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Abstract. We present and implement SnarkPack, an argument for aggregating n Groth16
zkSNARKs with a O(logn) proof size and verifier time. Our techniques are inspired from the
inner pairing product argument introduced by Bünz et al. with the difference that our final
scheme does not require a different trusted setup, but it reuses the one from the pairing-based
SNARK that it aggregates.
The key tool for our SnarkPack construction is a new commitment scheme that allows us to
instantiate the inner product pairing argument of Bünz et al. by using existing powers of tau
ceremony transcripts. We also describe a scheme that merge together a multi-exponentiation
argument and an inner pairing product argument for some common randomness vector with
minimal overhead. We further apply some optimisations to our protocol and illustrate it’s effi-
ciency by implementing it.
SnarkPack can aggregate 8192 proofs in 8.7s and verify them in 33ms, including un-serialization
time, yielding a verification mechanism that is exponentially faster than batching and previous
solutions in the field.
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1 Introduction

Arguments of Knowledge. In decentralised systems, there is need for protocols that
enable a prover to post a statement together with a short proof, such that any verifier can
publicly check that the statement (e.g., correctness of a computation, claims of storage etc.)
is true while expending fewer resources, e.g. less time than would be required to re-execute
the function. The two key properties in these practical settings are the size of the proof and
the verification time. A popular application is a blockchain, in which nodes need to verify all
proofs posted in each (periodic) block. A low verification time is, therefore, critical.

A proof system with succinct verification allows a verifier to check a nondeterministic
polynomial-time computation in time that is much shorter than the time required to run
the computation given the NP witness. Succinct Non-interactive ARguments of Knowledge
(SNARKs) are proof systems that fulfill these requirements and they are increasingly popular
in real-world applications. There has been a series of works on constructing SNARKs [Gro10,
Lip12, BCI+13, GGPR13, PHGR13, Lip13, BCTV14, Gro16] with constant-size proofs.

Due to its shortest proof size, Groth16 SNARK have become a de facto standard in
blockchain projects. In this usage, all nodes verify proofs posted on each block individually,
setting an upper bound on the number of proofs allowed per block and on system scalability.

This work looks into reducing proof size and verifier time even further by exploring tech-
niques to aggregate Groth16 SNARKs without the requirement for additional trusted setups.

Motivation. While there are many SNARKs with constant-sized proofs and succinct ver-
ifiers, all nodes in a blockchain network need to verify many proofs coming from different
provers individually. This creates a bottleneck where the blockchain bandwitdh is limited by
the number of proofs that the nodes can verify in an epoch, i.e. the maximum number of
proofs that can be included in a block. One extreme example is the Filecoin [Lab18] proof-
of-space blockchain. Filecoin miners must post a Groth16 proof that they correctly computed
a Proof-of-Space [Fis19] to onboard storage in the network. Each proof guarantees that the
miner correctly “reserves” 32GB of space to store specific files. The chain currently processes
a large number of proofs each day: approximately 500,000 Groth16 proofs, representing 15
PiB of storage. This paper presents a way to aggregate these proofs, leading to a reduction
in gas spent in those transactions and in verification time. Combined, these effects lead to
Filecoin having a larger onboarding rate. Bünz et al. [BMM+19] present a framework for ag-
gregating Groth16 proofs into a O(log n) sized final proof with verification requiring O(log n)
group exponentiations (in addition to O(n) field operations from the public inputs). This
construction can be applied to aggregating Groth16 proofs but requires a specific trusted
setup to construct the structured reference string necessary to verify such aggregated proofs.
We explore alternative ways to aggregate Groth16 proofs by limiting ourselves to the already
available Groth16 trusted setup transcript, therefore avoiding an additional trust assumptions
for existing systems.

Contribution. Our construction is based on techniques from [BMM+19] and follows the
same framework. However, it aims to make this realizable in practice without the need of
further trusted setup ceremonies and to take full advantage of existing building blocks for
further optimisations. We focus specifically on Groth16 proofs [Gro16] generated using the
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same SRS, as opposed to the generic result in [BMM+19] that allow aggregation of proofs
generated using different SRS. Our techniques can apply to other pairing-based SNARKs
scheme, but this possible extension is out of scope for the present work.

We propose an Argument for Aggregation that has logarithmic-sized proof and a verifier
that runs in logarithmic time in the number of proofs to be aggregated. The reference string
needed to compute and verify this aggregated proof can be constructed from any pairs of
powers of tau ceremonies (for example those of Zcash [zca18] and Filecoin [Fil20]). Our
protocol is exponentially more efficient than aggregating these SNARKs via batching: it takes
33ms to verify an aggregated proof for 8192 proofs (including unserialization) versus 621ms
when doing batch verification. The former is of 40kB in size. The aggregator can aggregate
8192 proofs in 8.7s.

2 Preliminaries

2.1 Notations and General Background

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT ) such that

– p is prime, so Z∗p = F is a field.
– G1 = 〈g〉,G2 = 〈h〉 are multiplicative cyclic groups of prime order p.
– e : G1 ×G2 → GT is a bilinear asymmetric map (pairing), which means that ∀a, b ∈ Zp :
e(ga, hb) = e(g, h)ab.

– Then we implicitly have that e(g, h) generates GT .
– Membership in G1,G2,GT can be efficiently decided, group operations and the pairing
e(·, ·) are efficiently computable, generators can be sampled efficiently, and the descrip-
tions of the groups and group elements each have linear size.

Vectors. For n-dimensional vectors a ∈ Znp ,A ∈ Gn
1 ,B ∈ Gn

2 , we denote their i-th entry by
ai ∈ Zp, Ai ∈ G1, Bi ∈ G2 respectively.

Let A‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
n−1) be the concatenation of 2 vectors A,A′ ∈ Gn

1 .

We write A[:`] = (A0, . . . , A`−1) ∈ G`
1 and A[`:] = (A`, . . . , An−1) ∈ Gn−`

1 to denote slices
of vectors A ∈ Gn

1 for 0 ≤ ` < n− 1.

Same notation holds for vectors B ∈ Gn
2 in the second source group.

Inner pairing product. We write group operations as multiplications.

We define Ax = (Ax0 , . . . , A
x
n−1) ∈ Gn

1 for a scalar x ∈ Zp and a vector A ∈ Gn
1 .

We define Ax = (Ax00 , . . . , A
xn−1

n−1 ) ∈ Gn
1 for vectors x = (x0, . . . , xn−1) ∈ Znp ,A ∈ Gn

1 .

We define A ∗ x =
∏n−1
i=0 A

xi
i for vectors x = (x0, . . . , xn−1) ∈ Znp ,A ∈ Gn

1 .

We define A ∗B :=
∏n−1
i=0 e(Ai, Bi) for a pair of source group vectors A ∈ Gn

1 ,B ∈ Gn
2 .

We define A◦A′ := (A0A
′
0, . . . , An−1A

′
n−1) for two vectors in the same group A,A′ ∈ Gn

1 .

Relations. We use the notation R to denote an efficiently decidable binary relation.

For pairs (u,w) ∈ R we call u the statement and w the witness. We write R = {(u;w) :
p(u,w)} to describe a NP relation R ⊆ {0, 1}∗ × {0, 1}∗ between instances u and witnesses
w decided by the polynomial-time predicate p(·, ·). Let LR be the language consisting of
statements u for which there exist matching witnesses in R.
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Polynomial-Time Algorithms. Unless otherwise specified, all the algorithms defined through-
out this work are assumed to be probabilistic Turing machines with running time bounded
by a polynomial in his input size, where the expectation is taken over the random coins of
the algorithm - i.e., PPT.

If A is a randomized algorithm, we use y←$A(x) to denote that y is the output of A on
x. We write x←$X to mean sampling a value x uniformly from the set X.

By writing A‖χA(σ) we denote the execution of A followed by the execution of χA on
the same input σ and with the same random coins. The output of the two are separated by
a semicolon.

Security Parameter. We denote the computational security parameter with λ ∈ N: A cryp-
tosystem provides λ bits of security if it requires 2λ elementary operations to be broken.

We say that a function is negligible in λ, and we denote it by negl(λ), if it is a f(λ) =
O(λ−c) for any fixed constant c.

Adversaries. Adversaries are PPT algorithms denoted with calligraphic letters (e.g.A,B).
They will be usually be modeled as efficient algorithms taking 1λ as input.
We define the adversary’s advantage as a function of parameters to be Pr[A wins]. For a
system to be secure, we require that for any efficient adversary A, the advantage of A is
negligible in the security parameter.

Common and Structured Reference String. The common reference string (CRS) model, in-
troduced by Damg̊ard [Dam00], captures the assumption that a trusted setup in which all
involved parties get access to the same string crs taken from some distribution D exists.
Schemes proven secure in the CRS model are secure given that the setup was performed cor-
rectly. The common reference string model is a generalization of the common random string
model, in which D is the uniform distribution of bit strings. We will use the recommended
terminology “Structured Reference String” (SRS) since all our crs are structured.

Generic Group Model. The generic group model [Sho97, Mau05] is an idealised cryptographic
model, where algorithms do not exploit any special structure of the representation of the group
elements and can thus be applied in any cyclic group.

In this model, the adversary is only given access to a randomly chosen encoding of a
group, instead of efficient encodings, such as those used by the finite field or elliptic curve
groups used in practice.

One of the primary uses of the generic group model is to analyse computational hardness
assumptions. An analysis in the generic group model can answer the question: “What is
the fastest generic algorithm for breaking a cryptographic hardness assumption”. A generic
algorithm is an algorithm that only makes use of the group operation, and does not consider
the encoding of the group.

