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Abstract

Functional encryption (FE) is a new paradigm of public key encryption that can control the exposed
information of plaintexts by supporting computation on encrypted data. In this paper, we propose effi-
cient multi-client FE (MCFE) schemes that compute the set intersection of ciphertexts generated by two
clients. First, we propose an MCFE scheme that calculates the set intersection cardinality (MCFE-SIC)
and prove its static security under dynamic assumptions. Next, we extend our MCFE-SIC scheme to an
MCFE scheme for set intersection (MCFE-SI) and prove its static security under dynamic assumptions.
The decryption algorithm of our MCFE-SI scheme is more efficient than the existing MCFE-SI scheme
because it requires fewer pairing operations to calculate the intersection of two clients. Finally, we pro-
pose a decentralized MCFE scheme for set intersection (DMCFE-SI) that decentralizes the generation
of function keys. Our MCFE schemes can be effectively applied to a privacy-preserving contact tracing
system to prevent the spread of recent infectious diseases.
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1 Introduction

Functional encryption (FE) is a cryptographic technique that supports a controlled functional evaluation on
encrypted data and has an interesting feature that the result of the function evaluation is directly revealed
in the decryption [13]. In FE, a user creates a ciphertext CT for a plaintext x using a public key, and an
entity who possesses a function key DK f for a function f issued by a trusted center can obtain f (x) by
decrypting the ciphertext. As interesting extensions of FE, multi-input FE (MIFE) that handles multiple
ciphertexts during decryption and multi-client FE (MCFE) that provides independent encryption keys for
each client were proposed [20]. FE schemes that support arbitrary functions can be constructed by using
indistinguishability obfuscation, but indistinguishability obfuscation is still inefficient to implement. In
order to construct efficient FE schemes, research on FE that supports only special functions instead of
general functions has been actively conducted [3, 5, 7].

Recently, FE schemes that support the set intersection operation were proposed [32, 37]. An interesting
application of the FE schemes for set intersection is privacy-preserving contact tracing [1], which allows
a user to check the possibility of contact with a confirmed patient while preserving the location privacy of
the user. A specific example is as follows. First, a hospital cloud server encrypts and stores the visited
places of a confirmed patient by associating with time periods. If a user wants to know whether he or she
has been in contact with the confirmed patient, the user encrypts visited places associated with time periods
and uploads them to the cloud server. Then, the cloud server receives a function key that computes the
set intersection cardinality between the confirmed patient and the user, and calculates the cardinality of an
intersection set between them. If the cardinality has a positive value, then the cloud server notifies the user
that the probability of contact is high. In the later, if the user wants to determine the exact intersection place,
the user can calculate the intersection by requesting a function key for set intersection.

The first FE schemes for set intersection were proposed by Kamp et al. [37], but their schemes have some
problems such that the result of set intersection is publicly revealed to anybody since there is no function
key and the setup algorithm should be independently performed among all pairs of clients. To solve these
problems, Lee and Seo proposed MCFE for set intersection (MCFE-SI) schemes that support the generation
of function keys between multiple clients after running the setup algorithm just once initially [32]. They
designed their MCFE-SI schemes in bilinear groups by inventing the equal-then-derive technique. That is,
a client with an index i who has a set X = {xk} of items creates a ciphertext element H(xk)

αi for each item,
and it additionally sets a temporal key K = e(H(xk), ĝ)βi as a symmetric key to encrypt an item xk. If both i
and j clients encrypt the equal item x, then the temporal key K = e(H(x)αiH(x)α j , ĝβi/(αi+α j)) can be derived
if a function key ĝβi/(αi+α j) is provided.

In this paper, we intend to improve the performance and functionality of the MCFE-SI schemes of
Lee and Seo [32]. The first problem with the MCFE-SI schemes of Lee and Seo is that their decryption
algorithm is inefficient. In other words, the decryption algorithm of their MCFE-SI schemes require the
process of decrypting all combinations of ciphertext elements of two clients i and j and checking that a
correct value is derived. Thus, this decryption algorithm requires approximately ℓ2 pairing operations where
ℓ is the number of items in a set, and it causes a serious problem in performance when the number of items
increases. The second problem is that their MCFE-SI schemes require a trusted center to generate function
keys. The existence of a trusted center can hinder the deployment of this system to the real environment
since there are issues such that a central authority can monitor the activities of users. Therefore, in this
paper, we ask whether it is possible to design an MCFE-SI scheme that supports efficient decryption and
decentralized function key generation.
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Table 1: Comparison of functional encryption schemes for set intersection

Scheme PP Size DK Size CT Size GenKey Encrypt Decrypt

LS [32] O(λ ) 1|Ĝ| ℓ|G|+2ℓλ 1E ℓH + ℓE + ℓP ℓ2P

MCFE-SIC O(λ ) 2|Ĝ| ℓ|G| 2E ℓH + ℓE 2ℓP
MCFE-SI O(λ ) 3|Ĝ| ℓ|G|+2ℓλ 3E ℓH + ℓE + ℓP 3ℓP
DMCFE-SI O(λ ) 3|Ĝ| ℓ|G|+2ℓλ 6E ℓH + ℓE + ℓP 3ℓP

Let λ be a security parameter, n be the number of users, and ℓ be the number of items in a set. We use |G| for the
bit size of a group element in G. We use symbols H for a map-to-point hash operation, E for an exponentiation
operation, and P for a pairing operation.

1.1 Our Contributions

In this paper, we devise efficient MCFE-SI schemes and give positive answers to the preceding questions.
The detailed results of our contributions are summarized as follows.

MCFE for Set Intersection Cardinality. We first propose an MCFE for set intersection cardinality scheme
(MCFE-SIC) that calculates the cardinality of the intersection of two client’s sets. To support the set inter-
section cardinality, we use the ciphertext structure of the MCFE-SI scheme proposed by Lee and Seo [32]
and modify their scheme to provide a new function key to check whether the ciphertext elements generated
by different clients contain equal items. At this time, in order to test the equality of the ciphertext ele-
ments generated by different clients, we notice that the ciphertext structure of Lee and Seo uses an algebraic
pseudo-random function (PRF) which is defined as H(x)αi where x is an item and αi is the secret key of
an i-index client and H is a hash function. If a function key is provided as (ĝαir, ĝα jr) where r is a random
exponent, it is possible to check whether the ciphertext elements of two clients i and j are encryption of
the same item through the equation e(H(x)αi , ĝα jr) = e(H(x)α j , ĝα jr) by using a pairing operation. The de-
cryption algorithm of this scheme additionally exposes the equality pattern between ciphertext elements in
addition to the set intersection cardinality. The ciphertext of our MCFE-SIC scheme consists of ℓ ciphertext
elements, the function key consists of two group elements, and the decryption algorithm requires 2ℓ pairing
operations and O(ℓ logℓ) comparison operations for sorting where ℓ is the number of items in a set.

MCFE for Set Intersection. Next, we propose an MCFE for Set Intersection (MCFE-SI) scheme with
improved decryption performance compared to the previous MCFE-SI scheme. The idea of improving the
decryption performance is to efficiently find a matching pair of ciphertext elements that contain the same
item from two client ciphertexts by using the function key of our MCFE-SIC scheme. To decrypt the cipher-
text elements of the actual set item in the ciphertext, we use the same equal-then-derive method proposed by
Lee and Seo [32]. That is, when two matching ciphertext elements of two clients are H(x)αi and H(x)α j , we
can derive a temporal key K = e(H(x)αiH(x)α j , ĝβi/(αi+α j)) = e(H(x), ĝ)βi for symmetric-key decryption if
a function key ĝβi/(αi+α j) is provided. To analyze the security of our MCFE-SI scheme, we prove the secu-
rity of our scheme by using newly introduced complexity assumptions in the static-IND security model in
which function key queries, corrupted clients, and challenge messages are initially submitted by an attacker.
Compared to the MCFE-SI scheme of Lee and Seo that requires ℓ2 pairing operations in decryption, Our
MCFE-SI scheme is more efficient since the decryption algorithm requires only 2ℓ pairing operations and
O(ℓ logℓ) comparison operations where ℓ is the number of items in a set. The comparison of our MCFE
schemes with other similar schemes is given in Table 1.
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Decentralized MCFE for Set Intersection. Finally, we propose a decentralized MCFE scheme for set
intersection (DMCFE-SI) that removes the trusted center that generates function keys in our MCFE-SI
scheme. The function key of our MCFE-SI scheme is composed of two key elements ĝαir and ĝα jr for
calculating the set intersection cardinality and one key element ĝβi/(αi+α j) for deriving a temporal key. The
difficulty of decentralizing the generation of function keys is that two clients i and j should select the same
random exponent r and the exponent inverse operation (αi +α j)

−1 which includes client secret keys should
be decentralized. To select the same random exponent, each client exposes a public key and runs the Diffie-
Hellman non-interactive key exchange scheme between two clients. Decentralizing the exponent inverse
operation cannot be solved in a simple way. To solve this problem, each client creates an encoded secret
key by encrypting a secret key with one-time pad, and an entity that combines the partial function keys to
perform the exponent inversion operation by itself after combining the encoded secret keys of two clients.
We can prove the security of our DMCFE-SI scheme because the additionally exposed encoded secret keys
are information theoretically secure.

1.2 Related Work

Functional Encryption. Boneh, Sahai, and Waters [13] introduced the concept of functional encryption
(FE) as a new paradigm for public key encryption. They showed that identity-based encryption [12],
attribute-based encryption [23, 34], and predicate encryption [14, 28] are all special forms of FE. The first
FE scheme that supports arbitrary functions was designed by Garg et al. [19] by using indistinguishabil-
ity obfuscation, public-key encryption, and non-interactive zero-knowledge proof. In addition, there have
been various attempts to design FE schemes that support arbitrary functions with bounded collusion by
using weaker cryptographic primitives instead of using indistinguishability obfuscation [21, 22]. In order
to improve the practicality of FE schemes, an FE scheme for inner-products (FE-IP) that support the inner
product operation between attributes in a ciphertext and a function key was proposed by Abdalla et al. [3].
Since then, the research on FE-IP has been expanded to support function hiding, full security, and quadratic
functions [7, 9, 10].

Multi-Input and Multi-Client Functional Encryption. Goldwasser et al. [20] extended the concept of FE
that handles only one ciphertext in decryption to the concept of multi-input functional encryption (MIFE)
and multi-client functional encryption (MCFE) that support the evaluation of a function on multiple cipher-
texts. They also showed that these MIFE and MCFE schemes can be constructed by using indistinguisha-
bility obfuscation. MIFE and MCFE are the same in terms of processing multiple ciphertexts, but MCFE
has an important difference in that ciphertexts are additionally associated time periods and only ciphertexts
associated with the same time period are processed during decryption. The research on FE-IP has been
expanded to support multiple inputs, multiple clients, and decentralized key generation [2, 4, 5, 15, 31]. In
addition, FE for quadratic function also can be extended to support multiple inputs [6]. As another efficient
MCFE schemes, MCFE schemes that support the set intersection operation and MCFE scheme that support
conjunctive equality and range query operations between multiple clients have been proposed [30, 32, 37].

Private Set Intersection. Private set intersection (PSI) is a cryptographic technique that allows two parties
compute the intersection of their private sets without revealing any other information of the sets. Compared
to an FE scheme that supports the set intersection operation, a PSI protocol requires additional interactions
between two parties when calculating the set intersection. A simple way to implement a PSI protocol is
to use the Diffie-Hellman key exchange protocol, which is efficient in the terms of communication, but it
requires public key operations [26]. A PSI protocol by using oblivious polynomial evaluation that expresses
sets as polynomials was proposed by Freedman et al. [17]. After that, oblivious PRF based PSI protocols,
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garbled circuit based PSI protocols, and oblivious transfer based PSI protocols have been proposed [24,
25, 29, 33]. In order to reduce the communication overhead of PSI protocols, delegated PSI protocols in
which a cloud server performs most of the computation of clients were proposed [27]. Recently, private set
intersection cardinality (PSI-CA) protocols for contact tracing have been proposed [16, 36].

2 Preliminaries

In this section, we define functional encryption, symmetric-key encryption, and pseudo-random function.
We also introduce complexity assumptions to prove the security of our functional encryption schemes.

2.1 Multi-Client Functional Encryption

Multi-client functional encryption (MCFE) is an extension of functional encryption (FE) that supports com-
putation on encrypted data, and it requires a client secret key for encryption and handles multiple ciphertexts
during decryption [20]. In MCFE, the client of an index i encrypts a plaintext xi with a time label T using
the client secret key SKi to generate a ciphertext CTi,T . Subsequently, an entity who has a function key DK f

for a function f decrypts ciphertexts CT1,T , . . . ,CTn,T with the same time label T and obtains a decrypted
result f (x1, . . . ,xn). The IND security model of MCFE is defined by Goldwasser et al. [20]. A more detailed
syntax of MCFE is given as follows.

Definition 2.1 (Multi-Client Functional Encryption). A multi-client functional encryption (MCFE) scheme
consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,n). The setup algorithm takes as input the security parameter λ in unary and the number of
clients n. It outputs a master key MK, client secret keys (SK1, . . . ,SKn), and public parameters PP.

GenKey( f ,MK,PP). The key generation algorithm takes as input a function f , the master key MK, and
public parameters PP. It outputs a function key DK f .

Encrypt(x,T,SKi,PP). The encryption algorithm takes as input a message x, a time period T , a client
secret key SKi, and public parameters PP. It outputs a ciphertext CTi,T .

Decrypt((CT1,T , . . . ,CTn,T ),DK f ,PP). The decryption algorithm takes as input ciphertexts (CT1,T , . . . ,CTn,T )
in which each CTi,T is an encryption of a message xi on the same time period T , a function key DK f

corresponding to a function f , and public parameters PP. It outputs a value f (x1, . . . ,xn).

The correctness of the MCFE scheme is defined as follows: For all (MK,(SK1, . . . ,SKn),PP)←Setup(1λ ,n),
DK f ← GenKey( f ,MK,PP) for any function f ∈ F , and CTi,T ← Encrypt(xi,T,SKi,PP) for i ∈ [n] and
any xi ∈ X , it is required that Decrypt((CT1,T , . . . ,CTn,T ),DK f ,PP) = f (x1, . . . ,xn).

2.2 Symmetric Key Encryption

Symmetric key encryption (SKE) is an encryption method that uses the same key for encryption and decryp-
tion. The general security model of SKE is the IND security model that allows multiple challenge ciphertext
queries. For this paper, we use a one-message IND security model that only allows only one challenge
ciphertext query. The detailed syntax of SKE is given as follows.

Definition 2.2 (Symmetric Key Encryption). A symmetric key encryption (SKE) scheme consists of three
algorithms GenKey, Encrypt, and Decrypt, which are defined as follows:
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GenKey(1λ ). The key generation algorithm takes as input the security parameter λ . It outputs a symmetric
key K.

Encrypt(M,K). The encryption algorithm takes as input a message M ∈M and the symmetric key K. It
outputs a ciphertext C.

Decrypt(C,K). The decryption algorithm takes as input a ciphertext CT and the symmetric key K. It
outputs a message M or a symbol ⊥.

The correctness of the SKE scheme is defined as follows: For all K generated by GenKey and any message
M ∈M, it is required that Decrypt(Encrypt(M,K),K) = M.

