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Abstract

In 2018, the longest vector problem and closest vector problem in local fields were
introduced, as the p-adic analogues of the shortest vector problem and closest vector
problem in lattices of Euclidean spaces. They are considered to be hard and useful
in constructing cryptographic primitives, but no applications in cryptography were
given. In this paper, we construct the first signature scheme and public-key encryp-
tion cryptosystem based on p-adic lattice by proposing a trapdoor function with
the orthogonal basis of p-adic lattice. These cryptographic schemes have reason-
able key size and efficiency, which shows that p-adic lattice can be a new alternative
to construct cryptographic primitives and well worth studying.
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1. Introduction

Since Diffie and Hellman invented public-key cryptography in 1976 [4], quite a few

public-key cryptosystems based on computationally hard mathematical problems

have been proposed.

Two famous hard problems are integer factorization and discrete logarithm prob-

lem, based on which lots of cryptosystems have been constructed. For example, the

first practical public-key cryptosystem RSA [18] is based on integer factorization.

The ElGamal cryptosystem [6] is based on the discrete logarithm problem in finite

fields. The elliptic curve cryptosystem is based on discrete logarithm of elliptic
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curves over finite fields [9, 15], and hyperelliptic curve cryptosystem is based on

discrete logarithm of Jacobian of hyperelliptic curves over finite fields [10]. The two

problems have not been proven to be NP-hard yet, and Peter Shor [20] found quan-

tum polynomial time algorithms in 1994 for them, which yields that the classical

public-key cryptosystems such as RSA and ElGamal would be broken under future

quantum computer.

However, there are also other computationally hard mathematical problems that

can be employed to construct public key cryptosystems. For instance, multivariate

cryptography [12] is based on solving system of nonlinear equations over finite fields.

The McEliece system [13] is based on decoding a random linear code over finite

fields. Lattice-based cryptography [14, 7] is based on the shortest vector problem

and closest vector problem in lattices of Euclidean spaces. These computational

problems have been shown to be NP-hard, and the corresponding cryptosystems

are widely believed to be quantum-resistant, which are the main candidates in the

standardization of post quantum cryptography initiated by NIST [22]. Specially,

some new hard computational problems have been proposed in the standardization,

such as computing isogeny between elliptic curves [5, 11]. But it is still unknown if

computing isogeny between elliptic curves is NP-hard or not.

Motivated by lattice-based cryptosystems, one of the most promising post quan-

tum cryptosystems, Deng et al. [2, 3] introduced some new computational problems

in p-adic lattices of local fields, the longest vector problem and closest vector prob-

lem which are the p-adic analogues of the shortest vector problem and closest vector

problem in lattices of Euclidean spaces. It was expected in [2, 3] that the new prob-

lems can be used to construct public key cryptosystems, which was left as an open

problem.

In this paper, we try to solve the problem by constructing a signature scheme and

a public-key encryption scheme. The basic idea is very similar to the code-based

McEliece system [13] or the lattice-based GGH scheme [7], that is, we adopt a good

basis as the private key and transform it into a bad basis as the public key. With

the good basis, we can efficiently solve the hard problem in p-adic lattice, while

the bad basis looks random that may not help solve the hard problem. We show

that an orthogonal basis for a given p-adic lattice can be the good basis. More

precisely, we show that if there is an orthogonal basis for a given p-adic lattice,

then the longest vector problem and closest vector problem in local fields are easy

to solve. Then the orthogonal bases can be used to construct trapdoor information

for cryptographic schemes. Finally we propose a signature scheme and a public-key

cryptosystem based on p-adic lattices.

We would like to point out that as main candidate of the post quantum cryptog-

raphy, cryptography based on lattices in Euclidean spaces have obtained extensive

study in recent years. However, p-adic lattices do not gain any attention. As the

p-adic analogues of the lattices in Euclidean spaces, it is reasonable to expect that
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the problem could be quantum-resistant. Our results shows that p-adic lattices may

be useful in cryptography and it is worth for further study, which provides a new

alternative candidate to construct cryptographic primitives.

Roadmap. The paper is organized as follows. We recall basic fact about local

fields, the p-adic lattices, the longest vector problem (LVP) and closest vector prob-

lem (CVP) in Section 2 and present the fast algorithms to solve LVP and CVP in

local fields with the help of an orthogonal basis in Section 3. We then construct a

signature scheme in Section 4 and a public-key cryptosystem in Section 5. We give

some possible attacks to our schemes in Section 6 and we report our experimental

results in Section 7.

2. Local fields and p-adic lattices

In this section, we recall some basic facts about local fields, see [2, 3]. For detailed

study of local fields, please see [8, 1, 19].

