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Abstract—Buldas, Laanoja, and Truu designed a family of
server-assisted digital signature schemes (BLT signatures) built
around cryptographic timestamping and forward-resistant tag
systems. The original constructions had either expensive key
generation phase or stateful client-side computations.

In this paper, we construct a stateless tag system with efficient
key generation from one-time signature schemes. We prove
that the proposed tag system is forward-resistant and when
combined with cryptographic timestamping, it induces a secure
(existentially unforgeable) multiple-time signature scheme. Our
constructions are developed and verified using the EasyCrypt
framework.

Index Terms—digital signatures, EasyCrypt, formalized cryp-
tography, timestamping

I. INTRODUCTION

Buldas, Laanoja, and Truu [1] observed that many prac-
tical deployments of digital signatures rely on timestamping
services to handle key revocation. By combining key status
tracking and timestamping, signatures created before the key
revocation can be treated as valid, whereas signatures cre-
ated afterwards can be considered invalid. This enables non-
repudiation of signatures, i.e. the possibility to use signatures
as evidence against the signer. Without key revocation a user
may (fraudulently) claim that their private key was stolen and
someone else may have created signatures in their name.

The observation led to a novel type of digital signature
schemes (BLT scheme in the following) which is built on
the fact that digital signatures must be timestamped. The
main goal was to design more efficient signature schemes
by intrinsically relying on the cryptographic properties of
timestamps. The BLT schemes could be decomposed into
two functional components: cryptographic timestamping and
forward-resistant tag systems. The decomposition made it
possible to describe the family of BLT signatures in an abstract
way and also propose other forward-resistant tag systems and
arrive at a rich family of different BLT signature schemes with
distinct functional and security properties [2], [3].

The practicality of the original BLT signature was limited
by the fact that the initialization phase pre-generated all time-
bound keys. For practical deployments, the number of these
keys tends to be large, which makes the key generation pro-
hibitively slow on constrained devices such as smart cards [1].
Later, the problem of expensive key generation was solved
by introducing stateful computations to the user (signer) side.

In practice, it is undesirable to require a user to keep state,
as this would introduce security threats, and would make it
hard to use the same keypair on different devices of the same
user [2]. Also, it is important to note that the security of the
prior systems was only analyzed in one-time use setting.

Historically, the first digital signature schemes were “one-
time use” which means that a public-private keypair could only
be used for signing a single message [4]. Later, Merkle [5],
[6] and Goldreich [7] proposed generic ways to turn one-
time schemes into many-time schemes. In this paper, we
use their ideas to implement a stateless multiple-time tag
system from one-time signatures, which we then combine with
cryptographic timestamping to obtain an efficient and secure
multiple-time BLT signature scheme with stateless client side.

The technical contributions of the paper are:

• We present a construction of multiple-time BLT signa-
ture scheme with stateless client side based on a state-
less multiple-time tag system and timestamping service
(Sect. III-C).

• We formally derive unforgeability of the multiple-time
BLT signature (EUF-CMA) from multiple-time forward-
resistance of the tag system. (Sect. III-D).

• We propose a computationally efficient construction of
a stateless multiple-time tag system from a one-time
signature scheme (Sect. IV-A).

• We formally derive multiple-time forward-resistance of
the proposed tag system. (Sect. IV-B and Sect. IV-C).

All of our results have been formalized in the EasyCrypt
theorem prover and the code is available as the accompanying
supplementary material. The presentation in this paper follows
the EasyCrypt formalization, but for sake of readability we
skip the technical and auxiliary details. The EasyCrypt for-
malism is introduced by stepping through an example where
we define one-time signatures and develop a variation of the
hash-based Lamport’s signatures (Sect. II-A).

II. BACKGROUND

In this section, we introduce EasyCrypt by developing a
simple one-time digital signature scheme. Also, we describe
two standard techniques for turning one-time schemes into
multiple-time schemes.



A. EasyCrypt: One-Time One-Bit Signature

EasyCrypt (EC) is a framework for building and verifying
security of cryptographic constructions. In this section, we
briefly outline some basic concepts behind EC by formally
introducing one-time signatures. More information on EC can
be found in [8].

We illustrate the proof development process on a simple ex-
ample regarding one-time signatures and preimage resistance
of hash functions. More specifically, our goal is to construct
a variation of historically first digital signature based on hash
functions [4].

The proof development starts with formally specifying the
computational context which usually includes datatypes and
operators, where types denote non-empty sets of values and
operators are typed functions on these sets. EC provides basic
built-in types such as bool, int, real, etc. The standard
library includes formalizations of lists, arrays, finite sets, maps,
distributions, etc. EC also allows users to implement their
own datatypes and functions (including inductive datatypes
and functions defined by pattern matching).

We will make use of an “option” type which represents
encapsulation of an optional value. More specifically, a value
of type X option is either empty (None), or it contains a
value x of type X (Some x). Function oget extracts the value
from the Some constructor. If the argument is None then an
arbitrary witness of the target type is returned (as mentioned
above, all types in EC are inhabited).

t y p e ’ a o p t i o n = [ None | Some of ’ a ] .

op o g e t [ ’ a ] ( o : ’ a o p t i o n ) : ’ a =
wi th o = None => w i t n e s s
wi th o = Some x => x .

The types and operators without definitions are abstract and
can be seen as parameters to the rest of the development. In our
example we declare abstract signing and verification functions
with their respective types.

t y p e pkeyOTS , skeyOTS , msg , s i g .
op o t s S i g : skeyOTS → msg → s i g .
op o t s V e r : pkeyOTS → msg → s i g → boo l .

We assume a deterministic secret key generation algorithm
parameterized by an unpredictable token from a set r. Every
secret key has a corresponding public key that can be com-
puted from it with the function sk2pk. We use this two-step
decomposition of keypair generation to simplify some techical
work in the following analysis.

t y p e r .
op otsKey : r → skeyOTS .
op sk2pk : skeyOTS → pkeyOTS .

The computational hardness assumptions are implemented
as probabilistic programs (also called games) parameterized
by oracles and adversaries. An adversary is modeled as un-
specified code with specified interface. We define a module
type AdvOTS describing the interface of adversaries whose
task is to forge a signature:

module t y p e AdvOTS (O : OTSOracleT ) = {
p roc f o r g e ( pk : pkeyOTS ) : msg * s i g {O. s i g n }

} .

The adversary has access to a one-time signing oracle of type
OTSOracleT and is allowed to execute the sign procedure
(specified in curly braces next to the forge method).
module t y p e OTSOracleT = {

p roc * i n i t ( pk : pkeyOTS , sk : skeyOTS ) : u n i t
p roc s i g n (m : msg ) : s i g o p t i o n
p roc f r e s h (m : msg ) : boo l

} .

Modules are stateful “objects” consisting of global variables
and procedures. Global variables are visible outside the mod-
ules and define their state at any given time. A procedure
consists of local variables, assignments, probabilistic assign-
ments (denoted by the infix operator =$), and calls to other
procedures.

The standard one-time signing oracle is implemented as
module OTSO (see Appendix A). The sign(m) procedure
allows to sign a single message. The global state of OTSO
consists of variables indicating whether the oracle has been
used and which message was signed.

