn−1 are n binary registers and fi is the
feedback function of the register xi for 0 ≤ i ≤ n − 1. Since a feedback function
could uniquely determine the architecture of a Galois NFSR, the NFSR in Figure
2 is denoted by NFSR(F ). For t ≥ 0, the n registers of NFSR(F ) are updated as
follows:

(x0(t+ 1), x1(t+ 1), . . . , xn−1(t+ 1))

= (f0(x0(t), . . . , xn−1(t)), f1(x0(t), . . . , xn−1(t)), . . . , fn−1(x0(t), . . . , xn−1(t))),

where (x0(t), x1(t), . . . , xn−1(t)) is the state of NFSR(F ) at the time instance t.
If fi ̸= xj for every 0 ≤ j ≤ n − 1, then the ith register of NFSR(F ) is called a
feedback register in NFSR(F ). Otherwise, the ith register of NFSR(F ) is called a
shift register in NFSR(F ). If the outputting sequence of each register xi is always
periodic for 0 ≤ i ≤ n−1, then we call NFSR(F ) a nonsingular Galois NFSR. It is
clear that NFSR(F ) is nonsingular if and only if F is a one-to-one mapping from
Fn
2 into Fn

2 , or in other words, F is invertible, i.e., for every (y0, y1, . . . , yn−1) ∈ Fn
2

there is a unique a = (a0, a1, . . . , an−1) ∈ Fn
2 such that

F (a) = (f0(a), f1(a), . . . , fn−1(a)) = (y0, y1, . . . , yn−1).

This observation will be used in the later proof.
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Fig. 3: NFSR(F ) and NFSR(G)

3 Standard representations of Galois NFSRs and critical matrices

Note that for a Galois NFSR, every register could be updated by a feedback
function, and so the position of each register in a Galois NFSR seems to be rather
arbitrary. Thus, two Galois NFSRs with distinct feedback functions in ANFs may
be completely the same by exchanging the positions of some registers.

Example 1 Let F = (f0, f1, f2, f3) be the feedback function of a Galois NFSR with

f0 = x1 ⊕ x2

f1 = x2

f2 = x3

f3 = x0 ⊕ x1x2.

Let G = (g0, g1, g2, g3) be the feedback function of a Galois NFSR with

g0 = x1x2 ⊕ x3

g1 = x2

g2 = x0

g3 = x1 ⊕ x2.

It can be seen that exchanging the labels of x0 and x3 in NFSR(F ) leads to
NFSR(G). This can also be observed from Figure 3.

Therefore, it is necessary to define equivalent Galois NFSRs which are different
only in register order.

Definition 1 Let F = (f0, f1, . . . , fn−1) and G = (g0, g1, . . . , gn−1) be the feed-
back functions of two n-stage Galois NFSRs, respectively. If there is a permutation
σ on the set {0, 1, . . . , n− 1} such that σ(F ) = G, then NFSR(F ) and NFSR(G)
are called equivalent, where

σ(F ) = (fσ−1(0)(σ(X)), fσ−1(1)(σ(X)), . . . , fσ−1(n−1)(σ(X)))

with σ(X) = (xσ(0), xσ(1), . . . , xσ(n−1)).

By this definition, NFSR(F ) and NFSR(G) in Example 1 are equivalent. It is
clear that two equivalent n-stage Galois NFSRs have the same n sets of sequences
outputted from n registers not considering the order. Hence, the following property
is clear and we omit the proof.
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Proposition 1 Let NFSR(F ) and NFSR(G) be two equivalent n-stage Galois N-
FSRs. Then NFSR(F ) is nonsingular if and only if NFSR(G) is nonsingular.

Next, we define a type of standard representations for Galois NFSRs, which is
very useful for investigating whether a Galois NFSR is nonsingular or not. Note
that if a Galois NFSR only involves shifting, then it is a cycling register. Otherwise,
a Galois NFSR has at least one register which is not updated by shifting. Hence,
the following definition is reasonable.

Definition 2 Let n ∈ N∗ and F = (f0, f1, . . . , fn−1) be the feedback function of
an n-stage Galois NFSR. If the following two conditions are satisfied

(1) fn−1 ̸= x0,
(2) fi = xj ⇒ j = i+ 1, 0 ≤ i ≤ n− 2,

then F = (f0, f1, . . . , fn−1) is called a standard feedback function and NFSR(F )
is called a standard (Galois) NFSR.

The idea behind Definition 2 is putting two registers with the shifting relation
into adjacent registers. This concept is inspired by Fibonacci NFSRs. The feedback
function of a Fibonacci NFSR is a standard feedback function. Besides, we note
that for a standard feedback function of an n-stage NFSR, the (n− 1)th register
could not be updated by shifting, and so it at least has one register updated by
nontrivial feedback function. For example, NFSR(F ) in Example 1 is a standard
NFSR, but NFSR(G) in Example 1 is not a standard one.

Definition 3 Let C be an equivalent class of Galois NFSRs. If there exists a Galois
NFSR in C with a standard feedback function, then we call C a normal class.

Most of equivalent classes of Galois NFSRs are normal. An equivalent class
which is not normal is very uninteresting. Here are two examples.

Example 2 The class of NFSRs including the cycling register is not normal.

Example 3 Let F be the feedback function of an n-state Galois NFSR satisfying

f0 = xj , f1 = xj

for some integer j, then the equivalent class C of Galois NFSRs including this
NFSR(F ) is not normal. It can be seen that every NFSR in C has two registers
always outputting the same bit.

