
MatRiCT+: More Efficient Post-Quantum Private
Blockchain Payments

Muhammed F. Esgin
Monash University and CSIRO’s Data61

Australia
muhammed.esgin@monash.edu

Ron Steinfeld
Monash University

Australia
ron.steinfeld@monash.edu

Raymond K. Zhao
Monash University

Australia
raymond.zhao@monash.edu

Abstract—We introduce MatRiCT+, a practical private
blockchain payment protocol based on “post-quantum” lattice
assumptions. MatRiCT+ builds on MatRiCT due to Esgin et al.
(ACM CCS’19) and, in general, follows the Ring Confidential
Transactions (RingCT) approach used in Monero, the largest
privacy-preserving cryptocurrency. In terms of the practical
aspects, MatRiCT+ has 2–17× shorter proofs (depending on
the number of input accounts, M) and runs 3–8× faster (for
a typical transaction) in comparison to MatRiCT. A significant
advantage of MatRiCT+ is that the proof length’s dependence
on M is very minimal (only O(logM)), while MatRiCT has a
proof length linear in M .

To support its efficiency, we devise several novel techniques in
our design of MatRiCT+ to achieve compact lattice-based zero-
knowledge proof systems, exploiting the algebraic properties of
power-of-2 cyclotomic rings commonly used in practical lattice-
based cryptography. Along the way, we design an “optimal”
challenge space with minimal `1-norm and invertible challenge
differences (with overwhelming probability), while supporting
highly-splitting power-of-2 cyclotomic rings. We believe all these
results to be widely applicable and of independent interest.

Index Terms—Post-Quantum, RingCT, Lattice, Zero-
Knowledge, Blockchain, Ring Signature

I. INTRODUCTION

Recent advances in quantum computing, which can be ex-
emplified by IBM’s roadmap [1], have led to significant effort
being put into designing post-quantum - PQ (i.e., quantum-
safe) cryptographic schemes. Those tailored for blockchain
applications are no exception, and there are already consid-
erations in the blockchain community to support PQ cryp-
tography. For example, Ethereum 2.0 Serenity upgrade [2]
is planned to have an option for a PQ signature. The recent
improvements in the practical efficiency of PQ cryptographic
proposals are promising and have sometimes been more than
an order of magnitude. To name a few such recent results
suitable for blockchain applications, the first practical PQ
verifiable random function was introduced in [3], the first
PQ adaptor signature and payment channel network in [4],
the first practical PQ RingCT protocol in [5], substantially
more efficient PQ ring signatures in [5]–[7], and more efficient
lattice-based zero-knowledge proof systems, e.g., in [5], [7]–
[10].

Our focus in this paper is on privacy-preserving blockchain
protocols, specifically RingCT protocol [11] used in Mon-
ero. A RingCT protocol allows a user to transfer assets

on blockchain while keeping sensitive information such as
payee/payer identities and transaction amount confidential.
The original RingCT protocol [11] has been significantly
improved [12], [13], and Esgin et al. [5] recently introduced
the first (and only) practical PQ RingCT protocol, named
MatRiCT, based on computationally hard lattice problems.

A. Our Contributions

Our main contribution in this work is the design and analysis
of a practical RingCT protocol, MatRiCT+, based on “post-
quantum” lattice assumptions1. Our construction builds on
MatRiCT [5], but is significantly more efficient and incorpo-
rates new techniques, that we believe are widely applicable
in other proof systems (including non-lattice-based ones).
We achieve a proof length reduction of up to 17× for the
number of input accounts in the range [2, 100] (see Table
I). Furthermore, a typical transaction in MatRiCT+ can be
generated in 136 ms and verified in just 3 ms, achieving 3–
8× speedup over MatRiCT (see Table II). An overview of
MatRiCT+ is provided in Section I-C. We also note that the
compression techniques used in Dilithium [14] can also be
applied to MatRiCT+, which would lead to a further saving
of around 15% in proof length (over those in Table I).

To achieve high efficiency for MatRiCT+, we introduce
several novel technical tools for design of lattice-based zero-
knowledge proof systems (see Sec. I-B below for more de-
tails). The first is about invertibility of challenge differences,
a key component in the soundness security of compact lattice-
based proofs. A second technical result is concerned with
the properties of short elements in power-of-2 cyclotomic
rings Rq having binary or ternary CRT (Chinese Remainder
Theorem) ‘slots’. These results are general and believed to be
of independent interest for many lattice-based proof systems.
Furthermore, we apply these results and introduce a novel
zero-knowledge integer balance proof based on a CRT packing
technique. Beyond being useful in many proof systems, we
believe that our techniques can prove useful in other real-life
applications (besides private blockchain payments) such as e-
voting, e-cash systems and anonymous credentials.

1As in many prior works utilizing the Fiat-Shamir transformation such as
[3]–[10], we analyze the security of our scheme in the ROM while relying
on the hardness of “post-quantum” lattice assumptions.

TABLE I
PROOF LENGTH COMPARISON (IN KB) OF MATRICT AND MATRICT+ .

Anonymity levela 1/N = 1/11
#inputs → #outputs 2→ 2 20→ 2 50→ 2 100→ 2

MatRiCT [5] 110 ∼ 310 ∼ 610 ∼ 1100
MatRiCT+ 48 59 61 64

MatRiCT [5] PK/SN sizes: 4.36 KB, 248 B Moduli: ≤ 253

MatRiCT+ PK/SN sizes: 3.42 KB, 32 B Moduli: ≤ 234
aAnonymity level indicates that each real account is hidden using N − 1
decoy accounts. Monero currently uses an anonymity level of 1/11.
PK/SN sizes are for a public key and an account serial number (in bytes).
PK size/Moduli are for the most typical case of 2 input/output accounts.
See Appendix A for further comparison.

Unlike the prior CRT-packing technique in [7], our new
CRT-packing technique allows a significant reduction in com-
munication. As noted as an open problem in [7], it is indeed a
more important challenge to reduce the communication as that
is the main bottleneck for lattice schemes. The main drawback
in [7] is that, to use the CRT-packing technique, one needs
to work with very restrictive challenge sets. In particular,
while the dimension of Rq is d, the challenges must have
degree less than d/s and large coefficients (even up to 231 as
given in [7, Table 5]), where s denotes the number of CRT
slots the messages are stored in. On the other hand, our new
techniques lead to using “optimal” challenge spaces where
the challenges can have full degree, the smallest possible
coefficients (in {−1, 0, 1}), small Hamming weight (e.g., 56
non-zero coefficients for d = 256), and their differences are
invertible (with overwhelming probability). We also allow Rq
to split into d/4 factors (for typical choices of q ≥ 225).
These lead to significantly smaller parameters and proof sizes
compared to [5], [7].