Next, we formalize the existential unforgeability under cho-
sen message attack (EUF-CMA) as a parameterized module
GameOTS which is played by an adversary of type AdvOTS.
The adversary receives a public key and has access to a one-
time signing oracle. If the adversary manages to produce a
valid signature on a fresh message then it wins the game.
Message is fresh if the oracle did not sign it for the adversary.
The game is also parameterized by a key generator of type
KeyGenT.
module t y p e KeyGenT = {

p roc keyGen ( ) : pkeyOTS * skeyOTS
} .

module GameOTS(O : OTSOracleT , A : AdvOTS ,
K : KeyGenT ) = {

module A = A(O)
v a r s : s i g
v a r m : msg
p roc main ( ) : boo l = {

v a r pk , sk , fo rged , f r e s h ;
( pk , sk ) = K. keyGen ( ) ;
O. i n i t ( pk , sk ) ;
(m, s ) = A. f o r g e ( pk ) ;
f o r g e d = o t s V e r pk m s ;
f r e s h = O. f r e s h (m) ;
r e t u r n f o r g e d ∧ f r e s h ;

}
} .

This concludes the abstract definitions of one-time signa-
tures, and we can proceed to the preimage resistance of hash
functions. We let our development be parameterized by an
abstract hash function with the respective input and output
types, and an unpredictable distribution of its input values:
t y p e h a s h i n p u t , h a s h o u t p u t .

op h : h a s h i n p u t → h a s h o u t p u t .
op r D i s t r : h a s h i n p u t d i s t r .



To formalize the preimage resistance we define a parame-
terized module GamePRE which is played by an adversary of
type AdvPRE.
module t y p e AdvPRE = {

p roc i n v e r t ( v : h a s h o u t p u t ) : h a s h i n p u t
} .

The adversary receives an output of the hash function h and
returns its input. The adversary wins the game if the hash of
the value returned by the adversary equals the value given to
the adversary as an argument:
module GamePRE (A : AdvPRE ) = {

p roc main ( ) = {
v a r r1 , r2 ;
r1 =$ r D i s t r ;
r2 = A. i n v e r t ( h r1 ) ;
r e t u r n h r2 = h r1 ;

}
} .

B. Lamport One-Time Signature Scheme
Now we are ready to implement and prove the properties

of the Lamport signature scheme [4] restricted to signing
single bits. The idea behind the scheme is that the secret key
consists of two unpredictable values r1 and r2. The public
key consists of the hashes of these values. Then to sign the
bit true we output the tuple which consists of values r1 and
(h r2). Symmetrically, the signature of false is the tuple
(h r1, r2). We start by instantiating the parameters:
t y p e h a s h i n p u t = b i t s .
t y p e h a s h o u t p u t = b i t s .
t y p e msg = boo l .
t y p e skeyOTS = b i t s * b i t s .
t y p e pkeyOTS = b i t s * b i t s .
t y p e s i g = b i t s * b i t s .

op o t s S i g ( sk : skeyOTS , m : msg ) : s i g =
m ? ( sk . ’ 1 , h sk . ’ 2 ) : ( h sk . ’ 1 , sk . ’ 2 ) .

op o t s V e r ( p : pkeyOTS , m : msg , s : s i g ) : boo l =
m ∧ p = ( h s . ’ 1 , s . ’ 2 ) ∨

!m ∧ p = ( s . ’ 1 , h s . ’ 2 ) .

We also need to implement the key generation algorithm.
Since unpredictable values are the secret keys themselves then
otsKey is simply an identity function, and we ignore it here.
module LKG : KeyGenT = {

p roc keyGen ( ) = {
v a r r1 , r2 ;
r1 =$ r D i s t r ;
r2 =$ r D i s t r ;
r e t u r n ( ( h r1 , h r2 ) , ( r1 , r2 ) ) ;

}
} .

Next, we address the security properties of the implemented
signature scheme. The goal is to prove that the probability of
breaking the Lamport signature is bounded by the probability
of breaking the preimage resistance of the hash function.

We start by fixing the adversary A : AdvOTS. Then, we
split the probability of the adversary winning the OTS game
into two cases: adversary forges the signature either for the
bit false or the bit true.

lemma p r S p l i t &m :
Pr [ GameOTS(OTSO, A, LKG) . main ( ) @ &m : r e s ]

= Pr [ GameOTS(OTSO, A, LKG) . main ( ) @ &m
: r e s ∧ GameOTS .m = f a l s e ]

+ Pr [ GameOTS(OTSO, A, LKG) . main ( ) @ &m
: r e s ∧ GameOTS .m = t r u e ] .

Due to the symmetry of both cases we only describe the case
when A forges signature for the bit false. We convert the
adversary A into and adversary that breaks preimage resistance
whenever A forges the signature for a false bit:

module OTS2PRE F (A : AdvOTS ) = {
module A = A(OTSO’ )
p roc i n v e r t ( v : h a s h o u t p u t ) = {

v a r r1 , m, s ;
r1 =$ r D i s t r ;
OTSO . i n i t ( ( h r1 , v ) , ( r1 , w i t n e s s ) ) ;
(m, s ) = A. f o r g e ( ( h r1 , v ) ) ;
r e t u r n s . ’ 2 ;

}
} .

Note that forging the signature for the bit false requires
finding a preimage for the second component of the public key.
Therefore, OTS2PRE_F initializes the OTS oracle by using
values h r1 and pk as the public key and values r1 and
witness as the secret key. Since witness is an arbitrary
value from the set bits then at this stage the signing oracle
is only semi-functional—it can correctly sign the bit true,
but not the bit false. The adversary A will not notice this,
however, as by assumption it forges the signature for the bit
false, and the forgery can be successful only if oracle is not
asked to sign the bit false.

Next, we use the program logics of EasyCrypt to de-
rive a logical consequence that if A wins GameOTS then
OTS2PRE_F(A) wins GamePRE. The probabilistic inter-
pretation of this consequence is that the probability of A
winning the OTS game is bounded by the probability of
OTS2PRE_F(A) winning the preimage resistance game.

lemma c1 &m :
Pr [ GameOTS(OTSO, A, LKG) . main ( ) @ &m : r e s ∧

GameOTS .m = f a l s e ]
≤ Pr [ GamePRE ( OTS2PRE F (A) ) . main ( ) @ &m : r e s ] .

If we repeat the exercise from above for the case when A
forges a signature for the bit true, then we end up with
the following upper bound on the successful forgery for the
Lamport signature scheme:

lemma l a m p o r t S e c u r i t y &m :
Pr [ GameOTS(OTSO, A, LKG) . main ( ) @ &m : r e s ]

≤ Pr [ GamePRE ( OTS2PRE F (A) ) . main ( ) @ &m : r e s ]
+ Pr [ GamePRE ( OTS2PRE T (A) ) . main ( ) @ &m : r e s ] .

We can conclude that Lamport signature is at least as strong
as the preimage resistance of the used hash function.

C. Merkle Multiple-Time Signature Scheme

Once one-time digital signature schemes were introduced, it
became important to answer whether it is possible to construct
multiple-time signatures. Merkle [9] proposed a generic way of
turning one-time signature schemes into stateful multiple-time



pk1,l pk1,r pk1,s
sk1,l sk1,r sk1,s

pkM :=

pk2,l pk2,r pk2,s
sk2,l sk2,r sk2,s

S1,l := Sig(sk1,l; pk2,l, pk2,r, pk2,s)

m2

S2,s := Sig(sk2,s;m2)

pk3,l pk3,r pk3,s
sk3,l sk3,r sk3,s

m1

Fig. 1. An example of the Merkle multiple-time signature scheme with two
signing keys sk1,s and sk2,s spent on messages m1 and m2, respectively,
and one unspent signing key sk3,s.

schemes. The construction is based on a binary tree, where
every node is composed of three one-time signature keypairs,
of which two are used to sign the left and right child nodes
and one is for signing a message.