2.1. Basic facts about local fields

Let p be a prime number. For x ∈ Q with x ̸= 0, write x = pt ab with t, a, b ∈ Z
and p - ab. Define | x |p= p−t and | 0 |p= 0. Then | · |p is a non-Archimedean

absolute value on Q. Namely, we have: (1) | x |p≥ 0 and | x |p= 0 if and only if

x=0; (2) | xy |p=| x |p| y |p; (3) | x+ y |p≤ max(| x |p, | y |p). If | x |p ̸=| y |p, then
| x+ y |p= max(| x |p, | y |p).

Let Qp be the completion of Q with respect to | · |p. Denote Zp = {x ∈ Qp ||
x |p≤ 1}. We have

Qp = {
∞∑
i=j

aip
i | ai ∈ {0, 1, 2, . . . , p− 1}, i ≥ j, j ∈ Z},

and

Zp = {
∞∑
i=0

aip
i | ai ∈ {0, 1, 2, . . . , p− 1}, i ≥ 0}.

Zp is compact and Qp is locally compact. Zp is a discrete valuation ring, it has

a unique nonzero principal maximal ideal pZp and p is called a uniformizer of Qp.

The unit group of Zp is Z×
p = {x ∈ Qp || x |p= 1}. The residue class field Zp/pZp

is a finite field with p elements.

Let n be a positive integer, and let K be an extension field of Qp of degree n.

We fix some algebraic closure Qp of Qp and view K as a subfield of Qp. Such K

exists. For example, let K = Qp(α) with αn = p. Because Xn − p is an Eisenstein

polynomial over Qp, it is irreducible over Qp, then K has degree n over Qp. Further,
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there are only finitely many extension fields of Qp of degree n contained in Qp, see

[16]. The p-adic absolute value (or norm) | · |p on Qp can be extended uniquely to

K, i.e., for x ∈ K, we have | x |p=| NK/Qp
(x) |

1
n
p , where NK/Qp

is the norm map

from K to Qp. K is complete with respect to | · |p. See [1] for a proof.

Denote OK = {x ∈ K || x |p≤ 1}. OK is also a discrete valuation ring, it has

a unique nonzero principal maximal ideal πOK and π is called a uniformizer of K.

OK is a free Zp-module of rank n. OK is compact and K is locally compact. The

unit group of OK is O×
K = {x ∈ K || x |p= 1}. The residue class field OK/πOK

is a finite extension of Zp/pZp. Call the positive integer f = [OK/πOK : Zp/pZp]

the residue field degree of K/Qp. As ideals in OK , we have pOK = πeOK . Call

the positive integer e the ramification index of K/Qp. We have n = [K : Qp] = ef .

When e = 1, the extension K/Qp is unramified, and when e = n, K/Qp is totally

ramified. Each element x of the multiplicative group K× of nonzero elements of K

can be written uniquely as x = uπt with u ∈ O×
K and t ∈ Z. We have p = uπe with

u ∈ O×
K , so | π |p= p−

1
e . The valuation group of K is

{| x |p| x ∈ K×} = p
Z
e .

2.2. Efficient computations in local fields

In this subsection, we describe how to do efficient computations in local fields.

We give a degree-n extension field K of Qp by giving a monic degree-n irreducible

polynomial f(x) ∈ Zp[x]. Let θ ∈ Qp be a root of f(x) = 0, then let K = Qp(θ). If

f(x) is an Eisenstein polynomial, then K is totally ramified over Qp, see [1].

Let α ∈ K, we express α as a polynomial of θ of degree < n with coefficients in

Qp. The map

α̂ : K −→ K

is defined as α̂(β) = α · β, i.e., the map from K to K by multiplying α. This

map is Qp-linear. The norm NK/Qp
(α) is the determinant of the map α̂. We can

take the basis (1, θ, θ2, . . . , θn−1) of K over Qp, then representing the map α̂ by an

n × n-matrix over Qp. The determinant of this matrix is the norm NK/Qp
(α). So

we can efficiently calculate the p-adic absolute value |α|p.
Let α1, . . . , αn be a basis of K over Qp, and let β ∈ K. Using the following

method, we can represent β as a Qp-linear combination of α1, . . . , αn. Write
α1

α2

...
αn

 = B


1
θ
...

θn−1
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with B ∈ GLn(Qp). It is clear that

β = (b1, b2, . . . , bn) ·


1
θ
...

θn−1

 = (b1, b2, . . . , bn) ·B−1 ·


α1

α2

...
αn

 .

2.3. p-adic lattices, LVP and CVP

In [2, 3], two new computational problems in p-adic lattices are introduced, they

are the Longest Vector Problem and Closest Vector Problem. We first review it

briefly.

Let p be a prime number, and let K be an extension field of Qp of degree n,

where n is a positive integer. Let m be a positive integer with 1 ≤ m ≤ n. Let

α1, . . . , αm ∈ K be m many Qp-linearly independent vectors. A lattice in K is the

set

L(α1, . . . , αm) =

{
m∑
i=1

aiαi | ai ∈ Zp, 1 ≤ i ≤ m

}
of all Zp-linear combinations of α1, . . . , αm. The sequence of vectors α1, . . . , αm is

called a basis of the lattice L(α1, . . . , αm). The integers m and n are called the rank

and dimension of the lattice, respectively. When n = m, we say that the lattice is

of full rank.

