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Abstract—While side-channel leakage is traditionally evaluated
from a fabricated chip, it is more time-efficient and cost-effective
to do so during the design phase of the chip. We present Pre-
silicon Architecture Correlation Analysis (PACA), a hardware
design analysis methodology to help designer locate and mitigate
the vulnerabilities in the design at an early design stage. PACA
first ranks the individual cells in a design netlist according to
their contribution to the estimated side-channel leakage and
points out the leaky cells. Next, we further reduce the side-
channel leakage by selective replacement of the highest-leaking
cells in the design with a side-channel protection version. We
demonstrate that PACA’s selective replacement can significantly
reduce the overhead of the countermeasure, since traditionally
countermeasures are applied to the whole design. We first use a
simple circuit to introduce and demonstrate the effectiveness of
PACA. Then we further demonstrate that PACA can also handle
complex designs by applying the overall methodology of PACA
on an AES coprocessor, a PRESENT hardware cipher, and on
a complex SoC. We demonstrate it is an achievable goal in the
modern IC design flow to locate and mitigate the leakage source
with low cost.

Index Terms—Pre-silicon, Side-channel leakage, Netlist Analy-
sis, Selective Replacement Countermeasures, Decoupling Circuit.

I. INTRODUCTION

Power-based side-channel leakage occurs when a secure
chip performs operations that depend on an internal secret
value such as a cryptographic key. An adversary who observes
the chip power consumption can derive the internal secret
value through differential analysis techniques that correlate a
power model of the secret activity with the observed power
consumption. In recent years, side-channel vulnerabilities have
risen to prominence and successful side-channel attacks have
been demonstrated on a wide range of devices from small
IoT devices to large cloud computing systems. Therefore, the
evaluation of the side-channel leakage has become a critical
component in the electronic design flow of secure chips to
avoid costly post manufacturing evaluation and reiteration of
the design.

As shown in Fig. 1(a), the conventional method to evaluate
side-channel security vulnerabilities occurs after the chip tape-

Fig. 1: (a) Traditional side-channel leakage assessment flow.
(b) Proposed PACA flow.

out. Designers measure the prototype of the chip to assess the
vulnerability. However, once a side-channel leak is confirmed,
it may be too late to fix it. In the worst case, a side-channel
leakage-related design mistake cannot be fixed until the next
version of the chip. Another disadvantage of side-channel
security evaluation by means of a chip prototype measurement
is that it is difficult to precisely locate the leakage source,
especially in a complex design. Therefore, the conventional
method of applying a side-channel countermeasure, such as
power-randomization, hiding, or masking, is to proactively
protect the whole design. However, these techniques will
introduce a large overhead, with a cost proportional to the
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size of the module that must be protected. The overhead can
be reduced by limiting the countermeasures to a small section
of the chip, but then the designer must identify the precise
cells which contribute to the side-channel leakage. To our
knowledge, there are no tools to identify the source of side-
channel leakage in a design at the granularity of a cell.

Motivated by the challenges of power-based side-channel
leakage mitigation in modern chip design, we describe Pre-
silicon Architecture Correlation Analysis (PACA). PACA in-
troduces two major and novel contributions.

• PACA develops a gate-level netlist analysis methodology
that enables designers to precisely identify the source of
side-channel leakage in a design at the granularity of
a single cell. PACA operates on the pre-silicon design
description. Using experimental results from a practical
SoC design, we show that only a small number of cells
are significantly contributing to side-channel leakage.

• We propose selective replacement as a low-cost side-
channel countermeasure. By protecting only the most
leaky cells in a design, the overall side-channel leakage
can be significantly reduced, and at a very low cost.
We demonstrate selective replacement on an AES Sbox,
where we replace the leaky cells identified by PACA
with side-channel protected cells that use internal energy
buffering [1].

Fig. 1(b) illustrates the proposed PACA methodology. Com-
pared to the traditional side-channel leakage assessment, all the
procedures in PACA happen before the chip tape-out. Given
a target design, PACA estimates power measurements from
the DUT based using power simulation. PACA then performs
side-channel leakage assessment of the design activity of in-
terest (such as encryption). Using the side-channel assessment,
PACA then ranks all the cells in a netlist with respect to their
contributions to the side-channel leakage (Section III). The
ranking is numerically expressed using the Leakage Impact
Factor (LIF). PACA then applies selective replacement to the
high-LIF cells, thereby protecting the design while simultane-
ously reducing the overhead of side-channel countermeasures.

The structure of the paper is as follows. The next sec-
tion reviews related work in simulation-based side-channel
leakage assessment. Section III describes the proposed PACA
methodology. In Section IV, we explain and demonstrate
the effectiveness of the methodology on a simple circuit.
Next, we apply PACA to a SoC. We analyze an individual
module as well as the impact of integrating this module in a
complete SoC. Section V and Section VI discuss the PACA
methodology on two encryption modules, an AES coprocessor
and a PRESENT encryption module respectively. Section VII
shows the result of applying the methodology to the analysis
of an SoC bus transfer. In section VIII, we demonstrate our
proposed countermeasure concept of selective replacement.
We provide several discussions about the relevant issues of
ACA in section IX. We then conclude the paper.