2.3 Pseudo-Random Function

A pseudo-random function (PRF) is a function F :K×X →Y where K is a key space, X is a domain, and
Y is a codomain. Let F(k, ·) be an oracle for a uniformly chosen k ∈K and f (·) be an oracle for a uniformly
chosen function f : X → Y . We say that a PRF F is secure if for all efficient adversaries A, the advantage
of A defined as AdvPRF

A (λ ) =
∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]

∣∣ is negligible in the security parameter λ .

2.4 Bilinear Groups

A bilinear group generator G takes as input a security parameter λ and outputs a tuple (p,G,Ĝ,GT ,e) where
p is a random prime and G,Ĝ, and GT are three cyclic groups of prime order p. Let g and ĝ be generators
of G and Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G,Ĝ,GT are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.

2.5 Complexity Assumptions

We introduce complexity assumptions necessary to prove the security of our MCFE schemes. These com-
plexity assumptions are dynamic assumptions that are defined depending on the key queries of an attacker.
Note that these assumptions are slight modifications of the assumptions introduced by Lee and Seo [32]. We
analyze that these complexity assumptions hold in the generic group model in Section 7.

Let n be a positive integer, ρ be a target index such that ρ ∈ [n], and Q = {(i, j)} be a set of index pairs
that i, j ∈ [n] and i < j. From n,ρ , and Q, we define an index set J = {k : 1 ≤ k ̸= ρ ≤ n such that (k,ρ) /∈
Q if k < ρ and (ρ,k) /∈ Q if k > ρ}. This set can be computed by using the function ComputeJ which is
described as follows:

ComputeJ(n,ρ,Q) where Q = {(i, j)}
1. Initialize a set J = /0.
2. For each k ∈ {1, . . . ,n}\{ρ}:

If k < ρ and (k,ρ) /∈ Q, then add k to J.
If k > ρ and (ρ,k) /∈ Q, then add k to J.

3. Output the set J.
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For example, if we let n = 4, ρ = 2, and Q = {(1,4),(2,3),(2,4)}, then we obtain J = {1} since (1,2) /∈Q,
(2,3) ∈ Q, and (2,4) ∈ Q.

Assumption 1. Let (p,G,Ĝ,GT ,e) be a bilinear group randomly generated by G(1λ ). Let g, ĝ be random
generators of G,Ĝ respectively. Let n,ρ,Q,J be defined above. The Assumption 1 for (n,ρ,Q,J) is that if
the challenge tuple

D =
(
(p,G,Ĝ,GT ,e), g, ga, {gbi}n

i=1, {gabk}k∈J, ĝ, {(ĝbici, j , ĝb jci, j)}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 = gabρ from Z =

Z1 = gd with more than a negligible advantage. The advantage of A is defined as AdvA1-(n,ρ,Q,J)
A (λ ) =∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where the probability is taken over random choices of parameters to
A and over the coin tosses of A.

Assumption 2. Let (p,G,Ĝ,GT ,e) be a bilinear group randomly generated by G(1λ ). Let g, ĝ be random
generators of G,Ĝ respectively. Let n,ρ,Q,J be defined above. The Assumption 2 for (n,ρ,Q,J) is that if
the challenge tuple

D =
(
(p,G,Ĝ,GT ,e), g, ga, {gbi}n

i=1, {gabk}k∈J,

ĝ, {(ĝbici, j , ĝb jci, j , ĝ1/(bi+b j))}(i, j)∈Q
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithm A can distinguish Z = Z0 = gabρ from Z =

Z1 = gd with more than a negligible advantage. The advantage of A is defined as AdvA2-(n,ρ,Q,J)
A (λ ) =∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where the probability is taken over random choices of parameters to
A and over the coin tosses of A.

Assumption 3. Let (p,G,Ĝ,GT ,e) be a bilinear group randomly generated by G(1λ ). Let g, ĝ be random
generators of G,Ĝ respectively. Let n,ρ,Q be defined above. The Assumption 3 for (n,ρ,Q) is that if the
challenge tuple

D =
(
(p,G,Ĝ,GT ,e), g, ga, {gbi}n

i=1, {gabk}1≤k ̸=ρ≤n,

ĝ, {(ĝbici, j , ĝb jci, j , ĝdi/(bi+b j))}(i, j)∈Q, {ĝdi}1≤i ̸=ρ≤n, e(g, ĝ)dρ
)

and Z

are given, no probabilistic polynomial-time (PPT) algorithmA can distinguish Z = Z0 = e(g, ĝ)adρ from Z =

Z1 = e(g, ĝ) f with more than a negligible advantage. The advantage of A is defined as AdvA3-(n,ρ,Q)
A (λ ) =∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where the probability is taken over random choices of parameters to
A and over the coin tosses of A.

3 MCFE for Set Intersection Cardinality

In this section, we define the syntax and security model of MCFE that calculates the set intersection car-
dinality. And then we propose an efficient MCFE-SIC scheme by using a bilinear map and analyze the
security of our scheme.
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3.1 Definition

We define the syntax of MCFE for set intersection cardinality (MCFE-SIC). MCFE-SIC is a special form
of FE and supports a function key for calculating the set intersection cardinality in which a ciphertext is
associated with a time label T and each client has its own secret key SKi for encryption. In MCFE-SIC, a
trusted center creates client secret keys and public parameters. After that, an individual client associates an
item set Xi with a time label T and generate a ciphertext CTi,T by using its secret key SKi. A third entity who
wants to calculate the set intersection cardinality receives a function key DK for client indexes (i, j) from the
trusted center. After that, the third entity decrypts the ciphertexts of the i-index client and the j-index client
by using the function key, and obtains the value |Xi∩X j|. The detailed syntax of MCFE-SIC is described as
follows.

Definition 3.1 (MCFE for Set Intersection Cardinality). A multi-client functional encryption for set inter-
section cardinality (MCFE-SIC) scheme for an item space D and a time space T consists of four algorithms
Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,n). The setup algorithm takes as input the security parameter λ and the number of clients n. It
outputs a master key MK, client secret keys (SK1, . . . ,SKn), and public parameters PP.

GenKey( f ,MK,PP). The function key generation algorithm takes as input a function f = (i, j), the master
key MK, and public parameters PP. It outputs a function key DK f .

Encrypt(Xi,T,SKi,PP). The encryption algorithm takes as input a set Xi = {xi,1, . . . ,xi,ℓi} of items where
xi,k ∈D, a time period T ∈ T , a client secret key SKi, and public parameters PP. It outputs a ciphertext
CTi,T .

Decrypt(CTi,T ,CTj,T ,DK f ,PP). The decryption algorithm takes as input two ciphertexts CTi,T and CTj,T

for the same time T , a function key DK f for a function f = (i, j), and public parameters PP. It outputs
|Xi∩X j| where Xi and X j are associated with CTi,T and CTj,T respectively.

The correctness of the MCFE-SIC scheme is defined as follows: For all MK,(SKi)
n
i=1,PP← Setup(1λ ,n),

any DK f ← GenKey( f ,MK,PP) of a function f = (i, j), and all CTi,T ← Encrypt(Xi,T,SKi,PP) and
CTj,T ← Encrypt(X j,T,SK j,PP) for any Xi,X j and the same time period T , it is required that

• Decrypt(CTi,T ,CTj,T ,DK f ,PP) = |Xi∩X j| except with negligible probability.

We define the IND security model of MCFE-SIC. The security model of MCFE was first defined by
Goldwasser et al. [20]. For the security model of MCFE-SIC, we use the static IND security model of
MCFE-SI defined by Lee and Seo with slight modification [32]. The static IND security model defined by
Lee and Seo is a security model in which an attacker fixes function key queries and a list of corrupted clients
in advance and submits the target challenge sets X∗0 and X∗1 in advance. At this time, we set a constraint that
the cardinality of set intersection exposed in the challenge sets is the same even if many function keys are
provided to an attacker. We consider a limited security model in which the cardinality of set intersections
and the equality patterns of the challenge ciphertexts are exposed when an attacker decrypts the challenge
ciphertexts using function keys.

We first define a function CSIC((Xk)k∈I,Q) for a tuple (Xk)k∈I of item sets Xk and a set Q = {(i, j)} that
computes the set intersection cardinality of Xi and X j for each (i, j) ∈ Q as follows:
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CSIC((Xk)k∈I,Q) where Q = {(i, j)}
1. Initialize a set C = /0.
2. For each (i, j) ∈ Q:

Calculate c = |Xi∩X j| and add ((i, j),c) to C.
3. Output the set C.

Additionally, we define a function CSIP((Xk)k∈I,Q) for a tuple (Xk)k∈I of item sets Xk and a set Q = {(i, j)}
that computes the set intersection pattern of Xi and X j for each (i, j) ∈ Q as follows:

CSIPA(i∗,(Xk)k∈I,Q)

1. For each x ∈ Xi∗ , initialize a set Sx = /0.
2. For each (i, j) ∈ Q such that i = i∗ or j = i∗:

Calculate Y = Xi∩X j.
For each x ∈ Y :

If i = i∗, add j to Sx.
If j = i∗, add i to Sx.

3. Output a pattern multiset Pi∗ = {Sx}x∈Xi∗ .

CSIP((Xk)k∈I,Q) where Q = {(i, j)}
1. For each i ∈ I:

Calculate Pi by calling CSIPA(i,(Xk)k∈I,Q).
2. Output a tuple (Pi)i∈I of pattern multisets.

For example, if we let n = 3,(X1 = {a,b,c},X2 = {b,c},X3 = {c,a}), and Q = {(1,2),(2,3)}, then we have
CSIC((Xk),Q) = {((1,2),2),((2,3),1)} and CSIP((Xk),Q) = (P1 = { /0,{2},{2}},P2 = {{1},{1,3}},P3 =
{{2}, /0}).

Definition 3.2 (Static-IND Security). The static-IND security of MCFE-SIC with corruptions is defined in
the following experiment EXPST -IND

MCFE-SIC,A(1
λ ) between a challenger C and a PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . ,n} \ I be an index
set of uncorrupted clients. A also submits two challenge tuples (X∗0,k)k∈I and (X∗1,k)k∈I of item sets
X∗b,k = {xb,k, j}, a challenge time period T ∗, and a set Q = {(i, j)} of function key queries with the
three restrictions such that (a) i, j ∈ I for each (i, j) ∈Q, (b) CSIC((X∗0,k)k∈I,Q) =CSIC((X∗1,k)k∈I,Q),
and (c) CSIP((X∗0,k)k∈I,Q) =CSIP((X∗1,k)k∈I,Q).

2. Setup: C generates a master key MK, client secret keys (SKi)
n
i=1, and public parameters PP by running

Setup(1λ ,n). It keeps MK and (SKi)i∈I to itself and gives (SKi)i∈I and PP to A.

3. Challenge: C flips a random bit µ ∈ {0,1} and obtains a ciphertext CTi,T ∗ by running Encrypt(X∗
µ,i,

T ∗,SKi,PP) for each i ∈ I. C gives the challenge ciphertexts (CTi,T ∗)i∈I to A

4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

• If this is a function key query for a function f = (i, j) ∈ Q, then C gives a function key DK f to
A by running GenKey( f ,MK,PP).

• If this is a ciphertext query for a client index k ∈ I, an item set Xk, and a time period T ̸= T ∗,
then C gives a ciphertext CTk,T to A by running Encrypt(Xk,T,SKk,PP).
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5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

An MCFE-SIC scheme is static-IND secure with corruptions if for all PPT adversary A, the advantage of
A defined as AdvST -IND

MCFE-SIC,A(λ ) =
∣∣Pr[EXPST -IND

MCFE-SIC,A(1
λ ) = 1]− 1

2

∣∣ is negligible in the security parameter
λ .

3.2 Construction

The basic idea of designing an MCFE scheme that computes the set intersection cardinality of two clients
is to provide a function key that can check whether ciphertext elements generated by two clients are related
to the same item. For this, we can consider to provide a function key (ĝαi , ĝα j) because ciphertext elements
are in the form of H(T∥x)αi and H(T∥x)α j . In this case, by deriving the same e(H(T∥x), ĝ)αi,α j through the
pairing operation, it is possible to compare whether the ciphertext elements are associated to the same item
x. However, providing a function key in this simple form has the risk of a collusion attack, so we provide a
function key (ĝαir, ĝα jr) with additional randomization to prevent the collusion attack. In this case, only the
set intersection of two clients i and j can be compared due to the additionally included random exponent,
and comparison with the ciphertexts of other clients is impossible. An MCFE-SIC scheme is described as
follows:

Setup(1λ ,n). Let n be the maximum number of clients. It first generates a bilinear group (p,G,Ĝ,GT ,e)
of prime order p with random generators g∈G and ĝ∈ Ĝ. It chooses a hash function H : {0,1}∗→G.
Next, it selects random exponents α1, . . . ,αn ∈ Zp. It outputs a master key MK = (α1, . . . ,αn), client
secret keys (SKi = αi)

n
i=1, and public parameters PP =

(
(p,G,Ĝ,GT ,e),g, ĝ,H,n

)
.

GenKey( f ,MK,PP). Let f = (i, j) such that i < j and MK = (α1, . . . ,αn). It selects a random exponent
r ∈ Zp and outputs a function key DK f =

(
K1 = ĝαir,K2 = ĝα jr

)
.

Encrypt(Xi,T,SKi,PP). Let Xi = {xi,1, . . . ,xi,ℓi} be a set of items where |Xi| = ℓi and SKi = αi. For each
k ∈ [ℓi], it computes Ci,k = H(T∥xi,k)

αi . It chooses a random permutation π and outputs a ciphertext
CTi,T =

(
Ci,π(k)

)ℓi

k=1 by implicitly including i,T .

Decrypt(CTi,T ,CTj,T ,DK f ,PP). Let CTi,T = (Ci,k)
ℓi
k=1 and CTj,T = (C j,k)

ℓ j
k=1 be ciphertexts such that i < j.

Let DK f = (K1,K2) for a function f = (i, j).

1. For each k ∈ [ℓi], it computes Ei,k = e(Ci,k,K2). For each k ∈ [ℓ j], it computes E j,k = e(C j,k,K1).

2. It prepares two sets Ei = {Ei,k}ℓi
k=1 and E j = {E j,k}

ℓ j
k=1 and computes the intersection S = Ei∩E j

by comparing group elements.

3. It outputs the cardinality of S by counting the number of elements.

3.3 Correctness

We show the correctness of the MCFE-SIC scheme. For this, it is sufficient to show that the same group
element is derived by combining a ciphertext element and a function key when the items of two clients are
the same. We can derive the following equation when the item x of the client i and the item x′ of the client j
are the same.

e(Ci,k,K2) = e(H(T∥x)αi , ĝα jr) = e(H(T∥x), ĝ)αiα jr = e(H(T∥x′)α j , ĝαir) = e(C j,k′ ,K1).
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3.4 Security Analysis

We define a function CIQ((Xk),Q) for a tuple (Xk) of item sets and a set Q = {(i, j)} of index pairs that
computes the collected intersection of Xi and X j for each (i, j) ∈ Q as follows:

CIQ((Xk)k∈I,Q) where Q = {(i, j)}
1. For each i ∈ I, initialize a set Ei = /0.
2. For each (i, j) ∈ Q:

Calculate Y = Xi∩X j.
For each x ∈ Y : Add x to Ei and E j respectively.

3. Output a tuple (Ei)i∈I of common sets.

Theorem 3.1. The above MCFE-SIC scheme is static-IND secure with no corruptions in the random oracle
model if the Assumption 1 holds.