For a standard feedback function, it is easier to distinguish a shifting register
and a feedback register. Let n ∈ N∗ and NFSR(F ) be an n-stage Galois NFSR
with a standard feedback function F = (f0, f1, . . . , fn−1). For 0 ≤ i ≤ n − 1, if
fi = xi+1, then the ith register is a shifting register; otherwise, the ith register is
a feedback register. Hence if NFSR(F ) has k feedback registers, then we could use

Ω(F ) = [ik + lk, . . . , ik] ∥ [ik−1 + lk−1, . . . , ik−1] ∥ · · · ∥ [i1 + l1, . . . , i1]

to denote that xik+lk , xik−1+lk−1
, . . . , xi1+l1 are k feedback registers in NFSR(F )

where lj ≥ 0 for 1 ≤ j ≤ k and ik > ik−1 > · · · > i1 = 0. If NFSR(F ) is an n-stage
Fibonacci NFSR, then

Ω(F ) = [n− 1, n− 2, . . . , 0].
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From Ω(F ) it can be clearly seen that a standard Galois NFSR could be divid-
ed into several feedback shift registers each of which is somewhat like Fibonacci
configuration except that the feedback function could depend on every bit of the
whole Galois NFSR not only the particular feedback shift register that it belongs
to.

Remark 1 If lj = 0 in Ω(F ) for some integer 1 ≤ j ≤ k, then xij is a feedback
register.

Definition 4 Let n ∈ N∗ and NFSR(F ) be an n-stage Galois NFSR with a stan-
dard feedback function F = (f0, f1, . . . , fn−1). Suppose there are exactly k ≥ 1
feedback registers in NFSR(F ) given by

Ω(F ) = [ik + lk, . . . , ik] ∥ [ik−1 + lk−1, . . . , ik−1] ∥ · · · ∥ [i1 + l1, . . . , i1].

Let Y = X \ {xi1 , xi2 , . . . , xik} and

fij+lj (x0, . . . , xn−1) = Dij (Y )⊕

(
k∑

u=1

Cj,u(Y ) · xiu

)
⊕

∑
α∈Fk

2

Eα,j(Y ) ·
n−1∏
j=0

x
αj

j


for j = 1, 2, . . . , k, where Dij (Y ), Cj,1(Y ), . . . , Cj,k(Y ), Eα,j(Y ) are Boolean func-
tions on Y . Then Fs = (fi1+l1 , fi2+l2 , . . . , fik+lk) is called the simplified feedback
function and the matrix

C1,1(Y ) C1,2(Y ) · · · C1,k(Y )
C2,1(Y ) C2,2(Y ) · · · C2,k(Y )

. . . . . . . . . . . .
Ck,1(Y ) Ck,2(Y ) · · · Ck,k(Y )


is called the critical matrix for NFSR(F ), denoted by M(F ).

If Fs contains some nonlinear terms on the variables xi1 , xi2 , . . . , xik , then Fs

is called a nonlinear simplified feedback function. Otherwise, Fs is called a linear
simplified feedback function.

Remark 2 When Fs is linear, F could still be a complex nonlinear feedback func-
tion.

4 A sufficient condition for general Galois NFSRs

In this section, we will give a sufficient condition for general Galois NFSRs. For
convenience, we can write the simplified feedback function of NFSR(F ) as follows

fi1+l1

fi2+l2
...

fik+lk

 =


Di1(Y )
Di2(Y )

...
Dik(Y )

 ⊕ M(F )


xi1

xi2
...

xik



⊕


n0⊕
j=1


Ej,1(Y )
Ej,2(Y )

...
Ej,k(Y )

ximj,1
· · ·ximj,dj

 . (1)
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In the following, let n0 be a positive integer, i.e., Fs is nonlinear. The case of n0 = 0
will be discussed in Sect. 5. For 1 ≤ j ≤ n0, let Sj = {mj,1,mj,2, . . . ,mj,dj

} and
S =

∪n0

j=1 Sj . The degree of jth nonlinear term is denoted by dj and it is easy to
see that max{dj |1 ≤ j ≤ n0} = d.

For 0 ≤ j ≤ k, let E(Y ) = (E1(Y ), E2(Y ), . . . , Ek(Y ))⊤ be a column vector
over Boolean function ring and Cj(Y ) = (C1,j(Y ), C2,j(Y ), . . . , Ck,j(Y ))⊤ be the
jth column of M(F ). Let

ME,j(Y ) = (C1(Y ), . . . , Cj(Y )⊕ E(Y ), . . . , Ck(Y ))

be the matrix obtained by adding E(Y ) to the jth column of M(F ). It is obvious
that ME,0(Y ) = M(F ). If det(M(F )) = 1, then (C1(b), C2(b), . . . , Ck(b)) is a
basis of the vector space Fk

2 for every b ∈ Fn−k
2 . Therefore, E(b) can be expressed

as E(b) =
⊕k

u=1 βuCu(b), where βu ∈ F2. Then we have an (n − k)-variable

Boolean function φu satisfying φu(b) = βu by letting b run through Fn−k
2 . Thus

E(Y ) can be expressed as E(Y ) =
⊕k

u=1 φuCu(Y ). Before proving the main results
in this section, we first give Lemma 1.

Lemma 1 Let det(M(F )) = 1 and E(Y ) =
⊕k

u=1 φuCu(Y ). Then for 1 ≤ j ≤ k,
det(ME,j(Y )) = 1 if and only if φj(Y ) = 0.

Proof Suppose det(ME,j(Y )) = 1 and there exists b ∈ Fn−k
2 such that βj =

φj(b) = 1. Then we have

ME,j(b) = (C1(b), . . . , Cj(b)⊕ E(b), . . . , Ck(b))

= (C1(b), . . . ,
k⊕

u=1,u ̸=j

βuCu(b), . . . , Ck(b)).

It is clear that there is a linearly correlation between
⊕k

u=1,u ̸=j βuCu(b) and
C1(b),
. . . , Cj−1(b), Cj+1(b), . . . , Ck(b). Therefore, det(ME,j(b)) = 0, which is a contra-
diction to the assumption that det(ME,j(b)) = 1.