2.2 Cryptographic Primitives

SNARKs Let R be an efficiently computable binary relation which consists of pairs of the
form (u,w) and let LR be the language associated with R.

A Proof or Argument System forR consists in a triple of PPT algorithmsΠ = (Setup,Prove,
Verify) defined as follows:
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Setup(1λ,R)→ crs: takes a security parameter λ and a binary relation R and outputs a
common (structured) reference string crs.

Prove(crs, u, w)→ π: on input crs, a statement u and the witness w, outputs an argument π.

Verify(crs, u, π)→ 1/0: on input crs, a statement u, and a proof π, it outputs either 1 indi-
cating accepting the argument or 0 for rejecting it.

We call Π a Succinct Non-interactive ARgument of Knowledge (SNARK) if further it is
complete, succinct and satisfies Knowledge Soundness (also called Proof of Knowledge).

Non-black-box Extraction. The notion of Knowledge Soundness requires the existence of an
extractor that can compute a witness whenever the prover A produces a valid argument.
The extractor we defined bellow is non-black-box and gets full access to the prover’s state,
including any random coins. More formally, a SNARK satisfies the following definition:

Definition 1 (SNARK). Π = (Setup,Prove,Verify) is a SNARK for an NP language LR
with corresponding relation R, if the following properties are satisfied.

Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(crs, u, π) = 1

crs← Setup(1λ,R)
π ← Prove(crs, u, w)

)
= 1

Knowledge Soundness. For any PPT adversary A, there exists a PPT extractor ExtA such
that the following probability is negligible in λ:

Pr

(
Verify(crs, u, π) = 1
∧R(u,w) = 0

crs← Setup(1λ,R)
((u, π);w)← A‖χA(crs)

)
= negl(λ).

Succinctness. For any u and w, the length of the proof π is given by |π| = poly(λ) ·
polylog(|u|+ |w|).

Zero-Knowledge. A SNARK is zero-knowledge if it does not leak any information besides
the truth of the statement. More formally:

Definition 2 (zk-SNARK). A SNARK for a relation R is a zk-SNARK if there exists
a PPT simulator (S1,S2) such that S1 outputs a simulated common reference string crs and
trapdoor td; S2 takes as input crs, a statement u and td, and outputs a simulated proof π;
and, for all PPT (stateful) adversaries (A1,A2), for a state st, the following is negligible in
λ: ∣∣∣∣∣∣Pr

(u,w) ∈ R ∧
A2(π, st) = 1

crs← Setup(1λ)
(u,w, st)← A1(1

λ, crs)
π ← Prove(crs, u, w)

 −
Pr

(u,w) ∈ R ∧
A2(π, st) = 1

(crs, td)← S1(1λ)
(u,w, st)← A1(1

λ, crs)
π ← S2(crs, td, u)

∣∣∣∣∣∣ = negl(λ).
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Commitment Schemes A non-interactive commitment scheme allows a sender to create
a commitment to a secret value. It may later open the commitment and reveal the value or
some information about the value in a verifiable manner. More formally:

Definition 3 (Non-Interactive Commitment). A non-interactive commitment scheme
is a pair of algorithms Com = (KG,CM):

KG(1λ)→ ck: given a security parameter λ, it generates a commitment public key ck. This
ck implicitly specifies a message space Mck, a commitment space Cck and (optionally) a
randomness space Rck,. This algorithm is run by a trusted or distributed authority.

CM(ck;m)→ C: given ck and a message m, outputs a commitment C. This algorithm speci-
fies a function Comck : Mck×Rck → Cck. Given a message m ∈Mck, the sender (option-
ally) picks a randomness ρ ∈ Rck and computes the commitment C = Comck(m, ρ)

For deterministic commitments we simply use the notation C = CM(ck;m) := Comck(m, 0),
while for randomised ones we write C←$CM(ck;m) := Comck(m, ρ).

A commitment scheme is asked to satisfy one or more of the following properties:

Binding Definition. It is computationally hard, for any PPT adversary A, to come up with
two different openings m 6= m∗ ∈Mck for the same commitment C. More formally:

Definition 4 (Computationally Binding Commitment). A commitment scheme Com =
(KG,CM) is computationally binding if for any PPT adversary A, the following probability is
negligible

Pr

[
m 6= m∗ ck← KG(1λ)

∧ CM(ck;m) = CM(ck;m∗) = C (C;m,m∗)← A(ck)

]
= negl(λ).

Hiding Definition. A commitment can be hiding in the sense that it does not reveal the secret
value that was committed.

Definition 5 (Statistically Hiding Commitment). A commitment scheme Com =
(KG,CM) is statistically hiding if it is statistically hard, for any PPT adversary A = (A0,A1),
to first generate two messages A0(ck)→ m0,m1 ∈Mck such that A1 can distinguish between
their corresponding commitments C0 and C1 where C0←$CM(ck;m0) and C1←$CM(ck;m1).

Pr

b = b′

ck← KG(1λ)
(m0,m1)← A0(ck)

b← {0, 1}, Cb←$CM(ck;mb)
b′ ← A1(ck, Cb)

 = negl(λ).

Homomorphic Commitment Scheme. A commitment scheme can also be homomorphic, ei-
ther in the space of messages or in the space of keys or in both. We call the later doubly-
homomorphic commitments.

– Message Homomorphism. For a group law + on the message space Mck and ⊕ on the
commitment space Cck, we have that from C0 = CM(ck;m0) and C1 = CM(ck;m1), one
can efficiently generate C = CM(ck;m0 +m1) by computing C = C0⊕C1 = CM(ck;m0 +
m1).

7



– Key Homomorphism. For a group law ? on the key space Kck, and ⊕ on the commitment
space Cck, we have that from C0 = CM(ck0;m) and C1 = CM(ck1;m), one can efficiently
generate C so that C = C0 ⊕ C1 = CM(ck0 ? ck1;m).

Polynomial Commitments Polynomial commitments (PCs) first introduced by [KZG10]
are commitments for the message space F≤d[X], the ring of polynomials in X with maximum
degree d ∈ N and coefficients in the field F = Zp, that support an interactive argument of
knowledge (KG,Open,Check) for proving the correct evaluation of a committed polynomial
at a given point without revealing any other information about the committed polynomial.

A polynomial commitment scheme over a field family F consists in 4 algorithms PC =
(KG,CM,Open,Check) defined as follows:

KG(1λ, d)→ (ck, vk): given a security parameter λ fixing a field Fλ family and a maximal
degree d samples a group description gk containing a description of a field F ∈ Fλ, and
commitment and verification keys (ck, vk). We implicitly assume ck and vk each contain
gk.

CM(ck; f(X))→ C: given ck and a polynomial f(X) ∈ F≤d[X] outputs a commitment C.
Open(ck;C, x, y; f(X))→ π: given a commitment C, an evaluation point x, a value y and

the polynomial f(X) ∈ F[X], it output a prove π for the relation:

Rkzg :=

(ck, C, x, y; f(X)) :
C = CM (ck; f(X))
∧ deg(f(X)) ≤ d

∧ y = f(x)


Check(vk, C, x, y, π) → 1/0: Outputs 1 if the proof π verifies and 0 if π is not a valid proof

for the opening (C, x, y).

A polynomial commitment satisfy hiding property and an extractable version of binding
stated as follows:

Definition 6 (Computational Knowledge Binding). For every PPT adversary A that
produces a valid proof π for statement C, x, y, i.e. such that Check(vk, C, x, y, π) = 1, there
is an extractor ExtA that is able to output a pre-image polynomial f(X) with overwhelming
probability:

Pr

[
Check(vk, C, x, y, π) = 1 ck← KG(1λ, d)
∧ C = CM(ck; f(X)) (C, x, y, π; f(X))← (A‖ExtA)(ck)

]
= 1− negl(λ).

2.3 Assumptions

ASSGP - Auxiliary Structured Single Group Pairing Informally, we assume that a
PPT adversary cannot find a vector of group elements A0, . . . , Aq−1 ∈ Gq

1 such as:

1. ∃Ai 6= 1G1

2. e(A0, h)e(A1, h
a) . . . e(Aq−1, h

aq−1
) = 1GT

3. e(A0, h)e(A1, h
b) . . . e(Aq−1, h

bq−1
) = 1GT

Formally, q-Auxiliary Structured Single Group Pairing (q-ASSGP) assumption can be
stated as:
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Assumption 1 (ASSGP) The q-Auxiliary Structured Single Group Pairing (q-ASSGP) as-
sumption holds for the bilinear group generator G if for all PPT adversaries A we have, on
the probability space gk = (p,G1,G2,GT ) ← G(1λ), g←$G1, h←$G2 and a, b←$Zp the
following holds:

Pr

 (A0, . . . , Aq−1) 6= 1G1 g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai) = 1GT σ ← ([gb
i
]2q−1i=0 , [ga

i
]2q−1i=0 , [hb

i
]2q−1i=0 , [ha

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT (A1, . . . , Aq)← A(gk, σ)

 = negl(λ)

We refer to this assumption defined for single group paring with elements from second group
G2 as the q-ASSGP2 assumption and also define its dual, the q-ASSGP1 assumption, by
swapping G1 and G2 in the definition above.

Lemma 1. The q-ASSGP assumption holds in the generic group model.

The proof of the lemma can be find in Appendix A.1.