Proof. Suppose there exists an adversary that breaks the static-IND security of the MCFE-SIC scheme with
no corruptions. We can assume that I = {1, . . . ,n} and I = /0. Let (X∗0,1, . . . ,X

∗
0,n) and (X∗1,1, . . . ,X

∗
1,n) be the

challenge tuples of item sets where X∗b,i = {x∗b,i,1, . . . ,x∗b,i,ℓi
} and |X∗b,i| = ℓi. Let Q = {(i, j)} be the set of

function key queries. We derive a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k)k∈[n],Q) where µ is the challenge
random bit of the security game. To argue that the adversary cannot win this game, we define a sequence of
hybrid games G0, and G1. The game Gi is defined as follows:

Game G0. The first game G0 is the original security game defined in Definition 3.2.

Game G1. This game G1 is similar to the game G0 except that the challenge ciphertext components {Ci,k}
are generated as random for all x∗

µ,i,k /∈ E∗i .

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 3.2 and 3.3, we

obtain the following result

AdvST -IND
MCFE-SIC,A(λ )≤

∣∣∣Pr[SG0
A ]−Pr[SG1

A ]
∣∣∣+Pr[SG1

A ]≤ nℓAdvA1-(n,ρ,Q,J)
B (λ )

where n is the number of clients, ℓ is the maximum size of the challenge item set. This completes our
proof.

Lemma 3.2. If the Assumption1 for (n,ρ,Q,J) holds, then no polynomial-time adversary can distinguish
between G0 and G1 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H1,0,H1,1, . . . ,H1,ℓ1 ,H2,1, . . . ,Hi,k, . . . ,Hn,ℓn

where H1,0 = G0 and Hn,ℓn = G1. The game Hρ,δ is defined as follows:

Game Hρ,δ . This game Hρ,δ is almost identical to the game G1 except the generation of the components
{Ci,k} in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the component Ci,k is generated as normal.

Otherwise (x∗
µ,i,k /∈ E∗i ), the component Ci,k is generated as random.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The component Ci,k is generated as normal.
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Suppose there exists an adversary A that distinguishes between Hρ,δ−1 and Hρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since Hρ,δ−1 and Hρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . A simulator B that solves the Assumption 1 for (n,ρ,Q,J) is described as follows:

Init: A submits challenge tuples (X∗0,1, . . . ,X
∗
0,n) and (X∗1,1, . . . ,X

∗
1,n), a challenge time period T ∗, and a set

Q = {(i, j)} of function key queries. B proceeds as follows:

1. From n,ρ,Q, it derives an index set J by calling ComputeJ(n,ρ,Q).

2. It receives a challenge tuple D = (g,ga,{gbi}n
i=1,{gabk}k∈J, ĝ,{(ĝbici, j , ĝb jci, j)}(i, j)∈Q) and Z of the As-

sumption 1 for (n,ρ,Q,J) where Z = gabρ or Z = R ∈G.

3. It flips a random bit µ ∈ {0,1} internally and derives a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k),Q).

Setup: B sets PP = ((p,G,Ĝ,GT ,e),g, ĝ,H,n). It prepares a hash table H-list for the H hash function as
the empty set. For each i ∈ [n] and k ∈ [ℓi], it updates the H-list as follows:

• Case i ̸= ρ or k ̸= δ : If T ∗∥x∗
µ,i,k does not exist in the H-list, then it adds (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) to the
H-list by selecting a random exponent u′i,k ∈ Zp.

• Case i = ρ and k = δ : It adds (T ∗∥x∗
µ,ρ,δ ,−,g

a) to the H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i ∈ [n] and k ∈ [ℓi], it generates ciphertext elements Ci,k depending on the following cases:

• Case i < ρ:

– If (x∗
µ,i,k ∈E∗i )∧(x∗µ,i,k = x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,−,ga) from the H-list and sets Ci,k =

gabi . For this case, we show that gabi is given in the assumption. If a function key for (i,ρ)
was queried, we have x∗

µ,ρ,δ ∈ E∗ρ by the definition of CIQ. However, we assumed that
x∗

µ,ρ,δ /∈ E∗ρ for this game. Thus a function key for (i,ρ) was not queried and it means that
i ∈ J by the definition of J.

– If (x∗
µ,i,k ∈ E∗i )∧(x∗µ,i,k ̸= x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) from the H-list and creates

Ci,k = (gbi)u′i,k .

– If (x∗
µ,i,k /∈ E∗i ), it retrieves (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) from the H-list and chooses a random Ci,k ∈
G.

• Case i = ρ:

– If (k < δ )∧ (x∗
µ,ρ,k ∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list and creates

Cρ,k = (gbρ )u′
ρ,k since x∗

µ,ρ,k ̸= x∗
µ,ρ,δ .

– If (k < δ )∧ (x∗
µ,ρ,k /∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list and chooses a

random Cρ,k ∈G.
– If (k = δ ), it sets Cρ,δ = Z since we assumed that x∗

µ,ρ,δ /∈ E∗ρ .

– If (k > δ ), it retrieves (T ∗∥x∗
µ,ρ,k,u

′
ρ,k,g

u′
ρ,k) from the H-list and creates Cρ,k = (gbρ )u′

ρ,k

since x∗
µ,ρ,k ̸= x∗

µ,ρ,δ .

• Case i > ρ:
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– If (x∗
µ,i,k = x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,−,ga) from the H-list and sets Ci,k = gabi . For

this case, we show that gabi is given in the assumption. If a function key for f = (ρ, i)
was queried, we have x∗

µ,ρ,δ ∈ E∗ρ by the definition of CIQ. However, we assumed that
x∗

µ,ρ,δ /∈ E∗ρ for this game. Thus a function key for f = (ρ, i) was not queried and it means
that i ∈ J by the definition of J.

– If (x∗
µ,i,k ̸= x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) from the H-list and creates Ci,k = (gbi)u′i,k .

2. For each client i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = (Ci,πi(k))
ℓi
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

• If this is a hash query for a time period T and an item x, then it proceeds as follows: If T∥x exists in the
H-list, then it retrieves (T∥x,−,h) from the H-list and gives h to A. Otherwise, it adds (T∥x,u′,gu′)
to the H-list by selecting a random exponent u′ ∈ Zp and gives gu′ to A.

• If this is a function key query for a function f = (i, j) ∈ Q, then it generates a function key DK f =
(ĝbici, j , ĝb jci, j) since these elements are given in the assumption.

• If this is a ciphertext query for a client index i, a set Xi = {xi,1, . . . ,xi,ℓ}, and a time period T ̸= T ∗,
then it generates a ciphertext as follows: For each k ∈ [ℓi], it retrieves (T∥xi,k,u′k,g

u′k) from the H-list
and sets Ci,k = (gbi)u′k . It chooses a random permutation π and sets CTi,T = (Ci,π(k))

ℓi
k=1.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Lemma 3.3. No adversary can win the game G1 with a non-negligible advantage in the random oracle
model.

Proof. Let A be a statistical adversary. A simulator B is described as follows:

Init: A submits challenge tuples (X∗0,1, . . . ,X
∗
0,n) and (X∗1,1, . . . ,X

∗
1,n), a challenge time period T ∗, and a set

Q = {(i, j)} of function key queries. B proceeds as follows:

1. It flips a random bit µ ∈{0,1} internally and derives a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k)k∈[n],Q).

Setup: B first chooses random exponents α1, . . . ,αn ∈Zp. Next, it sets (SKi =αi)
n
i=1 and PP=((p,G,Ĝ,GT ,e),

g, ĝ,H,n). It prepares a hash table H-list for the H hash function as the empty set.

1. For each i ∈ [n] and k ∈ [ℓi], it updates the H-list as follows: If T ∗∥x∗
µ,i,k does not exist in the H-list,

then it adds (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) to the H-list by selecting a random exponent u′i,k ∈ Zp.

2. It sets µ = 1−µ . For each i ∈ [n] and k ∈ [ℓi], it also updates the H-list as follows: If T ∗∥x∗
µ,i,k does

not exist in the H-list, then it adds (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) to the H-list by selecting a random exponent
u′i,k ∈ Zp.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i ∈ [n] and k ∈ [ℓi], it proceeds as follows: If x∗
µ,i,k ∈ E∗i , it retrieves (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) from

the H-list and sets Ci,k = gu′i,kαi . If x∗
µ,i,k /∈ E∗i , it chooses a random element Ci,k ∈G.

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = (Ci,πi(k))
ℓi
k=1.
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Query: B handles hash, function key, and ciphertext queries of A as follows:

• If this is a hash query for a time period T and an item x, then it proceeds as follows: If T∥x exists
in the H-list, then it retrieves (T∥x,u′,gu′) from the H-list. Otherwise, it selects a random exponent
u′ ∈ Zp and adds (T∥x,u′,gu′) to the H-list. It gives gu′ to A.

• If this is a function key query for f = (i, j) ∈ Q, then B generates DK f by running GenKey since it
knows SKi and SK j.

• If this is a ciphertext query for a client index i, a set Xi = {xi,1, . . . ,xi,ℓ}, and a time period T ̸= T ∗,
then B generates a ciphertext CTi,T by running Encrypt algorithm since it knows SKi.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

We first show that the simulation described above is correct. Since the simulator knows all the secret
key SKi of individual clients, it is possible to correctly generate function keys and all ciphertexts. When the
simulator creates the challenge ciphertext, it creates the correct ciphertext element if x∗

µ,i,k ∈E∗i is established
as in the definition of the game G1, and generates a random element if x∗

µ,i,k /∈ E∗i is established.
Now we show that the advantage of the statistical adversary is zero in the game G1. To do this, we show

that it is possible to change the challenge ciphertext for the challenge bit µ to the challenge ciphertext for the
complement bit 1−µ by modifying the mapping of the random oracle table. Such a change only modifies
the mapping of the simulator’s random oracle table without modifying the challenge ciphertexts. A detailed
description of how to change the random oracle table is given as follows.

1. For each i ∈ [n], it proceeds as follows:

(a) It obtains Pµ,i = {Sx} by running CSIPA(i,(X∗
µ,k),Q). It also obtains Pµ,i = {Sx} by running

CSIPA(i,(X∗
µ,k),Q).

(b) It derives a list XL∗
µ,i = (x∗

µ,i,1, . . . ,x
∗
µ,i,ℓi

) from the challenge item set X∗
µ,i = {x∗µ,i,k} in which

each challenge ciphertext element C∗i,k is associated with the item x∗
µ,i,k.

(c) It builds XL∗
µ,i = (xµ,i,1, . . . ,x∗µ,i,ℓi

) from the challenge item set X∗
µ,i = {x∗µ,i,k} by changing the

order of items with the condition that the pattern set Sx∗
µ,i,k

of x∗
µ,i,k is equal to the pattern set Sx∗

µ,i,k

of x∗
µ,i,k.

2. It initializes a set R = /0. For each i ∈ [n] and k ∈ [ℓi], it takes x∗
µ,i,k and x∗

µ,i,k from XL∗
µ,i and XL∗

µ,i
respectively, and modifies the H-list as follows:

(a) If (x∗
µ,i,k /∈ E∗i )∨ (x∗µ,i,k = x∗

µ,i,k)∨ (x∗µ,i,k ∈ R)∨ (x∗
µ,i,k ∈ R), then it skips to the next iteration.

(b) It deletes (T ∗∥x∗
µ,i,k,u

′
1,g

u′1) and (T ∗∥x∗
µ,i,k,u

′
2,g

u′2) from the H-list, and then adds (T ∗∥x∗
µ,i,k,u

′
1,g

u′1)

and (T ∗∥x∗
µ,i,k,u

′
2,g

u′2) to the H-list.

(c) It adds x∗
µ,i,k and x∗

µ,i,k to R.

If the random oracle table is changed in the same way as above, the actual elements of the challenge
ciphertext is maintained as it is, so the equality pattern of the challenge ciphertext is not changed. Thus,
if the challenge tuples of item sets with the same equality pattern are given, it is possible to change the
challenge bit without changing the ciphertext through the above process. Therefore, the statistical adversary
cannot distinguish the challenge ciphertext.
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Theorem 3.4. The above MCFE-SIC scheme is static-IND secure with corruptions in the random oracle
model if the MCFE-SIC scheme is static-IND secure with no corruptions.

Proof. To prove this theorem, we use the fact that in the static-IND security model, the two indexes i and j
of a function f = (i, j) in a function key query requested by an attacker must be uncorrupted clients. In other
words, the simulator of this proof generates the secret keys of corrupted clients I, and it can handle all other
challenge ciphertext, ciphertext, and function key queries requested by the attacker by using the queries of
the MCFE-SIC scheme with no corruptions. We omit the detailed description of this simulator.

3.5 Discussions

Efficiency Analysis. We analyze the efficiency of our MCFE-SIC scheme described above. First, the func-
tion key generation algorithm requires two exponentiation operations, and a function key consists of two
group elements. The encryption algorithm requires ℓ map-to-point hash operations and ℓ exponentiation
operations, and a ciphertext consists of ℓ group elements where ℓ is the number of items in a set. Finally, the
decryption algorithm requires 2ℓ pairing operations and 2ℓ logℓ comparison operations for sorting to per-
form the intersection of pairing elements since it requires a pairing operation for each individual ciphertext
element. The detailed comparison of MCFE schemes is given in Table 1.

Decentralized Function Key Generation. The function key generation algorithm of our MCFE-SIC
scheme should be performed by a trusted center that knows the secret keys of all clients. To reduce trust
in the trusted center, it is necessary to decentralize the function key generation so that individual clients are
involved to generate function keys without the trusted center. One method is that when creating a func-
tion key for a function f = (i, j), two clients with indexes i, j generate partial function keys independently
of each other, and the requestor of the function key later combines these partial function keys to derive a
complete function key. At this time, in order for the two clients to generate the same random exponent r,
a non-interactive key exchange (NIKE) scheme can be used. For more detailed description of this method,
refer to the DMCFE-SI scheme in Section 5.

Multi-Party Set Intersection Cardinality. The MCFE-SIC scheme can only process the set intersection
cardinality between two clients. To process the set intersection cardinality between three clients, we may
consider to provide a function key (ĝα jαkr, ĝαiαkr, ĝαiα jr) for the client indexes (i, j,k). However, this method
has a problem of exposing information on the set intersection cardinality of clients (i, j),( j,k), and (i,k) as
well as the set intersection cardinality of clients (i, j,k). Another way is to select random exponents ri,r j,rk
to satisfy ri + r j + rk = 0 and provide a function key (ĝri/αi , ĝr j/α j , ĝrk/αk). At this time, the decryption
algorithm calculates e(H(T∥x)αi , ĝri/αi) = e(H(T∥x), ĝ)ri for each ciphertext elements of each client. And
then it multiplies all combinations to check that e(H(T∥x), ĝ)ri+r j+rk = 1 holds. This method can prevent the
leakage of additional information, but it requires 3ℓ pairing operations and O(ℓ3) multiplication operations
since all combinations must be considered to calculate the set intersection cardinality.

4 MCFE for Set Intersection

In this section, we define the syntax and security model of MCFE for set intersection. Then, we propose an
MCFE-SI scheme with efficient decryption using a bilinear map and analyze the security of our scheme.
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4.1 Definition

We define the syntax of MCFE for set intersection (MCFE-SI). The definition of MCFE-SI was introduced
by Lee and Seo [32], and it was modified to issue a function key for the set intersection instead of the function
key for the set intersection cardinality in MCFE-SIC we introduced in the previous section. Thus, the
decryption algorithm of MCFE-SI outputs the set intersection Xi∩X j of two item sets Xi and X j associated
with two client ciphertexts CTi,T and CTj,T . The detailed syntax of MCFE-SI is described as follows.