2.3.1. Longest Vector Problem(LVP)

For any element α =
∑m

i=1 aiαi ∈ L, since each ai ∈ Zp, we have

| α |p=|
m∑
i=1

aiαi |p≤ max
1≤i≤m

(| aiαi |p) ≤ max
1≤i≤m

(| αi |p).

This indicates that the length | α |p of any element of the p-adic lattice L is bounded

above. Since the valuation group of K is discrete, as a subset of K, the set of lengths

of elements of the lattice L is also discrete.

Definition 2.1. [2, 3] Let L = L(α1, . . . , αm) be a lattice in K. We define recur-

sively a sequence of positive real numbers: λ1, λ2, λ3, . . . as follows.

λ1 = max
1≤i≤m

(| αi |p)

λj+1 = max{| x |p| x ∈ L, | x |p< λj} for j ≥ 1.

We have λ1 > λ2 > λ3 > . . . and limj→∞ λj = 0.
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Definition 2.2. [2, 3] Given a lattice L = L(α1, . . . , αm) in K, the longest vector

problem (LVP) is to find a lattice vector v ∈ L such that | v |p= λ2.

Theorem 2.3. [2, 3] Given a lattice L = L(α1, . . . , αm) in K. Fix an integer j ≥ 2.

There exists an algorithm to find a lattice vector vj ∈ L satisfying | vj |p= λj . The

algorithm takes O(pm(j−1)) many p-adic absolute value computations of elements of

K.

2.3.2. Closest Vector Problem(CVP)

Given a target vector t ∈ K. Since the function

L −→ R, v 7−→| t− v |p

is continuous on the compact set L, it can take the minimum and maximum on L.
Set

µmin = min
v∈L

| t− v |p and µmax = max
v∈L

| t− v |p .

If t ∈ L, it is obvious that we have µmin = 0 and µmax = λ1. Here λ1 is the same as

in Definition 2.1. So we below assume t /∈ L. Hence µmin > 0. Since the valuation

group of K is discrete, the above distance function will take only finitely many

values. So we have the following definition.

Definition 2.4. [2, 3] Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K−L be

a target vector. Define s positive real numbers µ1 > µ2 > µ3 > · · · > µs as follows,

where s is a positive integer.

{µ1, µ2, µ3, . . . , µs} = {| t− v |p| v ∈ L}.

So µmax = µ1 and µmin = µs.

If | t |p> λ1, since | t − v |p=| t |p, we have µmin = µmax =| t |p. So we below

assume | t |p≤ λ1.

Definition 2.5. [2, 3] Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L
be a target vector with | t |p≤ λ1. The closest vector problem (CVP) is to find a

lattice vector v ∈ L such that | t− v |p= µmin.

3. Solving LVP and CVP with orthogonal bases

3.1. Orthogonal bases

Let p be a prime. Let V be a left vector space over Qp. A norm on V is a function

| · | : V −→ R
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such that:

(i) |v| ≥ 0, ∀v ∈ V, and |v| = 0 if and only if v = 0;

(ii) |xv| = |x|p · |v|, ∀x ∈ Qp, v ∈ V ;

(iii) |v + w| ≤ max(|v|, |w|), ∀v, w ∈ V.

If | · | is a norm on V , and if |v| ≠ |w| for v, w ∈ V , then we have |v + w| =
max(|v|, |w|). Weil [21] proved the following proposition:

Proposition 3.1. [21, p.26] Let V be a left vector space over Qp of finite dimension

n > 0, and let | · | be a norm on V . Then there is a decomposition V = V1+ · · ·+Vn

of V into a direct sum of subspaces Vi of dimension 1, such that

|
n∑

i=1

vi| = max
1≤i≤n

|vi|, ∀vi ∈ Vi, i = 1, . . . , n.

So we can define the orthogonal basis.

Definition 3.2 (Orthogonal basis). Let V be a left vector space over Qp of finite

dimension n > 0, and let | · | be a norm on V . We call α1, . . . , αn an orthogonal

basis of V over Qp if V can be decomposed into the direct sum of n 1-dimensional

subspaces Vi’s (1 ≤ i ≤ n), such that

|
n∑

i=1

vi| = max
1≤i≤n

|vi|, ∀vi ∈ Vi, i = 1, . . . , n,

where Vi is spanned by αi.

Weil’s proof is not constructive, and he did not give a method to find out an

orthogonal basis. The following is immediate.

