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Abstract. ECIES has been widely used in many cryptographic devices
and systems to ensure the confidentiality of communication data. Hence,
researching its security of implementation is essential. It is generally con-
sidered that the embedded point validation towards the input point Q
during decryption is enough to resist most of the existing fault attacks
and small subgroup attacks. Even many open source algorithm libraries
(e.g., OpenSSL and BouncyCastle) only employ the embedded point val-
idation to resist fault attack. However, the proposed weak curve fault at-
tack in this paper can break this situation because it can successfully pass
the embedded point validation and the validation of the scalar multipli-
cation about the input point Q and cofactor h(i.e., hQ ̸= O). Moreover,
the proposed attack does not require that the instances of ECDLP on
the weak curve derived by fault injection is computationally practical
which could increase the availability of fault injection. The simulations
demonstrate the feasibility of our attack. Finally, we also investigate the
implementations of 14 open source algorithm libraries, and there are 10
algorithm libraries which can not block our attack. Hence, we also give
some suggestions about countermeasures.

Keywords: ECIES, Weak Curve Attack, Fault Attack, Small Subgroup
Attack

1 Introduction

1.1 Background

ECIES [1] is an integrated encryption scheme based on elliptic curve, which is
an extension of ElGamal encryption algorithm. It is mainly used for ensuring
confidentiality of data or transmitting session key. It has been included in ANSI
X9.63, ISO/IEC 18033-2, IEEE1363A, SECG SEC 1 and the other standards,
where SM2PKE encryption also belongs to ECIES-class algorithm. ECIES has



been implemented in many open source algorithm libraries such as OpenSSL,
Crypto++, BouncyCastle, Miracl and so on. Its security is similar with (EC)DH,
in which the small subgroups attack (SSA) [2] is one of the biggest threats.

There have been some SSAs on (EC)DH by exploiting the flaws of no point
validation. For example, in ESORICS’2015 [3], Tibor et al. carried on a SSA on
ECDH algorithm in TLS protocol, which can reveal the private key of the server.
A SSA on DH was also introduced in [4]. However, these attacks are infeasible
when being faced with standard implementation of ECC algorithm libraries,
since a point validation is added in ECIES and (EC)DH so as to block the SSAs.
Generally, for input point G, the point validation is just checking whether G is on
the original curve before the scalar multiplication Q = kG, which is also called
embedded point validation, while the validation of nG ̸= O may be replaced by
that of hG ̸= O with respect to performance, where n is the order of G, O is
infinite point and h is the cofactor. Thereby, the SSA [5] exploiting 2m-format
cofactor to reveal m-bit secret also can be blocked.

Weak curve fault attack(WCFA) is another main attack towards ECC. The
first WCFA on elliptic curve cryptosystem (ECC) was proposed by Biehl et al
in Crypto’2000 [6]. Suppose that some bits of the basis point G are disturbed by
fault injection before the calculation of scalar multiplication Q = kG. Since the
parameter b is not involved in the calculation of scalar multiplication, the faulty
G and the derived points Q, defined by Q′ and G′, are not on the original curve
but on a new weak curve E′(a, b′). Hence, Q = kG is changed into Q′ = kG′ on
E′(a, b′). If the maximum prime factor q of the order n′ of the point G′ is enough
small, i.e., O

(√
q
)
steps is a feasible amount of computation, then the elliptic

curve discrete logarithm problem (ECDLP) Q′ = kG′ can be solved by the tra-
ditional methods such as pohlig Hellman [7] and Pollard Rho [8] algorithms to
recover the reduced value k mod n′ of k. After that, many similar WCFAs based
on faulty parameter a, modulus p and basis point G were proposed in the publi-
cations [9,10,11]. Unfortunately, the embedded point validation could block all
the WCFAs above. Moreover, the WCFAs must know the result of scalar multi-
plication on the weak curve, while this result is not output in ECIES encryption
algorithm. In sum, it is usually considered that the WCFAs above could not
been used to analyze ECIES. Besides, there exist some special WCFAs which
can pass the embedded point validation, e.g., the twisted curve attack proposed
in FDTC’2008 [12]. Moreover, Battistello introduced a concept of common point
in COSADE’2014 [13], and proposed a new WCFA targeting parameter a when
parameter b is quadratic residual in Weierstrass curve E(a, b). The above two
attacks can pass the embedded point validation, but they still have some limi-
tations: 1)the derived weak curve must satisfy solving the instances of ECDLP
on it is computationally feasible; 2) they are all under special attack conditions,
such as quadratic residual b and Montgomery ladder multiplication.