B. Our Techniques and Results

New technical tools for lattice-based proofs. In lattice-based
proof systems, power-of-2 cyclotomic rings of the form Rq =
Zq[X]/(Xd + 1) are widely employed and exploited. When
Xd + 1 factors into, say, r polynomials, then we have, by the
CRT, Rq ∼= R(0)

q × · · · × R(r−1)
q . Hence, we can represent

any f ∈ Rq by its representatives, called CRT slots, in R(i)
q ’s,

which can be used to pack information compactly in lattice-
based zero-knowledge proof systems. Our first set of results
lead to a bound on q (stated as Lemma 4 in Sec. III-B) that
guarantees that if b ∈ Rq is a short polynomial having many
CRT slots equal to some small integer α, then b must be equal
to α. We use this result to argue (see Cor. 3 in Sec. III-B) that
certain polynomials with binary CRT slots in Rq̂ (for some
q̂ ∈ Z+) are just binary integers (in {0, 1}). In our novel
CRT-packing based MatRiCT+ transactions, this enables us
to properly encode a user index in unary representation and
prevent the prover from cheating. Using our new result, we
reduce the requirement on the size of q̂ to just q̂ > 228.7, while
MatRiCT requires q̂ > 250 to reach the same conclusion (see
[5, Lemma 5.5]). Note that the larger the system modulus, the
worse the overall efficiency. We also use the same result to
argue that all the CRT slots of a polynomial (masked by some

TABLE II
RUNTIMES (IN MS) OF MATRICT AND MATRICT+ AT 3 GHZ.

Anonymity level 1/10 1/20 1/50
#inputs → #outputs 2→ 2 2→ 2 2→ 2

Key Gen. 2 2 2
MatRiCT [5] Transaction Gen. 375 420 471

Verification 23 25 31
Key Gen. 0.07 0.07 0.07

MatRiCT+ Transaction Gen. 136 192 380
Verification 3 5 10

random polynomial) is the same, which is crucial in our novel
balance proof (discussed below).

Moving to our second set of tools, an important component
of the soundness security of many compact lattice-based
proofs is that any challenge difference is invertible in the
underlying ring Rq , except for a negligible probability. Here,
it is important to have as short challenges (in terms of `1-
norm, denoted by w) as possible since, in effect, the underlying
M-SIS problem becomes easier with increasing norm of the
challenges and therefore, we need to accommodate for this by
choosing larger parameters, which in turn degrades efficiency.
In summary, the goal is to construct a challenge set C with the
following properties: (i) |C| is exponentially large (say, greater
than 2200), (ii) challenges have as small `1-norm as possible,
(iii) (non-zero) challenge differences are invertible, and (iv)
Rq splits into many factors (the more factors the better). To
this end, we prove (in Cor. 1 in Sec. III-A) an efficiently
computable bound on the non-invertibility probability for
challenges sampled at random from a challenge set of ternary
(i.e. {−1, 0,+1}) coefficient polynomials with low Hamming
weight while allowing Rq split into d/4 factors for typical
choices of modulus q of more than, say, 25 bits.

Our result improves upon the recent results in [8] that
deal with large Hamming-weight challenges, and immediately
improves the communication size of the proof systems in [8]–
[10]. In particular, [8] obtains the above Property (iii) and
|C| ≈ 2203 with weight w = 128, while we get Property (iii)
for a much larger challenge set |C| > 2237 with w = 56.
Both our results and those in [8] allow a similar splitting of
Rq . In practice, the modulus size due to M-SIS hardness is
often quadratic in w (see Assumption 5, for example), and thus
reducing w = 128 to w = 56 saves a factor of more than 5 in
the modulus q. This may often be critical to keep q below
32 bits, which then significantly helps with computational
complexity.

Moreover, our challenge difference invertibility results can
be seen “optimal” in the sense that (i) more than d/4 factors
of Rq cannot be achieved via the probabilistic approach we
take for typical choices of q around 32 bits since 1/qδ is
non-negligible for a power-of-2 δ < 4, and (ii) even the state-
of-the-art lattice-based signature scheme Dilithium [14] uses
w = 60 for |C| ≈ 2256 without achieving Property (iii).
Novel balance proof based on CRT-packing. Suppose we
want to perform a (zero-knowledge) balance proof to show

2

the following
M−1∑
i=0

ai =

S−1∑
i=0

bi, (1)

for some non-negative integers ai’s and bi’s, without revealing
the values themselves. The standard idea to do this is to
use a homomorphic commitment to encode each value as
Ai = Com(ai) and Bi = Com(bi), and then prove in zero
knowledge that

∑S−1
i=0 Bi −

∑M−1
i=0 Ai is a commitment to

zero. As discussed in [5, Section 1.3], this is very costly
to do in the lattice setting as it leads to using very large
system modulus, which in turn significantly reduces both
the computational and communication efficiency. Instead, our
balance proof proceeds in a unique fashion as below.

Let a[j] denote the j-th bit of a non-negative integer a and
suppose that the sum of the integers fits into r bits with r
being a power of 2.2 Now, if there exists some “corrector”
values3 c1, . . . , cr−1 with c0 = cr = 0 such that the following
holds for all j = 0, . . . , r − 1

Tj :=

S−1∑
i=0

bi[j]−
M−1∑
i=0

ai[j] + cj − 2cj+1 = 0, (2)

then (1) follows by considering
∑r−1
j=0 2jTj (see also [5,

Section 1.3])4. Therefore, we aim to prove (2) for all j =
0, . . . , r − 1 in parallel in the protocol. Specifically, we want
to perform the balance proof in the CRT domain, where we can
realize our zero-knowledge proofs of interest very efficiently.
Let us explain what we mean by this.

We choose a prime modulus q such that Xd + 1 (for
some fixed power-of-2 d) factors into exactly r irreducible
polynomials g0, . . . , gr−1. As before by CRT, Rq ∼= R(0)

q ×
· · ·×R(r−1)

q andR(i)
q = Zq[X]/(gi(X)). Then, we employ the

CRT packing to encode each integer in a polynomial in Rq as
follows. Let f = Jf0, . . . , fr−1K denote the unique polynomial
f ∈ Rq such that f ≡ fi (mod q, gi(X)). That is, fi’s are the
CRT slots of f . With this setup, we compute in the protocol

âi = Jai[0], . . . , ai[r − 1]K, b̂i = Jbi[0], . . . , bi[r − 1]K,
ĉ = Jc0, . . . , cr−1K ∈ Rq,

for c0 = 0. We commit to these as Ai = Com(âi), Bi =
Com(b̂i) and C = Com(ĉ). Now, we perform an aggregated
CRT range proof on C and binary proof on Bi’s. That is, in a
single aggregated proof, we prove that Bi’s encode polynomi-
als with binary CRT slots and C encodes a polynomial with
CRT slots in [−(M − 1), S − 1]. As Ai’s serve as the output
coins of previous transactions that already include a binary
CRT proof on Ai’s, the same proof on Ai’s is not repeated.
Here, an important advantage of our approach is that the above
proofs on CRT slots can be efficiently performed. In particular,
proving that f(f − 1) · · · (f − α) = 0 in Rq for α ∈ Z+ is

2The requirement of having a power-of-2 r is due to the CRT-packing. For
the general balance proof idea, r can be an arbitrary positive integer.

3One may also call them “carry values”, but they may be negative.
4Here, we consider the base-2 representation, but the result easily extends

to other bases.

sufficient to prove that all the CRT slots of f are in [0, α]. In
contrast, if we wanted to prove that polynomial coefficients of
f are in [0, α] (i.e., f(X) = a0 +a1X + · · ·+ad−1X

d−1 and
ai ∈ [0, α]), then this would be a more costly proof.