Proposition 3.3. Let V be a left vector space over Qp of finite dimension n > 0,

and let | · | be a norm on V . Let α1, . . . , αn be a basis of V over Qp. If

{|vi| | vi ∈ Qp · αi}
∩

{|vj | | vj ∈ Qp · αj} = {0},∀i, j = 1, . . . , n, i ̸= j,

then α1, . . . , αn is an orthogonal basis of V over Qp.

Proposition 3.4. Let K be an extension field of degree n of Qp. Let π be a

uniformizer of K. Set

V =

e−1∑
i=0

Qp · πi

where e is the ramification index of K/Qp. Then V is an e-dimensional Qp-vector

subspace of K, and 1, π, . . . , πe−1 is an orthogonal basis of V .
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Proof. We know 1, π, . . . , πe−1 is Qp-linearly independent, see [1, p.125, Lemma

5.4]. Since |π|p = p−
1
e ,

{|x|p | x ∈ Qp · πi} = {0}
∪

pZ−
i
e .

Now the result follows from Proposition 3.3.

3.2. Solving LVP with orthogonal bases

We can prove the following theorem.

Theorem 3.5. Given a lattice L = L(α1, . . . , αm) in K. Assume α1, . . . , αm is an

orthogonal basis. Fix an integer j ≥ 2. There exists an algorithm to find a lattice

vector vj ∈ L satisfying

| vj |p= λj .

The algorithm takes O(m) many p-adic absolute value computations of elements of

K.

Proof. Without loss of generality, we can assume

{|αi|p | i = 1, . . . ,m} = {ν1, . . . , νs} with ν1 > · · · > νs,

and

|αi|p = νi, i = 1, . . . , s.

Then, obviously,

{logp |v|p | v ∈ L, v ̸= 0} = {logp νi − k | i = 1, . . . , s, k = 0, 1, 2, · · · }.

Consider the set of valuations

S = {logp νi − k | 0 ≤ k ≤ j − i, 1 ≤ i ≤ min(s, j)}.

Obviously, in decreasing order, the first number of the set S is ν1 = λ1, and the

j-th number is λj . If λj = logp νi − k, we can take the vector vj = pkαi.

The algorithm needs to compute the m many p-adic absolute values of the basis

vectors. We ignore the time of comparing.

3.3. Solving CVP with orthogonal bases

We can prove the following theorem.
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Theorem 3.6. Let L = L(α1, . . . , αm) be a lattice in K. Let t ∈ K − L be a

target vector with | t |p≤ λ1. Let V (⊃ L) be a k-dimensional Qp-vector subspace

of the field K. Let α1, . . . , αm, αm+1, . . . , αk(k ≥ m) be an orthogonal basis of V .

Suppose the target vector t ∈ V . There is an algorithm to find a vector vi ∈ L such

that |t − vi|p = µi, for each i = 1, 2, . . . , s. The algorithm takes O(n) many p-adic

absolute value computations of elements of K, where n is the degree of K over Qp.

Proof. Write

t =

k∑
i=1

biαi, bi ∈ Qp, i = 1, . . . , k.

For any lattice vector

v =

m∑
i=1

aiαi ∈ L, ai ∈ Zp, i = 1, . . . ,m,

we have

|t− v|p = max{|bi − ai|p · |αi|p(1 ≤ i ≤ m), |bjαj |p(m+ 1 ≤ j ≤ k)}.

If bi ̸∈ Zp, then |bi − ai|p = |bi|p > 1. If bi ∈ Zp, then

{|bi − ai|p | ai ∈ Zp} = {0, p−c(c = 0, 1, 2, . . .)}.

Assume bi ̸∈ Zp for 1 ≤ i ≤ l and bi ∈ Zp for l+1 ≤ i ≤ m, where l is an integer

with 0 ≤ l ≤ m. Thus,

{|t− v|p | v ∈ L} = {max{|bi|p · |αi|p(1 ≤ i ≤ l); |bjαj |p(m+ 1 ≤ j ≤ k);

p−cu · |αu|p | cu = 0, 1, 2, 3, . . . ,∞(l + 1 ≤ u ≤ m)}},

where we set p−∞ = 0.

Set

N = max{|bi|p · |αi|p(1 ≤ i ≤ l); |bjαj |p(m+ 1 ≤ j ≤ k)}.

Since t ̸∈ L, we have N > 0. Obviously, µs = µmin = N . To obtain the value

max{N, p−cu · |αu|p | cu = 0, 1, 2, 3, . . . ,∞(l + 1 ≤ u ≤ m)},

we can only consider those indices l + 1 ≤ u ≤ m for which |αu|p > N . Denote du
the largest non-negative integer with

p−du · |αu|p > N.

Consider the set

T = {N, p−cu · |αu|p | cu = 0, 1, . . . , du with |αu|p > N(l + 1 ≤ u ≤ m)}.
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Listing the number of the set T , in decreasing order, we get the values of the distance

function |t− v|p, v ∈ L, i.e. the s many positive real numbers µ1 > µ2 > µ3 > · · · >
µs such that

{µ1, µ2, µ3, . . . , µs} = {| t− v |p| v ∈ L}.