In addition, a degenerate curve attack on Edward curve was proposed in
PKC’2016 [14]. It maps the addition group on the original curve into another
group on singular curve by fault injection, such that the calculation of scalar
multiplication on the new singular curve is simple and the scalar can be deduced
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directly. Then Takahashi et al. combined this attack and fault attack to analyze
ECDSA and SM2 encryption in Europe S&P’2019 [15]. The combined attack
assumes that the instructions during the decompression of basis point in SECG
can be skipped by fault injection. Thereby, a similar singular curve is constructed.
However, this attack requires high-accuracy fault injection and can not attack
ECIES decryption with point validation.

1.2 Our contributions

In this paper, we exploit the advantages of the weak fault curve attack and small
subgroups attack, and propose a new weak curve fault attack towards standard
ECIES (based on Weierstrass equation). The attack assumes that fault injection
causes a continuous bit block of parameter a disturbed randomly. Then, some
weak curves can be constructed, by which some reduced values of secret can
be deduced by small subgroups attacks. Compared with the existing weak fault
curve attacks, our attack is more feasible and practical. The detailed advantages
are summarized as follows.

– Our attack is effective for all the standard ECIES algorithms with embedded
point validation. The embedded point validation and hG ̸= O (where h is
cofactor, G is the input point of scalar multiplication and O is infinite point)
during ECIES decryption can not block our attack, since the input point
constructed by the adversary for decryption is just on the weak curve.

– Compared with the existing weak curve faults, our attack reduces the re-
quirement of fault injection extremely. it is unnecessary for our attack that
the instances of ECDLP on the constructed weak curves are solvable practi-
cally. As long as there are some small factors in the order of the weak curves,
then the weak curves can be used for our attack.

– Our attack can pose a pratical threat to many widely used open source algo-
rithm libraries with embedded point validation, such as OpenSSL, Bouncy-
Castle, Botan, mbedtls and so on. It demonstrates that the embedded point
validation is not enough for resisting fault attack. Moreover, we also give
some effective countermeasures.

The remainder of this paper is organized as follows: Section 2 reviews the prelim-
inaries that required to describe our approach. Section 3 describes the concrete
weak curve fault attack. Section 4 shows the experimental facets of the valid-
ity. Section 5 summarizes the available countermeasures, investigates the open
source algorithm libraries being vulnerable to our attack and gives some coun-
termeasure suggestions. Finally, a conclusion is given in Section 6.

2 Preliminaries

In view of the universality of prime field Fp (p is a prime number), here we just
introduce ECIES on Weierstrass elliptic curve E(a, b) in Fp.
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2.1 Elliptic curve in Fp

Weierstrass equation of elliptic curves in Fp is denoted by

E(a, b) : y2 = x3 + ax+ b mod p,

where parameters a, b ∈ Fp meet 4a3 + 27b2 ̸= 0.
The additive group of the rational points on elliptic curve E(a, b) is defined

as
E (Fp) =

{
(x, y) ∈ Fp × Fp|y2 = x3 + ax+ b mod p

}
∪ {O},

where O is the infinite point. The number of the points in E (Fp), also called the
order of E(a, b) in Fp, is denoted as #E (Fp) which is generally solved by SEA
algorithm [16].

Let G be a point in E (Fp), and then the group ⟨G⟩ with generator G is the
additive subgroup of E (Fp). If the number of the points in ⟨G⟩ is n, then n is
the order of point G satisfying nG = O. O is the identity element of ⟨G⟩. The
inverse element for any point P = (x, y) ∈ ⟨G⟩ is −P = (x,−y) ∈ ⟨G⟩. For any
integer k ∈ Zn and point G, the scalar multiplication kG = G+G+ . . .+G (k
times) is calculated using the following point doubling and addition operations.

Point Addition
If P = (x1, y1) ∈ ⟨G⟩,Q = (x2, y2) ∈ ⟨G⟩, and P ̸= ±Q, then (x3, y3) = P+Q

satisfies
x3 = λ2 − x2 − x1

y3 = λ(x1 − x3)− y1
, where λ = y2−y1

x2−x1
.

Point doubling
If P = (x1, y1) ∈ ⟨G⟩ and P ̸= −P , then (x3, y3) = 2P satisfies
x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1
, where λ =

3x2
1+a
2y1

.