Definition 4.1 (MCFE for Set Intersection). A multi-client functional encryption for set intersection (MCFE-
SI) scheme for an item space D and a time space T consists of four algorithms Setup, GenKey, Encrypt,
and Decrypt, which are defined as follows:

Setup(1λ ,n). The setup algorithm takes as input the security parameter λ and the number of clients n. It
outputs a master key MK, client secret keys (SKi)

n
i=1, and public parameters PP.

GenKey( f ,MK,PP). The key generation algorithm takes as input a function f = (i, j), the master key
MK, and public parameters PP. It outputs a function key DK f .

Encrypt(Xi,T,SKi,PP). The encryption algorithm takes as input a set Xi = {xi,1, . . . ,xi,ℓi} of items where
xi,k ∈ D, a time period T ∈ T , the client secret key SKi, and public parameters PP. It outputs a
ciphertext CTi,T .

Decrypt(CTi,T ,CTj,T ,DK f ,PP). The decryption algorithm takes as input two ciphertexts CTi,T and CTj,T

for the same time T , a function key DK f for a function f = (i, j), and public parameters PP. It outputs
a set Xi∩X j where Xi and X j are associated with CTi,T and CTj,T respectively.

The correctness of the MCFE-SI scheme is defined as follows: For all MK,(SKi)
n
i=1,PP← Setup(1λ ,n),

any DK f ← GenKey( f ,MK,PP) for a function f = (i, j), and all CTi,T ← Encrypt(Xi,T,SKi,PP) and
CTj,T ← Encrypt(X j,T,SK j,PP) for any Xi,X j and the same time T , it is required that

• Decrypt(CTi,T ,CTj,T ,DK f ,PP) = Xi∩X j except with negligible probability.

We define the IND security model of MCFE-SI. The IND security model of MCFE was defined by
Goldwasser et al. [20], and Lee and Seo modified this model to define a static IND security model of
MCFE-SI [32]. We adopt the same static IND security model defined by Lee and Seo. In the static IND
security model, an attacker first submits challenge sets X∗0 ,X

∗
1 , a challenge time period T ∗, and all function

key queries, and corrupted client indexes with additional constraints. After that, the attacker receives the
challenge ciphertext, and can request additional function key and ciphertext queries. Finally, if the attacker
correctly guesses the challenge set of the challenge ciphertext, it wins the security game. A more detailed
definition of the static IND security model is given as follows.

We first define a function CSI((Xk)k∈I,Q) for a tuple (Xk)k∈I of item sets Xk and a set Q = {(i, j)} that
computes the set intersection of Xi and X j for each (i, j) ∈ Q as follows:

CSI((Xk)k∈I,Q) where Q = {(i, j)}
1. Initialize a set S = /0.
2. For each (i, j) ∈ Q:

Calculate A = Xi∩X j and add ((i, j),A) to S.
3. Output the set S.
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For example, if we let n = 3,(X1 = {a,b,c},X2 = {b,c},X3 = {c,a}), and Q = {(1,2),(2,3)}, then we have
CSI((Xk),Q) = {((1,2),{b,c}),((2,3),{c})}.

Definition 4.2 (Static-IND Security). The static-IND security of MCFE-SI with corruptions is defined in
the following experiment EXPST -IND

MCFE-SI,A(1
λ ) between a challenger C and a PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . ,n} \ I be the index
set of uncorrupted clients. A also submits two challenge tuples (X∗0,k)k∈I and (X∗1,k)k∈I of item sets, a
challenge time period T ∗, and a set Q = {(i, j)} of function key queries with the two restrictions that
(1) i, j ∈ I for each (i, j) ∈ Q and (2) CSI((X∗0,k)k∈I,Q) =CSI((X∗1,k)k∈I,Q).

2. Setup: C generates a master key MK, secret keys (SKi)
n
i=1, and public parameters PP by running

Setup(1λ ,n). It keeps MK and (SKi)i∈I to itself and gives (SKi)i∈I and PP to A.

3. Challenge: C flips a random bit µ ∈ {0,1} and obtains a ciphertext CTi,T ∗ by running Encrypt(X∗
µ,i,

T ∗,SKi,PP) for each i ∈ I. C gives the challenge ciphertexts (CTi,T ∗)i∈I to A

4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

• If this is a function key query for a function f = (i, j) ∈ Q, then C gives a function key DK f to
A by running GenKey( f ,MK,PP).

• If this is a ciphertext query for a client index k ∈ I, an item set Xk, and a time period T ̸= T ∗,
then C gives a ciphertext CTk,T to A by running Encrypt(Xk,T,SKk,PP).

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

An MCFE-SI scheme is static-IND secure with corruptions if for all PPT adversary A, the advantage of A
defined as AdvST -IND

MCFE-SI,A(λ ) =
∣∣Pr[EXPST -IND

MCFE-SI,A(1
λ ) = 1]− 1

2

∣∣ is negligible in the security parameter λ .

4.2 Construction

We combine our MCFE-SIC scheme of the previous section and the MCFE-SI scheme of Lee and Seo [32]
in order to design an efficient MCFE-SI scheme with improved decryption. The MCFE-SI scheme of Lee
and Seo uses an equal-then-derive technique in which if the items of two client ciphertext elements are equal,
then a temporal key is derived by combining these ciphertexts and a function key. However, their MCFE-
SI scheme has a disadvantage that the decryption algorithm requires approximately ℓ2 pairing operations
because the pairing operation must be performed for all possible combinations of two client ciphertext
elements to calculate the set intersection. To improve the decryption performance, we first use our MCFE-
SIC scheme to find matching pairs of ciphertext elements corresponding to the set intersection. And then
we apply the equal-then-derive method to derive a temporal key to obtain an encrypted item. In this case,
the total number of pairing operations can be reduced to 3ℓ.

Let SKE = (GenKey, Encrypt, Decrypt) be an SKE scheme. An MCFE-SI scheme is described as
follows.

Setup(1λ ,n). Let n be the maximum number of clients. It first generates a bilinear group (p,G,Ĝ,GT ,e) of
prime order p with random generators g∈G and ĝ∈ Ĝ. It chooses two hash functions H : {0,1}∗→G
and F : GT → {0,1}λ . Next, it selects random exponents α1, . . . ,αn,β1, . . . ,βn ∈ Zp. It outputs
a master key MK = ((αi,βi))

n
i=1, secret keys (SKi = (αi,βi))

n
i=1 for clients, and public parameters

PP =
(
(p,G,Ĝ,GT ,e),g, ĝ,H,F,n

)
.
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GenKey( f ,MK,PP). Let f = (i, j) such that i < j and MK = ((αi,βi))
n
i=1. It selects a random exponent

r ∈ Zp and outputs a function key DK f =
(
K1 = ĝαir,K2 = ĝα jr,K3 = ĝβi/(αi+α j)

)
.

Encrypt(Xi,T,SKi,PP). Let Xi = {xi,1, . . . ,xi,ℓi} be a set of items where |Xi|= ℓi and SKi = (αi,βi).

1. For each k ∈ [ℓi], it proceed as follows: It computes Ci,k = H(T∥xi,k)
αi and derives a temporal

key T Ki,k = e(H(T∥xi,k), ĝ)βi . It obtains Di,k by running SKE.Encrypt(T∥xi,k,F(T Ki,k)).

2. It chooses a random permutation π and outputs a ciphertext CTi,T =
(
(Ci,π(k),Di,π(k))

)ℓi

k=1 by
implicitly including i,T .

Decrypt(CTi,T ,CTj,T ,DK f ,PP). Let CTi,T = ((Ci,k,Di,k))
ℓi
k=1 and CTj,T = ((C j,k,D j,k))

ℓ j
k=1 be ciphertexts

such that i < j for the same T . Let DK f = (K1,K2,K3) for a function f = (i, j). It first initializes a set
Y = /0.

1. For each k ∈ [ℓi], it computes Ei,k = e(Ci,k,K2). For each k ∈ [ℓ j], it computes E j,k = e(C j,k,K1).

2. It prepares two sets Ei = {Ei,k}ℓi
k=1 and E j = {E j,k}

ℓ j
k=1 and computes the intersection S = Ei∩E j

by comparing the group elements.

3. For each Ek ∈ S, it proceeds as follows:

(a) It finds (Ci,ki ,Di,ki) from CTi,T and (C j,k j ,D j,k j) from CTj,T such that Ci,ki and C j,k j are used
to derive Ek.

(b) It computes T Kk = e(Ci,ki ·C j,k j ,K3) and obtains a string T∥x by running SKE.Decrypt
(Di,ki ,F(T Kk)).

(c) It adds an item x into Y .

4. It outputs the set Y .

4.3 Correctness

We show the correctness of the above MCFE-SI scheme. To this end, we need to show that when the
ciphertext elements of two clients are the encryption of the same item, the matching ciphertext elements of
the set intersection can be found, and when these matching ciphertext elements are decrypted with a function
key, the set intersection item can be obtained. First, we already showed that if client ciphertext elements are
the encryption of the same item, then matching ciphertext elements can be found by using a function key
through the correctness of the MCFE-SIC scheme. Now, we can confirm that the correct item is decrypted
from the matching ciphertext elements since a correct temporal key is derived by the following equation

e(Ci,kC j,k′ ,K3) = e(H(T∥x)αiH(T∥x)α j , ĝβi/(αi+α j)) = e(H(T∥x), ĝ)βi .

4.4 Security Analysis

Theorem 4.1. The above MCFE-SI scheme is static-IND secure with no corruptions in the random oracle
model if the Assumptions 2 and 3 hold.

Proof. Suppose there exists an adversary that breaks the static-IND security of the MCFE-SI scheme with
no corruptions. We can assume that I = {1, . . . ,n} and I = /0. Let (X∗0,1, . . . ,X

∗
0,n) and (X∗1,1, . . . ,X

∗
1,n) be the

challenge tuples where X∗b,i = {x∗b,i,1, . . . ,x∗b,i,ℓi
} and |X∗b,i| = ℓi. Let Q = {(i, j)} be the set of index pairs

related to function key queries. We can derive a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k),Q) where µ is the
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challenge random bit of the security game. To argue that the adversary cannot win this game, we define a
sequence of hybrid games G0,G1,G2, and G3. The game Gi is defined as follows:

Game G0. The first game G0 is the original security game defined in Definition 4.2.

Game G1. This game G1 is similar to the game G0 except that the challenge ciphertext components {Ci,k}
are generated as random for all x∗

µ,i,k /∈ E∗i .

Game G2. This game G2 is slightly changed from the game G1. That is, the challenge temporal keys
{T Ki,k} are generated as random for all x∗

µ,i,k /∈ E∗i .

Game G3. In the final game G3, we change the generation of challenge ciphertext components {Di,k}. That
is, the challenge ciphertext components {Di,k} are the encryption of random values for all x∗

µ,i,k /∈ E∗i .
Note that the advantage of the adversary in this game is zero since challenge ciphertext components
{Ci,k} are random and {Di,k} are the encryption of random values for all x∗

µ,i,k /∈ E∗i .

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 4.2, 4.3, and 4.4,

we obtain the following result

AdvST -IND
MCFE-SI,A(λ )≤

∣∣∣Pr[SG0
A ]−Pr[SG3

A ]
∣∣∣+Pr[SG3

A ]≤
3

∑
i=1

∣∣∣Pr[SGi−1
A ]−Pr[SGi

A ]
∣∣∣+Pr[SG3

A ]

≤nℓAdvA2-(n,ρ,Q,J)
B (λ )+nℓAdvA3-(n,ρ,Q)

B (λ )+nℓAdvSKE
B (λ )

where n is the number of clients, ℓ is the maximum size of the challenge item set. This completes our
proof.

Lemma 4.2. If the Assumption 2 for (n,ρ,Q,J) holds, then no polynomial-time adversary can distinguish
between G0 and G1 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H1,0,H1,1, . . . ,H1,ℓ1 ,H2,1, . . . ,Hi,k, . . . ,Hn,ℓn

where H1,0 = G0 and Hn,ℓn = G1. The game Hρ,δ is defined as follows:

Game Hρ,δ . This game Hρ,δ is almost identical to the game G0 except the generation of the components
{Ci,k} in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the component Ci,k is generated as normal.

Otherwise (x∗
µ,i,k /∈ E∗i ), the component Ci,k is generated as random.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The component Ci,k is generated as normal.

Suppose there exists an adversary A that distinguishes between Hρ,δ−1 and Hρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since Hρ,δ−1 and Hρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . A simulator B that solves the Assumption 2 for (n,ρ,Q,J) which will be defined later is
described as follows:

Init: A submits challenge tuples (X∗0,1, . . . ,X
∗
0,n) and (X∗1,1, . . . ,X

∗
1,n), a challenge time period T ∗, and a set

Q = {(i, j)} of function key queries. B proceeds as follows:

1. From n,ρ,Q, it derives an index set J by calling ComputeJ(n,ρ,Q).
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2. It receives a challenge tuple D = (g,ga,{gbi}n
i=1,{gabk}k∈J, ĝ,{(ĝbici, j , ĝb jci, j , ĝ1/(bi+b j))}(i, j)∈Q) and Z

of the Assumption 2 for (n,ρ,Q,J) where Z = gabρ or Z = R ∈G.

3. It flips a random bit µ ∈ {0,1} internally and derives a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k),Q).

Setup: B first chooses random exponents β1, . . . ,βn ∈ Zp. Next, it sets PP = ((p,G,Ĝ,GT ,e),g, ĝ,H,F,n).
It prepares a hash table H-list for the H hash function as follows:

1. For each i ∈ [n] and k ∈ [ℓi], it proceeds as follows: If i ̸= ρ or k ̸= δ , then it selects a random
exponent u′i,k ∈ Zp and adds (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) to the H-list. Otherwise (i = ρ ∧ k = δ ), it adds
(T ∗∥x∗

µ,ρ,δ ,−,g
a) to the H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i∈ [n] and k ∈ [ℓi], it generates ciphertext elements Ci,k and T Ki,k depending on the following
cases:

• Case i < ρ:

– If (x∗
µ,i,k ∈ E∗i )∧ (x∗µ,i,k = x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,−,ga) from the H-list, and sets

Ci,k = gabi and creates T Ki,k = e(ga, ĝ)βi . For this case, we show that gabi is given in the
assumption. If a function key for f = (i,ρ) was queried, we have x∗

µ,ρ,δ ∈ E∗ρ by the defini-
tion of CIQ. However, we assumed that x∗

µ,ρ,δ /∈ E∗ρ for this game. Thus a function key for
f = (i,ρ) was not queried and it means that i ∈ J by the definition of J.

– If (x∗
µ,i,k ∈E∗i )∧(x∗µ,i,k ̸= x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) from the H-list, and creates

Ci,k = (gbi)u′i,k and T Ki,k = e(gu′i,k , ĝ)βi .

– If (x∗
µ,i,k /∈ E∗i ), it retrieves (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) from the H-list, and chooses a random Ci,k ∈
G and creates T Ki,k = e(gu′i,k , ĝ)βi .

• Case i = ρ:

– If (k < δ )∧ (x∗
µ,ρ,k ∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list, and creates

Cρ,k = (gbρ )u′
ρ,k and T Kρ,k = e(gu′

ρ,k , ĝ)βρ since x∗
µ,ρ,k ̸= x∗

µ,ρ,δ .