II. RELATED WORK

The structure of PACA has three stages:
• Stage-I: Power simulation and leakage detection

• Stage-II: Identification of leakage source in the design
• Stage-III: Selective replacement mitigation of leakage

sources
PACA’s major contributions and novelty are at Stage-II and
Stage-III. Most of the existing efforts, academic as well as in-
dustrial, center around pre-silicon side-channel emulation and
are only focusing on power simulation and leakage detection
(Stage-I). However, the problem is that even though one can
detect the side-channel leakage at the pre-silicon early design
stage, it is still very hard to locate problematic elements in the
design and fix them. The leakage source identification (Stage-
II) and leakage mitigation (Stage-III) are unique contributions
by PACA.

a) Existing Work in Power simulation and Leakage De-
tection (Stage-I)

Many existing works have investigated simulation tech-
niques to simulate the side-channel effects at early design
time (pre-silicon). These works present simulation methods,
and exploit different aspects in simulation techniques, such as
simulation accuracy, speed, and automation, to reproducing
side-channel leakage and to test countermeasure at design
time. We would like to specifically distinguish PACA
from those works. ELMO models power-based side-channel
leakage based on the instruction opcode and operand values [2]
. Similarly, MAPS creates an ISA based simulator specifically
for Cortex-M3 [3]. Instruction-based power models can cap-
ture some transition-based leakage, but they miss side-channel
leakage stemming from the (potentially unknown) processor-
internal effects [4]. Other techniques have also been proposed
to simulate at lower abstraction level (gate-level, transistor
level) in order to achieve higher simulation accuracy. One
representative technique is CASCADE [5]. This work investi-
gates power simulation at gate-level and transistor level. CAS-
CADE is an EDA tools-based framework to automate power
simulation and side-channel leakage evaluation at design-
time. Similarly, Regazzoni et al. proposed a simulation-based
methodology to evaluate the side-channel resistance of a cryp-
tographic functional units [6]. This work used transistor-level
simulation (SPICE-level) to generate simulated power traces
and apply DPA and CPA attacks. Debande et al. proposed
profile modeling for improving the accuracy of simulation
[7]. Recent developed commercial tools such as Virtualyzr by
Secure IC [8] and FortifyIQ [9] also only focus on providing
design-time analysis services including power simulations
and side-channel evaluations on the simulated traces. Those
aforementioned works targeted to build up accurate simulation
models while none of these methods investigates to identify the
leakage source in the design, which is the main contribution
of PACA.

b) Existing Work in Identification and mitigation of Leak-
age Source (Stage-II and Stage-III)

Centering around the topic of how designers can use design
data to identify the source of side-channel leakage in a design,
several research works have popped up in recent years. We
categorize those efforts into different abstraction levels. At
the RTL-level, RTL-PSC [10] and PARAM [11] developed
pre-silicon methods to simulate the power consumption and
identify specific state elements that contribute to side-channel
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leakage. However, both works have limitations. First, the
simulation accuracy is low. Since they simulate power at the
register-transfer level (RTL), the internal state of the design
is fully visible, but the combinational logic remains hidden in
high-level expressions, and low-level effects such as glitches
as well as the effects of physical placement and routing are
ignored. Second, both works can only identify the leakage
source to the granularity of individual design modules. At
the gate-level, Karna [12] uses structural information from
the layout. Karna partitions a chip spatially in a grid, and
determines a TVLA leakage metric [13] for each grid cell.
Karna thus identifies side-channel leakage with the spatial
locality. The spatial resolution of Karna is limited by the layout
area over which TVLA is computed, which may still contain
many cells. A second challenge is that TVLA is not an exact
leakage metric but may lead to false positives.

Another branch of the efforts to identify leakage sources
related to information flow tracking. Information flow tracking
techniques automatically identify causal dependencies between
the different parts of a design, and therefore these techniques
can analyze the dependencies between a sensitive or secret
input and an observable design output. At the register-transfer
level, SecVerilog analyzes hardware information flow to detect
timing-based channels [14]. At the gate-level, GLIFT similarly
detects timing-dependent information leaks [15]. However,
information-flow-based mechanisms cannot express power-
based side-channel leakage.

PACA also focuses on identifying the specific design el-
ements that cause side-channel leakage. Compared to the
aforementioned works, in terms of accuracy, PACA operates
at the gate-level, which offers a good trade-off between
design abstraction (simulation speed) and side-channel leakage
modeling detail. In terms of leakage source granularity PACA
can identify, PACA is able to narrow down the source of
side-channel leakage to individual gates. This is considerably
more precise than any related technique previously discussed.
Because of the high resolution in root-cause identification of
side-channel leakage, targeted countermeasures can be applied.
As previous authors have repeatedly shown, side-channel leaks
can often be attributed to a single gate [16]. We will show that
the selective replacement used in PACA is both area-efficient
and effective at mitigating the side-channel leakage.

III. PACA METHODOLOGY FOR IDENTIFYING THE LEAKY
CELLS

In this section, we describe the PACA methodology for
identifying the Leaky Cells by computing Leakage Impact
Factor for each cell in the design. The LIF is a dimensionless
number that expresses the contribution of the cell’s power
consumption to the side-channel leakage of a design, and a
higher LIF indicates a higher contribution. Fig. 2 demonstrates
how the Leakage Impact Factor for each gate can be derived
using the existing simulation design flow with additional
postprocessing. PACA uses toggle traces as well as power
traces, which are extracted from gate-level logic simulation
and gate-level power simulation respectively. The power traces
are combined with the selected leakage model to compute the

Fig. 2: PACA flow for Identifying Leaky Cell

leakage time interval, and the leakage estimate for leakage
model. Finally, the toggle traces, the leakage time interval,
and the leakage estimate are combined into the LIF per cell.

A. Power Simulation

In this preparation stage, PACA takes RTL design files and
generate design netlist through logic synthesis. PACA per-
forms gate-level simulations with a user-defined stimuli. The
purpose of this stage is to generate toggle traces (Value Change
Dump (VCD)), and subsequently, simulated power traces.
PACA uses gate-level power modeling on post-synthesis or
post-layout netlists. Power modeling at the gate-level abstrac-
tion level strikes a balance between simulation efficiency
and accuracy. It is applicable to the complete chip, while
still correctly characterizing sub-cycle-level power effects. In
contrast, RTL power modeling or toggle-counting misses many
of the important electrical effects in side-channel leakage, and
transistor-level power modeling is too complex to achieve
at chip-level over extended periods of time. Section IX fur-
ther elaborates on the simulation accuracy. The experimental
results shown in this paper are made for a 180nm CMOS
standard cell technology.