Conversely, suppose φj(Y ) = 0 and det(ME,j(Y )) ̸= 1. Then det(ME,j(Y )) =
0 or det(ME,j(Y )) is a Boolean function on Y which is not a constant, say
det(ME,j(Y )) = h(Y ). There exists at least one evaluation of Y = b such that
det(ME,j(b)) = 0. Thus there is a linearly correlation between C1(b), . . . , Cj(b)⊕
E(b), . . . , Ck(b), i.e., there exist a1, . . . , ak ∈ F2 such that

a1C1(b)⊕ · · · ⊕ aj(Cj(b)⊕ E(b))⊕ · · · ⊕ akCk(b) = 0.

Considering that (C1(b), . . . , Ck(b)) is a basis of Fk
2 , we have aj ̸= 0 and then

Cj(b)⊕E(b) =
⊕k

1≤u≤k,u̸=j auCu(b). Hence E(b) = Cj(b)
⊕k

1≤u≤k,u ̸=j auCu(b),
a contradiction. ⊓⊔

We define an order for the coefficient vectors of the simplified feedback function
Fs in the following.

Definition 5 The simplified feedback function Fs of NFSR(F ) is given by (1)
and Ei(Y ) is the coefficient vector of the ith nonlinear term of Fs for 1 ≤ i ≤ n0.
When det(M(F )) = 1, let

SEi
= {mj,1, . . . ,mj,dj

|1 ≤ j ≤ n0 and det(MEi,mj,r
(Y )) = 1 for 1 ≤ r ≤ dj}
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be an index set. If there is a permutation σ on the set {0, 1, . . . , n0} such that
SEσ(1)

⊆ SEσ(2)
⊆ · · · ⊆ SEσ(n0)

, then the coefficient vectors E1(Y ), . . . , En0(Y )
are called ordered.

If the coefficient vectors are ordered, then they can be sorted to satisfy that
SE1

⊆ SE2
⊆ · · · ⊆ SEn0

. Sometimes, there may not exist the permutation σ.
Therefore, E1(Y ), E2(Y ), . . . , En0(Y ) cannot be sorted by Definition 5. In this
case, we say that the coefficient vectors of Fs are disordered. It is worth noting
that Definition 5 only makes sense under the condition that det(M(F )) = 1. Here
is an example to explain Definition 5.

Example 4 Let the following system of quadratic equations


f1
f2
f3
f4
f5

 =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

⊕


0
0
0
1
1

x1x2 ⊕


1
0
0
1
0

x2x3 ⊕


0
0
0
0
1

x1x4

be the function F , where aj ∈ F2 for 1 ≤ j ≤ 5. It is clear that the critical matrix
satisfies that det(M(F )) = 1 and SE1

= {1, 2, 3}, SE2
= {2, 3}, SE3

= {1, 2, 3, 4}.
Then the coefficient vectors of F are ordered for SE2

⊆ SE1
⊆ SE3

.

In the following, we will give the main results in this section. Before this, let
us recall that an n-stage Galois NFSR with a feedback function F is nonsingular
if and only if F is an invertible function from Fn

2 to Fn
2 . Therefore, we shall show

that the internal state update function

(x0(t+ 1), x1(t+ 1), . . . , xn−1(t+ 1)) = F (x0(t), x1(t), . . . , xn−1(t)), t ≥ 0,

is invertible.

For an integer t ≥ 0, let X(t) = (x0(t), x1(t), . . . , xn−1(t)) be the internal state
of NFSR(F ) at the time instance t. Suppose there are exactly k ≥ 1 feedback
registers in NFSR(F ) given by

Ω(F ) = [ik + lk, . . . , ik] ∥ [ik−1 + lk−1, . . . , ik−1] ∥ · · · ∥ [i1 + l1, . . . , i1],

where lj ≥ 0 for 1 ≤ j ≤ k and ik > ik−1 > · · · > i1 = 0. Let X̃(t) denote the
vector derived from X(t) by removing xi1(t), xi2(t), . . . , xik(t) from X(t), i.e.,

X̃(t) = (xi1+1(t), . . . , xi2−1(t), xi2+1(t), . . . , xi3−1(t), . . . , xik+1(t), . . . , xn−1(t)).

Let

X̂(t+ 1) = (xi1(t+ 1), . . . , xi2−2(t+ 1), xi2(t+ 1), . . . ,

xi3−2(t+ 1), . . . , xik(t+ 1), . . . , xn−2(t+ 1)),
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which is completely determined by X̃(t) because of the shifting relation. Then we
have 

xi1+l1(t+ 1)
xi2+l2(t+ 1)

...
xik+lk(t+ 1)

 =


D1(X̃(t))

D2(X̃(t))
...

Dk(X̃(t))

⊕M(X̃(t)) ·


xi1(t)
xi2(t)

...
xik(t)



⊕

⊕
α∈Fk

2


Eα,1(X̃(t))

Eα,2(X̃(t))
...

Eα,k(X̃(t))

xα1
i1

(t) · · ·xαk
ik

(t)

 .

Since X̃(t) = X̂(t+1), we only need to prove that (xi1(t), xi2(t), . . . , xik(t)) could
be uniquely determined by X(t+1). Thus, NFSR(F ) is nonsingular if and only if
Fs is invertible. Let

a1
a2
...
ak

 =


Di1(X̃(t))

Di2(X̃(t))
...

Dik(X̃(t))

⊕


xi1+l1(t+ 1)
xi2+l2(t+ 1)

...
xik+lk(t+ 1)

 .

It is clear that (a1, a2, . . . , ak)
⊤ is completely determined by X(t+ 1).