From the rules above, parameter b does not participate in the calculation of
point doubling and addition, which is also the key point of most of the existing
fault attacks.

2.2 ECIES encryption algorithm

We recap briefly ECIES encryption algorithm as introduced in [17]. The whole
encryption process is shown in Algorithm 1. User A encrypts the plain m with
the public key PB of User B and outputs the ciphertext (Q,C, t). h is the co-
factor satisfying hn = #E (Fp). KDF (.) is the key derivation function based on
hash function. ENCk1(.) and DECk1(.) are generally the functions of symmetric
algorithms, and can also be simple XOR operations, where k1 is the secret key
of ENC and DEC. MACk2(.) is the message authentication code with key k2,
such as HMAC. There are two scalar multiplication operations during encryp-
tion, among which the result Q of kG is transmitted to B as a part of ciphertext.

B uses its own private key dB to decrypt the ciphertext sent from A. As
shown in algorithm 2, in order to resist the small subgroup attack, the valida-
tion of the input point Q before the scalar multiplication (Step 1) is required.
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Generally, as in [17], not the point validation but the embedded point valida-
tion without Step 4 (see Algorithm 3 for details) is employed to check the input
point of scalar multiplication. Our attack just captures this advantage to analyze
decryption.

Algorithm 1 Encryption of ECIES

Require: The definition of a specific elliptic curve E(a, b) in Fp, a base point G of the
curve with order n, plaintext m, B’s public key PB .

Ensure: Ciphertext (Q,C, t).
1: Generate k with random generator;
2: Calculate Q = kG and S = hkPB , where Q = (xQ, yQ) and S = (xS , yS);
3: If S = O then goto step 1;
4: Calculate (k1, k2) = KDF (xS , Q), C = ENCk1(m) and t = MACk2(C);
5: return (Q,C, t)

Algorithm 2 Decryption of ECIES

Require: The definition of a specific elliptic curve E(a, b) in Fp, basis point G of the
curve with order n, ciphertext (Q,C, t) and B’s private key dB .

Ensure: Plaintext m.
1: Check point Q with embedded point validation (Algorithm 3). If the validation is

failed, return rejecting this ciphertext;
2: Calculate S = (hdB)Q, where S = (xS , yS). If S = O, return rejecting this

ciphertext;
3: Calculate (k1, k2) = KDF (xS , Q) and t′ = MACk2(C). If t′ = t, return rejecting

this ciphertext;
4: Calculate m = DECk1(C);
5: return (m)

2.3 Definitions of weak curve

To better describe our approach, we introduce the following definitions based on
the foundation in Section 2.1.

Definition 1. Elliptic curve discrete logarithm problem (ECDLP): giv-
en G ∈ E(Fp) with order n and an element Q ∈ ⟨G⟩, find the value k ∈ Zn such
that Q = kG.

To our knowledge, the combination of Pohlig-Hellman algorithm [7] and Pol-
lard’s rho algorithm [8] is the most common approach in classical computer
for solving ECDLP in arbitrary elliptic curves. Thereby, we have the following
definitions.
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Algorithm 3 (Embedded) Point Validation

Require: The definition of a specific elliptic curve E(a, b) in Fp, order n and input
point Q.

Ensure: Whether Q is valid or not.
1: Check that Q = O;
2: Check that the xQ and yQ (x and y coordinates) of Q belong to Fp;
3: Check that Q is on the curve E(a, b);
4: Check that nQ = O (This step would be omitted in embedded point validation

due to efficiency);
5: If any checking is failed, then return (Invalid); Otherwise, return (Valid).

Definition 2. It is assumed that n is the order of weak curve E(a, b) and meets

the factorization n =
u∏

i=1

qeii , where qi ∈ N is a prime factor of n, ei > 0 de-

notes the degree of qi in the factorization and qi < qj for 1 ≤ i < j ≤ u. If the
biggest prime factor qu of order n meets O(

√
qu) operations is feasible in com-

putation, i.e., O(
√
qu) is not bigger than a predefined constant PRAC COMP,

an ECDLP instance, the order n on E(a, b) is called practically solvable. Corre-
spondingly, E(a, b) is called as practically solvable weak curve.

In this paper, we set PRAC COMP= 264 group operations by considering
currently computing power of classical computers, which can be redefined with
the development of computer technology.