To sign a message, the signer picks a fresh node which
was not used before. The signature consists of a chain of
public-key authentications from the root to the fresh node and
the one-time signature on the message itself with the secret
key of the fresh node. In this way, the public keys of child
nodes are always authenticated by their parents. Therefore, the
public key of the resulting multiple-time scheme consists of
the one-time public keys associated with the root node and the
secret key consists of the one-time secret keys of all the nodes
(possibly derived from a single seed by using a pseudorandom
function). The state is a counter which is needed to exclude the
already used nodes. The signature size in this scheme grows
logarithmically with the number of messages signed.

Figure 1 depicts a tree from this signature scheme, where
the public key pkM of the tree is formed by the three public
keys of the root node (pk1,l, pk1,r and pk1,s). Two of the three
signing keys (sk1,s and sk2,s) have been used to sign messages
m1 and m2, respectively, and sk3,s is still available for signing
a new message. The signature of the message m2 is the one-
time signature S2,s on the message m2 itself, the public keys
of the tree node 2 (pk2,l, pk2,r, pk2,s), and the signature S1,l

on the three public keys. In order to verify the signature of
the message m2, one has to verify the one-time signature S2,s

on message m2 with the public key pk2,s. The public key
pk2,s itself, alongside with pk2,l and pk2,r, is signed and the
signature S1,l can be verified using the public key pk1,l which
is part of pkM .

D. Goldreich Multiple-Time Signature Scheme

Goldreich [7] proposed a stateless hash-based signature
scheme (GSS) using a binary authentication tree of one-time
signatures. The scheme is based on a finite binary tree, where
every node contains a one-time signature keypair. A message
is signed using a leaf node one-time keypair while every non-
leaf is used to authenticate (sign) the public keys of both of its
children. The public key of this scheme is the public key of
the root node and the secret key consists of secret keys of all
tree nodes (which again may be generated pseudorandomly).

pk1

sk1

S1 := Sig(sk1; pk2, pk3)

pkG :=

pk2

sk2

0

S2 := Sig(sk2; pk4, pk5)

pk4

sk4

00

pk5

sk5

01

S5 := Sig(sk5; pk10, pk11)

pk10

sk10

010

pk11

sk11

011

0112

S11 := Sig(sk11; 0112)

pk3

sk3

1

Fig. 2. An example of the Goldreich authentication tree generated while
signing the message 0112.

As the scheme is based on one-time signatures, no leaf
node may be used to sign more than one message. A way
to achieve this without introducing a state (e.g., a list of used
leaf nodes) is to use the tree with a sufficient height so that the
probability of using the same leaf twice becomes negligible.
A deterministic alternative is to set the tree height equal to the
length of the message (or the hash of it) and use the binary
representation of the message (or the hash) itself as the leaf
index.

Figure 2 illustrates an authentication tree for the GSS
capable of signing three-bit messages with the public key
pkG = pk1. Only the depicted components, that also make
up the signature, are needed to create the signature of the
binary message 0112. The resulting signature is composed of
S11, pk10, pk11, S5, pk4, pk5 and S2. This signature can be
verified by verifying the signature S11 on the message using
the public key pk11. The public key pk11 and its neighbor
pk10 can be authenticated by verifying the signature S5 using
the public key pk5. This verification is continued until the
signature S1 is verified with pkG.

Unfortunately, this approach results in large signatures
which makes the scheme impractical. For example, instan-
tiating the scheme with the efficient Winternitz one-time
signatures to sign 256-bit messages results in GSS signatures
larger than 1 MB.

III. MULTIPLE-TIME BLT SIGNATURE SCHEME

In this section, we introduce the multiple-time BLT sig-
nature scheme which we build around backdating resistant
timestamping and a forward-resistant tag system. We also
prove the existential unforgeability under chosen message
attack (EUF-CMA) in the multiple use setting.



A. Cryptographic Timestamping

Cryptographic timestamping allows users to prove that some
data existed at some moment in the past. Haber and Stornetta
introduced the first timestamping which does not rely on
trusted third parties [10]. They proposed a scheme where
each timestamp would include some information from the
immediately preceding one and a reference to the immediately
succeeding one. Benaloh and de Mare showed how to increase
the efficiency by operating in rounds, where the messages
to be timestamped within one round would be combined
into a hierarchical structure from which a compact proof of
participation could be extracted for each message [11].

In this paper, we will use an idealized model of timestamp-
ing. This can be seen as an assumption of the timestamping
service being a white-box trusted third party. The alternative
would be to formally derive universal composability (UC)
of a particular timestamping construction and then apply
composition theorem to instantiate the timestamping protocol.

We note that universally composable timestamping con-
structions exist [12], however, their design already relies on
digital signatures. This is not a problem for BLT scheme since
signatures are generated by the timestamping service and its
clients only need to verify these signatures to be sure of the
origin of the timestamps.

Here, we restate that the ultimate goal of the BLT scheme
is to provide server-assisted secure multiple-time hash-based
signatures with efficient and stateless client-side computations.

We let the timestamping service be parameterized with the
type of values stored in the timestamping repository. Another
parameter is the distribution of initial times tdistr (time
values are positive integers):

t y p e t ime = i n t .
t y p e d a t a .

op t d i s t r : t ime d i s t r .
axiom t p o s : f o r a l l t , t ∈ t d i s t r => t > 0 .

The module type Repo describes the interface of timestamp-
ing services. A service allows a user to timestamp (put)
values of type data and returns associated timestamps:

module t y p e Repo = {
p roc i n i t ( ) : u n i t
p roc c l o c k ( ) : t ime
p roc p u t ( d : d a t a ) : t ime
p roc check ( t : t ime , d : d a t a ) : boo l

} .

The procedure clock returns the current “time” of the
service. The procedure check(t, d) returns true iff the
value d is associated (timestamped) with the time t.

Next, we introduce the module Ts of type Repo which
implements the standard timestamping functionality:

module Ts : Repo = {
v a r i , t : t ime
v a r m : ( t ime , d a t a ) fmap
proc i n i t ( ) = {

i =$ t d i s t r ;
t = i ;

m = empty ;

}
p roc c l o c k ( ) = {

r e t u r n t ;
}
p roc p u t ( d : d a t a ) = {

t = t + 1 ;
m = m. [ t ← d ] ;
r e t u r n t ;

}
p roc check ( t : t ime , d : d a t a ) = {

r e t u r n m. [ t ] = Some d ;
}

} .

The inner state of module Ts consists of the initial time
i (sampled from tdistr), the current time t, and the
repository (finite map) m which associates data items to time
values. Note that “time” advances only when a new value is
added to the repository, which models a linear ordering over
the timestamped values.

To address the properties of the timestamping service we
need to define a type of adversaries (malicious users) that can
access it:

module t y p e AdvTs ( TsO : Repo ) = {
p roc main ( ) : u n i t {TsO . check TsO . p u t }

} .

As mentioned before, the timestamping service is initialized
by the init method. To forbid adversaries to re-initialize the
service (and break the invariants) we only allow them to invoke
the check and put methods. In EC, this is done by listing
the allowed procedures in the module type definition.