Lemma 2 If a general Galois NFSR whose simplified feedback function Fs given
by (1) has only one nonlinear term satisfies the condition that the determinant of
the matrix ME,j(F ) is equal to 1, i.e., det(ME,j(F )) = 1 for j ∈ S ∪ {0}, then
NFSR(F ) is nonsingular.

Proof It suffices to consider the case d = 2 since the general case follows easily by
induction. Without loss of generality, let xikxik−1 be the quadratic term of Fs. For
every X(t+ 1) ∈ Fn

2 , we distinguish two cases.

In the first case, let xik(t) = 0. Then we have
a1
a2
...
ak

 =


C1,1(X̃(t)) · · · C1,k−1(X̃(t))

C2,1(X̃(t)) · · · C2,k−1(X̃(t))
...

. . .
...

Ck,1(X̃(t)) · · · Ck,k−1(X̃(t))




xi1(t)
xi2(t)

...
xik−1(t)

 . (2)

Let M̃0 be the coefficient matrix of (2). Since det(M(F )) = 1 and X̃(t) = X̂(t+1),
there exists a matrix P1 over F2 such that

P1


C1,1(X̃(t)) · · · C1,k(X̃(t))

C2,1(X̃(t)) · · · C2,k(X̃(t))
...

. . .
...

Ck,1(X̃(t)) · · · Ck,k(X̃(t))

 =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1


k×k

.
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Let 
ã1
ã2
...
ãk

 = P1


a1
a2
...
ak

 .

Then we have 
ã1
ã2
...
ãk

 =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 0




xi1(t)
xi2(t)

...
xik−1(t)


by multiplying P1 to (2). If ãk = 0, then there exists only one solution of (2)
because rank(M̃0) = k − 1. If ãk = 1, then there exists no solutions of (2).

In the remaining case, let xik(t) = 1 and Rk−1(X̃(t)) = Ck−1(X̃(t))⊕E(X̃(t)).
Then we have

a1 ⊕ C1,k(X̃(t))

a2 ⊕ C2,k(X̃(t))
...

ak ⊕ Ck,k(X̃(t))

 =


C1,1(X̃(t)) · · · Rk−1,1(X̃(t))

C2,1(X̃(t)) · · · Rk−1,2(X̃(t))
...

. . .
...

Ck,1(X̃(t)) · · · Rk−1,k(X̃(t))




xi1(t)
xi2(t)

...
xik−1(t)

 . (3)

It follows from Lemma 1 that E(X̃(t)) =
⊕k−2

u=1 βuCu(X̃(t)), and so Rk−1(X̃(t)) =⊕k−1
u=1 βuCu(X̃(t)) for βk−1 = 1. Then we have

ã1
ã2
...

ãk ⊕ 1

 =


1 0 · · · β1

0 1 · · · β2

...
...
. . .

...
0 0 · · · 0




xi1(t)
xi2(t)

...
xik−1(t)


by multiplying P1 to (3). Similar to the case of xik(t) = 0, if ãk = 1, then there
exists only one solution of (3). If ãk = 0, then there exists no solutions of (3).
Meanwhile, because the value of ãk only depends on the value of X(t + 1), it is
impossible that the system of equations has a solution for xik(t) = 0 and xik(t) = 1
simultaneously.

Therefore, for every X(t + 1) ∈ Fn
2 , there exists only one value of X(t) such

that (x0(t+ 1), x1(t+ 1), . . . , xn−1(t+ 1)) = F (x0(t), x1(t), . . . , xn−1(t)), i.e., the
feedback function F is invertible. ⊓⊔

Lemma 3 If a quadratic Galois NFSR with simplified feedback function Fs given
by (1) satisfies the following three conditions:

(1) det(M(F )) = 1,
(2) Sj = {mj,1,mj,2} ⊆ SEj

, 1 ≤ j ≤ n0,
(3) the coefficient vectors of Fs are ordered,

then the quadratic Galois NFSR is nonsingular.

Proof We proceed by induction on n0 and note that the case n0 = 1 follows from
Lemma 2. Suppose the proposition is true for Fs with quadratic terms less than
n0. When Fs has n0 quadratic terms, we distinguish the cases of xir (t) = 0 and
xir (t) = 1 for r ∈ S. Since the proof is similar to that of Lemma 2, we omit it. ⊓⊔
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Similar to Lemma 3, we give a sufficient condition to determine whether a
general Galois NFSR is nonsingular or not.

Theorem 1 If a general Galois NFSR with the simplified feedback function Fs

given by (1) satisfies the following three conditions:

(1) det(M(F )) = 1,
(2) Sj = {mj,1, . . . ,mj,dj

} ⊆ SEj
, 1 ≤ j ≤ n0,

(3) the coefficient vectors of Fs are ordered,

then the Galois NFSR is nonsingular.

Proof It follows from Lemmas 2 and 3 that if either n0 = 1 or d = 2, then the
result is clearly true. We proceed now by double induction. Suppose d > 2, n0 > 1
and that the result is true for the simplified feedback function Fs with at most n0

nonlinear terms of degree less than d and for Fs with less than n0 nonlinear terms
of degree at most d.

Without loss of generality, let SE1
⊆ SE2

⊆ · · · ⊆ SEn0
. Let dr = min{dj |1 ≤

j ≤ n0} and we use induction on dr. For every X(t + 1) ∈ Fn
2 , when dr = 2, let

ximr,1
ximr,2

= xikxik−1 . We distinguish two cases. Let xik(t) = 0. Then we have


a1(X̃(t))

a2(X̃(t))
...

ak(X̃(t))

 =


C1,1(X̃(t)) · · · C1,k−1(X̃(t))

C2,1(X̃(t)) · · · C2,k−1(X̃(t))
...

. . .
...

Ck,1(X̃(t)) · · · Ck,k−1(X̃(t))




xi1(t)
xi2(t)

...
xik−1(t)



⊕


n0⊕

j=1,j ̸=r


Ej,1(X̃(t))

Ej,2(X̃(t))
...