Now, we need to construct the structure of cj − 2cj+1 as
in (2) in a verifiable fashion. For this, we employ the Galois
automorphisms. What we ideally want to do is to find an auto-
morphism π that performs a cyclic left-shift of the CRT slots
such that ĉ−2π(ĉ) yields the desired form. That is, π needs to
satisfy the following property: if f = Jf0, f1, . . . , fr−2, fr−1K
for fi ∈ Zq , then π(f) = Jf1, f2, . . . , fr−1, f0K. However,
such an automorphism with a “full cycle” does not exist in the
power-of-2 cyclotomic rings we are interested in. We can of
course choose to work on a rather non-typical polynomial ring,
where such an automorphism exists, but we aim to solve the
problem in power-of-2 cyclotomic rings that are very widely
used in lattice-based proofs. To this end, we introduce a low-
cost “patching” technique as described below.

What we can find is a Galois automorphism σ over Rq
that performs a cyclic left-shift of each half of the CRT slot
vector. That is, if f = Jf0, . . . , fr−1K for fi ∈ Zq , then
σ(f) = Jf1, . . . , fr′−1, f0, fr′+1, . . . , fr−1, fr′K for r′ := r/2.
It is important to note here that the above mapping can
indeed be obtained when fi ∈ Zq . If fi’s are non-constant
polynomials, then the automorphism may change the elements
inside the CRT slots. But, what we want is the case where
CRT slots only shift and their values remain the same. As we
will use the automorphism on C, whose message opening is
proven to have integer CRT slots, the automorphism σ works
in a suitable fashion.

Now, when we compute c′ := ĉ − 2σ(ĉ), the CRT slots of
c′ that are not well-formed are indexed by r′−1, r′ and r−1.
We let the verifier remove the two CRT slots of ĉ indexed by
0 and r′, by removing those two CRT slots of C = Com(ĉ).
This fixes the problem at (r − 1)-th CRT slot of c′. Then,
we separately send a polynomial u that is proven to encode
the same integer (i.e., cr′) in [−(M − 1), S − 1] in all of its
CRT slots. This proof is accomplished efficiently using our
new result from Cor. 3. Finally, setting C̃ := C ′ − 2σ(C ′)
+ u · J0r′−1,−2, 1, 0r

′−1K for C ′ = J0, 1r
′−1, 0, 1r

′−1K · C
yields a commitment of the desired form, where u patches the
middle CRT slots. The communication cost of u is small in
comparison to the other proof parts as it has small coefficients.

Overall, using the nice homomorphic properties of the CRT
mapping, we consider the following

S−1∑
i=0

b̂i −
M−1∑
i=0

âi + Jc0 − 2c1, . . . , cr−1 − 2crK (3)

=

s
S−1∑
i=0

bi[0]−
M−1∑
i=0

ai[0] + c0 − 2c1, . . . ,

S−1∑
i=0

bi[r − 1]−
M−1∑
i=0

ai[r − 1] + cr−1 − 2c0

{
.

From the above, proving that (3) is equal to zero yields that
(2) holds for all j = 0, . . . , r − 1, which then shows that the
balance is preserved. Hence, the rough idea in the protocol is

3

to prove that
∑S−1
i=0 Bi −

∑M−1
i=0 Ai + C̃ is a commitment to

zero. Note that since all the CRT slot values in (3) are proven
to be small, we can easily ensure that there is no wrap-around
mod q.

In our actual protocol, the balance proof is more compli-
cated than what is described above as we actually need to hide
which input coins (represented by Ai’s here) are being used.
For this, we combine the above idea with a suitable 1-out-of-N
proof (a.k.a. a ring signature).

The main advantage of our novel balance proof is that it
is significantly more efficient, for example, than the state-of-
the-art result in MatRiCT [5]. Setting r = 64, in MatRiCT,
each integer amount is represented by 64 polynomials in
Rq , whereas only a single polynomial in Rq is required
to represent a 64-bit amount in MatRiCT+. This helps to
significantly reduce the total proof length as shown in Table
I as well as improving the computational efficiency as shown
in Table II.

C. Overview of MatRiCT+

The operations in MatRiCT+ are performed over the
power-of-2 cyclotomic rings Rq = Zq[X]/(Xd + 1) and
Rq̂ = Zq̂[X]/(Xd + 1) for d = 256 and the moduli
q = 167770241 ≈ 227 and q̂ = 234 − 226 − 27 + 1. The
parameters are set so that Rq splits into exactly r = 64
subrings. A user public key pk is the sum of the following
two components: (i) a commitment Com(0; sk) to zero under
a short randomness vector sk over Rq , which serves as the
user secret key, and (ii) hash G(γ) of a 256-bit seed γ, that
serves as the serial number. To use the new balance proof idea
described above, each amount is represented by a binary vector
of length r = 64, where each bit is encoded in a CRT slot.
Hence, each coin cn is a commitment to the unique polynomial
(in Rq), whose CRT slots are equal to the bits of the amount.

When spending an account act = (pk, cn), Alice mints the
output coins and proves that each coin encodes a polynomial
with binary CRT slots. This ensure that the coins represent
a unique integer in [0, 2r − 1]. All these binary CRT proofs
and the range CRT proof of the “corrector” commitment C
are aggregated to reduce the communication costs. To hide
her identity, Alice creates an M × N matrix Ain of input
accounts, where the `-th column is comprised of her own
accounts to spend (i.e., Alice spends M accounts, each hidden
in an anonymity set of size N). She uses the new balance proof
idea from Section I-B to prove that balance is preserved.

Now, to prevent double-spending, Alice outputs M 256-bit
seed value γi’s used in key generation. Then, in the algorithms,
G(γi) is subtracted from all the public keys in the i-th row of
Ain. Modeling G as a random oracle, this enforces Alice to set
her i-th account’s public key to be pki = Com(0; ski)+G(γi)
in the first place and requires her to use γi as the serial number
when she wants to spend her account acti = (pki, ·).

Finally, to prove ownership of M accounts, we again
employ an aggregation strategy. In particular, since all of
Alice’s accounts are in the `-th column of Ain, Alice linearly
combines the rows of Ain to shrink it into a single row. That

is, if R0, . . . , RM−1 are the rows of Ain for public keys, then
Alice computes R = α0R0 + · · · + αM−1RM−1 for random
challenge αi’s generated using the Fiat-Shamir transformation.
Alice now knows the secret key of the `-th element in R and
can prove this using a single 1-out-of-N proof (a.k.a. a ring
signature). Since αi’s are random and created after committing
to Ain, intuitively Alice cannot know the secret key of the `-
th commitment in R without knowing the secret keys of the
individual `-th commitments in all Ri’s. This idea helps to
largely remove the proof length’s dependence on the number
of input accounts M , and can also be employed in non-lattice
settings such as in discrete logarithm based proof systems. As
a result, MatRiCT+ remains very efficient even for increasing
M values as shown in Table I.

Organization of the manuscript: The rest of the paper
is organized as follows. Section II covers the preliminaries
including background on our security assumptions, rejection
sampling, and cyclotomic rings and Galois automorphisms.
In Section III, we introduce our new technical tools about
cyclotomic rings. The formal RingCT model used is discussed
in Section IV. We describe the details of MatRiCT+ in Section
V, where the concrete parameter setting is also covered. The
proof of balance, the main challenging property to accomplish,
is provided in Section VI. Some discussions and proofs are
deferred to appendices.

II. PRELIMINARIES

For R = Z[X]/(Xd+1), Sc denotes the set of polynomials
in R with infinity norm at most c ∈ Z+. We write f ← Ds
to denote sampling a polynomial in R with each coefficient
following a discrete Gaussian distribution centred at zero with
standard deviation s. We write [n] = {0, . . . , n − 1} and
[a, b] = {a, . . . , b}. We also write 0n and 1n to denote
n-dimensional all-zero and all-one vectors, respectively. To
sample an element x from a set X uniformly at random, we
write x $← X . We use the notation ‘f(X) mod (q, g(X))’ to
mean that the coefficients of the polynomial f(X) are reduced
mod q and the polynomial itself is reduced mod g(X).