3 Weak curve attack on ECIES

In this section, we first introduce the attack scenarios and fault model. Then,
we describe the concrete weak curve attack on ECIES with 4 steps, where step
2 and step 3 are the most important two steps and consist of two algorithms.

3.1 Attack Scenarios

Generally, for weak curve fault attack, fault injection mainly targets the physi-
cal objects including RAM, EEPROM or CPU register/memory so as to perturb
some bits of base point G, parameter a or modulus p. There are usually three
fault types, including temporary fault (i.e., the fault is updated after every in-
vocation), semi-permanent fault (i.e., the fault is kept unless the device restores
the correct one) and permanent fault (i.e., the fault is always kept once induced).
In this paper, we consider the fault type is permanent fault or semi-permanent
fault. In order to obtain the private key dB of B, the adversary in our attack
impersonates A to send ciphertext to B. Moreover, it is assumed that parameter
a is involved in the calculation of scalar multiplication in decryption and there
is a continuous l-bit block of a disturbed randomly by fault injection. Hence,
a is changed into a′ which has l bits different from a. The faulty a′ will keep
unchanged during the attack process until the device reset or reinducing fault.
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Consequently, the embedded point validation during decryption (step 1 in
Algorithm 2) is not on the curve E(a, b) but on E(a′, b), and the scalar multi-
plication S = (hdB)Q during decryption (step 2 in Algorithm 2) is on E(a′, b) :
x3 + a′x+ b mod p.

3.2 Proposed fault attack on weak curves

Before the attack, some notations should be defined firstly.

T : an integer which is set to be not greater than PRAC COMP
SET (T ): the set of the small factors of n′ (derived from valid a′) which are not

greater than 1
Red(dB): the set of the reduced values of dB
N : the number of SET (T ) (which is also the number of Red(dB))
Ej (& Rj): the j-th element of SET (T ) (&Red(dB))

The sets SET (T ) andRed(dB) are initialized to be two empty sets, i.e., SET (T ) =
∅, Red(dB) = ∅ and N = 0.

Step 1. Fault injection: Perturb a to be changed into a′

It is assumed that fault injection is induced to perturb l-bit continuous seg-
ment of a randomly before decryption such that a is changed into a′. As men-
tioned as above, a′ can be represented with a′ = a ⊕ β2λ, where β is a l-bit
random number, λ ∈ N belongs to [0, la − l](la is the bit length of a), and
λ+ l ≤ la. Moreover, it is usually considered that l is valued from 8, 16, 24, 32,
64 in view of the bit width of processor, which still meets 2l is not greater than
PRAC COMP.

If the faulty a′ is unknown, we utilize the following Step 2 (i.e., Algorith-
m ALG-GUESS-PARA) to reveal the faulty a′. Otherwise, go to Step 3 (i.e.,
Algorithm ALG-OBTAIN-PRIKEYINFO).

Step 2. Algorithm ALG-GUESS-PARA: Guess and determine a′

Step 2-1. Guess all the possible values a′j of a′(= a ⊕ β2λ), i.e., guess l-bit
β ∈ Z2l and λ ∈ [0, la − l]. The number of the possible values of a′ is
(la − l + 1)2l at most and j ∈ {0, 1, . . . , (la − l + 1)2l}.

Step 2-2. Based on the guessed value a′j , construct a curve E(a′j , b), and select
a arbitrary point Qj on it. Forge the ciphertext (Qj , Cj , tj) (See Algorithm
1), where Cj and tj is not calcuted by Qj but randomly selected, i.e., Cj and
tj could definitely be rejected by B. Then, send the ciphertext to inquiry B.

Step 2-3. If the ciphertext is rejected by B just after the embedded point val-
idation (i.e., Qj is the not on the curve E(a′, b)), then the corresponding
guessed a′j is not the valid value of a′. Then, go to Step 2-1. Otherwise, if
B rejects the ciphertext after the scalar multiplication (hdB)Qj (i.e., Qj has
passed the embedded point validation and is on E(a′, b)), then a′j is just the
faulty parameter a′. Finally, end the algorithm.
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Note that it is straightforward to tell when B rejects the ciphertext in Step
2-3. The valid point Qj (which is on E(a′, b)) can pass the point validation in
decryption and be involved in the calculation of (hdB)Qj which is the main time
(or power) consumption in decryption, while the invalid point on the incorrect
guessed E(a′j , b) would be rejected during the embedded point validation. Hence,
the time lengths (or the feature of power consumption) of the two rejections
are obviously different, from which we can distinguish the correct guessed a′j .