Let us fix an adversary A for the rest of this section:

d e c l a r e module A : AdvTs {Ts } .

To be able to prove properties of an abstract procedure
A.main with respect to the specific module Ts, we require
that global variables of A and Ts must be mutually inacces-
sible. In EC, this is done by listing “disjoint” modules in
curly braces after the module type. This has the effect that the
adversary A must use the interface of Ts (specified by type
Repo) and is not allowed to directly access global variables
of the module Ts.

Backdating Resistance: The essential property of any
timestamping service is its resistance against backdating: once
a datum d is timestamped (that is, associated with some time
x where x ≤ Ts.t), this association remains intact after
arbitrary computations by the adversary A.

In EC, one can use Hoare logic (HL) to prove specific
properties of procedures. In HL, properties are expressed
as pre- and postconditions of programs (Hoare triples). A
Hoare triple means that if the precondition is true before the
execution of the program, then the postcondition will be true
after the program terminates.

In our example, the precondition and the postcondition
coincide (x ≤ Ts.t ∧ Ts.r.[x] = d). Also note the
program A(Ts).main is abstract in our example.

lemma immutableTs : f o r a l l x d ,
h o a r e [ A( Ts ) . main : x ≤ Ts . t ∧ Ts . r . [ x ] = d



=⇒x ≤ Ts . t ∧ Ts . r . [ x ] = d ] .

The statement is proved by analyzing the implementation
details of methods Ts.put and Ts.check, i.e., those that
are accessible to A.

B. Forward-Resistant Tag Systems

In this section, we describe the second ingredient of the
multiple-time BLT signature scheme: multiple-time forward-
resistant tag systems. Such systems consist of tag generation
and verification functions, and a probabilistic key generation
module.

t y p e pkey , skey , t a g .
op tagGen : skey → t ime → t a g .
op t ag Ve r : pkey → t ime → t a g → boo l .
d e c l a r e module K : KeyGenT .

The keypair of a tag system also has an expiration date (EXP)
associated with it. The implementer of a tag system is obliged
to prove that the tag verification function agrees with the tag
generation function for any valid keypair at a time preceding
the expiration date (tagSnd).

op EXP : t ime .

axiom tagSnd : f o r a l l pk sk t ,
h o a r e [ K. keyGen : t r u e =⇒ r e s = ( pk , sk )

=> t ≤ EXP => t ag Ve r pk t ( tagGen sk t ) = t r u e
] .

Next, we introduce the multiple-time forward-resistance of
tag systems which is the main security property and also
illustrates the essential difference between signature schemes
and tag systems.

Multiple-Time Forward-Resistance: The main motivation
behind forward-resistance is to define a lightweight security
property which can be used to derive secure digital signatures
when combined with backdating resistant timestamping. A tag
system is multiple-time forward resistant (FR) if adversaries
cannot generate a valid tag for any time t given that they only
observed tags for times prior to t.

Clearly, any existentially unforgeable multiple-time signa-
ture scheme can also be treated as multiple-time forward
resistant tag system where the messages are time values.
However, observe the absence of the “backward-resistance”
requirement in the description above. More precisely, if ad-
versary observed a tag tg for time t then it is permitted
that the tags for times prior to t could be derivable from
tag tg. This makes the notion of the tag system weaker and
suggests that there could be constructions of tag systems that
are computationally more efficient than signature schemes.
This observation is a key point for the entire family of BLT
schemes: the intrinsic combination of computationally efficient
tag systems with timestamping suggests efficient constructions
of digital signatures.

To describe FR formally we need to specify the interface
of tagging oracles. Note that tagGen and tagVer are pure
functions which cannot affect the state of the variables of
modules. To control and monitor the access of an adversary to

the tag generation function, we parameterize adversaries with
a stateful module (oracle) which stores a keypair and provides
tag generation and logging functionality.
module t y p e TagOracleT = {

p roc * i n i t ( pk : pkey , sk : skey ) : u n i t
p roc orac leTagGen ( t : t ime ) : t a g
p roc o r a c l e L o g ( ) : t ime l i s t

} .

The module TagOracle (see Appendix B) is the stan-
dard implementation of the TagOracleT interface. The
oracleTagGen(t) procedure provides the tag generation
functionality. The global state of TagOracle consists of a
public-secret keypair and the variable log which keeps the
history of user queries.

Let us formalize the concept of forward-resistance in terms
of cryptographic games. As explained above, the adversaries
are allowed to ask the tagging oracle for tags associated with
some times of their choosing and must produce a valid tag for
some later time.
module t y p e AdvFR ( TagO : TagOracleT ) = {

p roc f o r g e ( pk : pkey ) : t a g * t ime
{TagO . orac leTagGen}

} .

Formally, we say that a tag system is multiple-time forward-
resistant if the probability of winning GameFR by any efficient
adversary of type AdvFR is small.
module GameFR (A : AdvFR , T : TagOracleT ,

K : KeyGenT ) = {
module A = A( T )
v a r t , t g
p roc main ( ) : boo l = {

v a r pk , sk , l o g ;
( pk , sk ) = K. keyGen ( ) ;
T . i n i t ( pk , sk ) ;
( tg , t ) = A. f o r g e ( pk ) ;
l o g = T . o r a c l e L o g ( ) ;
r e t u r n t a gV er pk t t g

∧ max (0 : : l o g ) < t ≤ EXP ;
}

} .

Note that forward resistance of prior constructions was an-
alyzed only in one-time setting. We will introduce the first
multiple-time forward-resistant tag system in Sect. IV.

C. Multiple-Time BLT Signature Scheme

In this section, we implement the BLT signature scheme
parameterized by a timestamping service and a multiple-time
forward resistant tag system. We start by giving an intuitive
overview of the main phases.

a) Initialization: Generate a public-private keypair
(pk, sk) for the tag system.

b) Signing: To sign a message m:
1) Query the time t of the timestamping service.
2) Use the private key sk to generate a tag tg for the next

time (t+1).
3) Bind the tag with the message by timestamping the tuple

(m, tg).
4) Output (tg, t+1) as the signature on m.



c) Verification: To verify m against signature (tg, t):
1) Verify tg against the time t and the public key pk.
2) Verify that the timestamping service contains a binding

of tg and m at time t.
Next, we implement the scheme as the BLTO module

parameterized by a timestamping service and a tagging oracle.
The signing oracle keeps the log of all signed messages and
we say that a message is fresh if it is not in the log.

module BLTO(R : Repo , T : TagOracleT ) = {
v a r l o g : msg l i s t
p roc i n i t ( pk : pkey , sk : skey ) : u n i t = {

R . i n i t ( ) ;
T . i n i t ( pk , sk ) ;
l o g = [ ] ;

}
p roc s i g n (m : msg ) : t ime * t a g = {

v a r t , t g ;
t = R . c l o c k ( ) ;
t g = T . t a g ( t +1) ;
R . p u t (m, t g ) ;
l o g = m : : l o g ;
r e t u r n ( t , t g ) ;

}
p roc f r e s h (m : msg ) : boo l = {

r e t u r n ! (m \ i n l o g ) ;
}

} .

D. Security Analysis

The security properties of the BLT signature scheme depend
on the kind of access the adversary has to the timestamping
service and on the type of values stored in its repository [3].