A. Security Assumptions

MatRiCT+ relies on the two well-known lattice problems,
namely Module-SIS (M-SIS) and Module-LWE (M-LWE).

Definition 1 (M-SISn,m,q,β). For positive integer parameters
(n,m, q, β) with m > n, given A

$← Rn×mq , the M-SIS
problem asks to find a short non-zero vector x ∈ Rm such
that Ax = 0 ∈ Rnq and ‖x‖ ≤ β.

We write M-SIS∞n,m,q,β to denote the M-SIS problem where
the norm bound is with respect to the `∞-norm, i.e., ‖x‖∞ ≤
β. For readability purposes, we define M-LWE in a standard
case commonly used in prior works, e.g., [5]–[7].

Definition 2 (M-LWEκ,m,q,B). For positive integer parameters
(κ,m, q,B), the M-LWE problem asks to distinguish between
the two cases: (i) (A, t)

$← Rm×κq ×Rmq , and (ii) (A,As+e)

for A $← Rm×κq , s $← SκB and e $← SmB .

4

For the practical security estimations against known attacks
in this work, the parameter m in both M-SIS and M-LWE does
not play an important role. Therefore, we sometimes simply
omit it and write M-SISn,q,β and M-LWEκ,q,B.

B. Power-of-2 Cyclotomic Rings and Galois Automorphisms

Let r ≤ d be powers of 2 and q ≡ 2r + 1 (mod 4r) and
δ := d/r. Fix a primitive 2r’th root of unity ζ in Zq . Then,
the polynomial Xd + 1 factors into r irreducible polynomials
gi(X) := Xδ + ζi modulo q, where for i ∈ [r], ζi := ζ2i+1

are the primitive (2r)-th roots of unity in Zq . Hence, by CRT,
Rq = Zq[X]/(Xd + 1) ∼= R(0)

q × · · · × R(r−1)
q for R(i)

q =
Zq[X]/(gi(X)). Let us write f = Jf{0}, . . . , f{r − 1}K if
f ≡ f{i} (mod q, gi(X)). Recall that f{i} is said to be the
i’th CRT slot of f . Then, by CRT, we have for any f, h ∈ Rq

f + h = Jf{0}+ h{0}, . . . , f{r − 1}+ h{r − 1}K,
f · h = Jf{0} · h{0}, . . . , f{r − 1} · h{r − 1}K.

It is known (see, e.g., [8, Se. 2.2]) that the automorphism
group ofRq is isomorphic to Z∗2d and consists of the mappings
{σj}j∈Z∗2d , where σj maps X ∈ Rq to Xj and extends to all
Rq by homomorphism. We use the fact (also exploited in the
context of FHE schemes [15]) that for an appropriate ordering
of the CRT slots, and a polynomial a with CRT slots that are
constant (degree 0) polynomials, there exists an automorphism
σj of Rq such that the CRT slots of b := σj(a) are a cyclic
rotation of the left and right CRT slot halves of f . Namely,
let b{i} := b(X) (mod Xδ − ζ2i+1) and a{i} := a(X)
(mod Xδ − ζ2i+1) denote the CRT slots of b and a respec-
tively, indexed by 2i+1 ∈ Z∗2r. Then we have (see [8, Se. 2.2])
that σj(a(X)) (mod Xδ − ζ2i+1) = σj(a(X)) (mod Xδ −
ζ(2i+1)j−1 mod 2r), i.e. σj(a{i}) = b{(2i + 1) · j−1 mod 2r}
for (2i+1) ∈ Z∗2r. As Z∗2r is a product of a two cyclic groups
of order r (resp. 2) generated by 3 (resp. −1), we can re-
index the CRT slots writing 2i + 1 = 3t(−1)s mod 2r for
(t, s) ∈ Zr × Z2 and defining a{t, s} := a{3t(−1)s mod 2r}
and b{t, s} := b{3t(−1)s mod 2r}. Setting j = 3 we have
σ3(a{t, s}) = b{t − 1 mod r, s} for (t, s) ∈ Zr × Z2, so
applying σ3 to a induces a cyclic left rotation by one position
to the r-slot half-vector (a{0, s}, a{1, s}, . . . , a{r− 1, s}) for
each s ∈ {0, 1}. We see that for a general a ∈ Rq the
rotation is ‘defective’; in addition to rotating the polyno-
mial a{t, s}(X) in slot {t, s} of a to slot {t − 1 mod r, s}
of b, σ3 also has the effect of modifying the polynomial
a{t, s}(X) into σ3(a{t, s}(X)) = a{t, s}(X3). However,
this ‘defect’ does not appear and the rotation is perfect (i.e.
σ3(a{t, s}(X)) = a{t, s}(X)) if a has degree 0 polynomials
in its CRT slots a{t, s}; our protocol ensures the latter holds
for the underlying message values encoded in the CRT slots,
as explained in Sec. I. We also use the inverse automorphism
σ−1

3 = σ3−1 mod 2d satisfying σ−1
3 (σ3(a)) = a for all a ∈ Rq

(regardless of whether a has degree 0 CRT slots or not).

C. Rejection Sampling

In our protocol, we employ the rejection sampling technique
from [16] and its recent optimized variant from [17]. While the

former method (Alg. 1) does not leak any information about
the secret vector c, the optimized rejection sampling (Alg. 2)
reveals the fact that 〈z, c〉 ≥ 0 and uses this fact to optimize
parameter selection. The security in this optimized case relies
on “Extended M-LWE” assumption. We refer the reader to
[17] for a further discussion. We also add the infinity norm
check into the rejection sampling algorithms as a shortcut to
be used in the protocol.

Algorithm 1 Rej(z, c, φ, T)

1: σ = φT ; µ(φ) = e12/φ+1/(2φ2); u← [0, 1)

2: if u > 1
µ(φ) · exp

(
−2〈z,c〉+‖c‖2

2σ2

)
, then return 1

3: if ‖z‖∞ > 6σ, then return 1
4: else return 0

Algorithm 2 RejOp(z, c, φ, T)

1: if 〈z, c〉 < 0, then return 1
2: σ = φT ; µ(φ) = e1/(2φ2); u← [0, 1)

3: if u > 1
µ(φ) · exp

(
−2〈z,c〉+‖c‖2

2σ2

)
, then return 1

4: if ‖z‖∞ > 6σ, then return 1
5: else return 0

III. NEW TOOLS FOR LATTICE-BASED PROOF SYSTEMS

A. New Results on Invertibility of Challenge Differences

For the efficient zero-knowledge proofs underlying our
protocols, we need to construct a challenge set C with the
following properties: (i) |C| is exponentially large (say, greater
than 2200), (ii) challenges have as small `1-norm as possible,
(iii) (non-zero) challenge differences are invertible, and (iv)
Rq splits into many factors (the more factors the better).
Previous results on invertibility of challenge differences are
suboptimal in either requiring almost non-splitting choice of
ring modulus q [18] or large Hamming weight challenges [8].
We give new results that allow us to efficiently compute
invertibility probability bounds extending [8] to low Hamming
weight challenges.