Moreover, the above algorithm of determining a′ will cost O((la − l + 1)2l)
computational complexity.

Then, with the known faulty a′, we can obtain some reduced values about
the private key of B by the following algorithm.

Step 3. Algorithm ALG-OBTAIN-PRIKEYINFO: Obtain the reduce values
of private key dB

Step 3-1. Calculate the order n′ of a′ with SEA algorithm [16], and factorize

n′ into n′ =
u∏

i=1

qeii (which is feasible when the bit length of n′ is less than

512), where qi ∈ N is the prime factor and ei ∈ N(ei > 0) is the degree of
qi(qi < qj for i < j).

Step 3-2. For each factor qeii (1 ≤ i ≤ u) of n′, if qeii satisfies

qeii < T and gcd(qi, E) = 1, ∀E ∈ SET (T ),

then add qeii into SET (T ) (i.e., SET (T ) is updated); if qeii satisfies

qeii < T , E|qeii and qeii > E, ∃E ∈ SET (T ),

then delete E from SET (T ) and add qeii into SET (T ) (i.e., SET (T ) is
updated); otherwise, SET (T ) is not updated.

Step 3-3. If SET (T ) is not updated (i.e., the faulty a is a invalid one), go to
Step 1 and regenerate a new faulty a′.

Step 3-4. For every factor qeii above which is added into SET (T ), being as-
sumed to be Ej (i.e., Ej = qeii ), select a point Q with order Ej on E(a′, b).

Guess all the reduced values d̃B ∈ [0,
Ej

gcd(Ej ,h)
− 1]∩Z of dB , by which forge

the corresponding ciphtertext with randomly selected message m (according
to Algorithm 1)

S̃(xS̃ , yS̃) = hd̃BQ,

(k̃1, k̃2) = KDF (xS̃ , Q),

C̃ = ENCk̃1
(m),

and t̃ = MACk̃2
(C̃).

.

Finally, send the forged ciphtertext (Q, C̃, t̃) to inquiry user B. If B accepts
the ciphtertext and outputs the plaintext, then the guessed d̃B is the correct
reduced value Rj of dB , where Rj = dB mod

Ej

gcd(Ej ,h)
. Then, add Rj into

Red(dB). Otherwise, continue to guess and inquiry.
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Note that, except for being required to have small factors qeii , the orders n′

of the valid a′ is not required to be practically solvable. Hence, most of faulty
a′s based on random fault model are valid for our attack. Moreover, for each
guessed value Rj and order Ej (j = 1, ..., N), since all the Ejs are less than T ,
the maximum computational complexity for the above guess-determine approach
is O(NT ). Hence, if only T is set to be less than PRAC COMP (N is usually
a small integer), the approach is feasible.

Step 4. Recover the private key dB
If the N elements Ej(j = 1, ..., N) of SET (T ) satisfy

N∏
i=1

Ei

gcd (Ei, h)
< n,

then go to Step 1 to generate a new faulty a′. Meanwhile, repeat Algorith-
m ALG-GUESS-PARA and Algorithm ALG-OBTAIN-PRIKEYINFO to add
some new elements into SET (T ) and Red(dB). Otherwise, using Chinese
remainder theorem(CRT), calculate

R1 = dB mod E1

gcd(E1,h)

...
RN = dB mod EN

gcd(EN ,h)

,

and recover the private dB.

4 Experimental analysis

In this section, we demonstrate the feasibility of our attack by simulations. The
emphasis is on checking Algorithm ALG-OBTAIN-PRIINFO and the recovery of
dB . Therefore, we do not carry on the practical fault injection in experiments.

We perform the experiments in a general computer with 8-core CPU 3.4GHz,
8G memory and Windows7 OS. We employ the SEA algorithm algorithm and
the CRT algorithm implemented in (C/C++) miracl library to calculate the
weak curve order n′ based on faulty a′ and solve the private key, respectively.