– If (k < δ )∧ (x∗
µ,ρ,k /∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list, and chooses a

random Cρ,k ∈G and creates T Kρ,k = e(gu′
ρ,k , ĝ)βρ .

– If (k = δ ), it sets Cρ,δ = Z and creates T Kρ,δ = e(ga, ĝ)βρ since we assumed that x∗
µ,ρ,δ /∈E∗ρ .

– If (k > δ ), it retrieves (T ∗∥x∗
µ,ρ,k,u

′
ρ,k,g

u′
ρ,k) from the H-list, and creates Cρ,k = (gbρ )u′

ρ,k

and T Kρ,k = e(gu′
ρ,k , ĝ)βρ since x∗

µ,ρ,k ̸= x∗
µ,ρ,δ .

• Case i > ρ:

– If (x∗
µ,i,k = x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,−,ga) from the H-list, and sets Ci,k = gabi and

creates T Ki,k = e(ga, ĝ)βi . For this case, we show that gabi is given in the assumption. If
a function key for f = (ρ, i) was queried, we have x∗

µ,ρ,δ ∈ E∗ρ by the definition of CIQ.
However, we assumed that x∗

µ,ρ,δ /∈ E∗ρ for this game. Thus a function key for f = (ρ, i) was
not queried and it means that i ∈ J by the definition of J.

– If (x∗
µ,i,k ̸= x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) from the H-list, and creates Ci,k = (gbi)u′i,k

and T Ki,k = e(gu′i,k , ĝ)βi .

21



Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗∥x∗
µ,i,k,T Ki,k)

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = ((Ci,πi(k),Di,πi(k)))
ℓi
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

• If this is a hash query for a time period T and an item x, then B proceeds as follows: If T∥x exists in
the H-list, then it retrieves (T∥x,−,u) from H-list and gives u to A. Otherwise, it selects a random
exponent u′ ∈ Zp and adds (T∥x,u′,gu′) to the H-list, and then it gives the hash value gu′ to A.

• If this is a function key query for a function f = (i, j) ∈ Q, then B generates DK f =
(
ĝbici, j , ĝb jci, j ,

(ĝ1/(bi+b j))βi
)

since these elements are given in the assumption.

• If this is a ciphertext query for a client index i, a set Xi = {xi,1, . . . ,xi,ℓ}, and a time period T ̸= T ∗,
then B generates a ciphertext as follows:

1. For each k ∈ [ℓi], it proceeds as follows: It retrieves (T∥xi,k,u′k,g
u′k) from the H-list, and sets

Ci,k =(gbi)u′k and T Ki,k = e(gu′k , ĝ)βi . Next, it obtains Di,k by running SKE.Encrypt(T∥xi,k,T Ki,k).

2. It chooses a random permutation π and sets CTi,T = ((Ci,π(k),Di,π(k)))
ℓi
k=1.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Lemma 4.3. If the Assumption 3 for (n,ρ,Q) holds, then no polynomial-time adversary can distinguish
between G1 and G2 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H′1,0,H′1,1, . . . ,H′1,ℓ1
, . . . ,H′i,k, . . . ,H

′
n,ℓn

where H′1,0 = G1 and H′n,ℓn
= G2. The game H′

ρ,δ is defined as follows:

Game H′
ρ,δ . This game H′

ρ,δ is almost identical to the game G1 except the generation of temporal keys
{T Ki,k} in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the temporal key T Ki,k is generated as

normal. Otherwise (x∗
µ,i,k /∈ E∗i ), the temporal key T Ki,k is generated as random.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The temporal key T Ki,k is generated as normal.

Suppose there exists an adversary A that distinguishes between H′
ρ,δ−1 and H′

ρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since H′
ρ,δ−1 and H′

ρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . A simulator B that solves the Assumption 3 for (n,ρ,Q) which will be defined later is described
as follows:

Init: A submits challenge tuples (X∗0,1, . . . ,X
∗
0,n) and (X∗1,1, . . . ,X

∗
1,n), a challenge time period T ∗, and a set

Q = {(i, j)} of function key queries. B proceeds as follows:

1. It receives a challenge tuple D = (g,ga,{gbi}n
i=1,{gabk}1≤k ̸=ρ≤n, ĝ,{(ĝbici, j , ĝb jci, j , ĝdi/(bi+b j))}(i, j)∈Q,

{ĝdi}1≤i ̸=ρ≤n,e(g, ĝ)dρ ) and Z of the Assumption 3 for (n,ρ,Q) where Z = e(g, ĝ)adρ or Z = R ∈GT .

2. It flips a random bit µ ∈ {0,1} internally and derives a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k),Q).

Setup: B sets PP = ((p,G,Ĝ,GT ,e),g, ĝ,H,F,n). It prepares a hash table H-list for the H hash function as
follows:
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1. For each i ∈ [n] and k ∈ [ℓi], it proceeds as follows: If i ̸= ρ or k ̸= δ , then it selects a random
exponent u′i,k ∈ Zp and adds (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) to the H-list. Otherwise (i = ρ ∧ k = δ ), it adds
(T ∗∥x∗

µ,ρ,δ ,−,g
a) to the H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i∈ [n] and k ∈ [ℓi], it generates ciphertext elements Ci,k and T Ki,k depending on the following
cases:

• Case i < ρ:

– If (x∗
µ,i,k ∈ E∗i )∧ (x∗µ,i,k = x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,−,ga) from the H-list, and sets

Ci,k = gabi and T Ki,k = e(ga, ĝdi). In this case, gabi is given in the assumption since i ̸= ρ .

– If (x∗
µ,i,k ∈ E∗i )∧ (x∗µ,i,k ̸= x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) from the H-list, and sets

Ci,k = (gbi)u′i,k and T Ki,k = e(gu′i,k , ĝdi).

– If (x∗
µ,i,k /∈ E∗i ), it retrieves (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) from the H-list, and selects random Ci,k ∈G
and T Ki,k ∈GT .

• Case i = ρ:

– If (k < δ )∧ (x∗
µ,ρ,k ∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list, and sets Cρ,k =

(gbρ )u′
ρ,k and T Kρ,k = (e(g, ĝ)dρ )u′

ρ,k since x∗
µ,ρ,k ̸= x∗

µ,ρ,δ .

– If (k < δ )∧ (x∗
µ,ρ,k /∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list, and selects

random Cρ,k ∈G and random T Kρ,k ∈GT .
– If (k = δ ), it chooses a random Cρ,δ ∈G and sets T Kρ,δ = Z since we assumed that x∗

µ,ρ,δ /∈
E∗ρ .

– If (k > δ )∧ (x∗
µ,ρ,k ∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list, and sets Cρ,k =

(gbρ )u′
ρ,k and T Kρ,k = (e(g, ĝ)dρ )u′

ρ,k since x∗
µ,ρ,k ̸= x∗

µ,ρ,δ .

– If (k > δ )∧ (x∗
µ,ρ,k /∈ E∗ρ), it retrieves (T ∗∥x∗

µ,ρ,k,u
′
ρ,k,g

u′
ρ,k) from the H-list, and selects a

random Cρ,k ∈G and creates T Kρ,k = (e(g, ĝ)dρ )u′
ρ,k .

• Case i > ρ:

– If (x∗
µ,i,k ∈ E∗i )∧ (x∗µ,i,k = x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,−,ga) from the H-list, and sets

Ci,k = gabi and T Ki,k = e(ga, ĝdi). In this case, gabi is given in the assumption since i ̸= ρ .

– If (x∗
µ,i,k ∈ E∗i )∧ (x∗µ,i,k ̸= x∗

µ,ρ,δ ), it retrieves (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) from the H-list, and sets

Ci,k = (gbi)u′i,k and T Ki,k = e(gu′i,k , ĝdi).

– If (x∗
µ,i,k /∈ E∗i ), it retrieves (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) from the H-list, and selects a random Ci,k ∈
G and creates T Ki,k = e(gu′i,k , ĝdi).

Next, it generates a ciphertext element Di,k by running SKE.Encrypt(T ∗∥x∗
µ,i,k,T Ki,k)

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = ((Ci,πi(k),Di,πi(k)))
ℓi
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:
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• If this is a hash query for a time period T and an item x, then B proceeds as follows: If T∥x exists in
the H-list, then it retrieves (T∥x,−,u) from H-list and gives u to A. Otherwise, it selects a random
exponent u′ ∈ Zp and adds (T∥x,u′,gu′) to the H-list, and then it gives the hash value gu′ to A.

• If this is a function key query for a function f =(i, j)∈Q, thenB generates DK f =
(
ĝbici, j , ĝb jci, j , ĝdi/(bi+b j)

)
since these elements are given in the assumption.

• If this is a ciphertext query for a client index i, a set Xi = {xi,1, . . . ,xi,ℓ}, and a time period T ̸= T ∗,
then B generates a ciphertext as follows:

1. For each k ∈ [ℓi], it proceeds as follows: It retrieves (T∥xi,k,u′k,g
u′k) from the H-list and sets

Ci,k = (gbi)u′k . Next, it sets T Ki,k = (e(g, ĝ)dρ )u′k if i = ρ , and it sets T Ki,k = e(gu′k , ĝdi) if i ̸= ρ .
It obtains Di,k by running SKE.Encrypt(T∥xi,k,T Ki,k).

2. It chooses a random permutation π and creates CTi,T = ((Ci,π(k),Di,π(k)))
ℓi
k=1.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Lemma 4.4. If the SKE scheme is one-message secure, then no polynomial-time adversary can distinguish
between G2 and G3 with a non-negligible advantage.

Proof. To prove this lemma, we additionally define hybrid games H′′1,0,H′′1,1, . . . ,H′′1,ℓ1
,H′′2,1, . . . ,H′′i,k, . . . ,H

′′
n,ℓn

where H′′1,0 = G2 and H′′n,ℓn
= G3. The game H′′

ρ,δ is defined as follows:

Game H′′
ρ,δ . This game H′′

ρ,δ is almost identical to the game G2 except the generation of components {Di,k}
in the challenge ciphertexts.

• Case (i < ρ) or (i = ρ ∧ k ≤ δ ): If x∗
µ,i,k ∈ E∗i , then the component Di,k is generated as normal.

Otherwise (x∗
µ,i,k /∈ E∗i ), the component Di,k is generated as the encryption of a random value.

• Case (i = ρ ∧ k > δ ) or (i > ρ): The component Di,k is generated as normal.

Suppose there exists an adversary A that distinguishes between H′′
ρ,δ−1 and H′′

ρ,δ with a non-negligible
advantage. Without loss of generality, we assume that x∗

µ,ρ,δ /∈ E∗ρ since H′′
ρ,δ−1 and H′′

ρ,δ are equal if
x∗

µ,ρ,δ ∈ E∗ρ . Then B that interacts with A is described as follows:

Init: A submits challenge tuples (X∗0,1, . . . ,X
∗
0,n) and (X∗1,1, . . . ,X

∗
1,n) of item sets, a challenge time period T ∗,

and a set Q = {(i, j)} of function key queries. B then flips a random bit µ ∈ {0,1} internally and derives a
tuple (E∗1 , . . . ,E

∗
n ) by calling CIQ((X∗

µ,k),Q).

Setup: B first chooses random exponents α1, . . . ,αn, β1, . . . ,βn ∈Zp. Next, it sets PP=((p,G,Ĝ,GT ,e),g, ĝ,
H,F,n). It prepares a hash table H-list for the H hash function as follows:

1. For each i ∈ [n] and k ∈ [ℓi], it selects a random exponent u′i,k ∈ Zp and adds (T ∗∥x∗
µ,i,k,u

′
i,k,g

u′i,k) to
the H-list.

Challenge: B creates challenge ciphertexts CT1,T ∗ , . . . ,CTn,T ∗ as follows:

1. For each i∈ [n] and k ∈ [ℓi], it generates ciphertext elements Ci,k and T Ki,k depending on the following
cases:

• Case x∗
µ,i,k ∈ Ei: It retrieves (T ∗∥x∗

µ,i,k,u
′
i,k,g

u′i,k) from the H-list, and creates Ci,k = gu′i,kαi and

T Ki,k = e(gu′i,k , ĝ)βi .
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• Case x∗
µ,i,k /∈ Ei: It selects random Ci,k ∈G and random T Ki,k ∈GT .

Next, it also generates a ciphertext element Di,k depending on the following cases:

• Case (i < ρ) or (i = ρ∧k < δ ): If x∗
µ,i,k ∈ E∗i , it creates Di,k by running SKE.Encrypt(T ∗∥x∗

µ,i,k,
T Ki,k). Otherwise (x∗

µ,i,k /∈E∗i ), it selects a random y∈D and creates Di,k by running SKE.Encrypt
(T ∗∥y,T Ki,k).

• Case (i = ρ ∧ k = δ ): It selects a random y ∈ D and submits challenge message x∗
µ,ρ,δ and y to

the encryption oracle of SKE. Next, it receives a challenge ciphertext CT ∗SKE from SKE and sets
Dρ,δ =CT ∗SKE . Recall that we assumed x∗

µ,ρ,δ /∈ E∗ρ .

• Case (i = ρ ∧ k > δ ) or (i > ρ): It creates Di,k by running SKE.Encrypt(T ∗∥x∗
µ,i,k,T Ki,k).

2. For each i ∈ [n], it chooses a random permutation πi and sets CTi,T ∗ = ((Ci,πi(k),Di,πi(k)))
ℓi
k=1.

Query: B handles hash, function key, and ciphertext queries of A as follows:

• If this is a hash query for a time period T and an item x, then B proceeds as follows: If T∥x exists in
the H-list, then it retrieves (T∥x,−,u) from H-list and gives u to A. Otherwise, it selects a random
exponent u′ ∈ Zp and adds (T∥x,u′,gu′) to the H-list, and then it gives the hash value gu′ to A.

• If this is a function key query for a function f = (i, j), then B simply generates DK f by using αi,α j,βi.

• If this is a ciphertext query for a client index i, a set Xi, and a time period T ̸= T ∗, then B simply
generates a ciphertext CTi,T by using αi,βi.

Guess: A outputs a guess µ ′. If µ = µ ′, it outputs 1. Otherwise, it outputs 0.

Theorem 4.5. The above MCFE-SI scheme is static-IND secure with corruptions in the random oracle
model if the MCFE-SI scheme is static-IND secure with no corruptions.

Proof. The proof of this theorem is similar to that of Theorem 3.4. In other words, the simulator of this
proof generates the secret keys of corrupted clients by itself, and processes all other queries of an attacker
using the queries of the MCFE-SI scheme with no corruptions. We omit the description of more detailed
proofs.

4.5 Discussions

Efficiency Analysis. We analyze the efficiency of the proposed MCFE-SI scheme. First, the function key
is composed of two group elements for the set intersection cardinality and one group element for deriving
a temporal key. The encryption algorithm requires ℓ map-to-point hash operations, ℓ exponentiation opera-
tions, and ℓ pairing operations since it requires operations in proportion to the size of a set. The decryption
algorithm requires 2ℓ pairing operations, ℓ logℓ comparison operations for sorting of group elements, and
ℓ pairing operations for deriving temporal keys to decrypt intersection items. The detailed comparison of
MCFE schemes is given in Table 1. Compared to the decryption algorithm of the MCFE-SI scheme of Lee
and Seo [32] that requires approximately ℓ2 pairing operations, the decryption algorithm of our scheme is
more efficient since it only requires 2ℓ pairing operations.