Ej,k(X̃(t))

ximj,1
(t) · · ·ximj,dj

(t)

 . (4)

Since det(M(F )) = 1, i.e., rank(M(X̃(t))) = k, there exists a matrix P2 over F2

such that

P2 ·


C1,1(X̃(t)) · · · C1,k(X̃(t))

C2,1(X̃(t)) · · · C2,k(X̃(t))
...

. . .
...

Ck,1(X̃(t)) · · · Ck,k(X̃(t))

 =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1


k×k

.

Meanwhile, since SE1
⊆ SE2

⊆ · · · ⊆ SEn0
, it follows from Lemma 1 and Definition

5 that for 1 ≤ j ≤ n0, Ej(X̃(t)) =
⊕k

u=1 βj,uCu(X̃(t)), where βj,u = 0 for
u ∈ SEj

. Let
g1
g2
...
gk

 =


r−1⊕
j=1


βj,1

βj,2

...
βj,k

 ·

 ∏
m∈Sj

xim


⊕


n0⊕

j=r+1


βj,1

βj,2

...
0

 ·

 ∏
m∈Sj

xim


 .
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Then we have 
ã1
ã2
...
ãk

 =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 0




xi1(t)
xi2(t)

...
xik−1(t)

⊕


g1
g2
...
gk

 .

Using the induction hypothesis, if ãk = gk, then the equation has one solution.
Otherwise, the equation has no solutions.

Let xik(t) = 1. Thus, similar to the case of xik(t) = 0, we have
ã1
ã2
...

ãk ⊕ 1

 =


1 0 · · · βr,1

0 1 · · · βr,2

...
...
. . .

...
0 0 · · · 0




xi1(t)
xi2(t)

...
xik−1(t)

⊕


g1
g2
...
gk

 ,

where βr,u = 0 for u ∈ SEr
. For u ∈ SEr−1

, we have

ãu = xiu(t)⊕ gu = xiu(t)⊕ (

r−1⊕
j=1

βj,u · ximj,1
(t) · · ·ximj,dj

(t)),

which implies that the value of xiu(t) is independent of the value of xik(t). Then the
value of gk is not dependent on the value of xik(t). Using the induction hypothesis,
if ãk ⊕ 1 = gk, then the equation has one solution. If ãk = gk, then the equation
has no solutions. Since the values of ãk and gk are independent of the value of
xik(t), it is impossible that the system of equations has a solution for xik(t) = 0
and xik(t) = 1 simultaneously. Therefore, Fs is invertible when dr = 2.

Suppose that the result holds for dr ≤ N − 1. When dr = N , let ximr,1
(t) = 0.

Then the number of nonlinear terms is not greater than n−1. Using the induction
hypothesis, if the system of equations has a solution, then it has only one solution.
If the system of equations has no solution, then we let ximr,1

(t) = 1 and d′r of new
function is less than or equal to N−1. By the induction hypothesis, it has only one
solution. Meanwhile, for the same X(t+ 1) ∈ Fn

2 , it is impossible that the system
of equations has a solution for xik(t) = 0 and xik(t) = 1 simultaneously. ⊓⊔

Theorem 1 is not a necessary condition. In the following, we will give an ex-
ample of F which is invertible but not satisfy the condition.

Example 5 Let NFSR(F ) be a standard Galois NFSR with a quadratic simplified
feedback function Fs given by

a1
a2
a3
a4
a5

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

⊕


0
0
1
1
0

x1x2 ⊕


0
1
1
0
1

x1x5

⊕


0
0
0
1
0

x2x3


0
0
1
1
0

x2x5 ⊕


0
0
0
0
1

x3x4 ⊕


1
1
1
0
0

x4x5,
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where aj ∈ F2 for 1 ≤ j ≤ 5. It is easy to check that Fs is invertible while does
not satisfy the conditions of Theorem 1.

5 A necessary and sufficient condition for Galois NFSRs with linear
simplified feedback functions

In this section, we give a necessary and sufficient condition for determining the
nonsingularity of a large class of Galois NFSRs with linear simplified feedback
functions. It means that there is no product term on the variables xi1 , xi2 , . . . , xik

occurring in every feedback computation, which is a very weak restriction on NF-
SRs. This type of Galois NFSRs will be shown to have potential usage in practice
in Sect. 6.

Theorem 2 A Galois NFSR(F ) with a linear simplified feedback function is non-
singular if and only if the determinant of the matrix M(F ) is equal to 1, i.e.,
det(M(F )) = 1, which is a constant independent of Y .

Proof Suppose there are exactly k ≥ 1 feedback registers in NFSR(F ) given by

Ω(F ) = [ik + lk, . . . , ik] ∥ [ik−1 + lk−1, . . . , ik−1] ∥ · · · ∥ [i1 + l1, . . . , i1].

Let

fij+lj (x0, . . . , xn−1) = Dij (Y )⊕

(
k∑

u=1

Cj,u(Y ) · xiu

)
, j = 1, 2, . . . , k, (5)

be the simplified feedback function Fs. Since X̃(t) can be completely determined
by X̂(t+ 1) for the shifting relation, NFSR(F ) is nonsingular if and only if Fs is
invertible. Then we have

xi1+l1(t+ 1)
xi2+l2(t+ 1)

...
xik+lk(t+ 1)

 =


Di1(X̃(t))

Di2(X̃(t))
...

Dik(X̃(t))

⊕M(X̃(t)) ·


xi1(t)
xi2(t)

...
xik(t)

 .

