
Improved Circuit Compilation for Hybrid MPC
via Compiler Intermediate Representation

(Full Version)*

Daniel Demmler1, Stefan Katzenbeisser2,
Thomas Schneider3, Tom Schuster3 and Christian Weinert3

1University of Hamburg, Germany
2University of Passau, Germany

3Technical University of Darmstadt, Germany
demmler@informatik.uni-hamburg.de, stefan.katzenbeisser@uni-passau.de,

{schneider, schuster, weinert}@encrypto.cs.tu-darmstadt.de

Keywords: Privacy-Preserving Protocols, MPC, Circuit Compilation

Abstract: Secure multi-party computation (MPC) allows multiple parties to securely evaluate a public function on
their private inputs. The field has steadily moved forward and real-world applications have become practical.
However, MPC implementations are often hand-built and require cryptographic knowledge. Thus, special
compilers like HyCC (Büscher et al., CCS’18) have been developed, which automatically compile high-level
programs to combinations of Boolean and arithmetic circuits required for mixed-protocol (hybrid) MPC. In
this work, we explore the advantages of extending MPC compilers with an intermediate representation (IR)
as commonly used in modern compiler infrastructures. For this, we extend HyCC with a graph-based IR
that facilitates the implementation of well-known algorithms from compiler design as well as further MPC-
specific optimizations. We demonstrate the benefits by implementing arithmetic decomposition based on our
new IR that automatically extracts arithmetic expressions and then compiles them into separate circuits. For
a line intersection algorithm, we require 40 % less run-time and improve total communication by a factor
of 3× compared to regular HyCC when securely evaluating the corresponding circuit with the hybrid MPC
framework ABY (Demmler et al., NDSS’15).

1 INTRODUCTION

Secure multi-party computation (MPC) allows two
or more mutually distrusting parties to securely eval-
uate an arbitrary public function on their private in-
puts such that only the result of the computation is re-
vealed but nothing else. MPC was already introduced
in the 1980s with Yao’s garbled circuits (Yao, 1986)
and the protocol by Goldreich, Micali, and Wigder-
son (GMW) (Goldreich et al., 1987).

Only in recent years, research has lead to effi-
cient MPC implementations that can make applica-
tions practical in the real world, e.g., private tax fraud
detection in Estonia (Bogdanov et al., 2015) and mea-
suring ad conversion rates at Google (Ion et al., 2020).
Also, companies like Sharemind or Unbound Tech
emerge that provide MPC-based software solutions as
alternatives to trusted hardware (Archer et al., 2018).

So far, however, extensive cryptographic knowl-
edge was required to implement applications in MPC,

*Please cite the conference version of this paper pub-
lished at SECRYPT’21 (Demmler et al., 2021).

where functions must be expressed as Boolean or arith-
metic circuits, or a combination thereof. Manual effort
was especially necessary to utilize hybrid protocols,
which can greatly improve the overall performance
by mixing multiple MPC protocols to evaluate a com-
plex function efficiently (Demmler et al., 2015b).

Specialized compilers like HyCC (Büscher et al.,
2018) made significant steps towards the broader use
of MPC by automatically translating high-level pro-
gramming languages like ANSI C into combinations
of Boolean and arithmetic circuits, which are common
representations of functions in MPC. Specifically, cir-
cuits for MPC represent functions as a set of primitive
gates (e.g., AND, XOR, NOT, ADD, or MULT) inter-
connected via wires, similar to digital logic circuits.

However, MPC compilers lack many optimizations
that are commonly implemented in compiler infrastruc-
tures such as LLVM (Lattner and Adve, 2004), which
mostly rely on the internal use of a graph-based inter-
mediate representation (IR) (Aho et al., 1986).

Our Contributions. In this work, we show
that MPC compilers can be extended with an inter-



mediate representation similar to modern compiler
infrastructures, resulting in significant enhancements
for circuit compilation. We enable new optimizations
and improve the size as well as composition of com-
piled circuits, thus increasing the performance when
evaluating these circuits with MPC.