Outsourcing the Decryption of MCFE. If the ciphertexts generated by clients are stored on a cloud server,
we can consider outsourcing part of the decryption operation to the cloud server. At this time, since the
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cloud server is not a trusted entity, we must be careful not to expose the set intersection information of the
ciphertext to the cloud server. To this end, a client owning a function key DK = (K1,K2,K3) for indexes
(i, j) selects a random exponent z and provides an outsourcing function key oDK = (K1,K2,Kz

3) to the cloud
server. Then, the cloud server finds ciphertext elements that satisfy the set intersection by using K1 and K2,
derives outsourced temporal keys oT K = e(Ci,kC j,k′ ,Kz

3) = e(H(T∥x), ĝβi)z, and then it passes these keys
back to the client. Then, the client raises all outsourced temporal keys to z−1 and decrypts corresponding
ciphertexts with the temporal keys. At this time, the cloud server obtains information on the set intersection
cardinality and information on the equality patterns but does not obtain the set intersection items.

Multi-Party Set Intersection. In the previous section, we presented a method of extending the MCFE-SIC
scheme to support the set intersection cardinality for multiple parties. Using this method, our MCFE-
SI scheme can also be extended to support multi-party set intersection. That is, for calculating the set
intersection cardinality, random exponents ri,r j, and rk that satisfy ri + r j + rk = 0 are selected and key
elements ĝri/αi , ĝr j/α j , ĝrk/αk are created. After that, an additional key element ĝβi/(αi+α j+αk) is provided to
derive temporal keys. This method has the disadvantage that it requires O(ℓ3) multiplication operations to
find matching ciphertext elements, but it only requires O(ℓ) pairing operations.

5 Decentralized MCFE for Set Intersection

In this section, we define the syntax and security model of DMCFE-SI that generates function keys in a
distributed way. And we propose an efficient DMCFE-SI scheme and analyze the security of the proposed
scheme.

5.1 Definition

We define the syntax of decentralized MCFE-SI (DMCFE-SI). DMCFE-SI is a decentralized version of
MCFE-SI in the previous section so that individual clients generate partial function keys instead of a trusted
center generating a function key. In DMCFE-SI, individual clients set their own private key SKi and public
key PKi using the ClientSetup algorithm. And then individual clients generate partial function keys using
the GenPartKey algorithm, and a third entity combines the partial function keys using the CombPartKey
algorithm to derive a correct function key. That is, if the third entity wants to obtain a function key for client
indexes (i, j), it receives a partial function key pDKi from the i-index client and a partial function key pDK j

from the j-index client. And then, it combines the two partial function keys to derive the correct function
key DK to decrypt a ciphertext. At this point, the encryption and decryption algorithms of DMCFE-SI are
the same as those of MCFE-SI. The detailed syntax of DMCFE-SI is described as follows.

Definition 5.1 (Decentralized MCFE for Set Intersection). A decentralized multi-client functional encryp-
tion for set intersection (DMCFE-SI) scheme for an item space D and a time space T consists of six al-
gorithms Setup, ClientSetup, GenPartKey, CombPartKey, Encrypt, and Decrypt, which are defined as
follows:

Setup(1λ ,n). The global setup algorithm takes as input the security parameter λ and the number of clients
n. It outputs public parameters PP.

ClientSetup(i,PP). The client setup algorithm takes as input an index i of a client and public parameters
PP. It outputs a secret key SKi and a public key PKi.
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GenPartKey( f ,SKi,PK,PP). The partial key generation algorithm takes as input a function f , a secret
key SKi, and a tuple PK of public keys, and public parameters PP. It outputs a partial function key
pDKi, f .

CombPartKey(pDKi, f , pDK j, f ,PP). The partial key combining algorithm takes as input two partial de-
cryption keys pDKi, f and pDK j, f for a function f = (i, j) and public parameters PP. It outputs a
function key DK f .

Encrypt(Xi,T,SKi,PP). The encryption algorithm takes as input a set Xi = {xi,1, . . . ,xi,ℓi} of items where
xi, j ∈ D, a time period T ∈ T , a secret key SKi, and public parameters PP. It outputs a ciphertext
CTi,T .

Decrypt(CTi,T ,CTj,T ,DK f ,PP). The decryption algorithm takes as input two ciphertexts CTi,T and CTj,T

for the same time T , a function key DK f , and public parameters PP. It outputs a set Xi∩X j where Xi

and X j are associated with CTi,T and CTj,T respectively.

The correctness of the DMCFE-SI scheme is defined as follows: For any PP← Setup(1λ ,n), all SKi,PKi←
ClientSetup(i,PP), and all CTi,T ← Encrypt(Xi,T,SKi,PP) and CTj,T ← Encrypt(X j,T,SK j,PP) for any
Xi,X j and the same time T , it is required that

• CombPartKey(GenPartKey( f ,SKi,PK,PP),GenPartKey( f ,SK j,PK,PP),PP) = DK f .

• Decrypt(CTi,T ,CTj,T ,DK f ,PP) = Xi∩X j except with negligible probability.

We define the security model of DMCFE-SI. We define the static IND security model of DMCFE-SI by
modifying the static IND security model of MCFE-SI defined in the previous section. This security model of
DMCFE-SI is the same as that of MCFE-SI in Section 4.1, except that it allows partial function key queries
instead of function key queries. In this security model of DMCFE-SI, partial function key queries requested
by an attacker have two limitations. If a partial function key for a function f = (i, j) requested by the attacker
belongs to the predefined function key query set, then the attacker can request both a partial function key
for a client i and a partial function key for a client j. However, if a partial function key for f = (i, j) does
not belong to the predefined function key query set, then the attacker can request only one partial function
key for a client i or j. Thus, the attacker of DMCFE-SI allows not only predefined function key queries, but
also additional partial function key queries. The more detailed security model of DMCFE-SI is defined as
follows.

Definition 5.2 (Static-IND Security). The static-IND security of DMCFE-SI with corruptions is defined in
the following experiment EXPST -IND

DMCFE-SI,A(1
λ ) between a challenger C and a PPT adversary A:

1. Init: A initially submits an index set I ⊂ [n] of corrupted clients. Let I = {1, . . . ,n} \ I be the index
set of uncorrupted clients. A also submits two challenge tuples (X∗0,k)k∈I and (X∗1,k)k∈I of item sets, a
challenge time period T ∗, and a set Q = {(i, j)} of function key queries with the two restrictions that
(1) i, j ∈ I for each (i, j) ∈ Q and (2) CSI((X∗0,k)k∈I,Q) =CSI((X∗1,k)k∈I,Q).

2. Setup: C generates public parameters PP by running Setup(1λ ,n). It also generates secret keys and
public keys (SKi,PKi) of clients by running ClientSetup(i,PP) for each i ∈ [n]. It keeps (SKi)i∈I to
itself and gives (SKi)i∈I , PK = (PKi)

n
i=1, and PP to A.

3. Challenge: C flips a random bit µ ∈ {0,1} and obtains a ciphertext CTi,T ∗ by running Encrypt(X∗
µ,i,

T ∗,SKi,PP) for each i ∈ I. C gives the challenge ciphertexts (CTi,T ∗)i∈I to A
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4. Query: A requests function keys and ciphertexts. C handles these queries as follows:

• If this is a partial function key query for a tuple f = (i, j) and a client index k such that k = i or
k = j, then C gives a partial function key pDKk, f to A by running GenPartKey( f ,SKk,PK,PP)
with the restrictions that (1) if f ∈ Q, then two partial function keys of i and j can be queried
and (2) if f /∈ Q, then only one partial function key of i or j can be queried when i, j ∈ I.

• If this is a ciphertext query for a client index k ∈ I, an item set Xk, and a time period T ̸= T ∗,
then C gives a ciphertext CTk,T to A by running Encrypt(Xk,T,SKk,PP).

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

A DMCFE-SI scheme is static-IND secure with corruptions if for all PPT adversary A, the advantage of A
defined as AdvST -IND

DMCFE-SI,A(λ ) =
∣∣Pr[EXPST -IND

DMCFE-SI,A(1
λ ) = 1]− 1

2

∣∣ is negligible in the security parameter
λ .

5.2 Construction

The function key of the MCFE-SI scheme proposed in the previous section consist of K1 and K2 for set
intersection cardinality and K3 for deriving a temporal key for set intersection. We first devise a method to
decentralize the generation of K1 and K2. In order for individual clients to generate these two group elements
in an independent way, it is necessary to generate a common random exponent r. To this end, we derive
the same shared key K by using a non-interactive key exchange NIKE scheme and we use PRF to derive
the exponent r from the shared key K. That is, if an individual client additionally selects a private key γi

and exposes a public key hi = gγi , then it can derive a shared key K = gγiγ j by using a NIKE scheme. Thus,
individual clients can generate partial function keys of ĝαir and ĝα jr where r = PRF(K,1).

Now we devise a method to decentralize the generation of K3 for derivation of a temporal key. However,
it cannot be decentralized by a simple method since it requires the inverse operation of an exponent. In
order to decentralize the calculation of the inverse operation while hiding the secret keys of two clients, we
introduce a method in which the secret key is encrypted with a one-time pad scheme and a client requesting
the partial function key combines the encrypted keys to calculate the inverse operation. That is, individual
clients first derive the same shared key Ki, j using the NIKE scheme, and derives the same random exponents
s and t. Then, each client encrypts its secret key as Ei = sαi + t and E j = sα j − t, respectively. At this
time, if the i index client additionally provides ĝβis, the client that received Ei and E j can compute a key
(ĝβis)1/(Ei+E j). Note that, since Ei and E j have a one-to-one correspondence with random exponents s and t,
the information of the secret keys is not exposed.

Let SKE = (GenKey, Encrypt, Decrypt) be an SKE scheme. A DMCFE-SI scheme is described as
follows.

Setup(1λ ,n). Let n be the maximum number of clients. It first generates a bilinear group (p,G,Ĝ,GT ,e) of
prime order p with random generators g∈G and ĝ∈ Ĝ. It chooses two hash functions H : {0,1}∗→G
and F : GT →{0,1}λ . It outputs public parameters PP =

(
(p,G,Ĝ,GT ,e),g, ĝ,H,F,n

)
.

ClientSetup(i,PP). Let i be the index of a client. It selects random exponents αi,βi,γi ∈ Zp, and then it
outputs a secret key SKi = (αi,βi,γi) and a public key PKi =

(
hi = gγi

)
.

GenPartKey( f ,SKk,PK,PP). Let f = (i, j) such that i < j. Let SKk = (αk,βk,γk) such that k = i or k = j
and PK = (PK1, . . . ,PKn).
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1. If k = i, it retrieves PK j = h j from PK and computes a shared key Ki, j = hγi
j . Otherwise (k = j),

it retrieves PKi = hi from PK and computes a shared key Ki, j = hγ j
i . Next, it derives random

exponents r,s, t ∈ Zp by running PRF(Ki, j,1), PRF(Ki, j,2), PRF(Ki, j,3) respectively.

2. If k = i, it sets A2 = ĝβi·s and E = s ·αi + t mod p. Otherwise, it sets A2 = 1Ĝ and E = s ·α j− t
mod p. It outputs a partial function key pDKk, f =

(
A1 = ĝαk·r,A2,E

)
.

CombPartKey(pDKi, f , pDK j, f ,PP). Let f = (i, j) such that i < j. Let pDKi, f = (A1,A2,E) and pDK j, f =
(A′1,A

′
2,E

′). It selects a random exponent r ∈Zp and outputs a function key DK f =
(
K1 = (A1)

r,K2 =

(A′1)
r,K3 = A1/(E+E ′)

2

)
.

Encrypt(Xi,T,SKi,PP). Let Xi = {xi,1, . . . ,xi,ℓi} be a set of items where |Xi|= ℓi and SKi = (αi,βi,γi).

1. For each k ∈ [ℓi], it proceed as follows: It computes Ci,k = H(T∥xi,k)
αi and derives a temporal

key T Ki,k = e(H(T∥xi,k), ĝ)βi . It obtains Di,k by running SKE.Encrypt(T∥xi,k,F(T Ki,k)).

2. It chooses a random permutation π and outputs a ciphertext CTi,T =
(
(Ci,π(k),Di,π(k))

)ℓi

k=1 by
implicitly including i,T .

Decrypt(CTi,T ,CTj,T ,DK f ,PP). Let CTi,T = ((Ci,k,Di,k))
ℓi
k=1 and CTj,T = ((C j,k,D j,k))

ℓ j
k=1 be ciphertexts

such that i < j for the same T . Let DK f = (K1,K2,K3) where f = (i, j). It first initializes a set Y = /0.

1. For each k ∈ [ℓi], it computes Ei,k = e(Ci,k,K2). For each k ∈ [ℓ j], it computes E j,k = e(C j,k,K1).

2. It prepares two sets Ei = {Ei,k}ℓi
k=1 and E j = {E j,k}

ℓ j
k=1 and computes the intersection S = Ei∩E j

by comparing the group elements.

3. For each Ek ∈ S, it proceeds as follows:

(a) It finds (Ci,ki ,Di,ki) from CTi,T and (C j,k j ,D j,k j) from CTj,T such that Ci,ki and C j,k j are used
to derive Ek.

(b) It computes T Kk = e(Ci,ki ·C j,k j ,K3) and obtains a string T∥x by running SKE.Decrypt
(Di,ki ,F(T Kk)).

(c) It adds an item x into Y .

4. It outputs the set Y .

5.3 Correctness

We show the correctness of the DMCFE-SI scheme. First, two clients i and j can obtain the same shared
key Ki, j from the correctness of the Diffie-Hellman non-interactive key exchange scheme. And two clients i
and j can derive the same random exponents r,s, and t since PRF is a deterministic function. Now, when a
combing client combines the partial function key elements generated by using the same random exponents
r,s, and t, it can derive a function key by the following equation

A1 = ĝαir, A′1 = ĝα jr, A1/(E+E ′)
2 =

(
ĝβi·s

)1/(sαi+t+sα j−t)
=
(
ĝβi·s

)1/(sαi+sα j) = ĝβi/(αi+α j).

Since the correct function key is derived from the partial function key, it is guaranteed that the set intersection
is correctly calculated from the ciphertexts of two clients from the correctness of the MCFE-SI scheme.
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5.4 Security Analysis

Theorem 5.1. The above DMCFE-SI scheme is static-IND secure with no corruptions in the random oracle
model if the PRF scheme is secure and the Assumptions 2 and 3 hold.

Proof. Suppose there exists an adversary that breaks the static-IND security of the DMCFE-SI scheme with
no corruptions. We can assume that I = {1, . . . ,n} and I = /0. Let (X∗0,1, . . . ,X

∗
0,n) and (X∗1,1, . . . ,X

∗
1,n) be the

challenge tuples where X∗b,i = {x∗b,i,1, . . . ,x∗b,i,ℓi
} and |X∗b,i| = ℓi. Let Q = {(i, j)} be the set of index pairs

related to function key queries. We can derive a tuple (E∗1 , . . . ,E
∗
n ) by calling CIQ((X∗

µ,k),Q) where µ is the
challenge random bit of the security game. To argue that the adversary cannot win this game, we define a
sequence of hybrid games G0,G1,G2, and G3. The game Gi is defined as follows:

Game G0. The first game G0 is the original security game defined in Definition 5.2.