B. Selecting the Leakage Time Interval

The next step of PACA is to narrow down the time window
over which the LIF are computed. The rationale is that we
want to determine the LIF over an interval during which the
leakage model L(V ) is valid and during which side-channel
leakage may occur.

The leakage model, in the context of power-based side-
channel analysis, is an estimate for the information leakage
incurred through power consumption variations. The leakage
model L is a function computed over a secret intermediate
variable V . The objective of side-channel analysis is to reveal
the value of V through many observations of the measured
power consumption and correlating those observations with
L(V ). Popular choices for L(V ) are the Hamming Weight or
the Hamming Distance on V ; the Hamming Weight reflects
value-based power leakage in CMOS, while the Hamming
Distance reflects distance-based power leakage in CMOS.
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TABLE I: Pearson Correlation Threshold Levels as a Function
Confidence

Confidence Interval n=600 n=1000 n=2000
99% ±0.105 ±0.081 ±0.058
95% ±0.080 ±0.062 ±0.044
90% ±0.067 ±0.052 ±0.037

The objective of PACA is to identify, within a gate-level
netlist, those cells that realize L(V ). Naturally, there are
many possible choices for the leakage function, and PACA
makes the assumption that the designer is able to provide
L(V ). If the algorithm and implementation are known, such a
leakage function can always be found. For example, a common
choice for L(V ) for AES hardware implementations is the
Hamming Distance between the state of different rounds. For
AES software implementations, the Hamming Weight of one
or a few bytes of the AES state is typically used. However,
V does not have to be related to a cryptographic key, and any
sensitive value processed in a design could be analyzed. For
example, PACA can be used to study bus transfer operations
in an SoC. In that case, V is a sensitive value transferred over
the bus, and L(V ) is the Hamming weight of the value. The
Hamming weight reflects the pre-charged nature of a shared
bus [17].

We now narrow the search window to the Leakage Time
Interval using power correlation. We use simulated system-
level power traces P and correlate them with the traces from
the leakage model L(V ). We then compute the correlation ρ
as

ρL(V ),t =
cov(L(V ), P (t))

σL(V )σP
(1)

where:

cov = the covariance
σL(V ) = the standard deviation of L(V )
σP = the standard deviation of P

The Leakage Time Interval is defined as the time window(s)
for which

ρL(V ),t > ρthreshold (2)

The threshold level ρthreshold is based on the designer’s
definition of a distinguishable correlation peak. We can use
the Pearson Correlation Confidence Interval to define bounds
for ρthreshold. Table I illustrates several choices for ρthreshold.
Under the hypothesis that the true ρ is zero, the table shows
confidence intervals in function of the number of traces (n)
and the confidence level. Hence, if the observed ρ falls outside
of the confidence interval then we reject the hypothesis and
conclude that the design shows leakage.

Because we are computing ρ in a noiseless, controlled
environment with full knowledge of the secure asset, we can
find sharp correlation peaks with a limited number of traces.

C. Architecture Correlation for Computing Leakage Impact
Factor

Within the Leakage Time Interval, we next perform the
architecture correlation as follows. First, we obtain a toggle

TABLE II: Example of Architecture Correlation

Stimuli S0 S1 S2 S3 Cij

Leakage Model Toggle Activity (Hj ) 1 -1 -1 1
net0 (K0 ) 1 -1 -1 1 4
net1 (K1 ) 1 1 1 1 0
net2 (K2) -1 1 -1 -1 -2

trace from a gate-level simulation of the design. A toggle trace
Ki records the activity of each net i (driven by cell i) using the
discrete values −1 and +1. If a cell has multiple outputs, then
we compute the architecture correlation and leakage impact
factor for each output separately. For each time stamp t in the
simulation, a toggle trace for net i has the value −1 if the net
does not change value, and it has the value +1 if the net does
change value. We also obtain a toggle trace H that represents
the toggle activities of the leakage model L(V ).

a) Architecture Correlation:
Next, we perform Architecture Correlation. For each net (or

gate driver), we compute the dot product of the toggle trace
of the leakage model H with the toggle trace of net i.

Ci = Ki ·H (3)

A high value in Ci has a different meaning compared to a
high value in ρ. A high value in ρ reflects a strong dependency
between the overall power dissipation and the leakage model.
Therefore, a high ρ indicates side-channel leakage. On the
other hand, a high value in Ci reflects a strong dependency
between activity of net i and the leakage model. A high Ci

therefore means that the assumed leakage model is realized
by net i. Table II describes an example computation for the
architecture correlation factor Ci. The second row records the
toggle activities of the leakage model for different stimuli. The
leakage model value toggles for the first stimuli S0, it does not
toggle for stimuli S1 and S2, and toggles for S3. At the same
time, net0 also only toggles on S0 and S3 which matches
the leakage model in all the four stimuli, therefore, the net0’s
correlation score is 4. On the other hand, net1 and net2 have
a weaker correlations as 0 and -2 respectively. Overall, a more
positive and larger architecture correlation indicates that a net
approximates the leakage model more closely.

b) Computing Leakage Impact Factors:
The final step of PACA computes the Leakage Impact Factor

Fi of the driver of each net i, as the Architecture Correlation of
net i, weighted with the average power consumption Pi of the
driver of net i normalize by the average power consumption
of the whole design PT , during the leakage time interval
averaged over all stimuli.