ASDGP - Auxiliary Structured Double Group Pairing Formally, q-Auxiliary Struc-
tured Double Group Pairing (q-ASDGP) assumption can be stated as:

Assumption 2 (ASDGP) The q-ASDGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ←
G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A 6= 1G1 ∨ B 6= 1G2) g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i
, Bi) = 1GT σ ← ([ga

i
, gb

i
, ha

i
, hb

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i
, Bi) = 1GT (A,B)← A(gk, σ)

 = negl(λ)

Lemma 2. The q-ASDGP assumption holds in the generic group model.

The proof of the lemma can be found in Appendix A.2.

3 Overview of our Techniques

In this section we present the necessary background and building blocks for aggregating
multiple Groth16 proofs for the same SRS (same verification key). This was first introduced
by the work [BMM+19].

3.1 Background on Groth16

Before presenting the aggregation argument scheme, we recall here [Gro16] SNARK scheme
construction.

Let C be an arithmetic circuit over Zp, with m wires and d multiplication gates. Let
Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) be a QAP which computes C.

We denote by Iio = {1, 2, . . . `} the indices corresponding to the public input and public
output values of the circuit wires and by Imid = {`+1, . . .m}, the wire indices corresponding
to the private input and non-input, non-output intermediate values (for the witness).
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Groth.Setup(1λ,R)

α, β, γ, δ←$Z∗p, s←$Z∗p,

crs =

(
QAP, gα, gβ , gδ, {gs

i

}d−1
i=0 ,

{
g
βvk(s)+αwk(s)+yk(s)

γ

}`
k=0

,
{
g
βvk(s)+αwk(s)+yk(s)

δ

}
k>`

,
{
g
sit(s)
δ

}d−2

i=0
,

hβ , hγ , hδ, {hs
i

}d−1
i=0

)
vk :=

(
P = gα, Q = hβ ,

{
Sk = g

βvk(s)+αwk(s)+yk(s)
γ

}`
k=0

, H = hγ , D = hδ
)

td = (s, α, β, γ, δ)
return (crs, td)

Groth.Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1
w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) = (v(x)w(x)−y(x))
t(x)

r, u←$Z∗p
fmid = βvmid(s)+αwmid(s)+ymid(s)

δ

a = α+ v(s) + rδ
b = β + w(s) + uδ

c = fmid + t(s)h(s)
δ

+ ua+ rb− urδ
return π = (A = ga, B = hb, C = gc)

Groth.Verify(vk, u, π)

π = (A,B,C)

vio(x) =
∑`
i=0 aivi(x)

wio(x) =
∑`
i=0 aiwi(x)

yio(x) =
∑`
i=0 aiyi(x)

fio = βvio(s)+αwio(s)+yio(s)
γ

Check
e(A,B) = e(gα, hβ) · e(gfio , hγ) · e(C, hδ)

Groth.Sim(td, u)

a, b←$Z∗p
A = ga, B = gb

c = ab−αβ−βvio(s)+αwio(s)+yio(s)
δ

return π = (A = ga, B = hb, C = gc)

Fig. 1. Groth16 Construction from QAP.

We describe SNARK= (Setup,Prove,Verify) scheme in [Gro16] that consists in 3 algo-
rithms as per Figure 1.

Note that the Groth16 SRS consist in consecutive powers of some random evaluation
point s in both groups G1 and G2 :

{gsi}d−1i=0 ∈ Gd
1, {hsi}d−1i=0 ∈ Gd

2.

and some additional polynomials evaluated in this random point s.
Remark that for the verification algorithm, we do not use the entire structured reference

string crs, but just part of it. For the sake of presentation, we will call the verifier key vk and
set it using the necessary elements from the crs:

vk :=
(
P = gα, Q = hβ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)
γ

}`
j=0

, H = hγ , D = hδ
)

3.2 Building Blocks

SRS. We need elements from two independent compatible Groth16 SRS:

– Common Bilinear group description for both SRS: gk = (p,G1,G2,GT )

10



– Common group generators for both SRS: g ∈ G1, h ∈ G2

– First SRS with random evaluation point a ∈ Zp for :

v1 = (h, ha, . . . , ha
n−1

) and w1 = (ga
n
, . . . , ga

2n−1
)

– Second SRS with random evaluation point b ∈ Zp for :

v2 = (h, hb, . . . , hb
n−1

) and w2 = (gb
n
, . . . , gb

2n−1
)

Inner Product Commitments. To instantiate our commitments, we use pairing com-
mitment schemes inspired by the ones of [LMR19]. These schemes need to satisfy special
properties (as discussed in Section 5.1) and they require structured commitment keys cks, ckd
of the form cks = (v1,v2), ckd = (v1,w1,v2,w2). We then commit to vectors A ∈ Gn

1 ,B ∈ Gn
2

as follows:

1. Single group version CMs(A) := CMs((v1,v2); A) = (TA, UA) where

TA = A ∗ v1 = e(A0, h)e(A1, h
a) . . . .e(An−1, h

an)

UA = A ∗ v2 = e(A0, h)e(A1, h
b) . . . .e(An−1, h

bn)

2. Double group version CMd(A,B) := CMd((v1,v2,w1,w2); A,B) = (TAB, UAB) where

TAB = (A ∗ v1)(w1 ∗B) = e(A0, h) · . . . e(An−1, ha
n−1

) · e(gan , B0) · . . . e(ga
2n−1

, Bn−1)

UAB = (A ∗ v2)(w2 ∗B) = e(A0, h) · . . . e(An−1, hb
n−1

) · e(gbn , B0) · . . . e(gb
2n−1

, Bn−1)

GIPA Protocols. One of the key building blocks for our aggregation protocol are generalized
inner product arguments, called GIPA protocols.

These protocols, as designed in [BMM+19], enable proving the correctness a large class
of inner products between vectors and/or field elements committed using (possibly distinct)
doubly-homomorphic commitment schemes.

The schemes we will need here are particular cases of GIPA and require structured refer-
ences string as commitment keys. Their construction is based on Inner Product Commitment
schemes and the KZG Polynomial Commitment [KZG10] (see 2.2). We restate the relations
for the two specialized GIPA constructions from [BMM+19] below:

Multiexponentiation Inner Product Proof (MIPP). The relation for MIPP for a known
vector r ∈ Znp and a commitment (TA, UA) to a vector A ∈ Gn

1 is defined by:

Rmipp := {((TA, UA), Z, r; A) : Z = A ∗ r ∧ (TA, UA) = CMs(A)}.

Target Inner Pairing Product Proof (TIPP). A TIPP allows a prover to demonstrate
that certain pairing relations hold between committed group elements.

More precisely, the relation for the TIPP we need in Groth16 aggregation is defined by:

Rtipp :=
{

((TAB, UAB), Z, r; A,B) : Z = A∗Br ∧ (TAB, UAB) = CMd(A,B) ∧ r = (ri)n−1i=0

}
.
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4 Framework for Aggregation

An Argument for Aggregation is a proof system that takes as input multiple proofs and
computes a new smaller proof, in this case for n initial proofs we end up with a final aggregated
proof of size O(log n).

Overview of the protocol. The high-level idea of Groth16 aggregation is quite simple:
since Groth16 verification consists in checking a pairing equation between the proof elements
π = (A,B,C), instead of checking that n pairing equations are simultaneously satisfied it
is sufficient to prove that only one inner pairing product of a random linear combination of
these initial equations defined by a verifier’s random challenge r ∈ Zp holds. In a bit more
detail, Groth16 verification asks to check an equation of the type e(Ai, Bi) = Yi · e(Ci, D)
for Yi ∈ GT , D ∈ G2 where Yi is a value computed from each statement ui = ai and πi =
(Ai, Bi, Ci)

n−1
i=0 are proof triples.

The aggregation will instead check a single randomized equation:

n−1∏
i=0

e(Ai, Bi)
ri =

n−1∏
i=0

Y ri

i · e
( n−1∏
i=0

Cr
i

i , D
)
.

This can be rewritten using an inner product notation as :

ZAB = Y ′prod · e(ZC , D), and ZAB := A ∗Br and ZC := C ∗ r

where we denoted by Y ′prod :=
∏n−1
i=0 Y

ri
i .

What is left after checking that this unified equation holds is to verify that the elements
ZAB, ZC are consistent with the initial proof triples in the sense that they compute the
required inner product. This is done by combining pairing commitments schemes with TIPP
and MIPP arguments: the TIPP argument shows that ZAB = A ∗Br for some initial vectors
A ∈ G1,B ∈ G2 committed using CMd; the MIPP argument shows that ZC = C ∗ r for some
vector C ∈ G1 committed under CMs.

Our scheme is non-interactive and uses a hash function Hash0 modeled as a random oracle.
We will consider the description of this hash function publicly available for prover and verifier
and part of their keys.

Relation for Aggregation. More formally, we introduce the relation for aggregation of n
triplets of Groth16 proofs A,C ∈ Gn

1 ,B ∈ Gn
2 :

RAGG :=
{

(vk, pkagg,u = {ai}n−1i=0 ;π = {(A,B,C)}) : Groth.Verify(vk, ui, πi) = 1, ∀i
}

where ui = ai = {ai,j}`j=0, πi = (Ai, Bi, Ci) ∈ G1 ×G2 ×G1 for i = 0, . . . n− 1.