For this, we design a new graph-based IR inspired
by LLVM (Lattner and Adve, 2004) and integrate it
into the state-of-the-art MPC compiler HyCC (Büscher
et al., 2018) as a new pipeline phase. Our IR is es-
pecially designed to facilitate the implementation of
well-known algorithms from compiler design as well
as further MPC-specific optimizations.

In order to demonstrate its benefits, we design and
implement a new compiler optimization for arithmetic
decomposition based on our new IR. The MPC com-
piler can now automatically extract arithmetic opera-
tions from larger units of code to allow these opera-
tions to be evaluated using an MPC protocol that is
especially suitable for additions and multiplications.
Arithmetic decomposition was already discussed theo-
retically in (Büscher et al., 2018), but only a developer-
guided, coarse-grained version based on function de-
composition has been implemented and evaluated. In
this paper, we give a completely automated solution.

We also demonstrate the improvements that our ap-
proach achieves by measuring the performance for
evaluating circuits generated by HyCC in the two-
party hybrid-protocol MPC framework ABY (Demm-
ler et al., 2015b) with and without our new optimiza-
tions. For a line intersection algorithm, where arith-
metic expressions are mixed with logical operations
and division, we find that arithmetic decomposition
paired with an appropriate protocol selection improves
the total run-time by 40 %. Moreover, the communica-
tion overhead is reduced by a factor of 3×.

We summarize our contributions as follows:

• We design a graph-based IR and integrate it
into HyCC (Büscher et al., 2018).

• Using our new IR, we implement an arithmetic
decomposition algorithm.

• We empirically measure our optimization by eval-
uating circuits for a line intersection algorithm
in ABY (Demmler et al., 2015b). We observe im-
provements in communication of up to factor 3×.

2 RELATED WORK

In recent years, many MPC compilers and frameworks
have been proposed, which are extensively reviewed
in (Hastings et al., 2019). TASTY (Henecka et al.,
2010) and ABY (Demmler et al., 2015b) demonstrated

that hybrid secure protocols can significantly increase
performance. However, their benchmarks were hand-
built, whereas we focus on automatically generating
highly efficient hybrid circuits.

TinyGarble (Songhori et al., 2015) and (Demmler
et al., 2015a; Testa et al., 2019) created optimized
circuits from hardware description languages, which,
however, are not widely known among regular soft-
ware developers. Other works thus studied compilation
from high-level languages, e.g., EzPC (Chandran et al.,
2019) compiles a domain-specific language to a mix
of Yao’s garbled circuits and arithmetic GMW.

Our work directly extends the HyCC com-
piler (Büscher et al., 2018), which generates hybrid
circuits optimized for evaluation with three differ-
ent MPC protocols from ANSI C code. Originally,
HyCC achieves a developer-guided and coarse-grained
code decomposition solely based on functions and
loops in the program to be compiled. We improve
the decomposition by automatically detecting and ex-
tracting blocks of arithmetic statements (cf. §4.2) for
a fine-grained decomposition and show that this leads
to significant performance improvements (cf. §5).

The authors of the hybrid MPC compiler in (Ishaq
et al., 2019) use static single assignment (SSA) form
translated from Java for optimal protocol selection.
They apply linear programming to find the most effi-
cient assignment, which is limited to two MPC pro-
tocols. In contrast, we automatically optimize and
compile ANSI C for three MPC protocols.

3 PRELIMINARIES

3.1 MPC Tools

We shortly introduce the MPC framework ABY that
we utilize for benchmarking and the MPC com-
piler HyCC that we extend in our work.

3.1.1 ABY

The ABY framework (Demmler et al., 2015b) is a
state-of-the art framework for manually mixing dif-
ferent two-party MPC protocols and their state-of-the-
art optimizations: Yao’s garbled circuits (Yao, 1986),
the GMW protocol (Goldreich et al., 1987), and an
arithmetic version of the GMW protocol. ABY is a
hybrid-protocol framework: it is possible to securely
switch between these protocols for different parts of
the function to be evaluated, which often results in
better overall efficiency.