In this section we analyze the multiple-time BLT scheme
in the model where the adversary has read-write access to
the timestamping service whose repository contains plain
message-tag pairs. In other words, adversary has full access
to the timestamping repository.

As usual, we start the analysis by defining the types of
oracles and adversaries:

module t y p e BLTOracleT = {
p roc * i n i t ( pk : pkey , sk : skey ) : u n i t
p roc s i g n (m : msg ) : t ime * t a g
p roc f r e s h (m : msg ) : boo l

} .

module t y p e AdvBLT ( T : Repo , O : BLTOracleT ) = {
p roc f o r g e ( pk : pkey ) : msg * t a g * t ime
{T . check T . p u t O. s i g n }

} .

We formalize the existential unforgeability under the chosen
message attack (EUF-CMA) of multiple-time BLT as a param-
eterized module GameBLT. The adversary receives a public
key and has access to a signing oracle and a timestamping
service. To win the game, the adversary must produce a valid
signature on a fresh message. The main difference of this
setting from GameOTS (Sec. II-A) is that we consider a
multiple-time signature scheme and thus the adversary can use
the signing oracle multiple times.

module GameBLT(A : AdvBLT , R : Repo ,
BLT : BLTOracleT , K : KeyGenT ) = {

module A = A(R , BLT)
v a r m, tg , t
p roc main ( ) : boo l = {

v a r pk , sk , f r e s h , t imes t amped ;
( pk , sk ) = K. keyGen ( ) ;
BLT . i n i t ( pk , sk ) ;
(m, tg , t ) = A. f o r g e ( pk ) ;
t imes t amped = R . check ( t , (m, t g ) ) ;
f r e s h = BLT . f r e s h (m) ;
r e t u r n t ≤ EXP ∧ t ag Ve r pk t t g

∧ f r e s h ∧ t imes t amped ;
}

} .

Theorem 1: If the backdating resistant timestamping repos-
itory holds plain message-tag pairs then the probability of a
read-write adversary performing a successful BLT forgery is
bounded by the probability of breaking the forward-resistance
of a tag system.

Proof: The main challenge in transforming BLT adver-
sary into adversary who breaks forward-resistance is that
the adversary might continue using the signing oracle after
timestamping a successful BLT forgery and this will produce
tags for times later than the time associated with the BLT
forgery. This in turn will prevent us from using the forgery tag
as evidence of the adversary being able to break the forward
resistance. Therefore, we need to switch the signing oracle
off immediately after a forgery is produced. The simplest
way to achieve this is to implement a wrapper around the
timestamping and tagging oracles, so that when the adversary
writes a valid tag associated with the actual time, the oracles
update their states so that no further requests will be answered
and, hence, no new tags will be generated.

module TsWrap ( Ts : Repo ) : Repo = {
v a r t : t ime
v a r f : boo l
v a r pk : pkey
p roc p u t ( d : msg * t a g ) = {

v a r t ;
i f ( ! f ) {

t = Ts . p u t ( d ) ;
f = f ∨ t ag Ve r pk t d . ’ 2 ;

}
r e t u r n t ;

}
(*** c l o c k ( ) and check ( ) d e l e t e g a t e t o Ts ***)

} .

module BLTWrap ( Ts : Repo , Tag : TagOracleT ) = {
module BLT = BLTO( Ts , Tag ) ;
p roc s i g n (m : msg ) = {

v a r t , t g ;
i f ( ! TsWrap . f ) {

( t , t g ) = BLT . s i g n (m) ;
}
r e t u r n ( t , t g ) ;

}
(*** f r e s h ( ) d e l e g a t e s t o BLTO ***)

}

Note that the adversary might decide to change the output once
the oracles stop working. Therefore, we completely ignore
the output of the adversary and return the tag which actually
triggered the stop flag:

module BLT2FR (A : AdvBLT , T : TagOracleT ) = {



module A = A( TsWrap ( Ts ) , BLTWrap ( Ts , T ) )
p roc f o r g e ( pk : pkey ) = {

v a r r ;
Ts . i n i t ( ) ;
TsWrap . pk = pk ;
A. f o r g e ( pk ) ;
r = o g e t Ts .m. [ TsWrap . t ] ;
r e t u r n ( TsWrap . t , r . ’ 2 ) ;

}
} .

We use the BLT2FR reduction to prove that if A breaks the
BLT scheme then BLT2FR(A) breaks the forward resistance.
The probabilistic interpretation is the following:

lemma b l t 2 f r U B &m :
Pr [ GameBLT(A, Ts , BLTO( Ts , TagOrac le ) , K) . main ( )

@ &m : r e s ]
≤ Pr [ GameFR ( BLT2FR (A) , TagOracle , K) . main ( )

@ &m : r e s ] .

IV. MULTIPLE-TIME TAG SYSTEM

In previous section we constructed a secure multiple-time
BLT signature scheme from timestamping and a multiple-time
forward resistant tag system. In this section, we present a
multiple-time forward resistant tag system.

A. Construction

The main idea of our construction is to use “authenticated”
paths similar to Merkle and Goldreich signatures (see Sec. II-C
and Sec. II-D) as tags. More specifically, we index nodes of
a binary tree with time values in a top to down, left to right
fashion and let every node hold an OTS public-private keypair.

The tag for time t is the signature St on the public keys of
the child nodes of the t-th node (verifiable with the public key
of the t-th node) and an authenticated chain of sibling nodes
from the root of the tree to the t-th node (Fig. 2). Every node
on the path authenticates the next node by signing its public
key (along with the public key of its sibling). The public key
of the root node is the public key of the tag system and needs
no authentication.

Note that having the tag for time t, one can easily de-
rive tags for times associated with its parent nodes (just by
dropping last nodes in the path). This is not a problem for
the forward-resistance of the tag system, as the parents are
associated with prior times (i.e., smaller time values).

Since our construction is based on one-time signatures, we
assume some well-defined types skeyOTS, pkeyOTS, sig
and the associated key generation, signing, and verification
algorithms (see Sec. II-A).

The secret key of a tag system consists of all secret keys
associated with the nodes of the tree (represented as a function
which associates the OTS secret key with the node of a tree).

t y p e skey = t ime → skeyOTS o p t i o n .
t y p e pkey = pkeyOTS .

We implement tags as lists of tuples where each tuple is
associated with a node in the tree and holds its label and a

one-time signature of that label. A label of a node is a triple of
a node index (time value) and the public keys of its children.

t y p e t a g = ( l a b e l * s i g ) l i s t .
t y p e l a b e l = t ime * pkey * pkey .

a) Tag Generation: The indices of parents of the t-th
node are computed by function binRec. The function lbl
constructs a label associated with the t-th node which contains
the public keys of its children.

op binRec ( t : t ime ) : t ime l i s t =
wi th i = 1 => 1 : : [ ]
w i th i = j +1 => binRec ( i ’ d i v ’ 2 ) ++ ( i : : [ ] ) .

op l b l ( s k f : skey , t : t ime ) : l a b e l =
( t , sk2pk ( o g e t ( s k f 2* t ) ) ,

sk2pk ( o g e t ( s k f 2* t +1) ) ) .

Here, [] is the empty list, ++ denotes list concatenation, and
:: is the list prepend constructor.