Setup Algorithm

Inputs: (1λ,RAGG)

1. Set commitment keys for both single and double commitment schemes using crs:

cks = (v1,v2), ckd = (v1,v2,w1,w2).
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Recall the structure of vectors v1,v2 ∈ G2 and w1,w2 ∈ G1:

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n
, . . . , ga

2n−1
)

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n
, . . . , gb

2n−1
)

2. Construct MIPP and TIPP CRS from these keys: crsmipp, crstipp
3. Choose a hash function Hash0 : G4

T → Zp given by its description hk0.

Output: Keys: pkagg = (vk, crsmipp, crstipp, hk0), vkagg = (vk, crsmipp, crstipp, hk0)

Prove Algorithm

Inputs: pkagg,u = {ai,j}i=0,...n−1;j=0,...`, π = {πi}n−1i=0 = (A,B,C)

1. Parse proving key pkagg := (vk, crsmipp, crstipp, hk0)
2. Commit to A and B : CMd(ckd; A,B) = (TAB, UAB)
3. Commit to C : CMs((v1,v2); C) = (TC , UC)
4. Derive random challenge r = Hash0(TAB, UAB, TC , UC) ∈ Zp and set r = {ri}n−1i=0

5. Compute ZAB = Ar ∗B
6. Compute ZC = C ∗ r =

∏n−1
i=0 C

ri
i .

7. Run TIPP proof:

πtipp = TIPP.Prove(crstipp, (TAB, UAB), ZAB, r; A,B) (1)

8. Run MIPP proof:

πmipp = MIPP.Prove(crsmipp, (TC , UC), ZC , r; C) (2)

Output: Aggregated proof πagg = ((TAB, UAB), (TC , UC), ZAB, ZC , πtipp, πmipp)

Verification Algorithm

Inputs: vkagg,u = {ai,j}i=0,...n−1;j=0,...`, πagg

1. Parse verification key vkagg := (vk, crsmipp, crstipp, hk0)

2. Parse vk :=
(
P = gα, Q = hβ, {Sj = g

βvj(s)+αwj(s)+yj(s)
γ }`j=0, H = hγ , D = hδ

)
3. Compute ZSj = S

∑n−1
i=0 aijri

j for all j = 0 . . . `.
4. Derive random challenge r = Hash0(TAB, UAB, TC , UC)
5. Check TIPP proof b1 ← TIPP.Verify(crstipp, (TAB, UAB), ZAB, r, πtipp).
6. Check MIPP proof b2 ← MIPP.Verify(crsmipp, (TC , UC), ZC , r, πmipp).
7. Check Groth16 aggregated equations to the decision bit b3:

ZAB
?
= e(P

∑n−1
i=0 r

i
, Q)e(

∏̀
j=0

ZSj , H)e(ZC , D)

Output: Decision bit b = b1 ∧ b2 ∧ b3
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5 Building Blocks Instantiation

5.1 Inner Product Pair Commitments

In this section we are looking for a commitment scheme to group elements in a bilinear group
that can be compatible with the GIPA protocol described in [BMM+19]. Our goal is to find
such a commitment scheme that uses a structured reference string similar to the one used in
many popular SNARK implementations, e.g. Groth16.

In order to use them in specialized GIPA protocols, we require the following properties
from our commitment schemes:

• Computationally Binding Commitment: as per Definition 4
• Constant Size Commitment: the commitment value is independent of the length of the

committed vector (two target group elements in our case)
• Doubly-Homomorphic: homomorphic both in the message space and in the key space

CM(ck1 + ck2;M1 +M2) = CM(ck1;M1) + CM(ck1;M2) + CM(ck2;M1) + CM(ck2;M2).

• Collapsing Property: double-homomorphism implies a distributive property between keys
and messages that allow to collapse multiple messages via a deterministic function Collapse
defined as follows:

Collapse

CM

ck1‖ck′1
ck2‖ck′2
ck3

M1‖M1

M2‖M2

M3

 = CM

ck1 + ck′1
ck2 + ck′2

ck3

M1

M2

M3


There are a few candidates for such schemes, but none of them are adapted for fulfilling

our goals.
The commitment scheme proposed by [BMM+19] works under some new assumption

that asks for the commitment keys to be structured in a specific way. In order to use this
commitment, we need to be careful to not give out certain elements which are present in most
SRS from available SNARK setup ceremonies (that we would like to reuse).

The commitment scheme proposed by Lai, Malavolta and Ronge [LMR19] is likely to
satisfy the properties, but it is shown to be binding only for unstructured random public
parameters, while in order to obtain a log-time verification GIPA scheme, we would need
some structure for the commitment keys.

We adapt these commitments from [LMR19] to work with structured keys and we intro-
duce a new assumption that holds in the generic group model and prove the commitments
binding for an adversary that has access to these structured public parameters.

To better adapt to the application in the two specialized GIPA protocols, we define two
different variants of the commitment scheme, one that takes a vector of elements of a single
group G1, and one that takes two vectors of points in G1 and G2 respectively.

We describe our two schemes and the SRS generation ceremonies required for the gener-
ation of the public commitment keys in the following:

SRS. The two commitment schemes have the advantage that they can reuse two compatible
(independent) SNARK setup ceremonies for their structured keys generation and therefore
can be easily deployed without requiring a new trusted setup.

We ask from the two ceremonies to be using the same basis in the same bilinear group,
but two different randomnesses:
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1. Generators g ∈ G1, h ∈ G2

2. Elements related to a random a ∈ Zp : v1 = (h, ha, . . . , ha
n−1

) and w1 = (ga
n
, . . . , ga

2n−1
)

3. Elements related to a random b ∈ Zp : v2 = (h, hb, . . . , hb
n−1

) and w2 = (gb
n
, . . . , gb

2n−1
)

Construction from 2 powers of tau. The construction comes naturally from 2 power of tau
that used the same generators g and h, they will both have different powers a = τ1 and
b = τ2: g, h, g

τ1 , . . . , gτ
n
1 , hτ1 , . . . , hτ

n
1 , gτ2 , . . . , gτ

n
2 , hτ2 , . . . , hτ

n
2

Our assumptions rely on the fact that cross powers (e.g. gτ1τ2) are not known to the
prover. Since the two SRS we use are the result of two independent ceremonies, it is unlikely
that such terms can be learned since τ1 and τ2 were destroyed after the SRS generation.

Single group version CMs. This version is useful for the MIPP argument used during
Groth16 aggregation. It takes one vector A ∈ Gn

1 and outputs two target group elements
(TA, UA) ∈ G2

T as a commitment.

KG(1λ)→ cks = (v1,v2)
Com(cks = (v1,v2),A = (A0, . . . , An−1))→ (TA, UA):

1. TA = A ∗ v1 = e(A0, h) · e(A1, h
a) . . . e(An−1, h

an−1
)

2. UA = A ∗ v2 = e(A0, h) · e(A1, h
b) . . . e(An−1, h

bn−1
)

3. For the sake of presentation, we will use the notation CMs((v1,v2); A) = (TA, UA)

Lemma 3. Under the hardness of q-ASSGP assumption for q = n, this commitment scheme
is computationally binding as per Definition 4.

Proof. Suppose there exists a PPT adversary A that breaks the binding property of the
commitment scheme. Then, given the output ((TA, UA); A,A∗) of the adversary A we have
that (TA, UA) = (TA∗ , UA∗):

e(A0, h)e(A1, h
a) . . . e(An−1, h

an−1
) = e(A∗0, h)e(A∗1, h

a) . . . e(A∗n−1, h
an−1

) (3)

e(A0, h)e(A1, h
b) . . . e(An−1, h

bn−1
) = e(A∗0, h)e(A,1h

b) . . . e(A∗n−1, h
bn−1

) (4)

By applying the homomorphic properties of the commitment scheme to these equations we
get:

e(A0/A
∗
0, h)e(A1/A

∗
1, h

a) . . . e(An−1/A
∗
n−1, h

an−1
) = 1 (5)

e(A0/A
∗
0, h)e(A1/A

∗
1, h

b) . . . e(An−1/A
∗
n−1, h

bn−1
) = 1 (6)

where the vector (A0/A
∗
0, A1/A

∗
1, . . . An−1/A

∗
n−1) 6= 1G1 . This breaks the n-ASSGP assump-

tion.

Double group version CMd. This version is useful for the TIPP argument used during
Groth16 aggregation. It takes two vectors A ∈ Gn

1 ,B ∈ Gn
2 and outputs two target group

elements (TAB, UAB) ∈ G2
T as a commitment.

KG(1λ)→ ckd = (v1,v2,w1,w2)
Com(ckd,A,B)→ (TAB, UAB):
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1. TAB = (A ∗ v1)(w1 ∗B) = e(A0, h) . . . e(An−1, h
an−1

) · e(gan , B0) . . . e(g
a2n−1

, Bn−1)
2. UAB = (A ∗ v2)(w2 ∗B) = e(A0, h) . . . e(An−1, h

bn−1
) · e(gbn , B0) . . . e(g

b2n−1
, Bn−1)

3. We write CMd((v1,v2,w1,w2); A,B) = (TAB, UAB)

Lemma 4. Under the hardness of q-ASDGP assumption for q = n, this commitment scheme
is computationally binding.

Proof. The proof is analogous to the one of Lemma 3. Since the commitment is homomorphic
breaking the binding is equivalent to finding a non-trivial opening to 1. Thus it breaks the
assumption.

It is straightforward to check that the two version of pairing commitment schemes CMs

and CMd are inner product commitments, in the sense that they satisfy the other necessary
properties: constant size, doubly-homomorphic and identity is a Collapse function defined
Collapseid(C) = C.