3.1.2 HyCC

The open-source HyCC compiler (Büscher et al.,
2018) extends the CMBC-GC compiler (Holzer et al.,
2012), which in turn is based on the bounded model
checker CBMC (Clarke et al., 2004). HyCC automati-
cally compiles ANSI C programs to circuits optimized
for hybrid MPC.

The originial compiler pipeline of HyCC without
our IR worked as follows (Büscher et al., 2018):

(a) CBMC front-end: preprocessing, lexing, and pars-
ing of ANSI C code resulting in goto-code.

(b) Optimization: static analysis, constant propagation,
symbolic execution for loop unrolling.

(c) Function decomposition: outlining of functions
into dedicated “modules”.

(d) Circuit compilation: generation of size- and depth-
optimized Boolean as well as arithmetic circuits
for each module.

(e) Circuit export: circuit export into an ABY-
compatible format (Demmler et al., 2015b).

(f) Protocol selection: picking the best MPC protocol
for each module.

3.2 Compiler Background

We shortly introduce the terminology of compiler lit-
erature and common forms of compiler intermediate
representations.

3.2.1 Control Flow Graph

The control flow graph (CFG) of a program is a di-
rected graph of all possible execution paths. Popular
compiler optimizations like dependency analyses are
usually done on CFGs. The nodes represent basic
blocks and the edges represent jumps or transitions
between them. A basic block contains one or more
instructions that are executed sequentially.

A common way of iterating through CFGs is in re-
verse post-order (RPO): a block is visited before all of
its successor blocks, unless the successor is reachable
via a back edge.

3.2.2 Compiler IR

In the classic compiler model (Aho et al., 1986), a
front-end parses high-level source code from which
first an intermediate representation (IR) is created, and
a back-end subsequently produces (machine) code.
The main purpose of an IR is to simplify the optimiza-
tions and analyses of a program, since human readable
source code is not suitable for automated processing.

The most common forms of IR include graph-,
tuple-, and stack-based IRs, which can be combined.
Our graph-based IR is using flat tuple-based instruc-
tions inside its nodes. Our IR is almost in SSA form,
as there are no IR-level variables. An extension to
proper SSA form is therefore easily possible but not
necessary for our work.

3.2.3 Goto-Code

The CBMC front-end represents parsed and pro-
cessed ANSI C code as linear goto-code, which does
not contain higher-level constructs such as if or for
statements. Instead, the control flow is converted
to goto instructions, which are similar to the jmp in-
struction and its conditional variants in x86 assembly.
Goto-code has distinct concepts of instructions (e.g.,
assign or goto) and expressions (e.g., addition),
which can be nested. A function is represented as
a list of instructions that may reference expressions.

4 A NEW COMPILER IR FOR
CIRCUIT COMPILATION

Our goal of designing and integrating a new com-
piler IR in HyCC is to facilitate the implementation
of (possibly MPC-specific) compiler optimizations and
analyses in order to improve compilation results and
increase MPC performance.

HyCC already contains several data structures that
can be categorized as IR, especially the goto-code
representation obtained by parsing ANSI C code in
the CBMC front-end. Unfortunately, goto-code is not
well-suited for building compiler optimizations: It
is only “stringly” typed, encodes information about
variables in the name, and uses a different expression
sub-class for each operation. Moreover, the return
value of a function call is referenced by a magic vari-
able name, making it error-prone to insert or remove
function calls. Furthermore, memory access is very
abstract, rendering data-dependency analyses imprac-
tical. Finally, iterating through all instructions in a
function in reverse post-order (RPO) is cumbersome,
but required for many data-flow analyses.

Our new compiler IR, simply called “IR” in the
following, remains relatively high-level, but abstracts
away a lot of the unnecessary details that goto-code
contains. It also uses the concept of basic blocks, but
instead of using goto instructions to jump to labeled
instructions inside the linear code representing the pro-
gram, our new IR uses a graph-based representation:
Every basic block has a pointer to the head of the
linked list of instructions. We also maintain a set of
incoming and outgoing edges for every block.