We choose two 256-bit curves over finite prime field Fp to analyze in exper-
iments respectively, including NIST P-256 curve [18] (hereafter called P-256)
and the curve recommended in SM2 digital signature algorithm (hereafter called
SM2-curve which still can be employed as the curve of ECDSA) [19]. For each
curve, there are two simulated faults in experiments, the single-bit flipped fault
and 16-bit random fault respectively. The single-bit flipped fault assumes to
flip a bit-by-bit. Then there are 256 cases in total. The 16-bit random fault
assumes that there are 16 bits of a disturbed randomly, i.e., a′ = a ⊕ (β2λ),
where β ∈ {0, 1}16 is a 16-bit random integer, and λ ∈ [0, 240]∩Z is also a small
random integer. The fault is also simulated for 256 times (where each simulation
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employs randomly different β and λ). To sum up, we do four types of different
simulations, and each one is done for 256 times.

For each type of fault simulations, there are 256 different a′s. For i = 0, ..., 15,
pick the 16i-th a′ (which is known) as the faulty parameter of the first fault
injection in turn (i.e., run Step 1 and Step 2 of Section 3.2). Then, run the
Algorithm ALG-OBTAIN-PRIKEYINFO (i.e., Step 3) and update the sets SET (T )

and Red(dB). If all the elements of SET (T ) satisfy
N∏
j=1

Ej

gcd(Ej ,h)
< n (i.e., Step

4), then add (16i+ 1)%256(or (16i+ 2)%256, ..., (16i+ ri − 1)%256)-th a′ one-
by-one as the parameters of 2(, 3, ..., ri)-th fault injection (Steps 1 and 2) until
the attack terminates and outputs the private key dB (Steps 3 and 4), where ri
is the required number of fault injection to recover dB when i = 0, ..., 15 in turn.
Finally, check dBG = PB .

Finally, for the four types of fault simulations and analysis, we summrize
the range of ri for i = 0, ..., 15 required in our attack when T is equal to
28, 216, 224, 232 and 240 respectively. As shown in Table 1, the required num-
ber ri of fault injection in the 16-time attacks (corresponding to 16 groups of
ris) is 219 at most and 174 at least when T is 28 for single-bit flipped fault of
SM2-curve, which is still practically feasible for fault injection. Moreover, the
computational complicity of determining dA when T = 28 is lowest than the
other cases. When T = 40, there even exist 3 times of fault injection to recover
the private key successfully. Moreover, the required ri for the four types of fault
simulations are approximately close. Thereby, our attack could be applied to
a number of ECIES algorithms only with embedded point validation based on
standard curves.

Table 1. The range of the needed number ri of fault injection for i = 0, ..., 15

Fault type
T = 28 T = 216 T = 224 T = 232 T = 240

Range of ri
single-bit flipped fault(P-256) 126− 174 15− 27 8− 18 7− 16 5− 12
16-bits random fault(P-256) 121− 176 16− 33 9− 26 7− 19 4− 12

single-bit flipped fault(SM2-curve) 148− 219 14− 30 9− 20 4− 14 3− 12
16-bits random fault(SM2-curve) 98− 176 14− 31 6− 21 6− 14 4− 12

5 Countermeasure discussion and practical threat

As mentioned above, the complete point validation with nQ = O towards in-
put point Q is the most intuitive countermeasure to block our attack. However,
introducing the calculation of scalar multiplication nQ almost doubles the per-
formance time of each ECIES decryption, since the scalar multiplications nQ
and (hdB)Q take the main time consumption. This is also the main reason why
most of algorithm libraries do not employ the complete point validation.
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In addition, the general scalar masking resisting side channel attack (SCA)
also could block our attack. For example, the scalar dB is masked with a s-
mall random number γ to become a new value d′B, i.e., d

′
B = dB + γn. After

that, d′B as the new scalar participates in the following calculation of scalar
multiplication (hd′B)Q. For this case, since Q is not on the original curve and
nQ ̸= O, it is necessary to guess the reduced value γ̃ ∈ [0, d − 1] of γ in ad-

dition to the reduce value of dB in our attack, where d =
Ej

gcd(Ej ,h)
. Then,

calculate S̃(xS̃ , yS̃) = h(d̃B + γ̃n)Q (see Step 3-4 of Algorithm ALG-OBTAIN-
PRIKEYINFO in Section Section 3.2). However, γ is changed along with each
decryption and thereby is determined with probability 1

γ mod d×dB mod d . If the
selected d is slightly large, the probability of determining γ mod d is very low,
which would block our attack. Similarly, the scalar masking d′B = dB + γn also
introduces additional time consumption due to the increasing bit length of d′B.
Therefore, in real implementation, many open source algorithm libraries do not
employ the scalar masking and replace it with other countermeasures, such as
randomizing the coordinates of the point, d′B = dB +2n (or d′B = dB +n) (mak-
ing constant time of the scalar multiplication) and so on. However, for these
countermeasures, our attack is immune.