Game G1. In this game G1, when processing partial function key queries, we change all shared keys {Ki, j}
derived by non-interactive key agreement to random elements.

Game G2. In this game, we modify the previous game G1 to generate random exponents r,s, t by using the
a truly random function instead of using a pseudo-random function when processing partial function
key queries.

Game G3. This game G3 is similar to the game G2 except that the challenge ciphertext components {Ci,k}
are generated as random for all x∗

µ,i,k /∈ E∗i .

Game G4. This game G4 is slightly changed from the game G3. That is, the challenge temporal keys
{T Ki,k} are generated as random for all x∗

µ,i,k /∈ E∗i .

Game G5. In the final game G5, we change the generation of challenge ciphertext components {Di,k}. That
is, the challenge ciphertext components {Di,k} are the encryption of random values for all x∗

µ,i,k /∈ E∗i .
Recall that the advantage of the adversary in this game is zero since challenge ciphertext components
{Ci,k} are random and {Di,k} are the encryption of random values for all x∗

µ,i,k /∈ E∗i .

Let SGi
A be the event that an adversary wins in a game Gi. From the following lemmas 5.2, 5.3, 5.4, 5.5,

and 5.6, we obtain the following result

AdvST -IND
DMCFE-SI,A(λ )≤

∣∣∣Pr[SG0
A ]−Pr[SG5

A ]
∣∣∣+Pr[SG5

A ]≤
5

∑
i=1

∣∣∣Pr[SGi−1
A ]−Pr[SGi

A ]
∣∣∣+Pr[SG5

A ]

≤AdvXDH
B (λ )+n2AdvPRF

B (λ )+nℓAdvA2-(n,ρ,Q,J)
B (λ )+nℓAdvA3-(n,ρ,Q)

B (λ )+

nℓAdvSKE
B (λ )

where n is the number of clients, ℓ is the maximum size of the challenge item set. This completes our
proof.

Lemma 5.2. If the XDH assumption holds, then no polynomial-time adversary can distinguish between G0
and G1 with a non-negligible advantage.

Proof. To prove this lemma, we introduce a multi-XDH assumption that is modified from the XDH as-
sumption. Let (p,G,Ĝ,GT ,e) be a bilinear group and g, ĝ be random generators of G,Ĝ respectively.
The multi-XDH assumption is that if the challenge tuple D =

(
(p,G,Ĝ,GT ,e), g, ga1 , . . . ,gan , ĝ

)
and Z
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are given, no PPT algorithm A can distinguish Z = Z0 = (ga1a2 , . . . ,ga1an , . . . ,gaia j , . . . ,gan−1an)1≤i< j≤n from
Z = Z1 = (gc1,2 , . . . ,gci, j . . . ,gcn−1,n)1≤i< j≤n with more than a negligible advantage where the probability is
taken over random choices of a1, . . . ,an,{ci, j} ∈ Zp.

The multi-XDH assumption is actually the same as the XDH assumption by using the random self-
reducibility of the XDH assumption. We omit the detailed proof of this lemma since the proof of randomly
changing all shared keys is simply processed by using the multi-XDH assumption.

Lemma 5.3. If the PRF is secure, then no polynomial-time adversary can distinguish between G1 and G2
with a non-negligible advantage.

Proof. To prove this lemma, we play additional hybrid games that convert pseudo-random functions into
truly random functions one by one. When the number of clients is n, the maximum number of shared keys
is n(n−1)/2, so the hybrid games consist of a maximum of n2/2. Note that the exponents r,s, and t derived
by a truly random function are distributed as random values. We omit the detailed proof of this lemma.

Lemma 5.4. If the Assumption 2 for (n,ρ,Q,J) holds, then no polynomial-time adversary can distinguish
between G2 and G3 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as Lemma 4.2 except for client public key generation
and partial function key query processing. To perform the proof, we define a number of additional hybrid
games as in Lemma 4.2 and show the indistinguishability of individual hybrid games. The simulator of this
lemma generates public parameters, challenge ciphertexts, and challenge ciphertexts in the same manner as
in Lemma 4.2. Note that function key query processing in Lemma 4.2 is unnecessary for this lemma. In the
proof of individual hybrid games, the simulator handles additional client public key generation and partial
function key queries.

In the setup phase, the simulator selects a random exponent γi ∈ Zp for each client and sets hi = gγi as
the corresponding client public key. The public key generated in this way has the same distribution as that
of the original game.

In the query phase, the simulator handles a partial function key query for a function f = (i, j) and a
client index k as follows:

• Case f = (i, j) ∈ Q: It first sets a function key DK f =
(
K1 = ĝbici, j ,K2 = ĝb jci, j ,K3 = (ĝ1/(bi+b j))βi

)
since these elements are given in the assumption. Next, it selects random exponents r′,s′, t ′ ∈ Zp. If
k = i, then it creates pDKi, f =

(
A1 = Kr′

1 ,A2 = Ks′
3 ,E = s′+ t ′ mod p

)
. Otherwise (k = j), it creates

pDK j, f =
(
A′1 = Kr′

2 ,A
′
2 = 1Ĝ,E

′ =−t ′ mod p
)
.

Now we show that the distribution of the generated partial function keys has the same distribution as
that of the original game. We implicitly define the random exponents of the partial function key as
follows:

r = ci, jr′, s =
1

(bi +b j)
s′, t =

b j

(bi +b j)
s′+ t ′.

Then, we can show that the elements of the partial function key are correctly distributed by the fol-
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lowing equations:

A1 = ĝbir = ĝbici, jr′ = Kr′
1 , A′1 = ĝb jr = ĝb jci, jr′ = Kr′

2 , A2 = ĝβis = ĝβi·s′/(bi+b j) = Ks′
3 ,

E = sbi + t =
s′

(bi +b j)
bi +

b j

(bi +b j)
s′+ t ′ = s′+ t ′,

E ′ = sb j− t =
s′

(bi +b j)
b j−

b j

(bi +b j)
s′− t ′ =−t ′.

• Case f = (i, j) /∈ Q: It first selects random exponents r′,s′, t ′ ∈ Zp. If k = i, then it creates pDKi, f =(
A1 = ĝr′ ,A2 = ĝs′ ,E = t ′ mod p

)
. Otherwise (k = j), it creates pDK j, f =

(
A′1 = ĝr′ ,A′2 = 1Ĝ,E

′ = t ′

mod p
)
.

Now we should show that the distribution of the partial function keys generated in this way has the
same distribution as that of the original game. Note that in the case of f /∈ Q, an attacker can obtain
only one of pDKi, f or pDK j, f due to the constraints of the security model. First, in the case of k = i, if
we define the random exponents as follows, then we can see that the elements of the partial function
key are correctly distributed by the following equations:

r =
1
bi

r′, s =
1
βi

s′, t =−bi

βi
s′+ t ′,

A1 = ĝbir = ĝbi·r′/bi = ĝr′ , A2 = ĝβis = ĝβi·s′/βi = ĝs′ ,

E = sbi + t =
1
βi

s′bi−
bi

βi
s′+ t ′ = t ′.

Next, in the case of k = j, if we define the random exponents as follows, then we can see that the
elements of the partial function key are correctly distributed by the following equations:

r =
1
b j

r′, s =
1
βi

s′, t =
b j

βi
s′− t ′,

A′1 = ĝb jr = ĝb j·r′/b j = ĝr′ , E ′ = sb j− t =
s′

βi
b j−

b j

βi
s′+ t ′ = t ′.

This completes our proof.

Lemma 5.5. If the Assumption 3 for (n,ρ,Q,J) holds, then no polynomial-time adversary can distinguish
between G3 and G4 with a non-negligible advantage.

Proof. The proof of this lemma is the same as that of Lemma 4.3 by removing the function key query
and adding additional client public key generation and partial function key query. In order to perform the
proof, we define additional hybrid games, identical to Lemma 4.3, and perform indistinguishability proof
of individual hybrid games. In the proof of individual hybrid games, a simulator proceeds client public key
generation and partial function key query processing as the similar manner as in Lemma 5.4. We omit the
detailed proof.

Lemma 5.6. If the SKE scheme is one-message secure, then no polynomial-time adversary can distinguish
between G4 and G5 with a non-negligible advantage.
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Proof. The proof of this lemma is almost the same by removing the function key generation from the
proof of Lemma 4.4, and adding client public key generation and partial function key query processing.
A simulator can easily handle client public key generation and partial function key query by using αi,βi,
and γi selected by the simulator. We omit the detailed description of this proof.

Theorem 5.7. The above DMCFE-SIC scheme is static-IND secure with corruptions in the random oracle
model if the DMCFE-SIC scheme is static-IND secure with no corruptions.

Proof. The proof of this theorem is almost the same as Theorem 4.5 by replacing the function key query
with a partial function key query. In other words, the simulator of this theorem generates the secret keys of
corrupted clients by itself, and partial function key queries requested by an attacker are also processed by
using the queries of the DMCFE-SI scheme with no corruption. Since all other parts of this proof are the
same as Theorem 4.5, we will omit the detailed proof.

5.5 Discussions

Efficiency Analysis. The encryption and decryption algorithms of our DMCFE-SI scheme has the same
performance as those of our MCFE-SI scheme in the previous section. The partial function key generation
algorithm requires three exponentiations and three PRF operations to generate random exponents. And the
partial function key combining algorithm requires one inverse and one exponentiation operations. Thus,
the partial function key generation and partial function key combining algorithms are very efficient. The
detailed comparison of MCFE schemes is given in Table 1.

Public Verification of Function Keys. A client that performs the partial function key combination algo-
rithm needs to check whether the derived function key is correct or not. In order to publicly verify the
function key, it is necessary to additionally expose public keys for private keys of individual clients. In
other words, individual clients publish a public key (gαi ,e(g, ĝ)βi ,gγi) for their private key (αi,βi,γi). Since
the function key is composed of (ĝαir, ĝα jr, ĝβi/(αi+α j)), it is possible to verify the function key by checking
the following equations. e(gα j , ĝαir) = e(gαi , ĝα jr)∧ e(gαigα j , ĝβi/(αi+α j)) = e(g, ĝ)βi . Note that it is secure
for a client to expose gαi ,e(g, ĝ)βi in the public key since these elements are already included in the two
assumptions used to prove the security of the DMCFE-SI scheme.

Decentralized Three-Party Set Intersection. Previously, we could extend the MCFE-SIC and MCFE-
SI schemes to support the set intersection between multiple parties. Here, we extend our DMCFE-SI
scheme to support multi-party set intersection. In the case of the DMCFE-SI scheme, the function key
generation is divided into partial function key generation and partial function key combination algorithms.
Thus, it is necessary to modify the partial function key generation algorithm to support the multi-party
set intersection. The partial function key generation algorithm needs to derive a shared key through non-
interactive key exchange between entities involved in the set intersection. Fortunately, three-party non-
interactive key exchange is possible by using the pairing operation. In other words, we first derive a shared
key Ki, j,k = e(gγi , ĝγ j)γk for three clients (i, j,k). We then select random exponents r1,r2,s, t1, t2 and set
r3 = −r1− r2, t3 = −t1− t2. Then the partial key of the client i is (gαir1 ,gβis,Ei = sαi + t1), and the partial
key of the client j is (gα jr2 ,1,E j = sα j + t2), and the partial key of the client k is (gαkr3 ,1,Ek = sαk + t3).
In this case, the correct function key (ĝβis)1/(Ei+E j+Ek) = ĝβi/(αi+α j+αk) is derived from the partial function
keys.
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Table 2: Comparison of basic group operations in asymmetric bilinear groups

Curve Security Hash G Exp G Exp Ĝ Exp GT Pairing

MNT159 80 0.030 0.581 5.283 1.097 3.664
MNT201 100 0.136 0.762 7.826 2.255 5.045
MNT224 112 0.089 1.111 8.973 1.881 6.289

All results are measured in milliseconds. We use symbols Hash for a map-to-point hash operation, Exp for
an exponentiation operation, and Pairing for a pairing operation.

Table 3: Efficiency comparison of MCFE schemes for set intersection in MNT224

Scheme Algorithm ℓ= 64 ℓ= 128 ℓ= 256 ℓ= 512 ℓ= 1024 ℓ= 2048

LS [32] GenKey 0.01 0.01 0.01 0.01 0.01 0.01
Encrypt 0.48 0.96 1.92 3.83 7.67 15.34
Decrypt 25.76 103.04 412.16 1.6×103 6.6×103 26.4×103

MCFE-SIC GenKey 0.02 0.02 0.02 0.02 0.02 0.02
Encrypt 0.08 0.15 0.31 0.61 1.23 2.46
Decrypt 0.81 1.61 3.22 6.44 12.88 25.76

MCFE-SI GenKey 0.03 0.03 0.03 0.03 0.03 0.03
Encrypt 0.48 0.96 1.92 3.83 7.67 15.34
Decrypt 1.21 2.42 4.83 9.66 19.32 38.64

All results are estimated in seconds. We let ℓ to be the number of items in a set.

6 Efficiency Comparison

In this section, we estimate the performance of our MCFE schemes for set intersection when our schemes are
instantiated in asymmetric bilinear groups. To do this, we first measure the speed of basic group operations in
asymmetric pairing groups by using the Charm library [8], which is a framework for quickly implementing
public-key cryptographic schemes in the Python language. To measure the performance of these basic
operations, we used a desktop computer with Intel Core i9-11900 2.5GHz CPU and 16GB RAM. The
Charm library supports the MNT159, MNT201, and MNT224 pairing curves as asymmetric bilinear groups
that provide 80-bit, 100-bit, and 112-bit security, respectively. The performance of basic operators in these
curves is given in Table 2.

We compare the performance of our MCFE schemes with the MCFE scheme of Lee and Seo [32].
For this comparison, we estimate the performance of these MCFE schemes by using the number of basic
operations in Table 1 and the speed of basic operations in Table 2 instead of actually implementing these
MCFE schemes. We select the MNT224 curve that provides 112-bit security as an asymmetric bilinear
group, and analyze the performance of individual algorithms while changing the number of items in a set
differently. The performance comparison between MCFE schemes is given in Table 3. In this table, we did
not describe the performance of our DMCFE-SI scheme because the encryption and decryption algorithms
of our DMCFE-SI scheme are the same as those of our MCFE-SI scheme. The estimated performance is
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based on a single-threaded environment, and this performance can be improved as much as the number of
physical cores if multiple-threads are used.

First, the function key generation algorithms of three schemes are very efficient regardless of the size of
a set because all of them only require constant number of exponentiations. Next, the encryption algorithms
of three schemes require basic group operations in proportion to the size of a set. The encryption algorithm
of our MCFE-SIC scheme is the most efficient because there is no pairing operation, and the encryption
algorithms of the MCFE scheme of Lee and Seo and our MCFE-SI scheme have the same performance.
Lastly, the decryption algorithms have the biggest difference in three schemes. The decryption algorithm
of the MCFE scheme of Lee and Seo is efficient only for small-sized sets because it requires ℓ2 pairing
operations. In contrast, the decryption algorithm of our MCFE-SI scheme takes about 38 seconds for the
ℓ = 2048 size set because it only requires 3ℓ pairing operations. Thus, our decryption algorithm is about
700 times faster than that of the MCFE scheme of Lee and Seo when ℓ= 2048.

7 Generic Group Model

In this section, we describe the master theorem of Freeman [18] and analyze our three complexity assump-
tions in the generic group model of Shoup [35].