ID=1, PostIDom=3

%bar = named_addr<signed int (*)(signed int a, signed int b)> bar
%test::a = named_addr<signed int *> test::a
%1 = load<signed int> %test::a
%test::b = named_addr<signed int *> test::b
%2 = load<signed int> %test::b
%3 = call<signed int> %bar %1 %2
%test::1::c1 = named_addr<signed int *> test::1::c
store %test::1::c1 %3
dead
jump

ID=0, PostIDom=3

%6 = (signed int)10
%test::a2 = named_addr<signed int *> test::a
%7 = load<signed int> %test::a2
%test::b1 = named_addr<signed int *> test::b
%8 = load<signed int> %test::b1
%9 = lt<_Bool> %7 %8
%10 = l_not<_Bool> %9
branch %10

ID=3, PostIDom=n/a

%test::1::c = named_addr<signed int *> test::1::c
%0 = load<signed int> %test::1::c
%test#return_value = named_addr<signed int *> test#return_value
store %test#return_value %0
dead

ID=2, PostIDom=3

%test::a1 = named_addr<signed int *> test::a
%4 = load<signed int> %test::a1
%5 = add<signed int> %4 (signed int)10
%test::1::c2 = named_addr<signed int *> test::1::c
store %test::1::c2 %5
jump

Figure 1: Graph-based representation of the code from Lst. 1 in our new IR.

Our IR is a new stage in the HyCC compiler
pipeline described in §3.1 and located between
the CBMC front-end (a) and the optimization phase (b).
Its design is inspired by modern compiler infrastruc-
tures, especially LLVM (Lattner and Adve, 2004). It
consists of only one instruction class Instr, com-
pared to the separation of expressions and instructions
in goto-code. The new simplistic instructions and
the CFG with basic blocks enable us to implement
common analysis passes as described in the compiler
literature. We briefly describe all Instr fields:

type The C data type associated with expres-
sions (e.g., signed int), which can be copied
directly from goto-code. Almost every instruction
has a type, with the notable exception of jump and
branch instructions.

Listing 1: C code representation of test function.

1 int test(int a, int b) {
2 int c;
3 if (a < b) {
4 c = a + 10;
5 } else {
6 c = bar(a, b);
7 }
8 return c;
9 }

kind The kind of this instruction, e.g., addition, con-
stant, call, or store.

block The basic block containing this instruction.

operands For an add instruction, these are two in-
structions representing both sides of the expres-
sion. Instructions such as call have one operand
for each argument.
This field is a pointer to another instruction previ-
ously contained in the linked list. Unlike expres-
sions in goto-code, there is no direct nesting.

next Pointer to the next instruction in the basic block.

We give an example in Fig. 1. This graph repre-
sents our IR for the C code shown in Lst. 1. There are
four nodes, i.e., basic blocks. The four edges show
the possible control flow between the blocks. Every
block also has a unique ID. PostIDom is the ID of
the immediate post dominator of that block, i.e., the
nearest block that is guaranteed to be executed at some
point after this block. The entry block of the graph
has ID 0 and contains the condition for the if-statement.
The if- and else-blocks have IDs 2 and 3, respectively.
The exit block has ID 3.

A major difference between our IR and goto-code
is the introduction of explicit load and store in-
structions. In IR, we only refer to the address of a
variable with named_addr. In C, this equals creat-
ing a reference with the ampersand operator, i.e., &a.



Loading the value of a variable then involves a load
of the named_addr. By introducing these additional
instructions, we make the IR easier to analyze: we
can ensure that every memory access happens only us-
ing load and store instructions. This becomes more
interesting when considering the many other forms of
memory accesses in C, which all use different expres-
sions in goto-code. For example, struct members (e.g.,
position.x in C and member_expr in goto-code),
array access (e.g., array[i] in C and index_expr
in goto-code), and manual pointer arithmetic via arith-
metic expressions. All of these are unified in our IR
using a single instruction: compute_addr.

The compute_addr instruction has a base pointer,
an offset from that pointer, and a scaled-index operand.
The offset parameter can be used to address a specific
struct member using its memory offset. For array ac-
cesses, the scaling parameter is used to scale the index
using the array’s native type size to the appropriate
full address. In C pointer arithmetic, this is equivalent
to base+ offset+ index ∗ scaling. This instruction is
comparable to LLVM’s getelementptr.