Fi = Ci
Pi

PT
(4)

This additional weighing factor Pi

PT
is needed because the

architecture correlation factor by itself ignores the relative
contribution of a cell in the side-channel leakage power
footprint. Once the LIF Fi of all cells are determined, they are
ranked from highest to lowest. The cells with the highest LIF
make the greatest contribution to side-channel leakage. This
list can then be used by a designer to efficiently optimize the
netlist with countermeasures.
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IV. PACA ON ENCRYPTION SUBCIRCUIT

This section is an explanatory walk through of PACA
operations in detail on a simple design illustrated in Fig.
3 including a key-addition and an AES S-box. The design
combines an 8-bit secret key k and a 8-bit plaintext p stored in
register key_reg and register text_in_reg respectively.
The resulting addition is stored in register sa_reg which
will drive the input of sbox logic. An additional register is
placed in front of the SBOX to separate the sensitive signal
key_reg⊕text_in_reg from other combinational logic.
This design uses flip-flops with asynchronous reset, and the
testbench asserts reset before every new plaintext and every
new key load. We apply PACA using a leakage power model
of the output of the key addition, which is expressed as the
hamming weight of the key addition result, or hw(p ⊕ k).
We expect PACA to identify the register sa_reg as the
major contributor of side-channel leakage, i.e. the cells whose
power consumption most closely match the power model. The

Fig. 3: (a) AES sbox setup with Register Stages. (b) AES sbox
setup without Registers.

PACA procedure starts with the collection of power traces of
a gate-level model of the design. We collected power traces
for 600 random inputs under a fixed key. The power traces
are used in a bitwise correlation analysis that matches the
leakage model hw(p⊕ k) to the measurements. Fig. 4 shows
resulting bitwise correlation peak on bit-7 (Most Significant
Bit). Peak correlation occurs right after sa_reg is updated.
Using the power traces, we then apply the PACA methodology.
PACA computes the Leakage Impact factor for each cell in
the overall design. Table III shows the distribution of resultant
LIF for the cells in the whole design (in total 406 cells). The
distribution is highly skewed, indicating that only a very small
portion of the cells that actually contribute to the side-channel
leakage. Among all the cells in the design, sa_reg[7] ranks
the top in LIF ranking which means PACA identifies the
register cells belonging to sa_reg[7] as the most leaky cell.
This is an expected result, since gates beyond the fan-out of
sa_reg[7] become less correlated to the power model, and
hence contribute less to the side-channel correlation peak.

PACA can further be demonstrated by removing sa_reg
and running the simulation again.Table IV shows the distri-

Fig. 4: Leakage peak for AES sbox with register stage setup.
intermediate data = key reg ⊕ text in reg

bution LIF of the design without stage registers. In this case,
the most leaky cells identified by PACA are in the first level
of logic of the SBOX. This illustrates that PACA will identify
both sequential as well as combinational cells as side-channel
leakage sources.

TABLE III: LIF Distribution Data for AES sbox with register
stage setup

LIF Range No. of Cells
2.3 ∼ 3.0 1
1.6 ∼ 2.3 1
0.9 ∼ 1.6 4
0.2 ∼ 0.9 3
-0.5 ∼ 0.2 397

TABLE IV: LIF Distribution Data for AES sbox without
registers stage setup

LIF Range No. of Cells
2.3 ∼ 3.0 2
1.6 ∼ 2.3 4
0.9 ∼ 1.6 8
0.2 ∼ 0.9 10
-0.5 ∼ 0.2 374

V. PACA ON AN AES HARDWARE ENGINE

After introducing the insight of PACA, we now apply
PACA on an AES coprocessor in this section. The AES
implementation runs at one round per clock cycle. The leakage
power model used by PACA is the Hamming distance on the
previous and current values of one bit in the AES state register.
We analyze the output of the first round to find the leakage
time interval. Fig. 5 reveals a sharp correlation peak when the
SBOX output is computed, and we use these correlation peaks
to determine ρthreshold at 99% confidence level with 600
power traces. This gives a leakage time interval of 24.6ns (for
an AES running at 41.67ns clock period). Next, we perform
architecture correlation. Since there are 128 bits of state, there
are 128 different leakage models to consider using architecture
correlation. In the following, we present the results for a single
leaking bit. Our conclusions remain valid for the entire AES
state by repeating PACA for each state bit. PACA yields a
list of cells in the descending order of their Leakage Impact
Factor (LIF) value, which signifies the individual contribution
of these cells to side channel leakage.
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Fig. 5: Leakage Time Interval for the AES hardware engine.
Leakage Model: HD(AES state bit).

TABLE V: LIF Distribution Data for the AES Hardware
Engine using HD (AES state bit) as the leakage model

LIF Range No. of Cells
1.9 ∼ 2.5 1
1.3 ∼ 1.9 1
0.7 ∼ 1.3 0
0.1 ∼ 0.7 58
-0.5 ∼ 0.1 9525

Fig. 6: LIF Distribution for the AES hardware engine.
Leakage Model: HD(AES state bit); Logarithmic Y scale.

Result Analysis: We analyzed on the cell ranking list from
PACA output, Fig. 6 illustrates the LIF distribution for all
the cells in the AES design based on the PACA output and
Table V lists the corresponding data. The distribution is highly
skewed with only a small amount of cells have high LIF. This
indicates that only a small number of cells actively contribute
to the side-channel leakage produced following the selected
leakage model. The most leaky cell, as identified by the LIF
ranking, is a flip-flop of the state-register. Furthermore, the
cell ranked just below this register is a cell in the SBOX that
is directly driven by this register.

Runtime Evaluation: Table VIII shows the runtime over-
head of the analysis. We use a 2.3GHz Intel Xeon E5-2699
design server with 128GB of main memory. The complexity
of this AES design is 9585 cells. The runtime is broken down
into gate-level power simulation (per stimuli), and PACA (per
AES state bit). Hence, a full AES design can be analyzed with
600 traces in about 2 hours.