Since det(M(F )) = 1, it follows that M(X̃(t)) is invertible. Consequently
xi1(t)
xi2(t)

...
xik(t)

 = (M(X̂(t+ 1)))−1 ·


xi1+l1(t+ 1)−D1(X̂(t+ 1))

xi2+l2(t+ 1)−D2(X̂(t+ 1))
...

xik+lk(t+ 1)−Dk(X̂(t+ 1))

 .

Therefore, this shows that Fs is invertible.
Assume the simplified feedback function Fs is invertible. Suppose det(M(F )) ̸=

1. Then det(M(F )) = 0 or det(M(F )) is a Boolean function on Y which is not a
constant, say det(M(F )) = h(Y ). Since h(Y ) is not a constant function, there is
at least one evaluation of Y , say Y = P , such that h(P ) = 0. Thus, in either case,
there exists one evaluation of Y = P such that det(M(P )) = 0.
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Let X(t+ 1) be a state such that X̂(t+ 1) = P . Then det(M(X̂(t+ 1))) = 0.
Since X̃(t) = X̂(t+ 1), we have the following system of linear equations

M(X̂(t+ 1)) ·


xi1(t)
xi2(t)

...
xik(t)

 =


xi1+l1(t+ 1)
xi2+l2(t+ 1)

...
xik+lk(t+ 1)

⊕


D1(X̂(t+ 1))

D2(X̂(t+ 1))
...

Dk(X̂(t+ 1))

 (6)

in the variables xi1(t), xi2(t), . . . , xik(t). Since det(M(X̂(t + 1))) = 0, it follows
that the system of equations (6) has more than one solution, a contradiction to
the assumption that Fs is invertible. Hence, we have det(M(F )) = 1. ⊓⊔

For a Fibonacci NFSR(F ), there is only one feedback register, and so its critical
matrix M(F ) is just given by

M(F ) = (h(y)), (7)

which is a 1 × 1 matrix. Then by Theorem 2, this NFSR(F ) is nonsingular if
and only if h(y) = 1, a constant Boolean function. That is to say, a Fibonacci
NFSR(F ) is nonsingular if and only if the feedback function F can be written as
F = f(x1, . . . , xn−1)⊕x0. This is just the result given by Golomb in [12, Chapter
VI, Theorem 1]. Hence, Theorem 2 can be seen as a generalization of Golomb’s
classic result on Fibonacci NFSRs to Galois NFSRs.

6 Applications

In this section, we apply our results to some known and new NFSRs, to show
the validity of our results. In the following, let k and n be positive integers and a
matrix is always over the Boolean function ring.

6.1 Trivium

Trivium is a bit-oriented stream cipher designed by Canniére and Preneel [7]. It
was selected as one of the eSTREAM portfolio ciphers in 2008. Trivium attracted
lots of cryptanalysis because of its simple design. The main building block of
Trivium is a 288-stage NFSR, see Figure 4. Let us denote its feedback function by
FTrivium = (f0, f1, . . . , f287) where

f110 = x24 ⊕ x126 ⊕ x111 ⊕ x112x113

f194 = x117 ⊕ x222 ⊕ x195 ⊕ x196x197

f287 = x219 ⊕ x45 ⊕ x0 ⊕ x1x2

fi = xi+1, i /∈ {110, 194, 287}.

It can be seen that

Ω(FTrivium) = [287, . . . , 195] ∥ [194, . . . , 111] ∥ [110, . . . , 0],
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x287
... x222

... x219
... x197 x196 x195

x194
... x126

... x117
... x113 x112 x111

x110
... x45

... x24
... x2 x1 x0

×

+

×

+

×

+

+ +

+

+

Fig. 4: The main register of Trivium

and the simplified feedback function of Trivium is linear. The critical matrix of
FTrivium is clearly given by

M(FTrivium) =

 0 1 0
0 0 1
1 0 0

 .

It is obvious that det(M(FTrivium)) = 1, and so the main register of Trivium is
nonsingular by Theorem 2.

We note that the nonsingularity of the main register of Trivium is not a new
result, see [7,15–17]. But here we just want to show that our new method is valid
and simple.

6.2 SPRING

SPRING is a lightweight block cipher based on NFSRs proposed in [18], where
the name SPRING means an SPN cipher with ring-like cascade connection of
NFSRs. In particular, the Sbox used in SPRING is a 32-stage Galois NFSR called
NFSR-SR, see Figure 5, whose feedback function FSPRING = (f0, f1, . . . , f31) is
given by

f7 = x4x5 ⊕ x0 ⊕ x2 ⊕ x8 ⊕ x16

f15 = x12x13 ⊕ x8 ⊕ x11 ⊕ x16 ⊕ x24

f23 = x19x20 ⊕ x16 ⊕ x21 ⊕ x0 ⊕ x24

f31 = x27x28 ⊕ x24 ⊕ x30 ⊕ x0 ⊕ x8

fi = xi+1, i /∈ {7, 15, 23, 31}.

It can be seen that

Ω(FSPRING) = [31, . . . , 24] ∥ [23, . . . , 16] ∥ [15, . . . , 8] ∥ [7, . . . , 0],
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31 24 23 16 15 8 7 0

Register A Register B Register C Register D

fa fb fc fd

⊕ ⊕ ⊕ ⊕

Fig. 5: An overview of NFSR-SR in SPRING

and the simplified feedback function of SPRING is linear. The critical matrix of
FSPRING is given by

M(FSPRING) =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

 .

It can be seen that det(M(FSPRING)) = 1, and so NFSR-SR is nonsingular by The-
orem 2. Also this is not a new result, it was proved that NFSR-SR is nonsingular
in [18].

6.3 A large class of nonsingular Galois NFSRs with linear simplified feedback
functions

In the following, we show that starting from an identity matrix, we can construct
various nonsingular Galois NFSRs.

We are concerned with the following two elementary operations which does not
change the determinant of a matrix.