4.1 HyCC Integration

In the following, we describe the integration of our
new graph-based IR into HyCC (Büscher et al., 2018).
For this, we present conversions from/to semantically
equivalent goto-code.

4.1.1 Goto-Code to IR

The conversion from flat goto-code to our graph-
based IR first generates basic blocks: For each goto
jump target, a new basic block is created, unless it
already exists. Additionally, a goto also marks the end
of the current basic block and a new basic block is
created for the next instruction.

GOTO instructions are converted to jump or
branch instructions, if they are conditional. For ev-
ery ASSIGN instruction, a store instruction is created;
FUNCTIONAL_CALL instructions result in call instruc-
tions. For goto expressions like addition, there exists a
one-to-one mapping to a new Instr instance of that
specific kind. References to variables (symbol_exprt
expressions) are changed to named_addr. More com-
plex instructions like array indexing or struct member
access produce the new compute_addr kind.

4.1.2 IR to Goto-Code

The remainder of the HyCC compiler pipeline only
operates on goto-code. Thus, we design and imple-
ment a conversion back to goto-code, that happens
after optimization and mark/extract (cf. §4.2).

The conversion algorithm mainly flattens the graph
structure to linear code and separates IR instructions
into goto instructions and nested expressions. Im-
portantly, we produce goto-code that is semantically
equivalent to the goto-code before the IR conversion.

The final goto-code is produced in two phases:
First, all instructions are emitted. Then, the jump
targets of the emitted (conditional) goto instructions
are initialized. We iterate through all blocks in reverse
post-order (RPO).

After emitting all goto-code, there is still bookkeep-
ing work to be done. When decomposing a function in
our IR, new structs, parameters, and variable names are
introduced that the CBMC front-end is not aware of.
Therefore, new symbols representing variable names
and types are added to the existing symbol table(s).

4.2 Arithmetic Decomposition

Using our new IR, we design and implement fine-
grained arithmetic decomposition by moving arith-
metic expressions to separate functions created in
the IR. Thereby, we take advantage of the already
existing function decomposition in HyCC, which com-
piles the new functions as a new module to arithmetic
circuits (cf. §3.1).

Our algorithm is basic block local. It thus operates
on one basic block at a time instead of decomposing
code across multiple basic blocks or even a whole
function. It consists of two phases: the mark and
the extract phase described next.

4.2.1 Mark Phase

Iterating through all instructions inside a basic block,
we only inspect those with an observable side effect,
i.e., call, store, and jump/branch. The main goal is to
group as many adjacent store instructions as possible.

For every store instruction, we make sure it is ex-
tractable, i.e., it can be moved to a new IR-level func-
tion dedicated to arithmetic operations. For this, we
check three conditions: First, we ensure that the left-
hand-side (lhs) of the assignment is referencing a regu-
lar variable. Second, trivial expressions like constants
or variable references are skipped. Finally, a heuristic
is applied to the last store instruction inside a basic
block to avoid extraction of loop counter operations.

For the remaining instructions, we recursively iter-
ate through the expressions on the right-hand side (rhs)
and ensure the operands are supported by arithmetic
circuits, whereas all types of logic and bitwise opera-
tions are implicitly rejected. The full mark algorithm
is given in Alg. 1.



Algorithm 1 The mark algorithm.
procedure EXTRACTABLE(expr)

if expr.kind ∈ {addition,subtraction,
multiplication} then

return EXTRACTABLE(expr.lhs) and
EXTRACTABLE(expr.rhs)

end if
if expr.kind = load then

return EXTRACTABLE(expr.operand)
end if
if expr.kind ∈ {constant,named_addr} then

return true
end if
return false

end procedure

Algorithm 2 The extract algorithm.
procedure EXTRACT(instr, is_lhs)

if instr.kind = named_addr then
name← instr.variable_name
if is_lhs then

assignment← assignment +name
else if name /∈ assignment then

ADD_PARAMETER(name)
end if
name← RENAME(name)
return NEW_NAMED_ADDR(name)

end if
if instr.kind = store then

rhs← EXTRACT(instr.rhs, false)
lhs← EXTRACT(instr.lhs, true)
return NEW_STORE(lhs,rhs)

end if
for all op ∈ instr.ops do

op← EXTRACT(op, is_lhs)
end for
return COPY(instr, instr.ops)

end procedure

4.2.2 Extract Phase

If a store instruction is the first instruction in a group
of marked store instructions, a new IR-level function
is created. All subsequent store instructions and their
reachable operands are moved to that new function.