In this Section, we use the same notations and assumptions
for q, r, δ and Rq = Zq[X]/(Xd + 1) as in Sec. II-B. Let
S(δ)

1 be the set of polynomials in S1 of the form f(X) =
f0 + fδX

δ + · · ·+ f(r−1)δX
(r−1)δ . Our bounds apply to the

uniformly random challenge distribution C on the challenge
set C, defined as

C=
{
c̃0+c̃1X+ · · ·+c̃δ−1X

δ−1 : c̃i∈ S(δ)
1 ∧ ‖c̃i‖1 = w̃

}
. (4)

Note that challenges c(X) =
∑δ−1
i=0 c̃i(X)Xi in C have total

Hamming weight w = δw̃ with non-zero coefficients in
{−1,+1}, and the coefficient index set Si := {j ∈ [d] : j =
i mod δ} appearing in c̃i(X) has weight w̃ for each i ∈ [δ].

We first observe (implicit in [8]) that, using the fact that
for i ∈ [r], Xδ = ζi mod gi(X), the i’th CRT slot c{i} =
c(X) mod gi(X) of a polynomial c(X) ∈ C is given by:

c{i} = c̃i,0 + c̃i,1X + · · ·+ c̃i,δ−1X
δ−1, (5)

5

where for k ∈ [δ], the coefficient of Xk in c{i} is c̃i,k :=
c̄k(ζi), where

c̄k(X) := ck + ck+δX + · · · ck+(r−1)δX
r−1, (6)

and therefore c̄k(X) and c̃i,k depends only on the coefficient
set Sj of c̃j . Since the coefficients in sets Sj , Sj′ for challenge
polynomials c(X) are chosen by challenge distribution C
independently for j 6= j′, the distribution of the coefficients
c̃i,j are also independent for j 6= j′. It thus suffices to analyse
the distribution P2 of each c̃i,j for c(X) sampled from C.
We use Fourier analysis for this, using an extension of the
analysis in [8]. One technical difficulty here (which is not
present in the unrestricted weight challenges used in [8]) is that
the coefficients within each set Sj are not independent, due
to the Hamming weight restriction. To handle this difficulty,
our analysis of the distribution P2 proceeds in two steps. In
the first step, we derive a bound M1 on a related distribution
P1 where the coefficients within each set Si are independently
distributed, and then in the second step we use essentially a
Rényi divergence argument to derive from M1 a bound M2

on our desired distribution P2 above. The complete proof of
the following Lemma is in Appendix H.

Lemma 1. Let P2 denote the probability distribution of the
coefficient c̃i,k of Xk in the i’th CRT slot c[i] = c(X) mod
gi(X) of a challenge c(X) sampled from the distribution C,
i.e. uniformly at random from the challenge set C in (4). Let
η := rw̃(r−w̃)!

r! . Then, for all i ∈ [r] and k ∈ [δ], we have:

max
y

P2(y) ≤M2 :=
η

q

1 + 2r
∑

j∈Z∗q/<ζi>

|µ̂(j)|w̃
 , (7)

where for j ∈ Z∗q/ < ζi >, we define

µ̂(j) :=
1

r

∑
k∈[r]

cos(2πjζki /q). (8)

From the above result, the independence of the δ coefficients
of each CRT slot, and the fact that a challenge difference
c(X)− c′(X) is non-invertible in Rq if and only if one of its
CRT slots is 0, we immediately get the following corollary.

Corollary 1. Let c(X), c′(X) denote a pair of challenges
independently sampled from distribution C. The probability
that c(X) − c′(X) is not invertible in Rq is upper bounded
by p := rMδ

2 , where M2 is the bound from Lemma 1.

In our protocol, we use the parameters d = 256, r = 64, δ =
4, w̃ = 14 with two different moduli q = 167770241 ≈ 227

and q̂ = 234−226−27+1. As it may be of independent interest,
we provide in Table III the bounds M2 and p from Lemma 1
and Corollary 1 computed using a SageMath script for several
values of w̃. We remark that computation of M2 takes time
O(q) for computing a table of µ̂ and then can be more quickly
used in time O(q/r) to compute bounds for any value of w̃;
for our q, the table computation took a few mins (resp. several
hours for q̂) on a 3.1 GHz Intel Core i5 laptop, whereas the
latter computation with the table was completed in seconds for

TABLE III
CHALLENGE DIFFERENCE INVERTIBILITY BOUNDS FOR d = 256, r = 64,

δ = 4, WITH DIFFERENT VALUES OF q AND w̃.

w̃ 10 12 14 16
log2M2 (q ≈ 227) -23.8 -25.3 -25.1 -24.4
log2 p (q ≈ 227) -89.4 -95.2 -94.2 -91.4

log2M2 (q ≈ 234) -24.1 -27.2 -29.6 -30.5
log2 p (q ≈ 234) -90.6 -102.8 -112.4 -116.2

log2 |C| = δ(w̃ + log2(
(r
w̃

)
)) 188 214 237 259

both q, q̂. To speed-up parameter selection for large q, we have
also written a SageMath script to quickly compute a heuristic
estimate bounds for M2 and p which we empirically found to
very closely approximate the provable bounds computed above
for our range of parameters. The fast heuristic bound script
is easier to use for parameter selection; the slower provable
bound script can be subsequently used only to verify the
heuristic bounds once final parameters are fixed. We provide
both our heuristic and provable bound scripts as tools for
future work5. We remark that our heuristic bound is derived
by heuristically modelling ζki in (8) as independent uniformly
random elements in Zq as k runs though [r]. Under this statis-
tical heuristic, the variance of µ(j) is 1/(2r). Modelling each
µ(j) as a zero-mean continuous Gaussian random variable
with variance 1/(2r), we see that the expected value of the
bias term b := 2r

∑
j∈Z∗q/<ζi>

|µ̂(j)|w̃ in (7) is equal (up to
a factor of (q − 1)/q, which is negligibly close to 1 for our
purposes) to the w̃’th moment of a Gaussian with variance
1/(2r), i.e. b = (w̃−1)!!/(2r)w̃/2 (assuming w̃ is even), which
gives us the heuristic bound M2 ≈ η·(1/q+(w̃−1)!!/(2r)w̃/2)
that we use in our heuristic SageMath script.

B. New Results on Power-of-2 Cyclotomic Rings

The following lower bound on the minimum of ideals in
Rq works for general q.

Lemma 2 (Adapted from [19, Sec.2], [18, Le.2.7]). Let R :=
Z[X]/(Xd + 1) and Rq := Zq[X]/(Xd + 1) for d a power
of 2 and q a prime such that Xd + 1 =

∏
j∈[r] gj(X) mod q

with gj(X) = Xδ−ζj irreducible over Zq of degree δ := d/r
for j ∈ [r]. Let Z ⊂ [r] with |Z| = ν. The minimum infinity
norm λ∞1 (IZ,R) over all non-zero vectors of the ideal lattice
IZ,R := {a ∈ R : a mod (gj , q) = 0 for j ∈ Z} is lower
bounded as

λ∞1 (IZ,R) ≥ 1√
d
· qν/r.

An improvement over the above lower bound on the min-
imum of ideals in Rq that works for more special choice of
q can be obtained by a generalization of the results of [18,
Th.1.1] (which can be viewed as a special case of the corollary
below in the case ν = 1, although [18] stated their result for
more general cyclotomic rings).

5Our SageMath scripts are available at https://gitlab.com/raykzhao/matrict
plus.