To construct the t-th tag we produce an authenticated path
from the root of the tree to the t-th node where each element
of the path holds signed public keys of its children.

op tagGenAux ( s k f : skey , t s : t ime l i s t ) : t a g =
wi th t s = [ ] => [ ]
w i th t s = t : : t s ’ => nd : : tagGenAux s k f t s ’

where nd = ( lb , sg ) , l b = l b l s k f t ,
sg = o t s S i g ( o g e t ( s k f t ) ) ( l b l s k f t ) ) .

op tagGen ( s k f : skey , t : t ime ) : t a g =
t ≤ 0 ? [ ] : tagGenAux s k f ( b inRec t ) .

b) Verification: To verify a tag generated for t-th node
we check that the path (tag) starts from the root (node with
index 1), ends with the node with index t, the signature of
the message of the first node of a tag verifies with the public
key of a tag system, and the label of each node is signed by
the previous node in the path.

op pa thVer ( t g : t a g ) : boo l =
wi th t g = [ ] => t r u e
wi th t g = x : : [ ] => t r u e
wi th t g = x ’ : : x : : xs => pa thVer ( x : : xs ) ∧

o t s V e r ( x . ’ 1 . ’ 1 mod 2 = 0 ? x ’ . ’ 1 . ’ 2 : x ’ . ’ 1 . ’ 3 )
x . ’ 1 x . ’ 2 .

op t a g Ve r ( pk : pkey , t : t ime , t g : t a g ) : boo l =
t g != [ ] ∧
( head t g ) . ’ 1 . ’ 1 = 1 ∧
( l a s t t g ) . ’ 1 . ’ 1 = t ∧
o t s V e r pk ( head t g ) . ’ 1 ( head t g ) . ’ 2 ∧
pa thVer t g .

c) Correctness: If a secret key of a tag system consists of
valid OTS secret keys then the tag verification function agrees
with the tag generation function.

lemma m u l t T a g s C o r r e c t s k f pk :
( f o r a l l j , j ≤ EXP

=> e x i s t s r , Some ( otsKey r ) = s k f j )
=> f o r a l l t , t ≤ EXP ∧ pk = sk2pk ( o g e t ( s k f 1 ) )
=> t ag Ve r pk t ( tagGen s k f t ) = t r u e .

The correctness is proved by induction on time.



B. Multiple-Time Forward Resistance

Let us start by analyzing security of the case when we
explicitly generate all independent OTS keypairs in the ini-
tialization phase.

module TagKeys : KeyGenT = {
p roc keyGen ( ) = {

v a r skf , t , sk , r s ;
s k f = fun => None ;
t = 1 ;
w h i l e ( t ≤ 2*EXP + 1) {

r s =$ dR ;
sk = otsKey r s ;
s k f = fun x => x = t ? Some sk : s k f x ;
t = t + 1 ;

}
r e t u r n ( sk2pk ( o g e t ( s k f 1 ) ) , s k f ) ;

}
} .

For the uniformity of the tag generation, we ask for 2*EXP+1
keypairs to produce EXP tags.

Theorem 2: The probability of breaking the forward resis-
tance of multiple-time tag system with EXP independent
secret keys is bounded by EXP times the probability of
breaking the existential unforgeability of the one-time signa-
ture scheme.

Proof: We say that sk is the i-th canonical secret
key if skf is the secret key of the tag system and
Some sk = skf i, and that pk is the i-th canonical public
key if pk = sk2pk sk. If pkf is the table of canonical
public keys and tg is a successfully forged tag then the
function parseTag returns a label and a signature from tg
so that the returned signature verifies with its canonical public
key and none of the succeeding signatures in the tag verify
with their respective canonical keys.

op p a r s e T a g ( pkf : t ime → pkey o p t i o n ,
t g : t a g ) : l a b e l * s i g =

wi th t g = [ ] => w i t n e s s
wi th t g = x : : xs => i f a l l ( fun e =>

! o t s V e r ( pkf e . ’ 1 . ’ 1 ) e . ’ 1 e . ’ 2 ) xs
t h e n x e l s e p a r s e T a g pkf xs .

We claim that if adversary wins the FR game by producing
a tag tg for time t then parseTag pkf tg finds an OTS
necessarily forged by the adversary. To see that, we must
analyze two cases.

If parseTag returns the last signature from tg then this
signature was necessarily forged. Indeed, the signature verifies
with the t-th canonical public key. However, if the adversary
was successful in GameFR, then a tag with index greater than
or equal to t was never generated by the oracle.

If the pair (l, s) returned by parseTag is not the last in tg
then it is also necessarily forged. Indeed, by definition, the pair
which follows (l, s) verifies with the key stored in the label
l, but not with the canonical public key. Therefore, the label
l must have been signed by the adversary since the tagging
oracle only produces and signs labels with the canonical keys.

Let A be an adversary that breaks the forward-resistance of
the tag system, by computing a tag tg for time t. Our goal is
to use A to construct an adversary that breaks the existential

unforgeability of the underlying one-time signature scheme.
Recall the setting of the OTS game: the module GameOTS
generates a public-secret keypair and the adversary is given
a public key and a one-time oracle; to win the game, the
adversary must forge a signature for a fresh message which
verifies with the public key provided by the game.

Let us additionally assume that A forges the OTS for the
p-th node in the tag tg. Then, to get a successful OTS
adversary, we simply need to simulate the environment of the
FR game and supply to A a tagging oracle TagOracle’
which initializes the environment of FR game in the beginning
and then behaves exactly as the standard TagOracle except
that the p-th node is associated with the public key provided
by the OTS game and the OTS of the p-th node is generated
by the oracle provided by the game. Since we cannot predict
the node for which A is going to forge the signature, the best
strategy is to sample the position p uniformly from 1 to EXP.

module TagOrac le ’ (O : OTSOracleT ) = {
v a r pkf , p , pkTag , skTag
p roc i n i t ( pkOTS : pkeyOTS ) = {

p =$ un i fo rm 1 EXP ;
( pkTag , skTag ) = TagKeys . keyGen ( ) ;
pkf = fun t => i f t = p t h e n pkOTS

e l s e sk2pk ( o g e t ( skTag t ) ) ;
}
p roc t a g ( t : t ime ) = {

v a r t g = [ ] ;
v a r ys = binRec t ;
w h i l e ( ys <> [ ] ) {

y = head ys ;
s i g = i f y = p t h e n O. s i g n ( l b l pkf y )

e l s e o t s S i g ( o g e t ( skTag y ) ) ( l b l pkf y ) ;
xs = xs ++ [ y ] ;
ys = behead ys ;

}
r e t u r n t g ;

}
} .

The module FR2OTS transforms an FR adversary into an
OTS adversary by initializing TagOracle’ with the public
key provided by the OTS game. The final OTS forgery is
extracted by the function parseTag from the tag returned
by the adversary.

module FR2OTS (A : AdvFR , O : OTSOracleT ) = {
module A = A( TagOrac le ’ (O) )
p roc f o r g e ( pkOTS : pkeyOTS ) : msg * s i g = {

v a r tg , t ;
TagOrac le ’ . i n i t ( pkOTS ) ;
( tg , t ) = A. f o r g e ( o g e t ( TagOrac le ’ . pkf 1 ) ) ;
r e t u r n ( p a r s e T a g TagOrac le ’ . pkf t g ) ;

}
} .