5.2 Generalized Inner Product Arguments

Generalized Inner Product Arguments (GIPA) are designed to prove generalizations of the
inner product argument. For completeness, we describe the framework used by [BMM+19] to
build GIPA schemes for two different types of inner product. A main observation is that both
TIPP and MIPP protocols are described with respect to doubly-homomorphic inner product
commitment schemes such that the inner product map is well-defined over their message
space. For our instantiations, we will use the inner product commitment schemes introduced
in Section 5.1 which satisfy the desired properties for usage in the two inner pairing product
protocols.

We present the two protocols TIPP and MIPP each for a different generalization of the in-
ner product. The two generalized inner product maps for bilinear group gk = (p,G1,G2,GT , e)
that we consider are defined by the following operations:

1. Multiexponentiation inner product map Gm
1 × Fm → G1:

A ∗ b =
∏

Abii

2. Inner pairing product map Gm
1 ×Gm

2 → GT :

A ∗B :=
∏

e(Ai, Bi) =
∏

e(gai , gbi) = e(g, g)
∑
aibi

where e is the standard pairing map from gk : e : Gm
1 ×Gm

2 → GT

Commitment Schemes: For the sake of simplicity, we use a ”merged” commitment that
can be applied to the vectors A and B and the result of the inner product Z = A ∗ Br at
once with a composed commitment key defined as ck = (ck1, ck2, ck3).

We recall the doubly-homomorphic property of the commitment scheme in multiplicative
notations:

1. CM(ck,M) · CM(ck,M ′) = CM(ck,M ·M ′)
2. CM(ck,M) · CM(ck′,M) = CM(ck · ck′,M)
3. (Follows from 1&2) CM(ckx,M) = CM(ck,Mx), where x ∈ Zp.
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KZG Polynomial Commitment. We will need a polynomial commitment scheme (Def-
inition 2.2) that allows for openings of evaluations on a point and proving correctness of
these openings. Specifically we need the polynomial commitments to prove succinctly the
correctness of the final commitment keys v1, v2 and w1, w2 at the end of the protocol. We
can use a polynomial commitment scheme here because these final commitment keys have a
well defined structure as shown in [BMM+19]. The candidate for the PC is KZG scheme in
[KZG10] which allows us to have a constant time verifier for this check.

KZG.PC = (KZG.KG,KZG.CM,KZG.Open,KZG.Check) defined over bilinear groups gk =
(p,G1,G2,GT ) with G1 = 〈g〉,G2 = 〈h〉 as follows:

KZG.KG(1λ, n)→ (ckkzg, vkkzg): Set keys ckkzg = {gαi}n−1i=0 , vkkzg = hα.

KZG.CM(ckkzg; f(X))→ Cf : For f(X) =
∑n−1

i=0 fiX
i, computes Cf =

∏n−1
i=0 g

fiα
i

= gf(α).
KZG.Open(ckkzg;Cf , x, y; f(X))→ π: For an evaluation point x, a value y, compute the quo-

tient polynomial q(X) =
f(X)− y
X − x

and output prove π = Cq = KZG.CM(ckkzg; q(X)).

KZG.Check(vkkzg = hα, Cf , x, y, π)→ 1/0: Check if e(Cf · g−y, h) = e(Cq · g−x, hα).

The KZG.PC scheme works in a similar fashion for a pair of keys of the form ckkzg =

{hαi}n−1i=0 , vkkzg = gα, by just swapping the values in the final pairing equation check to
match the correct basis.

5.3 MIPP with Pair Group Commitment

This is a multiexponentiation inner product argument for the relation

Rmipp := {((TA, UA), A, r; A) : Z = A ∗ r ∧ (TA, UA) = CMs(cks; A)}.

The following protocol is a variation of the original MIPP argument presented in [BMM+19].
The main difference is the pairing commitment scheme used, in our version we employ CMs

which relies on a Groth16-friendly setup ceremony as discussed in the introduction.
For the proving strategy, the idea is the same as in the MIPP from [BMM+19]: In a

nutshell, the prover runs a loop and in each iteration it is first splitting the initial vector
A in half and then using collapsing property of the commitment (see definition for Collapse
function in Section 5.1) to recommit to both halves together. Since all components of the
commitment are compact, the identity collapsing function is sufficient for us.

After reducing the size of the commitment keys to 1, the prover has to show well-
formedness of the such-obtained final structured commitment keys. The final keys v1, v2
are interpreted as a KZG polynomial commitment that the prover must open at a random
point z. For a more detailed discussion see Section 5.5.

Construction. Our MIPP argument consists in 3 algorithms MIPP = (MIPP.Setup,MIPP.Prove,
MIPP.Verify) that work as follows:

MIPP.Setup(1λ,Rmipp)→ crsmipp:
1. Set commitment keys for KZG scheme from cks (CMs is specified in Rmipp):

ck1v := {hai}n−1i=0 , vk1v := ga

ck2v := {hbi}n−1i=0 , vk2v := gb

ckkzg := (ck1v, ck2v), vkkzg := (vk1v, vk2v)
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2. Fix a hash function Hash1 : Zp ×G6
T → Zp and its description hk1.

3. Fix a hash function Hash2 : Zp ×G2
2 → Zp and its description hk2.

4. Set crsmipp := (hk1, hk2, cks, ckkzg, vkkzg)

MIPP.Prove(crsmipp, (TA, UA), Z, r; A, r)→ πmipp:

– Loop ”split & collapse” for step i

1. ni = ni−1/2 where n0 = n
2. If ni == 1: break
3. Compute left and right inner products

ZL = A
r[:n′]
[n′:] =

n′∏
i=0

Arii+n′

ZR = A
r[n′:]
[:n′] =

n′∏
i=0

A
ri+n′
i

4. Compute right cross commitments:

TL, UL = CMs((v1,v2),A[n′:]||0)

= ((A[n′:] ∗ v1[:n′]), (A[n′:] ∗ v2[:n′]))

5. Compute left cross commitments:

TR, UR = CMs((v1,v2),0||A[:n′])

= ((A[:n′] ∗ v1[n′:]), (A[:n′] ∗ v2[n′:]))

6. Compute challenge xi = Hash1(xi−1, ZL, ZR, TR, TL, UR, UL) (with x0 = 0)
7. Compute Hadamard products

A = A[:n′] ◦Axi
[n′:] = (A0A

xi
n′ , . . . , An′−1A

xi
n−1)

r = r[:n′] ◦ r
x−1
i

[n′:] = (r0r
x−1
i
n′ , . . . , rn′−1r

x−1
i
n−1)

8. Set new rescaled key

(v1,v2) := (v1[:n′] ◦ v1
x−1
i

[n′:],v2[:n′] ◦ v2
x−1
i

[n′:]) (7)

– Prove correctness of final commitment key (v1, v2) ∈ G2
2:

1. Define fv(X) =
∏`−1
i=0(1 + x−1`−jX

2j ) for n = 2`

2. Draw challenge z = Hash2(x`, v1, v2)
3. Prove that v1 = hfv(a) and v2 = hfv(b) are KZG commitments of fv(X) by evalua-

tion in z

πv1 ← KZG.Open(ck1v; v1, z, fv(z); fv(X))

πv2 ← KZG.Open(ck2v; v2, z, fv(z); fv(X))

4. Set πv = (πv1 , πv2)
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– For A and r′ (elements from the last step of the loop with respect A and to r) set

πmipp = (A, r′,ZL,ZR,TL,TR,UL,UR, (v1, v2), πv)

MIPP.Verify(crsmipp, (TA, UA), Z, r;πmipp)→ b:

– Loop iterator i : 1→ `:

1. Reconstruct challenges {xi = H(xi−1,ZL[i],ZR[i],TL[i],TR[i],UL[i],UR[i])}`i=1

with x0 = 0
2. Construct final commitment values:

• Z = ZL[i]xi · Z · ZR[i]x
−1
i (representing CMid(1G2 ; Ar))

• T = TL[i]xi · TA ·TR[i]x
−1
,

• U = UL[i]xi · UA ·UR[i]x
−1

(representing CMs(cks; A))

– Verify commitments into decision bit b0:

1. Z == Ar
′

2. Check if T == e(A, v1), U == e(A, v2)

– Verify final commitment keys v1, v2 via KZG

1. Reconstruct KZG challenge point: z = H(x`, v1, v2)
2. Reconstruct commitment polynomial fv(X) =

∏l−1
i=0(1 + x−1`−jX

2j )
3. Run verification for openings of evaluations in z

b1 ← KZG.Check(vk1v; v1, z, fv(z);πv1)

b2 ← KZG.Check(vk2v; v2, z, fv(z);πv2)

4. Set b = b0 ∧ b1 ∧ b2

The security result for the MIPP protocol is following the same arguments as the one in
[BMM+19]:

Theorem 3. If CMs is a binding inner product commitment, KZG.PC is a polynomial com-
mitment with Computational Knowledge Binding as per Definition 6, then the protocol MIPP
has computational knowledge soundness (Definition 1).

Remark that both CMs and KZG.PC schemes are secure in the Generic Group Model (or
under specific assumptions such as q-ASSGP and q-SDH).