6

https://gitlab.com/raykzhao/matrict_plus
https://gitlab.com/raykzhao/matrict_plus

Lemma 3 (Generalization of [18, Le.3.2]). Assume the same
notations as in Lemma 2 with the condition q = 1 mod 2r. Let
R̄ := Z[X]/(Xr + 1) with Xr + 1 =

∏
j∈[r](X − ζj) mod q

and define an ideal lattice in R̄ as IZ,R̄ := {c̄ ∈ R̄ : c̄ mod
(X − ζj , q) = 0 for j ∈ Z}. For a polynomial c(X) ∈ R and
k ∈ [δ], let c̄k(X) ∈ R̄ be defined as in Eq. (6) in Sec. III-A.
If c(X) is non-zero in ideal lattice IZ,R for some Z ⊆ [r]
with |Z| = ν, then there exists k∗ ∈ [δ] such that c̄k∗(X) is
non-zero and in ideal lattice IZ,R̄.

Proof. By definition of IZ,R, if c(X) ∈ IZ,R then the CRT
slots c{j} := c(X) (mod gj(X), q) = 0 for j ∈ Z. On the
other hand, we have from Eq. (5) in Sec. III-A that c{j} =∑
k∈[δ] c̄k(ζj)X

k. It follows that c̄k(ζj) = c̄k(X) (mod X −
ζj) = 0 mod q for k ∈ [δ] and j ∈ Z, and hence c̄k(X) ∈
IZ,R̄ for k ∈ [δ]. Moreover, if c(X) 6= 0, then it has some
non-zero coefficient cκ for κ ∈ [d]. Let k∗ := κ mod δ ∈ [δ].
From Eq. (6) in Sec. III-A, the coefficients of c̄k∗ are the
ci’s with i ≡ k∗ mod δ, which includes cκ. Hence, c̄k∗(X) is
non-zero and in ideal lattice IZ,R̄, as claimed.

Using Lemma 3, we lower bound the ideal lattice minimum
λ∞1 (IZ,R) for ringR of degree d, by the ideal lattice minimum
λ∞1 (IZ,R̄) in the ring R̄ of smaller degree r; for the latter, we
use Lemma 2 to get the following.

Corollary 2. Assume the same notations as in Lemma 3. The
minimum infinity norm λ∞1 (IZ,R) over all non-zero vectors of
the ideal lattice IZ,R := {a ∈ R : a mod (gj , q) = 0 for j ∈
Z} is lower bounded as

λ∞1 (IZ,R) ≥ 1√
r
· qν/r.

We now apply the above bounds to obtain sufficient condi-
tions that ensure that a polynomial with binary CRT slots that
is short must be a small integer, a property required for the
soundness security of our protocol.

Lemma 4. Assume the same notations as in Lemma 2.
Let b ∈ Rq be such that an integer α occurs in ν CRT slots

of b (i.e. b{j} = b (mod gj(X), q) = α ∈ Z occurs for ν
values of j).

Then, for any ∆ ∈ R∗q (i.e. ∆ is invertible in Rq), if <
‖∆ · b‖∞ ≤ 2B and

q >
(√

d · (α · ‖∆‖∞ + 2B)
)r/ν

, (9)

then b = α ∈ Z. If, in addition, q also satisfies the condition
q = 1 mod 2r then the Lemma holds if

q >
(√
r · (α · ‖∆‖∞ + 2B)

)r/ν
. (10)

Proof. Suppose, towards a contradiction, that b 6= α. Let
Z := {j ∈ [r] : b (mod gj , q) = α} denote the set of CRT
slots of b equal to α. We have |Z| = ν. Observe that b − α
(mod gj , q) = 0 for j ∈ Z. Therefore, b − α ∈ IZ,R, where
IZ,R is the ideal lattice defined as in Lemma 2. Moreover,
using b 6= α and the fact that ∆ ∈ R∗q , we have that

∆ · (b − α) ∈ Rq is a non-zero polynomial in ideal lattice
IZ,R. From Lemma 2, it follows that

‖∆ · (b− α)‖∞ ≥
1√
d
qν/r. (11)

Therefore, ‖∆ · b‖∞ = ‖∆ · (b − α) + α∆‖∞ ≥ ‖∆ · (b −
α)‖∞−α‖∆‖∞, which, using (11) gives ‖∆·b‖∞ ≥ 1√

d
qν/r−

α‖∆‖∞. The latter gives a contradiction with ‖∆ · b‖∞ ≤ 2B
if 1√

d
qν/d − α‖∆‖∞ > 2B, which is equivalent to (9), as

required. In the second case of the Lemma, the additional
conditions on q allow us to apply the improved bound of
Corollary 2 on the minimum of the ideal lattice IZ,R, so that
(11) is replaced by

‖∆ · (b− α)‖∞ ≥
1√
r
qν/r. (12)

The remaining argument is the same as before, leading to the
condition (10).

For b ∈ Rq with binary (resp. ternary) integer CRT slots,
one integer value must occur in at least ν = r/2 (resp. ν =
r/3) CRT slots of b. Lemma 4 then gives the following result.

Corollary 3. Assume the same notations for q, r, δ,Rq as in
Lemma 2. If b ∈ Rq has integer CRT slot values in {0, 1}
(resp. {0,±1}), ∆ is invertible in Rq , ‖∆ · b‖∞ ≤ 2B and

q > (f · (α · ‖∆‖∞ + 2B))
e
, (13)

with e = 2 (resp. e = 3), and f :=
√
r if q = 1 mod 2r or

f :=
√
d otherwise, then b ∈ {0, 1} (resp. b ∈ {0,±1}).

IV. FORMAL MODEL FOR RINGCT-LIKE PROTOCOLS

In this section, we recall and slightly extend the formal
model for RingCT-like protocols in [5], and fix the notations
used specifically for the formal model in Table IV.

The blockchain state B is comprised of two lists: (i) a list
of registered accounts act = (pk, cn), indicating a public key
pk is paired with a coin cn, and (ii) a list of all verified
transactions. B is assumed to be properly updated among all
users at all times, which is managed by a consensus algorithm

TABLE IV
NOTATIONS FOR THE RINGCT FORMAL MODEL.

B the blockchain state
act = (pk, cn) an account comprised of a public key and a coin
M,S ≥ 1 # of spender’s input and output accounts, resp.
N ≥ 2 # of accounts to hide a single input account
Rin set of spender’s real accounts

Kin = (SKin,
CKin,Amtin)

set of spender’s account secret keys ask = (sk,
ck, amt) with a secret key, coin key & amount

Ain
set of all input accounts arranged as a M ×N
matrix where the i-th row contains Rin[i]

PKout set of output public keys with |PKout| = S
CNout set of output coins with |PKout| = S
Amtout set of output amounts with |Amtout| = S
CKout set of output coin keys with |CKout| = S
Aout set of output accounts with |Aout| = S
π the proof output
SN set of serial numbers
tx a transaction tx = (Ain,PKout,CNout, π, SN)
V set of all valid amounts

7

TABLE V
STRUCTURE OF THE LIST L USED IN THE SECURITY MODEL.

L : pk sk sn (serial #) cn ck amt IsCrpt

that is outside the scope of this work. The following tuple of
polynomial time algorithms define RingCT protocol.
• pp← Setup(1λ) : given the security parameter λ, output the

system parameters pp, which is assumed to be an implicit
input to all the remaining functions.