If TagKeys and OTSKeys key generators sample individual
keypairs from the same distribution then with probability
1/EXP the choice of node p will match the node whose
signature will be forged by A; therefore, we can conclude that
A is no more than EXP times successful in forging tags than
FR2OTS(A) is successful in forging one-time signatures.

lemma f r2o t sUB &m :
Pr [ GameFR ( TagOracle , A, TagKeys ) . main ( )



@ &m : r e s ]
≤ Pr [GameOTS( OTSOracle , FR2OTS (A) , OTSKeys ) . main ( )

@ &m : r e s ] * EXP .

C. Efficient PRF Based Key Generation

In the previous section, we defined the key generator
TagKeys which used the distribution rDistr as the source
of randomness which then was used to generate OTS keys. The
downside of this approach is that all the keys are produced at
the initialization stage which can be prohibitively slow.

To avoid the expensive initialization phase we could use the
strategy proposed by Merkle (see Sec. II-C)—to generate each
OTS keypair when it is actually needed. This approach would
solve the problem of expensive initialization, but would make
the tag system stateful. More specifically, to produce a new
tag for time t, the user would have to generate a fresh OTS
keypair and save it for later signing the keys of its children.
Otherwise, the user would risk reusing the OTS keypair of
t’s parent to sign another keypair which will compromise the
security of the tag system since an OTS keypair can be used
to sign only one message.

In this section, our goal is to implement and prove security
of a stateless tag system with cheap initialization. To achieve
this, we formalize the standard cryptographic approach based
on pseudorandom functions (PRF). Informally, a PRF is a
pure function that takes a key (source of randomness) and
returns a function indistinguishable from a truly randomly
sampled function for any “reasonably” efficient adversary. We
formalize this idea in the next few steps.

A PRF module must be initialized and could be executed
on the input values:
module t y p e PRFOracleT = {

p roc i n i t ( ) : u n i t
p roc exec ( t : t ime ) : r

} .

A real cryptographically constructed PRF is a pure function F.
The first argument of F is a key (seed) which acts as a source
of true randomness. Then, F rs is a function which maps
input values to pseudorandom values. The module RealPRF
generates the PRF seed rs at initialization and delegates the
requests to F rs when executed.
op F : r → t ime → r .

module RealPRF : PRFOracleT = {
v a r r s : r
p roc i n i t ( ) : u n i t = {

r s =$ r D i s t r ;
}
p roc exec ( t : t ime ) : r = {

r e t u r n F r s t ;
}

} .

The module IdealPRF models an ideal random function
using the lazy sampling technique. It keeps a mapping (empty
in the beginning) of input values to truly random values which
are sampled when user provides a new input:

module Idea lPRF : PRFOracleT = {
v a r m : ( t ime , r ) fmap
p roc i n i t ( ) : u n i t = {

m = empty ;
}
p roc exec ( t : t ime ) : r = {

i f ( x \ n o t i n m)
m. [ x ] =$ r D i s t r ;

r e t u r n ( o g e t m. [ x ] ) ;
}

} .

The PRF adversaries are given a PRF module, and must decide
whether they are interacting with the real or the ideal PRF.

module t y p e D i s t i n g u i s h e r ( F : PRFOracleT ) = {
p roc d i s t i n g u i s h ( ) : boo l {F . exec}

}

module IND ( PRF : PRFOracleT , D : D i s t i n g u i s h e r ) = {
module D = D( PRF )
p roc main ( ) : boo l = {

v a r b ;
PRF . i n i t ( ) ;
b = D. d i s t i n g u i s h ( ) ;
r e t u r n b ;

}
} .

We say that the PRF F underlying RealPRF is secure if the
following relation holds for some negligible value ubPRF:

axiom p r f S e c : f o r a l l (D : D i s t r i n g u i s h e r ) ,
| Pr [ IND ( RealPRF , D) . main ( ) @ &m : r e s ]
− Pr [ IND ( IdealPRF , D) . main ( ) @ &m : r e s ] |
≤ ubPRF .

Armed with a secure PRF F we define an efficient key
generation module TagKeysEFF:

module TagKeysEFF : KeyGenT = {
p roc keyGen ( ) = {

v a r r s ;
r s =$ dR ;
r e t u r n ( sk2pk ( otsKey ( F r s 1 ) ) ,

fun t => Some ( otsKey ( F r s t ) ) ) ;
}

} .

In this scenario the “true” secret key of the tag system is the
seed rs. Then the keypair associated with the node (time)
t is the result of executing the otsKey algorithm on the
pseudorandom output of F rs t.

Theorem 3: The probability of breaking the forward resis-
tance of the multiple-time tag system with the PRF based key
generation is bounded by the sum of the indistinguishability
of the PRF and EXP times the probability of breaking the
existential unforgeability of the one-time signature scheme.

Proof: Let us fix A as the FR-game adversary. We start
by defining an “inefficient” key generation module which is
parameterized by a PRF:

module TagKeysPRF ( F : PRFOracleT ) : KeyGenT = {
p roc keyGen ( ) = {

v a r skf , t , sk , r s ;
s k f = fun => None ;
t = 1 ;
w h i l e ( t ≤ 2*EXP+1) {

r s = F . exec ( i ) ;



s k f = fun x =>
x = t ? Some ( otsKey r s ) : s k f x ;

t = t + 1 ;
}
r e t u r n ( sk2pk ( o g e t ( s k f 1 ) ) , s k f ) ;

}
} .

Next, we use this key generation module to implement a PRF
distinguisher where adversary A plays the FR game and the
distinguisher returns a boolean flag which indicates whether
A was successful.

module D( F : PRFOracleT ) = {
module Game = GameFR ( TagOracle , A, TagKeysPRF ( F ) )
p roc d i s t i n g u i s h ( ) = {

r e t u r n Game . main ( ) ;
}

} .

Since we assumed that F is a secure PRF then the ability of
D to distinguish RealPRF from IdealPRF is bounded:

| Pr [ IND ( RealPRF , D) . main ( ) @ &m : r e s ]
− Pr [ IND ( IdealPRF , D) . main ( ) @ &m : r e s ] |
≤ ubPRF .

In other words, if F is a secure PRF then A cannot be
much more (or less) successful against PRF-generated keys
compared to the truly randomly generated keys.

Moreover, from the definition of D it follows that the
probability of winning the IND(RealPRF) game by D equals
the probability of winning the FR-game with the efficient
PRF-based key generation TagKeysEFF by A. Also, the
probability of winning the IND(IdealPRF) game by D
equals the probability of A winning the FR-game with the
inefficient independently sampled keys:

Pr [ IND ( RealPRF , D) . main ( ) @ &m : r e s ] =
Pr [ GameFR ( TagOracle , A, TagKeysEFF ) . main ( )

@ &m : r e s ] .

Pr [ IND ( IdealPRF , D) . main ( ) @ &m : r e s ] =
Pr [ GameFR ( TagOracle , A, TagKeys ) . main ( )

@ &m : r e s ] .

The equations above bound the probability of A winning the
FR-game with efficient PRF-based keys:

Pr [ GameFR ( TagOracle , A, TagKeysEFF ) . main ( )
@ &m : r e s ] ≤

Pr [ GameFR ( TagOracle , A, TagKeys ) . main ( )
@ &m : r e s ] + ubPRF .

After combining the above equation with the upper bound
derived in the previous section, we can conclude the proof:

Pr [ GameFR ( TagOracle , A, TagKeysEFF ) . main ( )
@ &m : r e s ] ≤

Pr [ GameOTS( TagOracle , FR2OTS (A) , OTSKeys ) . main ( )
@ &m : r e s ] * EXP + ubPRF .