And it is easy to find all vectors vi ∈ L such that |t− vi|p = µi, i = 1, 2, . . . , s.

Similar to Theorem 2.3, if there is no any orthogonal bases, exponential time

algorithms are given in [2, 3].

4. A signature scheme

We present our signature scheme as follows.

Key Generation: We first choose a totally ramified K of degree n over Qp, i.e.,

choose an Eisenstein polynomial f(x) = xn + f1x
n−1 + . . . + fn−1x + fn ∈ Zp[x]

satisfying |fn|p = p−1 and |fi|p < 1 for 1 ≤ i ≤ n− 1. Let θ be a root of f(x) = 0.

Choose another ζ ∈ OK = Zp[θ] such that Zp[ζ] = Zp[θ]. Then K = Qp(ζ). Let

F (x) ∈ Zp[x] be the minimum polynomial of ζ over Qp which is also monic and of

degree n. Choose n non-negative integers ji ∈ Z such that the ji (mod n)(1 ≤ i ≤
n) are distinct. Set αi = θji(1 ≤ i ≤ n). Then α1, . . . , αn are linearly independent

over Qp, thus α1, . . . , αn is an orthogonal basis. All elements of OK should be

expressed as polynomials in ζ of degree < n with coefficients in Zp and ζ is just a

formal symbol.

Choose a matrix A ∈ GLm(Zp). Put β1

...
βm

 = A

 α1

...
αm


such that the m vectors β1, . . . , βm have the same length or have almost same

lengths. Set

L = Zp · β1 + . . .+ Zp · βm = Zp · α1 + . . .+ Zp · αm.

We need a hash function

H : {0, 1}∗ −→ W := {x | x ∈ K − L, |x|p = λ1},

where λ1 is the maximum value of the lengths of all vectors in L. This hash

function can be implemented as follows. For the message M ∈ {0, 1}∗, compute

seed = SHA− 3(M), then using this seed to generate a random element in W .

Public key is set to be: (F (x),H, (β1, . . . , βm)).
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Private key is set to be: (α1, . . . , αm, αm+1, . . . , αn).

Signing algorithm: For any message M ∈ {0, 1}∗, choose a random number r of

fixed length, say, r ∈ {0, 1}256. Compute

t = H(M ∥ r).

Using the orthogonal basis (α1, . . . , αm, αm+1, . . . , αn), Bob computes a lattice vec-

tor v ∈ L which is the closest one to t. If the minimum value of the distance from t

to L is strictly less than λ1, then output the signature (r, v). If the minimum value

of the distance from t to L is equal to λ1, then choose a new r ∈ {0, 1}256 until the

minimum value of the distance from t to L is strictly less than λ1.

Verification algorithm: The signature is valid if and only if t = H(M ∥ r), v ∈ L
and |t− v|p < λ1.

The correctness is obvious. For the efficiency, what needs to illustrate is how

many random r’s can yield a valid signature. We have not proven it in theory by

now, but in our experiments, we always generated a valid signature with just one

r. Hence, our signature scheme is very efficient.

Remark. Notice that, if (r, v) is a true signature, then we must have |v|p = λ1.

Keeping the notation in the proof of Theorem 3.6, if there is an index u with

l + 1 ≤ u ≤ m such that |buαu|p > N , then it holds that the minimum distance

from t to L is strictly less than |t|p.

5. A public-key cryptosystem

We first present an original public-key cryptosystem as follows.

Key Generation For the sake of clarity, we repeat the necessary notation. We

first choose a totally ramified K of degree n over Qp, i.e., choose an Eisenstein

polynomial f(x) = xn + f1x
n−1 + . . . + fn−1x + fn ∈ Zp[x] satisfying |fn|p = p−1

and |fi|p < 1 for 1 ≤ i ≤ n − 1. Let θ be a root of f(x) = 0. Choose another

ζ ∈ OK = Zp[θ] such that Zp[ζ] = Zp[θ]. Then K = Qp(ζ). Let F (x) ∈ Zp[x] be

the minimum polynomial of ζ over Qp which is also monic and of degree n. Choose

n non-negative integers ji ∈ Z such that the ji (mod n)(1 ≤ i ≤ n) are distinct.

Set αi = θji(1 ≤ i ≤ n). Then α1, . . . , αn are linearly independent over Qp, thus

α1, . . . , αn is an orthogonal basis.

Choose a positive integer m ≤ n. Choose a positive real number 0 < δ < 1.

All elements of OK should be expressed as polynomials in ζ of degree < n with

coefficients in Zp.

Choose a matrix A ∈ GLm(Zp). Put β1

...
βm

 = A

 α1

...
αm
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such that the m vectors β1, . . . , βm have the same length or have almost same

lengths. Set

L = Zp · β1 + . . .+ Zp · βm = Zp · α1 + . . .+ Zp · αm.