• (pk, sk) ← KeyGen() : output a public-secret key pair
(pk, sk).

• sn ← SerialGen(sk) : on input a secret key sk, output a
serial number sn associated to sk.

• (cn, ck)/ ⊥← Mint(amt) : on input an amount amt, if
amt ∈ V, output a coin cn and its coin key ck. Otherwise,
output ⊥. If ck is given as an input, then Mint computes a
deterministic function such that cn = Mint(amt, ck).

• (act,B) ← AccountGen(pk, cn,B) : on input a public key
pk and a coin cn, register an account act = (pk, cn) to the
blockchain state B. Output act and updated state B.

• 0/1 ← CheckAct(pk, cn,B) : on input a public key pk, a
coin cn and the blockchain state B, output 1 if (pk, cn) is
a registered account in B. Otherwise, output 0. In the case
that the input has a set of pairs of (pk, cn), then output 1
if all (pk, cn) pairs are registered accounts in B. Otherwise,
output 0.

• (tx, (CKout,Amtout))←Spend(Ain,Rin,Kin,PKout,Amtout) :
on input Ain, Rin,Kin,PKout,Amtout as in Table IV, mint out-
put coins by running (CNout,CKout)←Mint(Amtout). Gen-
erate the serial numbers by running SN← SerialGen(SKin)
and a proof π. Output (tx, (CKout,Amtout)) where tx =
(Ain,PKout,CNout, π,SN).6

• 0/1← IsSpent(SN,B) : on input a set SN of serial numbers
and the blockchain state B, if there is a collision in SN or
if a serial number appears both in SN and B, output 1.
Otherwise, output 0.

• ∅/(Aout,B) ← Verify(tx,B) : on input a transaction tx as
in Table IV, if IsSpent(SN,B) = 1 or CheckAct(Ain,B) =
0, output ∅. Check the proof π and output ∅ if not valid.
Otherwise, run (Aout,B) ← AccountGen(PKout,CNout,B)
and add tx to B. Output Aout 6= ∅ and updated B.

A. Security Definitions

The list L in Table V is used in the model as a database for
which any of the following can be used as a unique identifier
of a row: a public key, a secret key, a serial number, a coin
or a coin key. Retrieving a row in L is denoted, for example,
by L[pk] for some public key pk. Then, L[pk].ck denotes the
coin key associated with the public key pk. IsCrpt denotes the
“is corrupted” tag.
Oracles. The oracles accessed by an adversary A are defined
below. We define an additional SUBTOBC oracle that allows
the adversary to submit transactions directly on blockchain

6(CKout,Amtout) are delivered to the recipient(s) privately.

(rather than outputting them in the game). Also, our PKGEN
oracle additionally returns the serial number, which strength-
ens the model.

• PKGEN(i) : on the i-th query, run (pki, ski) ←
KeyGen(), sni ← SerialGen(ski) and output (pki, sni).
Add (pki, ski, sni) to L where IsCrpt tag is set to zero and
the remaining fields are left empty.

• MINT(amt) : run (cn, ck)←Mint(amt), and output cn.
• ACTGEN(pk, amt,B) : run (cn, ck) ← Mint(amt) and

(act,B) ← AccountGen(pk, cn,B). Insert (cn, ck, amt) to
L[pk] and output (act,B).

• CORRUPT(act) : For act = (pk, cn), if L[pk] cannot
be found, return ⊥, indicating failure. Otherwise, up-
date L[pk].IsCrpt to 1, and output L[pk].sk, L[pk].ck and
L[pk].amt. Alternatively, the input may be either pk alone
or cn alone. In the former case, only L[pk].sk is returned,
and in the latter, L[cn].ck and L[cn].amt are returned.

• SPEND(Ain,Rin,PKout,Amtout) : Retrieve from L all ac-
count secret keys Kin associated to Rin. Run (tx,CKout) ←
Spend(Ain,Rin,Kin,PKout,Amtout) and B ← Verify(tx,B).
If B = ∅ (i.e., the verification fails), return ⊥. Otherwise,
return tx and, for each 1 ≤ i ≤ |PKout|, update the coin, coin
key and amount information in L[PKout[i]] with CNout[i],
CKout[i] and Amtout[i], respectively.

• SUBTOBC(tx,B) : If Verify(tx,B) = ∅, return ⊥. Other-
wise, output (Aout,B) for (Aout,B)← Verify(tx,B).

We denote the set of all oracles defined above together with
the random oracle(s) by ORC. With respect to the positioning
of the accounts in Rin inside Ain, there are two flavours
of properties for RingCT: (i) with shuffling and (i) without
shuffling. In the latter case, all the accounts in Rin are restricted
to be in the same column. The definitions are given for the
former case, and it is trivial to get the latter by imposing the
aforementioned restriction on Rin.

Informally, correctness requires that every user is able to
spend any of her honestly generated unspent accounts, which
has honestly generated keys and coins with a valid amount.
Further, anonymity, informally, requires that the real spender’s
accounts are hidden among the uncorrupted accounts as long
as there are at least two sets of uncorrupted input accounts
that can be successfully spent. We refer to Appendix F for the
formal definitions of correctness and anonymity.

Balance: Informally, balance requires that no adversary can
spend a set A of accounts under his control such that the sum
of output amounts is more than the sum of the amounts in
A. We simplify the balance property given in [5] by having
the adversary output a single transaction in the game as he
can submit the others directly to the blockchain using the new
oracle SUBTOBC.

A RingCT protocol is said to be balanced if the following
holds for all PPT adversaries A and pp← Setup(1λ)

Pr [A wins the game Exp:Balance] ≤ negl(λ),

where Exp:Balance is defined as follows.

8

1) (tx,Amtout,CKout)← AORC(pp) : The adversaryA is given
access to all the oracles ORC together with pp, and outputs
a transaction where
• tx = (Ain,PKout,CNout, π,SN),
• Amtout’s and CKout’s are sets of output amounts and coin

keys, respectively, for uncorrupted output public keys
with |CKout| = |Amtout| ≤ |PKout| = |CNout|.

2) B ← Verify(tx,B).
A wins the game Exp:Balance if the following holds
• all public keys and coins in Ain are generated by PKGEN and

MINT, respectively, and all accounts in Ain are generated by
ACTGEN,

• B 6= ∅,

•
S′−1∑
i=0

Amtout[i] >
M−1∑
i=0

amtin,i where S′ = |Amtout|, M =

|SN|, amtin,i = L[sni].amt for all sni ∈ SN if sni ∈ L and
L[sni].IsCrpt = 1, and amtin,i = 0 otherwise,

• for any 0 ≤ j < |PKout|, if L[pkj].IsCrpt = 0 for
pkj = PKout[j], then CKout[j] = L[pkj].ck, Amtout[j] =
L[pkj].amt and CNout[j] = Mint(Amtout[j],CKout[j]).7 That
is, for all uncorrupted output public keys, the corresponding
output coin key, output amount and output coin provided by
the adversary are correct.8

As described in [5], the balance property covers three attack
scenarios: (i) forgery, (ii) unbalanced input and output amounts
and (iii) double spending.