To sum up, although the two countermeasures above (complete point vali-
dation and scalar masking) can block our attack, there still exist many security
bugs in practical implementation. In view of this, we summarize the potential
security risks of many open source libraries under our attack.

5.1 Practical threat to open source algorithm libraries

We investigated the current commonly used open source algorithm libraries such
as OpenSSL, CYPTO++, BouncyCastle and so on, and check whether they have
the point (or embed point) validation and scalar masking. Finally, we found many
libraries do not or only implement the embedded point validation which is still
vulnerable to our attacks. We summarized the security risks of the algorithm
libraries in Table 2. Let EPV denote the embedded point validation (see Al-
gorithm 3), and PV denote the complete point validation (with the additional
scalar multiplication of nQ = O) which could block our attack. On the one hand,
there are only 4 algorithm libraries (The last 4 lines) implementing PV during
scalar multiplication in Table 2. Moreover, only CYPTO++ and libtomcrypt set
PV as the default validation, and can block our attack. For MIRACL, although
there is PV implemented in it, EPV is employed during the real implementation
of ECIES. In addition, employing PV in BouncyCastle depends on the fact that
the cofactor h is not equal to 1, which is uncertain whether it will block our
attack. On the other hand, except the algorithm library Botan 2.17.3, the other
libraries do not employ the countermeasure of scalar masking (which can block
our attack). Moreover, in Botan 2.17.3, the scalar masking is implemented only
when there is random number generator (RNG). Otherwise, dB is masked with
d′B = dB + 2n (or d′B = dB + n). Hence, its vulnerability on resisting our attack
depends on the concrete resource of the algorithm library. In addition, Tinycryp-
t, OpenSSL and GmSSL also employ the scalar countermeasure of d′B = dB+2n
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(or d′B = dB + n), but it is ineffective to block our attack. In a word, our at-
tack could cause real threat to most of current common open source algorithm
libraries(10 out of 14).

Table 2. The range of the needed number ri of fault injection for i = 0, ..., 15

Item
Algorithm Method of Scalar Whether block
libraries validation masking our attack or not

1 Tinycrypt none # No

2 Wolfssl none # No

3 matrixssl none # No

4 OpenSSL EPV # No

5 OpenSSL-andrio EPV # No

6 Botan 2.17.3 EPV ! Uncertain
(if existing RNG)

7 GmSSL EPV # No

8 cryptlib 3.4.6 EPV # No

9 libgcrypt-1.9.2 EPV # No

10 mbedtls-2.25 EPV # No

1
2

MIRACL
EPV(default)

# No
and PV

11 BouncyCastle 1.8.9
EPV( h = 1)

# Uncertain
and PV

13
CYPTO++ 8.4.0 EPV and

# Yes
PV(default)

14 libtomcrypt PV # Yes

5.2 Our suggestion on countermeasure

To balance the implementation efficiency and the security resisting our attack, we
recommend adding an embedded point validation of the base point G during the
ECIES decryption (see Algorithm 2) after the embedded point validation of the
input point Q (Step 1 in Algorithm 2). That is, before the scalar multiplication
(hdB)Q (Step 2 in Algorithm 2), check whetherG is on the curve with parameters
a and b. Since parameter a has been replaced by a′, G is not on the curve E(a′, b)
definitely and the ciphertext is naturally rejected. Note that this countermeasure
is just valid when there is only one fault (i.e., faulty parameter a). For more
faults, e.g., the faulty instruction flow that all the embedded point validations
are skipped by fault injection in each decryption, we recommend that the scalar
masking with a small random number should be employed.
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6 Conclusion

We combines the advantages of fault attack and small subgroup attack to propose
a new weak curve fault attack on ECIES with embedded point validation. Based
on the fault of parameter a, i.e., faulty a′, our attack can pass the embedded
point validation and recover the private key in ECIES decryption successfully.
Moreover, the order n′ of the weak curve generated by faulty a′ is not required
to be practically solvable, which can increasing the availability of fault injec-
tion. The experiments demonstrate that our attack is practically feasible and
the investigation shows that our attack could pose real threat to many open
source algorithm libraries. Therefore, we also give some suggestion about the
countermeasures which can block our attack.
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