Public key is set to be: (F (x), δ, (β1, . . . , βm)).

Private key is set to be: (A, (α1, . . . , αn)).

Encryption: For any plaintext (a1, . . . , am) ∈ {0, 1, . . . , p − 1}m − {(0, . . . , 0)},
Alice first chooses randomly r ∈ K − L with p−1 < |r|p < p−δ, computes the

ciphertext

C = a1β1 + · · ·+ amβm + r ∈ K

and sends C to Bob.

Decryption: When Bob receives the ciphertext C, using Theorem 3.6 with the

orthogonal basis (α1, . . . , αn), he computes a lattice vector v ∈ L which is the

closest one to C. Write

v = b1α1 + . . .+ bmαm, bi ∈ Zp,

then the plaintext is

(b1, . . . , bm) ·A−1 (mod p).

However, for the correctness, we can only prove that:

Theorem 5.1. The decryption is correct for those indices 1 ≤ i ≤ m with ji ≤ δn.

Proof. Since there is a lattice vector a1β1+ · · ·+amβm such that |C− (a1β1+ · · ·+
amβm)|p < p−δ, we have |C − v|p < p−δ. Write C = v + r′ with |r′|p < p−δ. We

have

C = (a1, . . . , am) ·A

 α1

...
αm

+ r = (b1, . . . , bm) ·

 α1

...
αm

+ r′.

Set

(c1, . . . , cm) = (a1, . . . , am) ·A, ci ∈ Zp.

We have

|
m∑
i=1

(ci − bi) · αi |p= |r′ − r|p ≤ max{|r|p, |r′|p} < p−δ.

Since α1, . . . , αm is an orthogonal basis, we have

|
m∑
i=1

(ci − bi) · αi |p= max
1≤i≤m

(|ci − bi|p · |αi|p) < p−δ.
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Since

|αi|p = |θji |p = p−
ji
n ,

if there is some index 1 ≤ i ≤ m with ci − bi ∈ Z×
p , then we have

p−
ji
n < p−δ

i.e., δ < ji
n . So ci ≡ bi (mod p) for each 1 ≤ i ≤ m with ji ≤ δn. The decryption is

correct for those indices 1 ≤ i ≤ m with ji ≤ δn.

To make the decryption correct, we can revise the original cryptosystem a bit.

In the key generation, after generating ji’s and δ, denote by I the set of indices ji
with ji ≤ δn. Alice additionally chooses a set Z ⊆ I and sends the size z = #Z to

Bob. Then Alice can permute the set of αi’s such that {α1, · · · , αz} = {θji |ji ∈ Z}
and generates public key as before.

In the encryption algorithm, the plaintext becomes (a1, . . . , az) ∈ {0, 1, . . . , p −
1}z−{(0, . . . , 0)}. For any plaintext (a1, . . . , az), Bob firstly extends it into (a1, . . . , am) ∈
{0, 1, . . . , p− 1}m with random az+1, . . . , am, then encrypts it as before. In the de-

cryption algorithm, Alice just accepts the first z components of the recovered vector.

The correctness is obvious. For the efficiency, what needs to illustrate is how

efficient to generate a random r ∈ K − L with |r|p < p−δ. As δ becomes bigger, it

is harder to generate such r. In Section 7, we present some experiment results.

Remark. Our scheme is similar in its algorithmic nature to GGH scheme [7]

based on lattices in Euclidean spaces and McEliece scheme [13], but the domains in

which these operations take place are vastly different. On the other hand, the above

theorem says that which positions of the plaintext can be correctly decrypted. This

is a rare feature.

6. Security analysis

We do not present any security proof for our cryptosystems since the problems in

local fields are relatively very new. Instead, we give some possible attacks to our

schemes in this section.

6.1. Recovering a uniformizer

Given a local field K, if we could find out a uniformizer of K, then the above public-

key cryptosystem and signature scheme would be broken completely. However, as

mentioned in [3], uniformizers are just the second longest vectors in the p-adic lattice

OK , so recovering a uniformizer is a LVP-instance in OK , which is assumed to be

hard.
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6.2. Finding an orthogonal basis

Now there are no any known algorithms to find out an orthogonal basis of a p-adic

lattice if it has. Notice that, not all p-adic lattices necessarily have orthogonal bases.

If we assume that an orthogonal basis of p-adic lattices is hard to compute, then it

is difficult to recover the private key from the public key.

6.3. Solving CVP-instances

Obviously, if we could efficiently solve the CVP-instances, then the above public-key

cryptosystem and signature scheme would be broken completely. If we assume the

CVP is hard under a random basis of a lattice, then an illegal user is difficult to

forge a true signature and recover the plaintext from the ciphertext.