5.4 TIPP with Pair Group Commitment

This is an inner pairing argument for the relation:

Rtipp :=
{

((TAB, UAB), Z, r; A,B) : Z = A ∗Br ∧
(TAB, UAB) = CMd(ckd; A,B) ∧ r = (ri)n−1i=0

}
.

where (TAB, UAB) ∈ GT ×GT , Z = A ∗Br ∈ GT , A ∈ Gn
1 , B ∈ Gn

2 , r ∈ Zp.
It works similarly to MIPP argument, with the difference that vectors of group elements

A,B are committed together using the double version of the pairing commitment scheme
CMd.
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Construction. Our TIPP argument consists in 3 algorithms TIPP = (TIPP.Setup,TIPP.Prove,
TIPP.Verify) that work as follows:

TIPP.Setup(1λ,Rtipp)→ crstipp:
1. Set commitment keys for KZG scheme:

ck1v := {hai}n−1i=0 , vk1v := ga ck1w := {gai}2n−1i=0 , vk1w := ha

ck2v := {hbi}n−1i=0 , vk2v := gb ck2w := {gbi}2n−1i=0 , vk2w := hb

2. Define ckkzg := (ckjσ), vkkzg := (vkjσ) for j = 1, 2; σ = v, w.
3. Fix a hash function Hash1 : Zp ×G6

T → Zp and its description hk1.
4. Fix a hash function Hash2 : Zp ×G2

2 ×G2
1 → Zp and its description hk2.

5. Set crstipp := (hk1, hk2, ckd, ckkzg, vkkzg).

TIPP.Prove(crstipp, (TAB, UAB), Z, r; A,B, r)→ πtipp:

For ease of exposition, set B′ := Br and w′1 := wr−1

1 and w′2 := wr−1

2 .
– Loop ”split & collapse” for step i

1. ni = ni−1/2 where n0 = n
2. If ni == 1: break
3. Compute left and right inner products

ZL = A[n′:] ∗B′[:n′] and ZR = A[:n′] ∗B′[n′:]

4. Compute right cross commitments:

TL, UL = CMd((v1,w
′
1; v2,w

′
2); A[n′:]||0,0||B′[:n′]))

= ((A[n′:] ∗ v1[:n′])(w1′[n:′]
∗B′[:n′]), (A[n′:] ∗ v2[:n′])(w2′[n′:] ∗B′[:n′]))

5. Compute left cross commitments:

TR, UR = CMd((v1,w
′
1; v2,w

′
2); 0||A[:n′],B

′
[n′:]||0)

= ((A[:n′] ∗ v1[n′:])(w
′
1[:n′]
∗B′[n′:]), (A[:n′] ∗ v2[n′:])(w

′
2[:n′]
∗B′[n′:])

6. Compute challenge xi = Hash1(xi−1, ZL, ZR, TR, TL, UR, UL) (with x0 = 0)
7. Compute Hadamard products on vectors

A = A[:n′] ◦Axi
[n′:] = (Axi0An′

, . . . , An′−1A
xi
n−1) and B′ = B′[:n′] ◦B′

x−1
i

[n′:]

8. Compute Hadamard products on keys

(v1,v2) = (v1[:n′] ◦ v1
x−1
i

[n′:],v2[:n′] ◦ v2
x−1
i

[n′:]) (8)

(w′1,w
′
2) = (w′1[:n′] ◦w

′xi
1[n′:]

,w′2[:n′] ◦w
′xi
2′[n′:]

) (9)

9. Set n = n′

– Prove correctness of final commitment keys (v1, v2) ∈ G2
2; (w1, w2) ∈ G2

1 after ` rounds
(n = 2`) using KZG:
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1. Define fv(X) =
∏`−1
j=0(1 + x−1`−jX

2j ) and fw(X) = Xn
∏`−1
j=0

(
1 + x`−jr

−2jX2j
)

2. Draw challenge z = Hash2(x`, v1, v2, w1, w2) where n = 2`

3. Prove that v1 = gfv(a), v2 = hfv(a) and w1 = gfw(a), w2 = hfw(b) are KZG com-
mitments of fv(X) by evaluating in z

πvj ← KZG.Open(ckjv; vj , z, fv(z); fv(X)) for j=1,2

πwj ← KZG.Open(ckjw;wj , z, fw(z); fw(X)) for j=1,2

– Set

πtipp = (A,B′,ZL,ZR,TL,TR,UL,UR, (v1, v2), (w
′
1, w

′
2), (πvj , πwj )j=1,2)

where A and B′ are the final elements from the loop after collapsing A and B′.

TIPP.Verify(crstipp, (TAB, UAB), Z, r;πtipp)→ b:

– Loop iterator i : 1→ ` = log(n):

1. Reconstruct challenges {xi = H(xi−1,ZL[i],ZR[i],TL[i],TR[i],UL[i],UR[i])}`i=1

with x0 = 0
2. Construct final commitment values recursively, i = 1→ `:

• Zi = ZL[i]xi · Zi−1 · ZR[i]x
−1
i

• Ti = TL[i]xi · Ti−1 ·TR[i]x
−1

• Ui = UL[i]xi · Ui−1 ·UR[i]x
−1

where Z0 = Z, T0 = TAB, U0 = UAB
– Verify commitments into decisional bit b0:

1. Z`
?
= e(A,B′)

2. Check if e(A, v1)e(w
′
1, B

′)
?
= T` and e(A, v2)e(w

′
2, B

′)
?
= U`

– Verify final commitment keys vj , w
′
j , for j = 1, 2 via KZG

1. Reconstruct KZG challenge point: z = H(x`, v1, v2, w
′
1, w

′
2) for n = 2`

2. Reconstruct commitment polynomials:

fv(X) =
`−1∏
j=0

(
1 + x−1`−jX

2j
)

(10)

fw(X) = Xn
`−1∏
j=0

(
1 + x`−jr

−2jX2j
)

(11)

3. Run verification for openings of evaluations in z for j = 1, 2:

b1j ← KZG.Check(vkjv; vj , z, fv(z);πvj )

b2j ← KZG.Check(vkjw;wj , z, fw(z);πwj )

– Set b = b0 ∧ b11 ∧ b12 ∧ b21 ∧ b22

The security result for the TIPP protocol is following the same proving strategy as the
one in [BMM+19]:
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Theorem 4. If CMd is a binding inner product commitment, KZG.PC is a polynomial com-
mitment with Computational Knowledge Binding as per Definition 6, then the protocol TIPP
has computational knowledge soundness (Definition 1).

Remark that both CMd and KZG.PC schemes are secure in the Generic Group Model (or
under specific assumptions such as q-ASDGP for the CMd commitment scheme and q-SDH
for the validity of the final commitment keys done using KZG.PC scheme).

Proof. The proof follows the same ideas as [BMM+19] proof for their TIPP scheme.

5.5 Formula for Final Commitment Keys

There is one step in showing that such protocol satisfies computational knowledge soundness
that is slightly different in our case: Defining the correct polynomials to be committed under
kzg.PC scheme in order to show that the structure of the honestly generated final commitment
keys is correct.

Recall that the two schemes MIPP and TIPP achieve log-time verification using a specially
structured commitment scheme that allows the prover to use one new challenge xj in each
round of recursion to transform the commitments homomorphically. Because of this, the
verifier must also perform a linear amount of work in rescaling the commitment keys (cks/ckd
for MIPP/TIPP). To avoid having the verifier rescale the commitment keys, our schemes
apply the same trick as [BMM+19]: we do this by outsourcing the work of rescaling the
commitment keys to the prover.

Then what is left is to convince a verifier that this rescaling was done correctly just by
checking the final commitment keys and a succinct proof (a KZG polynomial opening). This is
verified via a log-time evaluation of the polynomial and two/four (for MIPP/TIPP) pairings.

Recall the structure of the 4 vectors v1,v2 ∈ G2 and w1,w2 ∈ G1 used for the commitment
keys cks, ckd:

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n
, . . . , ga

2n−1
), w′1 := wr−1

1

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n
, . . . , gb

2n−1
), w′2 := wr−1

2

We will show the formulae for the final commitment keys v1, v2, w
′
1, w

′
2 (the result of many

rounds of rescaling v1,v2,w
′
1,w

′
2 until the end of the loop) used in our schemes MIPP and

TIPP are correct. (The way we define the two polynomials fv(X) for v1, v2 and fw(X) for
w′1, w

′
2.)

For ease of presentation, we state and prove the formula for a generic vector v =

(v1, v2, . . . , v2`) = (g, gα, gα
2
, . . . gα

2`−1
) of length n = 2` to which we apply the same rescal-

ing as for the commitment keys cks, ckd. The specific formulae for v1,v2,w
′
1,w

′
2 are easy to

deduce once we have a formula for v.
Consider a challenge xj for round j, where the total number of rounds is ` and x0 = 0.
Note that at each round j we split the sequence v1, v2, . . . , vn in half and we use xj to

rescale first half and the second half of the vector recursively until we end up with a single
value v.

We claim that the formula for some initial key v = (v1 = g, v2 = gα, . . . , vn = gα
n−1

) is:

v = g
∏`−1
j=0(1+x`−jα

2j )
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for a vector of challenges x0 := 0, x1 . . . x`−1, x`. We will prove the general formula by induc-
tion:

First step, check the formula for ` = 1 (initial commitment key v has two elements v1, v2):

v = v1v
x1
2 = g1+x1α = g

∏0
j=0(1+x`−jα

2j ).

Secondly, suppose the statement is true for `− 1. We prove it for `.
On the first round, we have a challenge x1 and we rescale the commitment key v which

has length n = 2` as follows:
v′ = v[:2`−1] ◦ vx1

[2`−1:]
,

v′ = (g · gx1α2`−1

, gα · gx1α2`−1+1
, gα

2 · gx1α2`−1+2
, . . . ).