While most instructions like addition and multi-
plication can simply be copied to the new function,
special care has to be taken regarding references to
named variables. The variable names were created in
the context of the original function and encode various
information that do not apply to the new function.

Copying instructions to a new function and appro-
priately renaming variables is not enough. We further-
more need to add parameters for references to variables
that were not moved to the new function. In more com-
plex scenarios, there are also references to variables
in outer blocks. Of course, we also need to add return
values for all the variables that were assigned by the
extracted store instructions.

Finally, the original function must be updated. All
extracted store instructions are removed and replaced
with a single call instruction to the newly created func-
tion. All required variables are added as arguments
and the return values are assigned appropriately.

As a result, after conversion back to goto-
code, the decomposition phase (c) in the HyCC
pipeline (cf. §3.1) can outline each new function into a
dedicated module, which subsequently can be success-
fully compiled to an arithmetic circuit (d), and eventu-
ally be evaluated with an appropriate arithmetic proto-
col (f). The full extract algorithm is given in Alg. 2.

5 EVALUATION

We evaluate our extension of HyCC with our new com-
piler IR and the arithmetic decomposition optimization
using a line intersection algorithm from rosettacode.
org (Rosetta Code, 2020) where arithmetic expressions
are mixed with logical operations and division.

Finding the intersection of two lines in Euclidean
geometry has interesting practical use cases, e.g., in
computer graphics, finance, motion planning, and col-
lision detection. We only modify the code slightly
to replace floating-point numbers with integers and
inline the function for calculating the determinant to
challenge our fine-grained arithmetic decomposition,
as shown in Lst. 2 in the appendix.

We now compare the circuits that are generated
with and without arithmetic decomposition. Without
decomposition, the C program is compiled into a sin-
gle Boolean circuit. With arithmetic decomposition
enabled, an additional arithmetic circuit is generated.

As shown in Tab. 1, arithmetic decomposition de-
creases the total number of gates and notably also the
number of AND gates in the hybrid circuit by more
than 80 %. Since AND gates require computation and
communication in most MPC protocols, we show that
our optimization is well-suited for its intended usage
in MPC compilers. The resulting 10 MUL and 9 SUB
gates exactly match the number of multiplications and
subtractions in the intersection function.

We evaluate the performance of the automatically
generated circuits in ABY (Demmler et al., 2015b)
for obtaining empirical performance results. Our
setup consists of two machines with Intel Core i7-
4790 CPUs at 3.6 GHz and 32 GB RAM connected in
a 10 Gbit/s LAN with 1 ms RTT.

The measured run-times (averaged over 10 exe-
cutions) and communication results are summarized
in Tab. 2. We split the measurements into an input-
independent setup phase that can be pre-computed
and an online phase that is executed once the private

rosettacode.org
rosettacode.org


Table 1: Number and types of gates with and without arithmetic decomposition.

AND OR XOR NOT MUL ADD SUB NEG Total

No arith. decomp. (HyCC (Büscher et al., 2018)) 13,995 127 24,436 644 0 0 0 0 39,202
With arith. decomp. (this work) 2,307 211 4,260 300 10 0 9 0 7,097

Table 2: Run-times and communication for line intersection (cf. §6) in ABY (Demmler et al., 2015b).

Run-time [ms] Communication [kB]
Protocol Setup Online Total Setup Online Total

Yao’s GC (HyCC (Büscher et al., 2018)) 5.348 3.515 8.863 399.79 6.08 405.86
Yao’s GC + Arithmetic (this work) 3.468 2.081 5.550 116.07 19.48 135.56

GMW (HyCC (Büscher et al., 2018)) 6.634 46.095 52.729 600.10 19.60 619.71
GMW + Arithmetic (this work) 4.779 37.454 42.233 277.47 33.09 310.55

inputs are known. Boolean circuits are evaluated ei-
ther with Yao’s gabled circuits (GC) (Yao, 1986) or
the GMW protocol (Goldreich et al., 1987) as imple-
mented in ABY (Demmler et al., 2015b).