One may argue that it may be not necessary to solve the CVP problem to break

the encryption cryptosystem, since what we need to recover the plaintext is not

(d1, . . . , dm) = (b1, . . . , bm) · A−1, but just (d1, . . . , dm) mod p. Notice that the

ciphertext C is closest to (d1, . . . , dm) ·

 β1

...
βm

 by the decryption process. Giv-

en an m-dimensional p-adic lattice basis B and a target t, we define CVPp(B, t)

as the problem to recover (d1, . . . , dm) mod p, where (d1, . . . , dm) is the coeffi-

cients of some lattice vector closest to t under the basis B. It is easy to show

that given an oracle to solve CVPp(B, t), we can find a very good approxima-

tion of the vector in L(B) closest to t, which means that even to find the coeffi-

cients modulo p is very difficult. Roughly speaking, we can run the oracle to solve

CVPp(B, t) and get a returned solution (d̄1, . . . , d̄m). Then we know there exists

(d1, . . . , dm) ∈ Zm
p such that (d1, . . . , dm) · B is a lattice vector closest to t, and

(d1, . . . , dm) mod p = (d̄1, . . . , d̄m). We can continue to run the oracle to solve

CVPp(pB, t − (d̄1, . . . , d̄m)B) and get a returned solution (d̃1, . . . , d̃m). Then we

know there exists (d1, . . . , dm) ∈ Zm
p associated with a closest vector, such that

(d1, . . . , dm) mod p2 = (d̄1 + pd̃1, . . . , d̄m + pd̃1). Repeating the process several

times, we can recover (d1, . . . , dm) mod pk for k polynomial in m, which is enough

to yield a lattice vector that is very close to the target. Hence, to find the coefficients

modulo p is still very difficult.

6.4. Modulo p attack

We look at a so-called Modulo p attack for the above public-key cryptosystem. It

is similar to Nguyen’s attack [17] for the GGH cryptosystem.

For the ciphertext

C = a1β1 + · · ·+ amβm + r
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with |r|p < p−δ. Denote the ring of integers of K by OK , i.e., those elements x of

K with |x|p ≤ 1. We know OK = Zp[ζ]. We express C, β1, . . . , βm, r as polynomials

of ζ with coefficients in Zp, then equating the coefficients of 1, ζ, . . . , ζn−1 of the

two sides of the above equation, we obtain a system of n linear equations with

coefficients in Zp. Write

r =
n−1∑
i=0

ri · ζi, ri ∈ Zp.

If ζ would be a uniformizer of K, then since |ζi|p = p−
i
n , we have

|r|p = max
0≤i≤n−1

(|ri|p · p−
i
n ).

Since |r|p < p−δ, we have

|ri|p < p
i−δn

n .

If i ≤ δn, then p | ri. Since the r′is are unknown, reducing the above system of

linear equations modulo p, we get a system of R linear equations over the finite

field Fp, and the unknowns are just the plaintext (a1, . . . , am), where R is the

number of indices 0 ≤ i ≤ n − 1 with i ≤ δn. Assume the linear equations are

linearly independent over Fp, we can determine R unknowns as functions of other

unknowns. We have proved the following.

Proposition 6.1. If ζ would be a uniformizer of K, then the above Modulo p attack

can at most reduce the search space of plaintexts from pm to pm−R, where R is the

number of indices 0 ≤ i ≤ n− 1 with i ≤ δn.

However, in general, ζ is not a uniformizer of K, so 1, ζ, . . . , ζn−1 is not an

orthogonal basis, so the above Modulo p attack fails. Further, we can let ζ be a

unit of OK . Usually, the positive real number δ is < 1. Otherwise, if δ ≥ 1, it is

easily seen that, when writing r as a polynomial of ζ, the coefficients are all divisible

by p and the above Modulo p attack will apply.

7. Experimental results

To verify the efficiency of our cryptosystems, we did some experiments on a personal

laptop with Windows 10 operation system, i5-10210U CPU and 8-GB memory. We

report some experimental results in this section.

7.1. General strategies

Denote Z(p) := {x ∈ Q | |x|p ≤ 1}, i.e., the localization of Z at p. We can choose an

Eisenstein polynomial f(x) = xn + f1x
n−1 + . . . + fn−1x + fn ∈ Z(p)[x] satisfying
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|fn|p = p−1 and |fi|p < 1 for 1 ≤ i ≤ n−1. Choose ζ ∈ Z(p)[θ] such that θ ∈ Z(p)[ζ].

Then F (x) ∈ Z(p)[x]. Choose the matrix A ∈ GLm(Z(p)). Let
1
ζ
...

ζn−1

 = B


1
θ
...

θn−1


such that the matrix B is in GLm(Z(p)), then we have θ ∈ Z(p)[ζ]. Then all com-

putations can be done via polynomials in ζ of degree < n with coefficients in Z(p)

and ζ is just a formal symbol. Note that Z ⊂ Z(p) ⊂ Zp and Z is dense in Zp, so

Z(p) is large enough to work with.