We can write this differently as: v′ = (v1v
x1α2`−1

1 , . . . v2`−1vx1α
2`−1

2`−1 ).
This gives us a nicely written commitment key after first round

v′ = (v1+x1α
2`−1

1 , v1+x1α
2`−1

2 , . . . v1+x1α
2`−1

2`−1 ) = v1+x1α2`−1

[:2`−1]
.

We can apply the induction assumption for step `− 1 to v[:2`−1] which is a commitment

key of length 2`−1. This means the final key for v is:

v =

(
g
∏`−2
j=0

(
1+x`−jα

2j
))(1+x1α2`−1

)

= g
∏`−1
j=0(1+x`−jα

2j ).

Remark than in more generality, this can be written as:

v = v
∏`−1
j=0(1+x`−jα

2j )

1 .

Therefore, if we start with an initial key w = (w1 = gα
n
, wαn+1

2 . . . , vn = gα
2n−1

), the
final key w can be written as:

w = w
∏`−1
j=0(1+x`−jα

2j )

1 = gα
n
∏`−1
j=0(1+x`−jα

2j ).

5.6 Merged Protocol MT-IPP for Optimized Aggregation.

In order to optimize the aggregation contruction based on MIPP and TIPP schemes pre-
sented in Section 4, we will “fuse” together the two schemes MIPP and TIPP. More precisely
MIPP and TIPP are at the origin interactive protocols, that are turned into non-interactive
arguments using Fiat-Shamir transformation. This means that at each round the challenges
are generated by a hash function that is modeled by a random oracle (see Item 6 in MIPP,
Item 6 in TIPP). We will define the fusion protocol MT-IPP that simultaneously generate
the challenges for both MIPP and TIPP, by running a common hash function on both MIPP
and TIPP inputs for each round.

This new protocol will be used to replace the steps Item 8, Item 7 in the proving algo-
rithm Section 4 of the Groth16 Aggregation argument and Item 6, Item 5 in the verification
algorithm Section 4 by a unique prove and verification for the fusioned MT-IPP scheme.
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MT-IPP Scheme.

Relation. First we define the relation proven using the merged MT-IPP argument:

Rmt :=


(
(TAB, UAB), (TC , UC),
ZAB, ZC , r; A,B,C, r

) :
(CMd(A,B), ZAB, r; A,B, r) ∈ Rmipp

∧
(CMs(C), ZC , r; C, r) ∈ Rtipp


for vectors A,C ∈ G1 and B ∈ G2.

Construction. MT-IPP argument works similarly to TIPP and MIPP arguments, by merging
together the operations related to the vectors A,C by using the same commitment keys and
challenges for them. It consists of 3 algorithms MT-IPP = (MT.Setup,MT.Prove,MT.Verify)
described in the following, where we highlighted in grey the main changes needed to merge
MIPP and TIPP.

MT.Setup(1λ,Rtipp)→ crsmt: 1. Define ckkzg, vkkzg as in Item 2 from TIPP.

2. Fix a hash function Hash : Zp ×G12
T → Zp and its description hk.

3. Fix a hash function Hash2 : Zp ×G2
2 ×G2

1 → Zp and its description hk2.

4. Set crsmt := (hk, hk2, ckd, ckkzg, vkkzg).

MT.Prove(crsmt, (TAB, UAB), (TC , UC), ZAB, ZC , r; A,B,C, r)→ πmt:

Loop “split & collapse” for step i
1. ni = ni−1/2 where n0 = n

2. If ni
?
= 1: break

3. Compute L/R inner products as for MIPP & TIPP: (ZL, ZR)AB, (ZL, ZR)C
4. Compute L/R cross commitments: (TL, UL;TR, UR)AB, (TL, UL;TR, UR)C
5. Compute challenge

xi = Hash (xi−1; (ZL, ZR)AB, (ZL, ZR)C , (TL, UL;TR, UR)AB, (TL, UL;TR, UR)C)

6. Compute Hadamard products on vectors

A = A[:n′] ◦Axi
[n′:], B′ = B′[:n′] ◦B′

x−1
i

[n′:] and C = C[:n′] ◦Cxi
[n′:]

7. Compute Hadamard products on keys v1,v2 and w′1 := wr−1

1 ,w′2 := wr−1

2

(v1,v2) = (v1[:n′] ◦ v1
x−1

[n′:],v2[:n′] ◦ v2
x−1

[n′:]) (12)

(w′1,w
′
2) = (w′1[:n′] ◦w

′x
1[n′:]

,w′2[:n′] ◦w
′x
2[n′:]

)

8. Set n = n′

Compute proofs (πvj , πwj )j=1,2 of correctness of final commitment keys exactly as in
Section 5.4 in TIPP.
Set

πmt =
(
A,B,C, (ZL,ZR)AB, (ZL,ZR)C , (TL,UL)AB, (TR,UR)AB,

(TL,UL)C , (TR,UR)C , (v1, v2), (w
′
1, w

′
2), (πvj , πwj )j=1,2

)
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where A,B′, C and (v1, v2), (w
′
1, w

′
2) are the final elements from the loop after collapsing

A,B′ = Br,C and v1,v2,w
′
1,w

′
2.

MT.Verify(crsmt, statement;πmt)→ b:

1. Parse statement = ((TAB, UAB), (TC , UC), ZAB, ZC , r)

2. Reconstruct challenges xi for i = 1, . . . log(n) common to MIPP and TIPP:{
xi = Hash

(
xi−1, (ZL[i],ZR[i])AB, (ZL[i],ZR[i])C , (TL[i],TR[i])AB, (UL[i],UR[i])AB,

(TL[i],TR[i])C , (UL[i],UR[i])C
)}log(n)

i=1

3. Construct final commitments recursively as in TIPP for A,B and as in MIPP for C:

(ZAB, TAB, UAB), (ZC , TC , UC)

4. Verify final commitment keys v1, v2, w
′
1, w

′
2 via KZG as for TIPP.

Final keys v1, v2 are checked once and they are common to MIPP and TIPP.

The security of the MT-IPP protocol follows from the security of MIPP and TIPP as-
suming the random oracle model and the commitment algebraic model (see [BMM+19] for
details). This is a standard AND-composition technique for proofs of two relations (in our
case Rtipp ∧Rmipp).

6 SnarkPack: Practical Aggregation Argument

The resulting argument for aggregation using the MT is described by 3 algorithms SnarkPack =
(SP.Setup, SP.Prove,SP.Verify) as follows:

SP.Setup(1λ,RAGG)→ (pkagg, vkagg)

1. Generate commitment key for CMd : ckd = (v1,v2,w1,w2)← CMd.KG(1λ)
2. Set commitment key for CMs : cks = (v1,v2)
3. Call crsmt ← MT.Setup(1λ,Rtipp)
4. Choose a hash function Hash0 : G4

T → Zp given by its description hk0.
5. Set aggregation keys pkagg = (vk, crsmt, cks, ckd, hk0), vkagg = (vk, crsmt, hk0)

SP.Prove(pkagg,u, π = (A,B,C))→ πagg

1. Parse proving key pkagg := (vk, crsmt, cks, ckd, hk)
2. Parse cks = (v1,v2), ckd = (v1,v2,w1,w2)
3. Commit to A and B : CMd((v1,v2,w1,w2); A,B) = (TAB, UAB)
4. Commit to C : CMs((v1,v2); C) = (TC , UC)
5. Derive random challenge r = Hash0(TAB, UAB, TC , UC) ∈ Zp and set r = {ri}n−1i=0

6. Compute ZAB = Ar ∗B
7. Compute ZC = Cr =

∏n−1
i=0 C

ri
i .

8. Run MT proof:

πmt = MT.Prove(crsmt, (TAB, UAB), (TC , UC), ZAB, r; A,B,C, r) (13)
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9. Set πagg = ((TAB, UAB), (TC , UC), ZAB, ZC , r, πmt)

SP.Verify(vkagg,u, πagg)→ b

1. Parse SNARK statements u = {ai,j}i=1,...n;j=0,...`

2. Parse verification key vkagg := (vk, crsmt, hk)

3. Parse vk :=
(
P = gα, Q = hβ, {Sj}`j=0, H = hγ , D = hδ

)
4. Compute ZSj = S

∑n
i=1 aijri

j for all j = 0 . . . `
5. Derive random challenge r = Hash0(TAB, UAB, TC , UC)
6. Check MT proof b1 ← MT.Verify(crsmt, statement, πmt)
7. Check Groth16 aggregated equations to the decision bit b2:

ZAB
?
= e(P

∑n
i=1 r

i
, Q)e(

∏̀
j=0

ZSj , H)e(ZC , D)

8. Set decision bit b = b1 ∧ b2

7 Implementation

7.1 Setup

We have implemented the scheme in Rust, using the paired [Fil18b] library on the BLS12-
381 curve. The code can be found on the feat-ipp2 branch [Fil21] of the bellperson repository
[Fil18a]. We have taken the original code of the arkwork library [ark19] and modified it both
for fitting the scheme presented in this paper and for performance. All proofs are Groth16
proofs with 350 public inputs, which is similar to the proofs posted by Filecoin miners. All
benchmarks are done on a 32 cores / 64 threads machine with AMD Raizen Threadripper
CPUs.

Parallelism: It is important to note that the protocol allows for some parallel operations
and our implementation makes use of that. Therefore, all benchmarks presented here can
change depending on the degree of parallelism of the machine.