We observe that the total run-time is signifi-
cantly improved due to arithmetic decomposition, e.g.,
by 40 % from 8.9 ms to 5.6 ms for the favorable combi-
nation with Yao’s GC. Moreover, we improve the total
communication by factor 3×. Even for the less effi-
cient combination with GMW, the improvements are
significant, e.g., the total communication is improved
by factor 2×.

6 Conclusion & Future Work

In this work, we designed and integrated a new graph-
based compiler intermediate representation for the
state-of-the-art hybrid MPC compiler HyCC (Büscher
et al., 2018). We furthermore successfully utilized and
evaluated our new IR for implementing arithmetic de-
composition, thereby significantly improving the MPC
performance when compiling, e.g., scientific or statis-
tical applications with mixed Boolean and arithmetic
operations. In the following, we shortly outline inter-
esting areas for future work to unlock further potential
of our new IR and arithmetic decomposition in HyCC.

Our new IR can be used for easily implementing
more optimizations that potentially lead to further per-
formance improvements in MPC, e.g., field-sensitive
program dependence analysis (Litvak et al., 2010).
For arithmetic decomposition, so far only instructions
are marked as extractable if the right-hand-side of
the assignment is fully decomposable. However, an
improved version could also extract arithmetic sub-
expressions of bigger expressions with mixed opera-
tions. Moreover, C programmers often use shift op-
erators instead of multiplication or division, because
of better performance on general-purpose computers.
In light of compilation for MPC protocols, left shifts

by a constant should be replaced with an arithmetic
multiplication with a power of two.

ACKNOWLEDGEMENTS

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 850990 PSOTI). It was
supported by the DFG as part of project E4 within
the CRC 1119 CROSSING and project A.1 within
the RTG 2050 “Privacy and Trust for Mobile Users”,
and by the BMBF and HMWK within ATHENE.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers:
Principles, techniques, and tools. Addison-Wesley
series in computer science. Addison-Wesley.

Archer, D. W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen,
K., Pagter, J. I., Smart, N. P., and Wright, R. N. (2018).
From keys to databases - real-world applications of se-
cure multi-party computation. The Computer Journal.

Bogdanov, D., Jõemets, M., Siim, S., and Vaht, M. (2015).
How the estonian tax and customs board evaluated a
tax fraud detection system based on secure multi-party
computation. In FC. Springer.

Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D.,
and Schneider, T. (2018). HyCC: Compilation of hy-
brid protocols for practical secure computation. In
CCS. ACM.

Chandran, N., Gupta, D., Rastogi, A., Sharma, R., and Tri-
pathi, S. (2019). EzPC: Programmable and efficient
secure two-party computation for machine learning. In
EuroS&P. IEEE.

Clarke, E. M., Kroening, D., and Lerda, F. (2004). A tool for
checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).
Springer.



Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A.,
Schneider, T., and Zeitouni, S. (2015a). Automated
synthesis of optimized circuits for secure computation.
In CCS. ACM.

Demmler, D., Katzenbeisser, S., Schneider, T., Schuster, T.,
and Weinert, C. (2021). Improved circuit compilation
for hybrid MPC via compiler intermediate representa-
tion. In SECRYPT. SciTePress. To appear.

Demmler, D., Schneider, T., and Zohner, M. (2015b). ABY -
A framework for efficient mixed-protocol secure two-
party computation. In NDSS. The Internet Society.

Goldreich, O., Micali, S., and Wigderson, A. (1987). How
to play any mental game or A completeness theorem
for protocols with honest majority. In STOC. ACM.

Hastings, M., Hemenway, B., Noble, D., and Zdancewic, S.
(2019). SoK: General purpose compilers for secure
multi-party computation. In S&P. IEEE.

Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., and
Wehrenberg, I. (2010). TASTY: Tool for automating
secure two-party computations. In CCS. ACM.

Holzer, A., Franz, M., Katzenbeisser, S., and Veith, H.
(2012). Secure two-party computations in ANSI C.
In CCS. ACM.

Ion, M., Kreuter, B., Nergiz, A. E., Patel, S., Saxena, S., Seth,
K., Raykova, M., Shanahan, D., and Yung, M. (2020).
On deploying secure computing: Private intersection-
sum-with-cardinality. In EuroS&P. IEEE.

Ishaq, M., Milanova, A. L., and Zikas, V. (2019). Efficient
MPC via program analysis: A framework for efficient
optimal mixing. In CCS. ACM.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In International Symposium on Code Generation
and Optimization (CGO). IEEE.

Litvak, S., Dor, N., Bodík, R., Rinetzky, N., and Sagiv, M.
(2010). Field-sensitive program dependence analysis.
In FSE. ACM.

Rosetta Code (2020). Find the intersection of
two lines. https://rosettacode.org/wiki/Find_the_
intersection_of_two_lines#C.2B.2B.

Songhori, E. M., Hussain, S. U., Sadeghi, A., Schneider,
T., and Koushanfar, F. (2015). TinyGarble: Highly
compressed and scalable sequential garbled circuits. In
S&P. IEEE.

Testa, E., Soeken, M., Amarù, L. G., and Micheli, G. D.
(2019). Reducing the multiplicative complexity in logic
networks for cryptography and security applications.
In Design Automation Conference (DAC). ACM.

Yao, A. C. (1986). How to generate and exchange secrets.
In FOCS. IEEE.

LINE INTERSECTION CODE

The line intersection algorithm code used in our evalua-
tion (cf. §5) is based on rosettacode.org (Rosetta Code,
2020). Our slightly modified version (with integer

instead of floating-point arithmetic and inlined deter-
minant calculation to challenge our fine-grained arith-
metic decomposition optimization) is given in Lst. 2.

Listing 2: Line-Line intersection in C. The point (INT_MAX,
INT_MAX) is used as a sentinel value for no intersection.

1 typedef struct {
2 int x;
3 int y;
4 } Point;
5

6 typedef struct {
7 Point s;
8 Point e;
9 } Line;

10

11 Point LineLineIntersect(
12 int sx1, int sy1, // Line 1 start
13 int ex1, int ey1, // Line 1 end
14 int sx2, int sy2, // Line 2 start
15 int ex2, int ey2) // Line 2 end
16 {
17 Point result;
18

19 // Determinant(sx1, sy1, ex1, ey1);
20 int detL1 = sx1 * ey1 − sy1 * ex1;
21 int detL2 = sx2 * ey2 − sy2 * ex2;
22

23 int sx1mex1 = sx1 − ex1;
24 int sx2mex2 = sx2 − ex2;
25 int sy1mey1 = sy1 − ey1;
26 int sy2mey2 = sy2 − ey2;
27

28 int x_nom = detL1 * sx2mex2
29 − sx1mex1 * detL2;
30 int y_nom = detL1 * sy2mey2
31 − sy1mey1 * detL2;
32 int denom = sx1mex1 * sy2mey2
33 − sy1mey1 * sx2mex2;
34

35 if (denom == 0) {
36 result.x = INT_MAX;
37 result.y = INT_MAX;
38 return result;
39 }
40

41 result.x = x_nom / denom;
42 result.y = y_nom / denom;
43

44 return result;
45 }
46

47 Point mpc_main(Line INPUT_A, Line INPUT_B) {
48 return LineLineIntersect(
49 INPUT_A.s.x, INPUT_A.s.y,
50 INPUT_A.e.x, INPUT_A.e.y,
51 INPUT_B.s.x, INPUT_B.s.y,
52 INPUT_B.e.x, INPUT_B.e.y);
53 }

https://rosettacode.org/wiki/Find_the_intersection_of_two_lines#C.2B.2B
https://rosettacode.org/wiki/Find_the_intersection_of_two_lines#C.2B.2B
rosettacode.org