For a positive integer D, denote

C(D) =
{a

b
| a, b ∈ Z, |a| ≤ D, 0 < b ≤ D, p - b

}
⊂ Z(p).

In our experiments, when randomly choosing elements of K, we choose a poly-

nomial of ζ with coefficients in C(D) for some D > 0.

7.2. Generating the keys

It is easy to generate the keys needed in our signature scheme and public-key cryp-

tosystem. We provide a relatively small example as follows.

For n = 100 and p = 2, we construct polynomials f(x) = x100 +
∑99

i=1 fi2x
i + 2

with fi ∈ {0, 1}. The calculations are all in GP/PARI Version 2.13.0. For instance,

f(x) = x100 + 2x98 + 2x95 + 2x93 + 2x90 + 2x88 + 2x87 + 2x85 + 2x83 + 2x82

+ 2x81 + 2x79 + 2x73 + 2x72 + 2x66 + 2x63 + 2x62 + 2x61 + 2x59 + 2x58

+ 2x57 + 2x55 + 2x53 + 2x52 + 2x51 + 2x49 + 2x48 + 2x44 + 2x42 + 2x38

+ 2x36 + 2x35 + 2x34 + 2x32 + 2x30 + 2x28 + 2x27 + 2x24 + 2x23 + 2x13

+ 2x12 + 2x11 + 2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x3 + 2x+ 2.

Let ζ = 1+
∑99

i=1 B2,i+1θ
i with B2,i+1 ∈ {0, 1}. We use the function “random()”

to construct ζ in GP/PARI. Moreover, we get the matrix B and compute whether

B ∈ GL100(Z(p)) or not. In this example, we construct 20 ζ’s and there are 9 ζ’s

satisfying Z(2)[ζ] = Z(2)[θ].

In our experimental results, for a fixed f(x), the probability of Z(p)[ζ] = Z(p)[θ] is

about 1−1/p. Note that we do not need to prove the probability. Our experimental

results show that it is easy to construct B such that Z(p)[ζ] = Z(p)[θ].

For m = 50, we construct a lattice L = ⊕i∈SZ2θ
i with rank 50, where S =

{0, 1, 2, 3, 4, 6, 12, 14, 15, 16, 18, 19, 21, 24, 28, 29, 30, 32, 33, 34, 35, 36, 38, 43, 44, 45,
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46, 47, 49, 52, 57, 59, 62, 65, 66, 68, 69, 71, 73, 74, 75, 81, 86, 89, 90, 91, 92, 95, 96, 98}.

Let

ζ = 1 + θ + θ3 + θ4 + θ6 + θ14 + θ16 + θ19 + θ21 + θ29 + θ32 + θ33

+θ34 + θ35 + θ36 + θ38 + θ43 + θ44 + θ52 + θ57 + θ59 + θ62 + θ65

+θ66 + θ68 + θ69 + θ74 + θ75 + θ81 + θ90 + θ91 + θ95 + θ96 + θ98.

We have that Z(2)[ζ] = Z(2)[θ]. Moreover, let β1 = 1 and β2 = ζ, we can construct

a matrix A ∈ GL50(Z(2)) and get a basis β1, . . . , β50 of L and all β1, . . . , β50 have

length 1.

7.3. Generating a valid signature is easy

Using the example in the previous section, for any element in W (see Section 4),

we find that we can always generate a valid signature with just one r. That is, for

any generated t ∈ W in our experiments, i.e., t ∈ K − L and |t|2 = λ1 = 1, we

can always find a lattice vector v ∈ L such that |t − v|2 < 1. So it is very easy to

generate a valid signature for a legal user.

7.4. Generating an error vector in the public-key cryptosys-
tem

In our experiments, we choose r =
∑99

i=0 riζ
i, where the ri can be chosen randomly.

For instance, we assume ri ∈ {0, 1, 2, 3}. We choose randomly 200 such r’s, the

length distribution is as follows.

log2 |r|2 0 − 1
100 − 2

100 − 3
100 − 4

100 − 6
100 − 8

100

# of r’s 93 55 26 15 9 1 1

Thus, when we choose a suitable positive number δ, which depends on n, it is

relatively easy to generate an error vector r needed in our public-key cryptosystem

when δ is small. Notice that by modulo p attack, if δ is small, the schemes appear

more secure. However, by Theorem 5.1, if δ is small, the size of plaintext should be

also small to ensure the correct decryption. Our experiments show that the scheme

can at least work well for short messages.

8. Conclusion

LVP and CVP in local fields may have further applications in cryptography and oth-

er areas. In this paper, we just mention one possibility. The signature scheme and

the public-key cryptosystem constructed in this paper are just an illustration. LVP

and CVP in local fields are new computationally difficult mathematical problems,

it is worth for further study and there is much work to do.
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