VI. PACA ON PRESENT HARDWARE ENGINE

We now apply PACA to PRESENT, a light-weight block
cipher proposed by Bogdanov et al [18]. Our PRESENT
implementation has a 64-bit input, 80-bit key and runs at one

TABLE VI: Runtime Evaluation for AES Hardware Engine
(9,585 cells)

Procedure Runtime
s/stimuli

Power Simulation 12.28
Architecture Correlation Analysis (per AES bit) 0.268

Fig. 7: Leakage Time Interval for the PRESENT hardware
engine. Leakage Model: HD(PRESENT state bit).

round per cycle with clock frequency at 100Mhz. PRESENT
has 31 rounds in total for encryption. In this case study, the
target leakage model PACA analysis is the Hamming Distance
of adjacent round values (second round and third round) in the
PRESENT state register. The PRESENT design has in total
653 cells.

After gate-level simulation on PRESENT and implementing
correlation analysis on the simulated power traces, we observe
a sharp leakage peak (Fig. 7). Using a ρthreshold at 99%
confidence level for 600 traces (0.105), we find a leakage
time interval of 0.41ns (for PRESENT running at 10ns clock
period). Next, for this leakage time interval, PACA applies
architecture correlation and generates a ranked list cells in the
PRESENT design based on the their Leakage Impact Factor
value. Without loss of generality to other bits, in the following
we present the PACA result for a single leaky bit (bit-7).

Result Analysis: After analyzing the cell ranking LIF
distribution for all the cells in the PRESENT design, we get
the LIF distribution as plot in Fig. 8 and its corresponding
data in Table VII. The highly skewed LIF distribution shows
that 2 cells stand out from the 653 cells. The most leaky cell
is a flip-flop in the state-register and followed by the XOR
gate connected to the output of the state-register. After these
cells, there is a sharp drop-off in LIF factors, indicating that
the remaining cells only contribute marginally to the leakage.

Runtime Evaluation: Table X shows the runtime overhead
of this analysis. The complexity of the PRESENT cipher is
653 cells, a full design can be analyzed with 600 traces in
about 1.5 hours.

TABLE VIII: Runtime Evaluation for PRESENT Hardware
Engine (653 cells)

Procedure Runtime
s/stimuli

Power Simulation 4.26
Architecture Correlation Analysis (per PRESENT bit) 0.06
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TABLE VII: LIF Distribution Data for the PRESENT Hard-
ware Engine using HD (PRESENT state bit) as the leakage
model

LIF Range No. of Cells
1.5 ∼ 2 2

1.0 ∼ 1.5 0
0.5 ∼ 1.0 0
0.0 ∼ 0.5 579
-0.5 ∼ 0.0 72

Fig. 8: LIF distribution for the PRESENT Hardware Engine.
Leakage Model: HD(PRESENT state bit); Logarithmic Y
scale.

Fig. 9: SoC block diagram.

VII. PACA OF AN SOC BUS TRANSFER

PACA applies to any activity with a power leakage model.
We demonstrate how to analyze the bus interface logic of
an SoC for side-channel leakage with PACA. As shown in
the Fig. 9, the SoC includes a two-level AMBA bus with
on-chip memory and several coprocessors, including an
AES encryption engine. To perform a hardware-accelerated
encryption, the LEON3 writes secure assets (128 bits of
plaintext and 128 bits of key material) to the AES coprocessor,
triggers the encryption, and waits for a completion flag. The
LEON3 then retrieves the ciphertext. A bus transfer affects a
large number of components in the SoC, including the caches,
the write buffers, the AMBA AHB and APB bus bridges, and
finally the memory-mapped interface in the coprocessor. Any
of these can potentially contribute to side-channel leakage,
and PACA helps to identify which components leak most. We
use the Hamming weight of plaintext inputs for encryption
as the leakage model. The input data (secure asset) is 128-bit

Fig. 10: Leakage Time Interval for the SoC bus transfer.
Leakage Model: HW(transferred bit).

wide, and therefore there are 128 different leakage models
to consider. The transfer to the AES coprocessor consists of
four 32-bit transfers. Using correlation analysis of the leakage
model with the simulated power trace over an interval of
these four transfers, we obtain several sharp correlation peaks
shown in Fig. 10. We use these peaks to fix ρthreshold at
99.0% confidence level for 600 power traces. The leakage
time interval is 1.082µs, roughly 26 simulated clock cycles.
As before, we present the analysis for a single bit. Since the
leakage time interval at the level of SoC covers many different
components, we limit the discussion to cells included within
the LEON3 core.

TABLE IX: LIF Distribution Data for the SoC Bus Transfer
Leakage Model: HW(transferred bit)

LIF Range No. of Cells
1.9 ∼ 2.5 1
1.3 ∼ 1.9 0
0.7 ∼ 1.3 8
0.1 ∼ 0.7 332
-0.5 ∼ 0.1 99563

Fig. 11: LIF distribution for the SoC bus transfer.
Leakage Model: HW(transferred bit); Logarithmic Y scale.