– Interchange two columns (or rows) of a matrix A.
– A multiple of the kth column (or row) is added to the jth column (or row) of

a matrix A. We remark that here all the entries of the kth column (or row) is
multiplied by a Boolean function.

Proposition 2 Let NFSR(F ) be an n-stage Galois NFSR with a linear simpli-
fied feedback function. If the critical matrix M(F ) could be reduced to an identity
matrix by performing a sequence of elementary operations, then NFSR(F ) is non-
singular.

Proof Since an elementary operation does not change the determinant, it is clear
that det(M(F )) = det(In) = 1, where In is an n × n identity matrix. Thus, by
Theorem 2, NFSR(F ) is nonsingular. ⊓⊔

A. An upper triangular case

Let NFSR(Fupper) be an n-stage Galois NFSR with a linear simplified feedback
function, and let its critical matrix M(Fupper) be an upper triangular matrix, say

M(Fupper) =


1 ∗ · · · ∗
0 1 · · · ∗
...
...

...
...

0 0 · · · 1


k×k
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S255
...

fa

S193 S192 S191
...

fb

S129 S128

×

S127
...

fc

S65 S64 +

×

S63
...

fd

S1 S0 ++ + +

Fig. 6: A 256-stage nonsingular Galois NFSR

where ∗ can be either 0 or 1 or a Boolean function in Y = X \ {xi1 , xi2 , . . . , xik}.
Then NFSR(Fupper) is nonsingular by Theorem 2 since det(M(Fupper)) = 1.

B. A lower anti-triangle case

As an analogy, if an n-stage Galois NFSR(Flower) with a linear simplified feed-
back function has the critical matrix of the form

M(Flower) =


0 · · · 0 1
0 · · · 1 ∗
...

...
...

...
1 ∗ · · · ∗


k×k

,

where ∗ can be either 0 or 1 or a Boolean function in Y = X \ {xj1 , xj2 , . . . , xjk},
then NFSR(Flower) is nonsingular by Theorem 2 since det(M(Flower)) = 1.

NFSR(Fupper) and NFSR(Flower) are inequivalent NFSRs, whose proof is given
in Appendix.

6.4 A large class of nonsingular Galois NFSRs with quadratic simplified feedback
functions

Let NFSR(Forder) be an n-stage Galois NFSR with k feedback registers labeled
by {xi1 , xi2 , . . . , xik}, and the simplified feedback function Fs be given by

fi1+l1

fi2+l2
...

fik+lk

 =


Di1(Y )
Di2(Y )

...
Dik(Y )

⊕M(Forder)


xi1

xi2
...

xik

⊕


n0⊕
j=1


Ej,1(Y )
Ej,2(Y )

...
Ej,k(Y )

xijxij+1

 ,

where 1 ≤ n0 ≤ k − 2. If Forder satisfies the following conditions:

– The determinant of M(Forder) is equal to 1, i.e., det(M(Forder)) = 1,
– Ej(Y ) =

⊕n0+1
m=j+2 Cm(Y ) for 1 ≤ j ≤ n0 − 1, and En0(Y ) = Cn0+2(Y ), where

Cm(Y ) = (Cm,1(Y ), Cm,2(Y ), . . . , Cm,k(Y ))⊤ is the mth column of M(Forder)
and Ej(Y ) = (Ej,1(Y ), Ej,2(Y ), . . . , Ej,k(Y ))⊤ is the coefficient vector of term
xjxj+1,

then NFSR(Forder) is nonsingular by Theorem 1.
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Example 6 A 256-stage Galois NFSR with 4 feedback registers is depicted in Fig-
ure 6. Let Y = X \{x0, x64, x128, x192}. The feedback function F could be written
as

f191 = fb(Y )⊕ x192,

f127 = fc(Y )⊕ x128,

f63 = fd(Y )⊕ x64 ⊕ x192x128,

f255 = fa(Y )⊕ x192x128 ⊕ x128x64 ⊕ x0,

fl = xl+1, l ∈ Y.

The simplified feedback function Fs is
f191
f127
f63
f255

 =


fa(Y )
fb(Y )
fc(Y )
fd(Y )

 ⊕


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x192

x128

x64

x0



⊕


0
0
1
1

x192x128 ⊕


0
0
0
1

x128x64.

It is easy to check that NFSR(F ) is nonsingular by Theorem 1.

7 Discussion

In the previous sections, we give some new results on nonsingular Galois NFSRs.
In this section, we demonstrate the relation between the previous works [13, 14]
and ours and prove that the Galois classes given in [13,14] and this paper are not
covered by each other.

In [14], the authors proposed two types of Galois NFSRs called Triangulation-
I and Triangulation-II, and presented the necessary and sufficient conditions for
their nonsingularity. It was proved in [14] that a Galois NFSR(F ) belonging to
Triangulation-I is nonsingular if and only if it can be written

f0 = g0(x0, x1, · · · , xn−2)⊕ xn−1,

fi = gi(x0, x1, · · · , xi−2, f0)⊕ xi−1, for 1 ≤ i ≤ n− 1.

Then there is a permutation σ on set {0, 1, . . . , n− 1} satisfying σ(i) = n− 1− i
such that σ(F ) is a standard feedback function. Let F ′ = σ(F ). Then we have

f ′
i = g′i(xi+2, xi+3, · · · , xn−1, f

′
n−1)⊕ xi+1, for 0 ≤ i ≤ n− 2,

f ′
n−1 = g′n−1(x1, x2, · · · , xn−1)⊕ x0. (8)

If g′i = 0, then the (σ−1(i))th register is a shift register; otherwise, the (σ−1(i))th
register is a feedback register. Then let

Ω(F ′) = [ik + lk, . . . , ik] ∥ [ik−1 + lk−1, . . . , ik−1] ∥ · · · ∥ [i1 + l1, . . . , i1],
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where lj ≥ 0, g′ij+lj ̸= 0 for 1 ≤ j ≤ k and ik > ik−1 > · · · > i1 = 0. For
0 ≤ j ≤ k − 1, let Xj = {xij+2 , xij+3 , . . . , xik} and

f ′
ij+lj = Dij (Y )⊕ g′j(Xj)⊕ (Rj(Y )⊕ hj(Xj))f

′
n−1 ⊕ xij+1 ,

f ′
n−1 = Dik(Y )⊕

(
k∑

u=2

Ck,u(Y ) · xiu

)
⊕ x0.