7.2 Trusted Setup

We created a condensed version of the SRS required for our protocol from the powers of tau
transcript of both Zcash [zca18] and Filecoin [Lab18]. The code to assemble the SRS from
two powers of tau can be found at [nik21]. The srs created allows to aggregate up to 219

proofs.

7.3 Optimizations

Merging TIPP and MIPP: We have implemented the optimized version of the scheme
SnarkPack that enabled us to achieve a 20-30% improvement in verification time as well as a
slighter reduction in proof size. The optimization leads to twice less calls to the random oracle
and it saves one KZG proof to verify, more precisely 4 pairings and a logarithmic number of
group multiplications.
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Field elements compression: The proof requires many pairing operations and multiplica-
tions in the target group which employ arithmetic over the finite field Fp12 . We implemented
compression of these field elements that still allow some computations without decompression
using algorithms derived from Diego F. Aranha’s RELIC library [AGM+]. You can find the
specific implementation in this branch [dig21]. This led to a 40% reduction in proof size.

Fig. 2. Proof size: Aggregation vs Batching.

Compressing pairing checks: We randomize each pairing checks of the form

e(A,B)e(C,D)... = T

with a random exponent when verifying so we can compress multiple such checks into one.
This randomized checking technique is borrowed from the Zcash specs [HBHW21]. Specifi-
cally, we have a list P of length n of pairing checks of the form e(A,B)e(C,D)... = T . The
verifier performs the following step to verify all checks in a compressed manner:

1. Choose n randoms scalars ri with r0 = 1
2. Randomize each pairing check Pi for i > 1: e(riAi, Bi)e(riCi, Di) · · · = T ri
3. Compute the miller loop on the left side of each pairing check:mi = Miller((riAi, Bi), (riCi, Di), . . . )
4. Multiply all results together and apply the final exponentiation (FE) at the end:

FE(
∏
i

mi) ==
∏
i

T rii

The final verification equation looks like this:

FE(
∏
i

Miller((riAi, Bi), (rCi, Di) . . . )) ==
∏
i

T rii

Note that doing the random linear combination using the G1 component of the check is much
faster than simply doing the exponentiation on the result (i.e. e(Ai, Bi)

r
i ) as the exponentia-

tion is then in GT.
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Fig. 3. Aggregation Time

7.4 Proof size

The proof size in Fig. 2 compares the size of n proofs versus the size of one aggregated
proof. The figure shows the break even point around 150 proofs where aggregation takes less
space than batching. At 128 proofs, the size of aggregated proof is of 23kB versus 24kB for
individual proofs.

7.5 Aggregation time

Figure 3 shows the time taken by the aggregator to create an aggregated proof. We can see
for example that it can aggregate 1024 proofs in 1.4s. The prover is required to compute a
logarithmic number of multi-exponentiations and expensive pairing products. Our implemen-
tation perform these in parallel and in batches (batching miller loop operations).

Fig. 4. Verifcation time: Aggregation vs Batching.
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7.6 Verification time

The major point of interest in our application to Filecoin is the verification time of Groth16
proofs. Figure 4 shows the comparison between the verification of an aggregated proof and
using batching techniques as described in the zcash protocol [HBHW21]. Verifying Groth16
proofs in batches is what is commonly used in zcash as well as Filecoin to get a sublinear
verification time. The graph shows that batching is more efficient when verifying less 32
Groth16 proofs but aggregation becomes exponentially faster after that point. Our protocol
can verify a 8192 proof in 33ms, including unserialization and it scales logarithmically. Note
the verification algorithm is linear in terms of the public inputs. In our case, 350 public inputs
is small enough to barely count for the total verification time.
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A Assumptions in Generic Group Model

A.1 ASSGP Assumption in GGM

Assumption 5 (ASSGP) The q-ASSGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ←
G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A0, . . . , Aq−1) 6= 1G1 g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai) = 1GT σ ← ([gb
i
]2q−1i=0 , [ga

i
]2q−1i=0 , [hb

i
]2q−1i=0 , [ha

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT (A1, . . . , Aq)← A(gk, σ)

 = negl(λ)

Lemma 5. The q-ASSGP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input (gk, σ), outputs (A0, . . . , Aq−1) ∈ Gn
1 such

that
∏q−1
i=0 e(Ai, h

ai) = 1GT and
∏q−1
i=0 e(Ai, h

bi) = 1GT . Then its GGM extractor outputs

αi(X,Y ) =
∑2q−1

j=0 (xjX
j + yjY

j + cj) then we have:

α0(X,Y ) +Xα1(X,Y ) +X2α2(X,Y ) + · · ·+Xq−1αq−1(X,Y ) = 0 (14)

α0(X,Y ) + Y α1(X,Y ) + Y 2α2(X,Y ) + · · ·+ Y q−1αq−1(X,Y ) = 0 (15)

Then we have:

α0(X,Y ) = −Xα1(X,Y )−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y ) (16)

α0(X,Y ) = −Y α1(X,Y )− Y 2α2(X,Y )− · · · − Y q−1αq−1(X,Y ) (17)

If we substract (17) and (16) we got

0 =(X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (18)

−(X − Y )α1(X,Y ) =(X2 − Y 2)α2(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (19)

Now we can divide by (X − Y ) and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (Xq−2 + Y Xq−3 + · · ·+ Y q−3X + Y q−2)αq−1(X,Y ) (20)

Substitute the expression of −α1(X,Y ) in equation (16) and remark that all Xiαi(X,Y )
terms are vanishing:

α0(X,Y ) = X[(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+ (Xq−2 +Xq−3Y + · · ·+
+XY q−3 + Y q−2)αq−1(X,Y )]−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y )

α0(X,Y ) = XY α2(X,Y ) + (X2Y +XY 2)α3(X,Y ) + · · ·+ (Xq−2Y + · · ·+XY q−2)αq−1(X,Y )

α0(X,Y ) = XY [α2(X,Y ) + (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )]
(21)
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This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (21):

0 = α2(X,Y ) + (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )
(22)

−α2(X,Y ) = (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y ) (23)

Substitute the expression of −α2(X,Y ) in equation (17) and remark that all Y iαi(X,Y )
terms are vanishing:

0 =− Y α1(X,Y )− Y 2[(X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )]−
− Y 3α3(X,Y )− · · · − Y q−1αq−1(X,Y )

Y α1(X,Y ) =Y 2Xα3(X,Y ) + · · ·+ (Xq−3Y 2 +Xq−4Y 3 + · · ·+XY q−2)αq−1(X,Y )]

Y α1(X,Y ) =Y 2X[α3(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )] (24)

This implies that either α1(X,Y ) is a multiple of XY or α1(X,Y ) = 0.
By the GGM assumption, we have that α1(X,Y ) = 0.
We continue by replacing α1(X,Y ) = 0 in equation (24):

0 =α3(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )

−α3(X,Y ) = (X2 +XY + Y 2)α4(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )
(25)

And so on... till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1.

A.2 ASDGP Assumption in GGM

Assumption 6 (ASDGP) The q-ASDGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ←
G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A 6= 1G1 ∨ B 6= 1G2) g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i
, Bi) = 1GT σ ← ([ga

i
, gb

i
, ha

i
, hb

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i
, Bi) = 1GT (A,B)← A(gk, σ)

 = negl(λ)

Lemma 6. The q-ASDGP assumption holds in the generic group model.

Proof. SupposeA is an adversary that on input (gk, σ), outputs (A0, . . . , Aq−1), (B0, . . . , Bq−1)

such that
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i
, Bi) = 1GT and

∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i
, Bi) = 1GT .

Then its GGM extractor outputs αi(X,Y ) =
∑2q−1

j=0 (xjX
j + yjY

j + cj) and βi(X,Y ) =∑2q−1
j=0 (xjX

j + yjY
j + cj) then we have:

α0(X,Y ) +Xα1(X,Y ) + · · ·+Xq−1αq−1(X,Y ) +Xqβ0(X,Y ) + · · ·+X2q−1βq−1(X,Y ) = 0
(26)

α0(X,Y ) + Y α1(X,Y ) + Y 2α2(X,Y ) + Y qβ0(X,Y ) + · · ·+ Y 2q−1βq−1(X,Y ) = 0 (27)
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By substracting (27) and (26) we got

0 = (X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) + (Xq − Y q)βq(X,Y ) + . . . (28)

Now we can factor (X − Y ) and then divide by it and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (X2q−2 + Y X2q−3 + · · ·+ Y 2q−3X + Y 2q−2)β2q−1(X,Y ) (29)

Substitute −α1(X,Y ) in equation (26) and remark that all Xiαi(X,Y ), Xq+iβq+i(X,Y )
terms are vanishing:

α0(X,Y ) = X

q−1∑
i=2

 i−1∑
j=0

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=0

Xi−j−1Y j

βi(X,Y )

−
−

q−1∑
i=2

Xiαi(X,Y )−
2q−1∑
i=q

Xiβi(X,Y )

α0(X,Y ) = X

q−1∑
i=2

 i−1∑
j=1

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=1

Xi−j−1Y j

βi(X,Y )


α0(X,Y ) = XY

q−1∑
i=2

 i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y )


(30)

This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (30):

−α2(X,Y ) =

q−1∑
i=3

 i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y ) (31)

Substitute the expression of −α2(X,Y ) in equation (26) or (27) and remark that all terms
Xiαi(X,Y ), Xiβi(X,Y ) (respectively Y iαi(X,Y ), Y iβi(X,Y )) terms are vanishing

And so on... till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1 and βi(X,Y ) = 0 ∀i =
q . . . 2q−.
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