Result Analysis: From the PACA output, we obtained the
cell ranking based on LIF. Fig. 11 illustrates the LIF distribu-
tion for all cells in the SoC and Table IX shows corresponding
distribution data. Investigating the results of PACA reveals
both expected and unexpected sources of leakage. Top-LIF
cells include the flip-flops from the register file, flip-flops from
the pipeline operand register of the execution stage, and flip-
flops from the pipeline result register of the memory access
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stage. We notice that cells in the data cache of LEON3 are
pointed out by PACA as sources of side channel leakage.
This is unexpected because the data cache is disabled by
our testbench during the experiment. With the cache disabled,
stores of the secure data asset should be directly passed to the
memory controller. However, PACA reveals cell activity in the
data cache correlating with the secure data asset. Investigation
of the specific cells reveals that the leakage is due to a Write
Buffer which is integrated in the data cache. The Write Buffer
remains active even if the data cache is disabled and is used
by LEON3 to ensure that stores do not impede the progress
of the execution pipeline by putting pending stores in the
Write Buffer. We concluded that identifying such cells would
be extremely hard without the systematic analysis offered by
PACA. The cells inside the Instruction Trace Buffer (ITB),
integrated in the LEON3 core, are another unanticipated source
of leakage exposed by PACA on this time window. In our case,
LEON3 contains 1 KiloByte of memory as ITB for storing
executed instructions. The ITB is implemented as a circular
buffer and can hold upto 64 executed instructions. The source
of side channel leakage revealed here are the memory cells in
the ITB. The ITB is a source of side-channel leakage due to
our test mechanism where the plaintext data is a part of the
operands in a few of the instructions. These retired instructions
end up in the ITB after execution. The existence of the ITB
further means that the instructions carrying the secure data
asset can persist in the LEON3 core for much longer than
intended.

Runtime Evaluation: Table X shows the runtime overhead
of this analysis. The complexity of the SoC is 99,904 cells,
10 times the size of the AES hardware engine. Thus, a full
design can be analyzed with 600 traces in about 60 hours.

TABLE X: Runtime Evaluation for SoC Bus Transfer (99,904
cells)

Procedure Runtime
s/stimuli

Power Simulation 329.00
Architecture Correlation Analysis (per AES bit) 32.27

VIII. SELECTIVE REPLACEMENT COUNTERMEASURE

In the previous section, we demonstrate that PACA can
effectively point out the leaky cells from a complex design.
And we find that those leaky cells are only a very small portion
of cells in the design but actually significantly contribute to
the side-channel leakage. In this section, we demonstrate how
PACA can be used to implement cost-effective countermeasure
by only replacing most leaky cells with its protected version.

A. Background in Circuit-level Countermeasures

Existing countermeasures against power-based side-channel
attacks eliminate or reduce the dependencies between the
power consumption and secret information. Secure logic styles
are among the first countermeasures developed. Secure logic
styles are special logic styles that hide the side-channel
leakage by dissipating a constant amount of power. They

Fig. 12: Schematic of the decoupling unit.

use balancing techniques, and many variants of them have
been developed over the years: WDDL [19], DRSL [20],
MDPL [21], LMDPL [22]. Secure logic styles are generally
too expensive to be applied across an entire circuit which will
cost approximately area overhead of more than 3 times [1].
As the second category, masking countermeasures, apply logic
transformations to a design to eliminate the statistical relation
between side-channel leakage and power consumption. The
masking countermeasure conceals every intermediate value in
a circuit as a random number [23], [24], [25], [26]. Such coun-
termeasures remain vulnerable to glitches and cross-coupling
[16], [27]. Threshold implementations extend the idea of
masking while paying attention to glitches [28]. However,
a generic architecture transformation technique that is low-
cost and that deals with non-linear circuit effects remains
elusive. Threshold implementation requires extra randomness
which will cause other issues regarding how much randomness
is needed, how frequent the random number needs to be
refreshed, etc. The current approach for the aforementioned
countermeasure techniques is to apply protection to the entire
circuit.

We propose a selective replacement which applies the coun-
termeasure locally to the individual leaky cells identified in the
previous stage. We prefer this strategy over an earlier proposed
strategy using a dual-rail logic style based countermeasure. A
disadvantage for the dual-rail approach in selective replace-
ment is that for each cell replacement, single-rail to dual-rail
and dual-rail to single-rail interface circuits are needed. The
conversion of a single-rail flip-flop to WDDL needs a master-
slave dynamic differential logic [19] which doubles the clock
frequency. This complicates selective replacement, making a
single-cell replacement strategy preferable.

Our selective replacement is based on Gornik et. al, a
novel gate-level countermeasure which isolates the power
consumption of secure sensitive circuit from main power
supply. The isolation is achieved by using a decoupling cell
composed of buffering capacitance [1]. The decoupling cell is
placed between the main power supply and individual cell. The
main advantage of this countermeasure is that it won’t cause
any performance overhead. However, according to Gornik’s
strategy, the decoupling cell design has to be applied globally
to the entire circuit. By identifying individual leaky cells,
PACA can further optimize this countermeasure with applying
the countermeasure locally.

B. Implementation of the Decoupling Cell

In this subsection, we explain the design of the decoupling
cell.
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1) Topology and Operation
The decoupling cell isolates the power node of the leaky