Then F ′ has the critical matrix M(F ′) of the form


R1(Y ) 1 +R1Ck,2(Y ) · · · ∗ ∗

...
...

. . .
...

...
Rk−2(Y ) Rk−2Ck,2(Y ) · · · 1 +Rk−2Ck,k−1(Y ) ∗
Rk−1(Y ) Rk−1Ck,2(Y ) · · · Rk−1Ck,k−1(Y ) 1 +Rk−1Ck,k(Y )

1 Ck,2(Y ) · · · Ck,k−1(Y ) Ck,k(Y )

 .

It can be seen that by the elementary operations mentioned in Subsection 6.3,
M(F ′) is an upper triangular matrix and det(M(F ′)) = 1. Since the critical
matrix of the nonsingular Galois classes given in this paper is a matrix over the
Boolean function ring satisfies that the determination is equal to 1 without any
other restrictions, then we have that our works are not covered by Triangulation-I.

In [13], Dubrova introduced the notion of the feedback graph of an NFSR, and
proved that the output sequences of an n-stage Galois NFSR can be equivalent
to an n-stage Fibonacci NFSR if its feedback graph can be reduced to a single
vertex. Meanwhile, a sufficient condition for a feedback graph to be reducible to a
single vertex is presented. In [14], the authors proved that the feedback graph of
an n-stage nonsingular NFSR(F ) can be reduced to a single vertex if and only if
the feedback function F satisfies the form

fi = gi(xi+2, xi+3, . . . , xn−1)⊕ xi+1, for 0 ≤ i ≤ n− 2,

fn−1 = gn−1(x1, x2, . . . , xn−1)⊕ x0. (9)

It can be observed that (9) satisfies the form given in (8). The only difference
between them is that in (9), f ′

i does not depend on fn−1 for 0 ≤ i ≤ n − 2.
Therefore, the Galois class in [13] is included in Triangulation-I and cannot cover
our works.

Conversely, a simplified feedback function of the Galois NFSR whose feedback
function is given by (9) may be not linear or its coefficient vectors may be not
ordered, even though the determination of its critical matrix is equal to 1. For
example, consider an n-stage NFSR(F ) defined by (9) with f ′

n−1 = x0, f
′
n−2 =

xn−1, f
′
n−3 = xn−2 and f ′

i = xi+3xi+2 + xi+1 for all 0 ≤ i ≤ n − 4. Since there
exist nonlinear terms on the variables x1, x2, . . . , xn−3, the simplified feedback
function is nonlinear. Meanwhile, it is easy to check that its coefficient vectors are
not ordered.

Similarly, it also can be proved that our works and Triangulation-II are not
covered by each other.
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8 Conclusions

In this paper, a new method for investigating nonsingular Galois NFSRs is pro-
posed. This method is independent of the bit length of the NFSR, greatly reducing
the computational complexity of determining the nonsingularity. A necessary and
sufficient condition for nonsingular Galois NFSRs with linear simplified feedback
functions is proposed. Meanwhile, a new class of general nonsingular Galois NF-
SRs is presented, which is distinct from previous works. It is expected that those
Galois NFSR classes will be useful candidates for designing stream ciphers.

Appendix

In the following, we prove that NFSR(Fupper) and NFSR(Flower) are inequivalent
NFSRs.

Proposition 3 If k > 1, then NFSR(Fupper) and NFSR(Flower) are inequivalent.

Proof Suppose NFSR(Fupper) and NFSR(Flower) are equivalent. Then there is a
permutation σ on the set {0, 1, . . . , n− 1} such that σ(Fupper) = Flower. Let

Ω(Fupper) = [ik + lk, . . . , ik] ∥ [ik−1 + lk−1, . . . , ik−1] ∥ · · · ∥ [i1 + l1, . . . , i1],

and

Ω(Flower) = [jk +mk, . . . , jk] ∥ [jk−1 +mk−1, . . . , jk−1] ∥ · · · ∥ [j1 +m1, . . . , j1].

Note that both NFSR(Fupper) and NFSR(Flower) are standard NFSRs, and so σ
only permutes the order of [i1+ l1, . . . , i1], . . . , [ik+ lk, . . . , ik]. Then for 1 ≤ u ≤ k
we have

(σ(iu), σ(iu + lu)) ∈ {(j1, j1 +m1), (j2, j2 +m2), . . . , (jk, jk +mk)}.

Since the entry au,v in M(Fupper) = (au,v)k×k is the coefficient of xiv in fiu+lu ,
it follows that there is a k × k permutation matrix A such that

M(Flower) = A · σ(M(Fupper)) ·AT . (10)

Since

A ·


1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1

 ·AT =


1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1

 ,

we have

A · σ(M(Fupper)) ·AT =


1 · · · ∗ ∗
∗ 1 · · · ∗
...

...
...

...
∗ ∗ · · · 1

 ,

i.e., multiplying A on the left and AT on the right of σ(M(Fupper)) will not change
the main diagonal. It can be seen that when k > 1, the first entry in M(Flower)
is 0 while the first entry in A · σ(M(Fupper)) · AT is 1, a contradiction to (10).
Hence, NFSR(Fupper) and NFSR(Flower) are inequivalent when k > 1. ⊓⊔
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