D. Efficiency and Optimizations

To estimate the efficiency of the tag system we assume
POSIX time with one second granularity. This means the

tree height is h = 31 for any practical time frame. The tag
size for this scheme is |σtag| ≈ h|σauth| where |σauth| is
the size required to authenticate the child node public keys
(e.g. the one-time signature size |σOTS | in the Goldreich
construction). This means the size of the tag can be reduced
by either making the tree height smaller or reducing the size
of the authentication. The signing process generates 2h + 1
keypairs and performs h signing operations. The following
optimizations are a compromise between signature size and
computational effort.

The nodes in the tag system do not have to be OTS
keypairs. Instead, the hash values of the public keys can be
used to authenticate them. The tag generated by this type
of node is the pre-image of the hash value (the public keys
of the the child nodes). This is similar to the hyper-tree
construction proposed in [13] that can be used to divide the
tree into layers with height l, reducing the size of the tree to
|σtag| ≈ dh/le|σOTS | + h hash values. This optimization re-
duces the number of signing operations to h/l but the number
of keypairs generated per signing increases to (h/l)2l + 1.

An optimization unique to this construct is to turn the binary
tree into a ternary tree as in Sec II-C, but use the hash-
sequence based BLT tags [14] with a relatively short length
of 2m in the additional branch. This reduces the tree height
by m and adds additional 2m hash function computations per
node in signing, but increases the verification by only up to m
hash function calls as only the last node in the authentication
chain can use a value from this branch.

Combining these optimzations leads to a tag size σtag ≈
d(h−m)/le|σOTS |+ (h−m) hash values. For example, by
choosing h = 30, m = 10, l = 4 and using Winternitz-style
one-time signatures with a 256-bit hash function, the resulting
tag size is about 24kB and the number of keypairs generated
increases from 61 to 81.

V. RELATED WORK

The most related and also motivational work for our paper
are the results by Buldas et al. [1], [2]. They formulated the
key insight that the construction of digital signatures could
be simplified if a backdating resistant timestamping service is
combined with a forward resistant tag system. The original
constructions showed promising efficiency in terms of the
size of the resulting signatures, but suffered either from slow
initialization phase or stateful user-side computations. In this
work, we proposed a single solution to both problems and
proved its correctness and security in the multiple use setting.

In [3], Buldas et al. used EasyCrypt to formally derive
security of one-time BLT signatures from security of one-time
forward-resistant tag systems. The authors left open particular
constructions of tag systems, but analyzed the security in the
context of different types of timestamping repositories. In this
work, we use the simplest type of timestamping server, but
focus on the security and particular constructions of multiple-
time tag systems.

SPHINCS [13] is a family of stateless signature schemes
capable of signing an indefinite number of messages. Although



SPHINCS is based on the idea of Goldreich, it produces
significantly smaller signatures (e.g. 41 kB for SPHINCS-256).
This is achieved by reducing the tree height combined with
the use of Merkle trees. To mitigate the risk of reusing a one-
time key, the keypairs in the leaf nodes are from a few-time
sheme [15] and are selected for use on a pseudorandom sched-
ule. Our work differs in three ways that allows for an overall
smaller size for a pair of a signature and a timestamp. First,
the timestamp is an intrinsic part of the signature. Second, it
chooses the signing key based on the binary representation of
the time value which can only grow in time, rather than using
a pseudorandom value. For example, the overall tree height
can be reduced to 31 for POSIX time values for the practical
future. Third, as the ever-increasing time value assures no key
can be used after it has expired, we do not rely on few-time
signatures that are larger than one-time signatures.

Stateful signature schemes that use index based keypair
selection for signing, such as XMSS [16] and the Merkle
infinite signatures (Sec. II-C), can be converted to use time
for key selection by replacing the local state with the time
value from a timestamping service. In such constructions
the signatures and timestamps unnecessarily duplicate the
“backward-resistance” (Sec. III-B) property. More importantly,
this introduces a new issue: the signer must make sure no two
messages are signed at the same time; otherwise a signing
OTS keypair will be used more than once.

VI. DISCUSSION

We found that in EasyCrypt it is relatively simple to define
protocols and interaction among different actors of a protocol
(i.e., signing oracles, timestamping service, adversaries). Also,
the module-level (sub)typing system guided the implementa-
tion and forced us to specify and satisfy definitions precisely.

It was easy to develop a functional implementation of a
multiple-time tag construction and then prove the correctness
property. Moreover, we could specify the high-level proof
strategy and delegate the low-level details to the SMT solvers.
This allowed our proofs of correctness to remain intact even
when the construction changed.

The most complicated parts of our formalization are state-
ments about probabilities, and equality of distributions. The
proofs of these statements are done using (relational) proba-
babilistic Hoare logic and depend on the operational semantics
of programs. For these statements the automation support is
low, and it is hard to define high-level proof strategies which
tolerate (small) changes in the definitions.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that multiple-time forward resistant tag sys-
tems induce secure multiple-time time BLT signature schemes.
Moreover, we implemented a particular construction of a
forward-resistant multiple-time tag system based on one-time
signatures.

In the future we plan to investigate more realistic models of
timestamping in the context of BLT signatures. For example, in
this paper we assume that there is no “lag” in time between the

signer and the timestamping service. It would be more realistic
to assume that if current time is t, then the timestamping query
will reach the service by time t + lag, where lag comes
from some distribution.

Another important aspect is whether the timestamping holds
a single element associated with every time slot, or a set where
the elements may come from different users of the timestamp-
ing service. Moreover, we can strengthen the adversarial model
by allowing the adversary to “observe” the elements before
they reach the timestamping repository.

Finally, the optimizations that reduce the signature size and
signing time of the scheme need further analysis. This would
allow a more detailed comparison with existing hash-based
constructions such as the schemes in the SPHINCS (Sec. V)
family.
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APPENDIX A
ONE-TIME SIGNATURE ORACLE

module OTSO : OTSOracleT = {
v a r qs : msg o p t i o n
v a r used : boo l
v a r pk : pkeyOTS
v a r sk : skeyOTS

proc i n i t ( pk : pkeyOTS , sk : skeyOTS ) : u n i t = {
OTSOracle . pk = pk ;
OTSOracle . sk = sk ;
qs = None ;
used = f a l s e ;

}

p roc s i g n (m : msg ) : s i g o p t i o n = {
v a r r , q ;
i f ( ! used ) {

qs = Some m;
q = o t s S i g sk m;
r = Some q ;

} e l s e {
r = None ;

}
used = t r u e ;
r e t u r n r ;

}

p roc f r e s h (m : msg ) : boo l = {
r e t u r n ( Some m) <> qs ;

}
} .

APPENDIX B
MULTIPLE-TIME TAGGING ORACLE

module TagOrac le : TagOracleT = {

v a r l t : Time l i s t
v a r pk : pkey
v a r sk : skey

p roc i n i t ( pk : pkey , sk : skey ) = {
TagOrac le . pk = pk ;
TagOrac le . sk = sk ;
l t = [ ] ;

}

p roc t a g ( t : Time ) = {
v a r t g ;
l t = t : : l t ;
t g = tagGenFun sk t ;

r e t u r n t g ;
}

p roc getTagLog ( ) : Time l i s t = {
r e t u r n l t ;

}

} .