gate from the global supply that powers the rest of the circuitry
to mask the leakage. Fig. 12 demonstrates the topology of the
decoupling unit. This unit is composed of five switches, S1 -
S5, and a capacitor, C1. The switches are controlled by clock
signals that are adjusted to operate the circuit in three different
modes, namely charging (CH), discharging (DS), and buffering
(BF) modes. In the CH mode, switches S1 and S3 are closed
to charge up the capacitor through the global supply node,
VDDGL. The rest of the switches S2, S4, and S5 are open. In
the BF mode, the previously charged capacitor powers up the
leaky gate. In this mode, switches S1 and S3 are opened, S2
and S5 are closed, and S4 is remained open. Since S1 and S3
are open during the BF mode, the power rail of the leaky gate,
VDDISO, is isolated from the global power rail. Also, S2 is
closed to further reduce the power leakage from the leaky gate
by shorting the intermediate connection to ground [1]. The
capacitor C1 can supply power to the leaky gate for a certain
amount of time as it discharges over time; therefore, it needs
to be recharged. However, before recharging and establishing
the connection between VDDGL, the capacitor needs to be
fully discharged to remove the power data dependency of the
leaky gate. The purpose of this action is dissipating the same
amount of power in every operation cycle of the decoupling
cell to mask the real power consumption of the leaky gate.
Hence, after the BF mode, the circuit enters the DS mode to
discharge the remaining charge. In this mode, S4 is closed,
and S2 remained closed (again for the enhanced isolation), S5
is opened, S1 and S3 stay open. The aspect ratios of the switch
transistors M1-M5 and M7-M8 were adjusted to optimize the
speed and power consumption of the circuit. Together with
the size of the capacitor M6, the W/L ratio of M4 determines
the current capacity and current driving capability of the
decoupling circuit, respectively. Thus, we selected the sizes of
M4 and M6 to be able to provide the required current to the
leaky gate. Increasing the size of the capacitor or the width of
M4 may cause an unnecessarily high current driving capability,
which increases the power consumption of the circuit. In our
design, the power consumption of the decoupling cell is 19.64
nW. We set the aspect ratios of M1-M3, M5, M7, and M8 to
900µm, the highest possible width that can be set in 180 nm
technology, to reduce the resistivity of these switches and in
turn to increase the speed of charging and discharging modes.
Rise and fall times during charging and discharging modes are
253.27 ps and 184.3 ps, respectively. Since the voltage drop
on the capacitor (V (C1) in Fig. 12) decreases in the BF mode
and the current flow between the decoupling unit and the leaky
gate is not continuous due to charging and discharging, we
combine three decoupling units to ensure that the leaky gate
is supplied with adequate voltage continuously in the entire
operation interval. Fig. 13 demonstrates the block diagram of
the decoupling cell, in which the circuit structure is the same
for each decoupling unit, but the clock inputs change to adjust
the timing of the modes (BF, CH, DS) for each unit.

Fig. 14 illustrates the clock signals (CLK1, CLK2, CLK3,)
for controlling the decoupling cell, voltages on the capacitors
(V(C1), V(C2), V(C3),) for each decoupling unit, and the

Fig. 13: Block diagram showing the placement of the decou-
pling cell.

Fig. 14: Simulation results of the decoupling cell.

output voltage of the decoupling cell (VDDISO) connected
to the supply node of the leaky gate as shown in Fig.13. At
least one decoupling unit is in the BF mode throughout the
operation as can be seen. Also, one can observe that the output
of the decoupling cell varies between 1.25 V to 1.6 V (when
the global supply voltage is equal to 1.8 V). The output voltage
changes because of the voltage decrease on the capacitors
during the BF mode and voltage drops and rises occurring
in the DS and CH modes. To minimize the voltage variation,
we have modified the timing of the clock signals to have at
least two of the capacitor in the BF mode as demonstrated in
Fig. 14. This will ensure a certain minimum output voltage
(1.25 V in our case) and avoid significant voltage drops at the
output that may cause to the dysfunction of the leaky gate.

2) Setup for the Transistor Level Simulations
The power consumption of the s-box, with and without de-

coupling cell replacement, was analyzed in Cadence Virtuoso
Design Environment [29]. The gate-level netlist of the Sbox
circuit was imported as a schematic cell view by using the
built-in import tool of Virtuoso. A functional cell view written
in Verilog Hardware Description Language (HDL) generates
the digital inputs of the s-box which are namely the 2-byte
plain-text and 2-byte cipher-text, and the clock signal. We used
Spectre Analog Mixed-Signal (AMS) Designer [30], to be able
to run the Verilog code which is a digital design component in
terms of the signals that are produced and observe the power
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Fig. 15: Impact on Pearson Correlation Peak before and after
replacing only the Top-1 LIF cell by decoupling cell.

trace of the s-box, an analog signal, in a single simulation
environment.

We run simulations both with and without the replacement
of the decoupling cell. For the replacement, the decoupling
cell was connected to the supply node of the leaky gate in the
schematic. For both cases, the current drawn from the global
supply node was measured. The results of these measurements
essentially gave the power traces, which were then exported
from Virtuoso for post-processing and correlation analysis.

C. Selective Replacement Result

We demonstrate the effectiveness of our proposed selective
replacement with our AES sbox experiment. We selected
top-ranking LIF cell sa_reg[7] identified by PACA and
decoupled it while leaving the rest of the design unmodified.
Then, we reran the power simulation and re-evaluated the
Pearson correlation under the same power model to detect
the impact on the resulting correlation peak. Fig.15 shows the
effect of replacing a single top-ranking LIF cell in the SBOX.
The correlation drops dramatically and is now well below the
ρthreshold selected for this confidence level.

In terms of the overhead of PACA selective replacement
countermeasure, we introduce a single extra decoupling cell
in the design but achieve significant improvement in the side-
channel security. In the originally proposed decoupling cell
methodology [1], the designer needs to decouple every cells
in the design. This leads to an increase in the design area by
a factor of 10. As we demonstrated in the previous section,
only a very small portion of cells in the design actually
contributes to the side-channel leakage. Therefore, selective
replacement is a highly-targeted and low-cost countermeasure.
Traditional countermeasure such as threshold implementation
[28], wave dynamic differential logic (WDDL) [19], improved
masked dual-rail precharge logic (iMDPL) [31], et al. will
at least double or triple the design area. Finally, in terms
of performance our proposed approach does not affect the
performance, in contrast to traditional countermeasures.