7.1 Master Theorem

We use the master theorem of Freeman [18] to analyze the complexity assumptions introduced in the previ-
ous section. This master theorem is the generalization of the master theorem of Boneh et al. [11] so that the
target challenge element is either G or GT in asymmetric bilinear groups of prime order.

Let G,Ĝ, and GT be asymmetric bilinear groups of prime order p equipped with the bilinear map
e : G× Ĝ→GT . A group element u ∈G can be represented as a multi-variate polynomial, which indicates
the exponent of u relative to some fixed generator g. We can also represent group elements in Ĝ and GT

as similar way. For instance, the general Diffie-Hellman tuple is represented as the expression (1,X ,Y,XY )
where X and Y are random variables.

The generalized dependence and independence of variables is defined by Freeman [18] as follows:

Definition 7.1 ( [18], Definition D.1). Let P = (p1, . . . , pu), R = (r1, . . . ,rw), T = (t1, . . . , tv), S = (s1, . . . ,st)
be tuples of multi-variate polynomials in Fp[X1, . . . ,Xn]. Let f be a multi-variate polynomial in Fp[X1, . . . ,Xn].
We say that f ·S is dependent on (P,R,T ) if there exist integers {αi, j},{βk},{γℓ} such that

u

∑
i=1

w

∑
j=1

αi, j · pir j +
v

∑
k=1

βk · tk +
t

∑
ℓ=1

γℓ · sℓY

is nonzero in Fp[X1, . . . ,Xn,Y ] but becomes zero when we set Y = f . We say that f · S is independent of
(P,R,T ) if f · S is not dependent on (P,R,T ). We say that f is independent of (P,R,T ) if f · {1} is not
dependent on (P,R,T ).

In this definition, the multi-variate polynomials pi,r j, tk represent the exponents of group elements in
G,Ĝ,GT respectively, and the polynomial f represents the exponent of the challenge element in complexity
assumptions. Additionally, the polynomials sℓ represent the exponents of group elements in which the
challenge element can be paired.

Freeman defined the (P,R,T, f )-DDH problem in G and GT by extending the (P,R,T, f )-DDH problem
of Boneh et al. [11] as follows:

35



Definition 7.2 ( [18], Definition D.2). Let (p,G,Ĝ,GT ,e) be a bilinear group randomly generated by G(1λ ).
Let g, ĝ be random generators of G,Ĝ respectively. Let P,R,T, f be as in Definition 7.1. We select x⃗ R← Fn

p
and define the following distribution:

D =
(
(p,G,Ĝ,GT ,e), gp1 (⃗x), . . . ,gpu (⃗x), ĝr1 (⃗x), . . . , ĝrw (⃗x),

e(g, ĝ)t1 (⃗x), . . . ,e(g, ĝ)tv (⃗x)
)
, Z0← g f (⃗x), Z1

R←G

We define the advantage of an algorithmA that outputs b ∈ {0,1} in solving the (P,R,T, f )-decision Diffie-
Hellman problem in G to be

Adv(P,R,T, f )-DDH
A (λ ) = |Pr[A(D,Z0) = 1]−Pr[A(D,Z1) = 1]|

We define the analogous problem in GT by taking Z0← e(g, ĝ) f (⃗x),Z1
R←GT .

The master theorem of Boneh et al. [11] gives the complexity lower bound of the (P,R,T, f )-DDH
problem in GT , but the same argument also works for the (P,R,T, f )-DDH problem in G as indicated by
Freeman [18] using the generalized definition of independence in Definition 7.1.

Theorem 7.1 ( [11, 18]). Let P = (p1, . . . , pu), R = (r1, . . . ,rw), T = (t1, . . . , tv) be tuples of polynomials in
Fp[X1, . . . ,Xn]. Let f be a polynomial in Fp[X1, . . . ,Xn]. Let d = 2 ·max(dP,dR,dT ,d f ) where d f is the total
degree of f and dX = max{d f | f ∈ X} for a set X. If f is independent of (P,R,T ), then any algorithmA that
solves the (P,R,T, f )-DDH problem in GT with advantage 1/2 must take at least Ω(

√
p/d−n). If f ·R is

independent of (P,R,T ), then the same statement holds for the (P,R,T, f )-DDH problem in G.

7.2 Analysis of Assumption 1 for (n,ρ,Q,J)

We analyze the Assumption 1 for (n,ρ,Q,J) in the generic group model by using Theorem 7.1. The As-
sumption 1 is described as follows:

D =
(
g,ga,{gbk}n

k=1,{gabk}k∈J, ĝ,{(ĝbici, j , ĝb jci, j)}(i, j)∈Q
)
, Z0 = gabρ , Z1 = gd .

The Assumption 1 is described again as the following set of multi-variate polynomials:

P = {1,A}∪{Bk}n
k=1∪{ABk}k∈J, R = {1}∪{BiCi, j,B jCi, j}(i, j)∈Q, T = {},

f0 = ABρ , f1 = D.

To apply the master theorem, we must show that f0 and f1 are independent of (P,R,T ) by following
Definition 7.1. We can easily show that f1 ·R is independent of (P,R,T ) by using the fact that the random
variable D in f1 does not exist in P,R,T . To show that f0 ·R is independent of (P,R,T ), we derive two sets
f0 ·R and P ·R as follows:

f0 ·R ={ABρ}∪{ABρBiCi, j,ABρB jCi, j}(i, j)∈Q,

P ·R ={1,A}∪{Bk}1≤k≤n∪{ABk}k∈J∪
{BiCi, j,B jCi, j}(i, j)∈Q∪{ABiCi, j,AB jCi, j}(i, j)∈Q∪
{BkBiCi, j,BkB jCi, j}(i, j)∈Q,1≤k≤n∪{ABkBiCi, j,ABkB jCi, j}(i, j)∈Q,k∈J.

The set f0 ·R consists of three component types: ABρ , ABρBiCi, j, and ABρB jCi, j. Since these component
types are independent of each other, we can analyze these types separately.
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• First, we show that ABρ is independent of P ·R. At this time, since ABρ includes random variables A
and Bρ , only {ABk} can have a dependency. However, ABρ is independent because of ρ /∈ J.

• Next, we show that ABρBiCi, j is independent of P ·R. The subsets of P ·R that contain the random
variables A,Bρ ,Bi,Ci, j are {ABkBiCi, j}. However, the index k cannot be the index ρ because of ρ /∈ J.
Thus ABρBiCi, j is independent.

• We can also show that ABρB jCi, j is independent similarly.

Therefore, we have that f0 ·R is independent of (P,R,T ).

7.3 Analysis of Assumption 2 for (n,ρ,Q,J)

We analyze the Assumption 2 for (n,ρ,Q,J) in the generic group model by using Theorem 7.1. However,
we cannot directly apply the theorem to the assumption because the assumption contains negative exponents.
To solve this negative exponent problem, we set ĥ = ĝ∏(i, j)∈Q(bi+b j) and use ĥ instead of ĝ. In this case, the
Assumption 2 is described again as follows:

D =
(
g,ga,{gbk}n

k=1,{gabk}k∈J, ĥ,{ĥbici, j , ĥb jci, j , ĥ1/(bi+b j)}(i, j)∈Q
)
, Z0 = gabρ , Z1 = gd .

Let η = ∏(i, j)∈Q(Bi +B j) be a random variable where the maximum degree of η is n(n− 1)/2. The
Assumption 2 is described again as the following set of multi-variate polynomials:

P = {1,A}∪{Bk}n
k=1∪{ABk}k∈J,

R = {η}∪{ηBiCi, j,ηB jCi, j,η/(Bi +B j)}(i, j)∈Q, T = {},
f0 = ABρ , f1 = D.

To apply the master theorem, we must show that f0 and f1 are independent of (P,R,T ) by following
Definition 7.1. We can easily show that f1 ·R is also independent of (P,R,T ) by using the fact that the
random variable D in f1 does not exist in P,R,T . To show that f0 ·R is independent of (P,R,T ), we derive
two sets f0 ·R and P ·R as follows:

f0 ·R ={ηABρ}∪{ηABρBiCi, j,ηABρB jCi, j,ηABρ/(Bi +B j)}(i, j)∈Q,

P ·R ={η ,ηA}∪{ηBk}1≤k≤n∪{ηABk}k∈J∪
{ηBiCi, j,ηB jCi, j}(i, j)∈Q∪{ηABiCi, j,ηAB jCi, j}(i, j)∈Q∪
{ηBkBiCi, j,ηBkB jCi, j}(i, j)∈Q,1≤k≤n∪{ηABkBiCi, j,ηABkB jCi, j}(i, j)∈Q,k∈J∪
{η/(Bi +B j)}(i, j)∈Q∪{ηA/(Bi +B j)}(i, j)∈Q∪
{ηBk/(Bi +B j)}(i, j)∈Q,1≤k≤n∪{ηABk/(Bi +B j)}(i, j)∈Q,k∈J.

The set f0 ·R consists of four component types: ηABρ , ηABρBiCi, j, ηABρB jCi, j, and ηABρ/(Bi +B j).
Since these component types are independent of each other, we can analyze these types separately.

• First, we show that ηABρ is independent of P ·R. At this time, since ηABρ includes random variables
η ,A, and Bρ , only {ηABk} can have a dependency. However, ηABρ is independent because of ρ /∈ J.

• We show that ηABρBiCi, j is independent of P ·R. The subsets of P ·R that contain the random variables
A,Bρ ,Bi,Ci, j are {ηABkBiCi, j}. However, ηABρBiCi, j is independent because of ρ /∈ J = {k}.
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• We can also show that ηABρB jCi, j is independent similarly.

• Next, we show that ηABρ/(Bi +B j) is independent of P ·R. The subsets of P ·R that contain the
random variables η ,A are {ηA},{ηABk},{ηA/(Bi +B j)}, and {ηABk/(Bi +B j)}. Here, the subset
{ηABk} need not be considered because of ρ /∈ J. The subset {ηA/(Bi + B j)} does not need to
be considered because it does not contain Bρ . Now using the remaining subsets {ηA = ηA(Bi +
B j)/(Bi+B j)} and {ηABk/(Bi+B j)}, we may try to compose a linear equation with ηABρ/(Bi+B j).
Here, the index k cannot be the index ρ because of ρ /∈ J. Thus the only way to create a linear equation
is to derive

ηABρ

(Bρ +Bk)
=

ηA(Bρ +Bk)

(Bρ +Bk)
− ηABk

(Bρ +Bk)

when (ρ,k) ∈ Q. To satisfy the above equation, it is required that k ∈ J when (ρ,k) ∈ Q. However,
if (ρ,k) ∈ Q, we have k /∈ J according to the definition of J. Thus ηABρ/(Bi +B j) is independent
because ABk /∈ P when (ρ,k) ∈ Q.

Therefore, we have that f0 ·R is independent of (P,R,T ).

7.4 Analysis of Assumption 3 for (n,ρ,Q)

We analyze the Assumption 3 for (n,ρ,Q) in the generic group model by using Theorem 7.1. However, we
cannot directly apply the theorem to the assumption because the assumption contains negative exponents.
To solve this negative exponent problem, we set ĥ = ĝ∏(i, j)∈Q(bi+b j) and use ĥ instead of ĝ. In this case, the
Assumption 3 is described as follows:

D =
(
g,ga,{gbi}n

i=1,{gabk}1≤k ̸=ρ≤n, ĥ,{ĥbici, j , ĥb jci, j , ĥdi/(bi+b j)}(i, j)∈Q,{ĥdi}1≤i̸=ρ≤n,e(g, ĥ)dρ
)
,

Z0 = e(g, ĥ)adρ , Z1 = e(g, ĥ) f .

Let η = ∏(i, j)∈Q(Bi +B j) be a random variable where the maximum degree of η is n(n− 1)/2. The
Assumption 3 is described again as the following set of multi-variate polynomials:

P = {1,A}∪{Bk}n
k=1∪{ABk}1≤k ̸=ρ≤n,

R = {η}∪{ηBiCi, j,ηB jCi, j,ηDi/(Bi +B j)}(i, j)∈Q∪{ηDi}1≤i ̸=ρ≤n, T = {ηDρ},
f0 = ηADρ , f1 = ηF.

To apply the master theorem, we must show that f0 and f1 are independent of (P,R,T ) by following
Definition 7.1. We can easily show that f1 is independent of (P,R,T ) by using the fact that the random
variable F in f1 does not exist in P,R,T . To show that f0 is independent of (P,R,T ), we derive the set P ·R
as follows:

P ·R ={η ,ηA}∪{ηBk}n
i=k∪{ηABk}1≤k ̸=ρ≤n∪{ηDi,ηADi}1≤i ̸=ρ≤n∪

{ηBkDi}1≤i ̸=ρ≤n,1≤k≤n∪{ηABkDi}1≤i̸=ρ≤n,1≤k≤n∪
{ηBiCi, j,ηB jCi, j}(i, j)∈Q∪{ηABiCi, j,ηAB jCi, j}(i, j)∈Q∪
{ηBkBiCi, j,ηB jBkCi, j}(i, j)∈Q,1≤k ̸=ρ≤n∪{ηABkBiCi, j,ηABkB jCi, j}(i, j)∈Q,1≤k ̸=ρ≤n∪
{ηDi/(Bi +B j)}(i, j)∈Q∪{ηADi/(Bi +B j)}(i, j)∈Q∪
{ηBkDi/(Bi +B j)}(i, j)∈Q,1≤k ̸=ρ≤n∪{ηABkDi/(Bi +B j)}(i, j)∈Q,1≤k ̸=ρ≤n.
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We show that f0 = ηADρ is independent of P ·R and T . The subsets of P ·R that contain the random
variables A,Dρ are {ηADi/(Bi +B j)} and {ηABkDi/(Bi +B j)}. Here, the subset {ηADi/(Bi +B j)} does
not need to be considered because it lacks (Bi +B j). By using the remaining subset {ηABkDi/(Bi +B j)},
we may try to compose a linear equation with ηADρ . The only way to create a linear equation is to derive

ηADρ =
ηABk1Dρ

(Bρ +B j)
+

ηABk2Dρ

(Bρ +B j)

when (ρ, j) ∈ Q, k1 = ρ , and k2 = j. To satisfy the above equation, it is required that k1 = ρ where k1 is
an index for {ABk}. However, we have k1 ̸= ρ from the restriction of the Assumption 3. Therefore, f0 is
independent of (P,R,T ).

8 Conclusion

In this paper, we proposed various MCFE schemes that support set intersection operations and proved the se-
curity of our schemes by using the newly introduced complexity assumptions. Our first MCFE-SIC scheme
supports the computation of set intersection cardinality and can efficiently find matching ciphertext elements
by using a pairing operation. Our second MCFE-SI scheme supports the set intersection operation, and it
requires 2ℓ pairing operations in the decryption. Our third DMCFE-SI scheme decentralizes the generation
of function keys by removing a trusted center. Using our MCFE-SI schemes, it is possible to construct an
effective contact tracing system that preserves privacy of people.

We leave two interesting problems related to this study. The first problem is to devise an MCFE-SI
scheme that is secure under standard assumptions. Since all our MCFE-SI schemes have disadvantages that
they are secure under complex and dynamic assumptions, it is an important problem to prove the security un-
der weaker assumptions. The second problem is to devise an MCFE-SI scheme that can efficiently compute
the set intersection between n patients and m users. If our MCFE-SI scheme is directly used, the computa-
tion requires 2nmℓ pairing operations with additional comparison operations. Thus, if we can improve the
performance, it can be used for more efficient contact tracing.
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