IX. DISCUSSION

In the final section, we elaborate on several concerns
relevant to PACA including power correlation vs TVLA, and

Fig. 16: Correlation results for the AES Coprocessor using
HD(AES state bit) obtained from (a) Simulated Traces, (b)
ASIC Measurement Traces.

the comparison of leakage detection by power simulation vs
leakage detection by ASIC measurement.

a) Power Correlation vs TVLA
Statistical based side-channel detection method, such as

TVLA, can demonstrate the presence of sensitive variables
in a power trace. However, TVLA indeed has its own short-
commings. The most notorious one being the lack of an
obvious relationship between the leakage peaks detected by
the TVLA and the exploitability and efficiency of it in attack.
Another problem of TVLA is the false negatives/false posi-
tives, i.e. TVLA fails to detect the leakage while the leakage
exist/detects the leakage while the leakage does not actually
exist. Therefore, it’s hard to guarantee that the designer are
trying to solve the problem that are actually exist with TVLA.
Power correlation is always used as a distinguisher for attack.
Therefore, power correlation peaks reflects actual difficulty of
key recovery. Furthermore, unlike TVLA, power correlation
has a precise interpretation in terms of the gates in the netlist
of a design. Therefore, we use power correlation rather than
TVLA as the side channel leakage evaluation tool.

b) Power simulation vs ASIC measurements
PACA enables the designers, at early design-time before

chip tape-out, to the identify side channel leakage source and
efficiently fix a side-channel leakage vulnerability.

In order to evaluate the accuracy of the design-time
power estimation, we measure an ASIC prototype of a non-
remediated design [32] and we compare this to our simulated
traces. We confirm that the correlation peaks identified using
PACA correspond to those identified in the ASIC measure-
ment. Furthermore, due to the absence of measurement noise,
the correlation peaks from PACA are sharper, and require
fewer traces, compared to the correlation peaks from ASIC
measurements. The presence of noise in ASIC measurement
traces make side-channel leakage assessment difficult, while
highlighting the advantages of simulated trace.

PACA allows identifying the side channel leakage source at
design-time, and before chip tape-out. PACA also efficiently
fixes the identified side-channel leakage vulnerability.
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Fig. 17: Correlation results for the SoC Bus Transfer using
HW(transferred bit) obtained from (a) Simulated Traces, (b)
ASIC Measurement Traces.

TABLE XI: Power Simulation Levels Trade-offs

Simulation Simulation Simulation Side-channel
Level Accuracy Speed Leakage can Capture
RTL low fast logic transition
Gate medium medium logic transition

+ glitches
+ static power

Transistor high slow logic transition
+ glitches
+ static power
+ parasitics

Fig. 16 shows the leakage for the AES hardware engine
in the first case study. The figure compares the correlation
peaks resulting from 500 simulated traces to the correlation
peaks resulting from 500,000 measured traces from an ASIC
implementation of the same design. We can observe that both
in the ASIC measurement and simulated trace leakage peaks
can be detected. The time interval during which correlation
peaks appear in the simulated trace is aligned with the time
interval in the ASIC prototype measurement.

Fig. 17 shows the leakage for the SoC bus transfer leakage
model in the second case study. Correlation peaks of power
traces with input data can be observed in both the ASIC
measurement traces and the simulated traces starting at the
same period of time. However, as compared to the simulated
traces, the ASIC traces are noisy which leads to fewer and
smaller correlation peaks.

These comparisons confirm that PACA’s analysis results
reflects the leakage from the ASIC measurement. In general,
simulation traces are much less noisy compared to the ASIC
measurement. Therefore, it requires a fewer number of traces
to detect the leakage. Additionally,because of the absence of
noise, the simulated traces can detect more leakage peaks
compared to actual ASIC measurement. Therefore, simulated
traces reflect the worst-case scenario. It will overall help the
designer decrease the false-negative cases.

Table XI illustrates side-channel leakage modeling at three

different modeling abstraction levels: transistor-level, gate-
level, register-transfer level (RTL) [33]. These modeling ab-
straction levels apply varying degrees of modeling precision to
time and data in order to improve the simulation performance.
At the most detailed transistor-level, behavior is modeled
using continuous-time and using (continuous-value) circuit
equations. At higher abstraction levels, behavior becomes
increasingly discrete and abstract. Time is abstracted into
discrete events (gate-level), clock cycles (RTL) and data is
abstracted into bits (gates, RTL). Abstraction of time and
data has a significant impact on the accuracy of power
modeling, and consequently on the accuracy of side-channel
leakage estimation. A broad range of power-related effects
have shown to create data-dependent side-channel leakage.
This includes dynamic power consumption (net transitions),
static power consumption (leakage) [34], glitches [35], and
coupling [36]. Table XI observes that not every abstraction
level is able to capture every form of power-based side-
channel leakage, and that lower, more detailed abstraction
levels become more comprehensive in modeling of power-
based side-channel leakage. However, the main source of
side-channel leakage comes from logic transitions. Second-
order effects in the circuits, such as static power and parasitic
effects can also cause side-channel leakage, however, not as
significant as logic transitions. Capturing these effects requires
a significant increase of the simulation detail.

To identify the source of leakage, PACA operates at the
gate-level, which offers a good trade-off between design
abstraction (simulation speed) and side-channel leakage mod-
eling detail. It is applicable to the complete chip, while still
correctly characterizing sub-cycle-level power effects. In terms
of evaluating the effectiveness of our proposed countermeasure
through simulation, we adopt transistor-level simulation which
is the most accurate simulation level in this work. Some low-
level leakage sources, such as cross-talk of the wires, and
parasitic coupling, are known to cause masking-based counter-
measures [16]. Our proposed countermeasure is a hiding-based
solution which is not vulnerable to these low-level circuit
effects.

X. CONCLUSION

PACA is a significant step towards secure design automa-
tion. The PACA methodology helps not only to identify side-
channel leakage issues in the early stages of an IC design, but
also precisely pin-point the leaky cells in a complex design.
PACA further helps to mitigate side-channel leakage with low
cost by selective replacement of the highest-leaking cells of a
design. Through examples at various levels of abstraction, we
demonstrated the scalability and feasibility of PACA.
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