V. MATRICT+: OUR EFFICIENT LATTICE-BASED RINGCT
In this section, we describe the details of MatRiCT+, our

efficient lattice-based RingCT protocol. Similar to MatRiCT,
we present the algorithm descriptions for the case of M,S ≤ 2
(i.e., there are at most two input/output accounts), and discuss
the general case in the text. Again for ease of presentation,
the algorithm descriptions here do not perform a sanity check
on the inputs, which would need to be done in practice. The
number of bits of precision required to represent the sum of
amounts is denoted by r and each amount is also represented
in r bits. We first fix the notations in Table VI, set C as in (4)
and define the following additional challenge set:

C′ =
{
c ∈ R∗q : ‖c‖∞ = 1 ∧ ‖c‖1 = wα

}
. (14)

In general, the operations are performed over Rq or Rq̂
(or without any mod reduction). Our analysis requires that Rq
splits into exactly r factors, i.e., Rq ∼= R(0)

q ×· · ·×R(r−1)
q . We

generate a large commitment matrix A′ ∈ R(n+3)×(n+κ+3)
q

and use its submatrices as commitment keys such that

A′ :=

A
a1

a2

a3

=

B ∗
b1 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

=

G ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ,

(15)

7Without loss of generality, we assume that the indices for corrupted public
keys are the last ones so that the indexing matches.

8Note that the adversary may corrupt all the output public keys, so there
is no loss of generality.

TABLE VI
IDENTIFIERS OF MATRICT+ .

Notation Explanation
Rq ,Rq̂ cyclotomic rings of dim. d with moduli q and q̂

` the spender’s column index
r bitlength of an amount and # of factors of Rq

a[i] i-th bit of a ∈ Z
Jc0, . . . , cr−1K the CRT inverse of values ci ∈ R

(i)
q

σ(c)
automorphism: if c = Jc0, . . . , cr−1K & c′i = σ(ci),
σ(c)=Jc′1, . . . , c

′
r/2−1

, c′0, c
′
r/2+1

, . . . , c′r−1, c
′
r/2

K
n, n̄, n̂ M-SIS module ranks
κ, κ̂ M-LWE module ranks

Expand expansion function (modelled as random oracle)

Algorithm 3 MatRiCT+ Routines
1: procedure SamMat(ρ, q, n,m, str): . str is optional
2: C ← Expand(ρ, str) where C ∈ Rn×mq

3: return C . C can be output in the CRT domain.
4: end procedure
5: procedure SETUP(1λ):
6: Choose int. params r, n, κ, n̄, n̂, κ̂, d, q, q̂, w
7: Set C, C′ as in (4) and (14), respectively
8: ρ

$← {0, 1}256

9: Pick functions H : {0, 1}∗ → C, H′ : {0, 1}∗ →
{0, 1}256 and G : {0, 1}∗ → Rn̄q

10: return pp = (ρ,H,H′,G, r, n, κ, n̄, n̂, κ̂, d, q, q̂, w)
11: end procedure
12: procedure KEYGEN(pp):
13: G← SamMat(ρ, q, n̄, n̄+ κ, “A”)

14: c = Gr+G(γ) ∈ Rn̄q for r $← Sn̄+κ
1 & γ

$← {0, 1}256

15: return (pk, sk, sn) = (c, r, γ)
16: end procedure
17: procedure MINT(a): 0 ≤ a < 2r

18: (B>‖b>1)> ← SamMat(ρ, q, n+ 1, n+ κ+ 1, “A”)
19: â = Ja[0], . . . , a[r − 1]K ∈ Rq
20: t = Br ∈ Rnq for r $← Sn+κ+1

1

21: t1 = 〈b1, r〉+ â ∈ Rq
22: return (cn, ck, â) = ((t, t1), r, â)
23: end procedure

where A ∈ Rn×(n+κ+3)
q , a1,a2,a3 ∈ Rn+κ+3

q , B ∈
Rn×(n+κ+1)
q , b1 ∈ Rn+κ+1

q , and G ∈ Rn̄×(n̄+κ)
q (for n̄ ≤ n).

We also generate G′ ∈ Rn̂×(n̂+κ̂+2N+4)
q̂ .

Alg. 3 presents some of the routines of MatRiCT+. In
particular, SamMat samples a random matrix by expanding
a small seed ρ using an expansion function Expand (modelled
as random oracle). Then, Setup sets the system parameters,
random oracles and samples a random seed ρ.

KeyGen in Alg. 3 creates a public-secret key pair, where
the secret key is a short random vector over R. Then, to create
the public key, we compute Gr + G(γ) for some random
serial number γ (i.e., SerialGen is computed inside KeyGen).
The reason for the additional G(γ) term is to prevent double-
spending (see further below for an intuitive discussion). In

9

particular, for linkability of the ring signature, we employ
an idea similar to [20], but our approach is simpler as we
do not require non-slanderability. As discussed in [5], non-
slanderability is not a crucial requirement in the RingCT
setting (though it may be in other settings).

Mint in Alg. 3 samples a short randomness r that serves
as a coin key and the “binding part” t of a coin is computed
as Br. This part is quite standard, but the way we encode
an amount is unique. In particular, we place each bit of the
amount into a CRT slot and then compute the polynomial
â ∈ Rq whose CRT slot vector is equal to the bit vector of
the input amount. The ordering of the CRT slots is set in a
way so that the automorphism σ(f(X)) = f(X3) performs a
cyclic-rotation of each half of the CRT slot vector as shown in
Table VI. On the other hand, σ−1 is defined to be the inverse
operation of σ such that σ(σ−1(f)) = f for all f ∈ Rq .
In particular, for σ(f(X)) = f(X3), we have σ−1(f(X)) =
f(Xk) for k = 3−1 mod 2d.

The most important and involved procedure of MatRiCT+

is Spend, which is split into Algorithms 4, 5 and 6. We let
δi,` = 1 if i = `, and δi,` = 0 otherwise. Let us provide an
intuitive summary of the underlying zero-knowledge proofs
performed in spending.
1) Prove knowledge of an opening of each output coin (Steps

5-6 in Alg. 4 & Step 1 in Alg. 6),
2) Prove that each output coin encodes a polynomial whose

CRT slots are binary (Steps 19-23 in Alg. 4),
3) Prove knowledge of an opening of the “corrector” commit-

ment C and an opening of σ(C) (Steps 15-17 in Alg. 4 &
Steps 3-4 in Alg. 6),

4) Prove that the “corrector” commitment C encodes a poly-
nomial whose CRT slots are in the range [−(M−1), S−1]
(Steps 19-23 in Alg. 4),9

5) Run an aggregate 1-out-of-N proof (a.k.a. a linkable ring
signature) proving knowledge of an opening of some
(undisclosed) element P` in {P0, . . . , PN−1}, where each
Pj is constructed by linearly combining the public keys in
the j-th column of Ain (Steps 24-27 in Alg. 4 & Alg. 5),
• This proof outputs masked values that can be used to

“select” the elements in the `-th column of Ain without
disclosing them,

6) Prove knowledge of an opening of the sum of input coins
in column ` of Ain without disclosing ` as above (Steps
13-14 in Alg. 4 & Step 2 in Alg. 6),

7) Prove that∑
(output coins)−

∑(
input coins in the
`-th column of Ain

)
+C−2σ(C)

is a commitment to zero without disclosing ` as before,
where C is “patched” using fN and fN+1 (Step 18 in Alg.
4, Steps 4, 13 in Alg. 5 & Steps 14, 15 in Alg. 7).

Most of the remaining steps of the Spend function (apart
from those referred to above) just creates some elements (such
as norm bounds, commitment matrices or randomnesses) to

9The algorithms describe the case M,S ≤ 2.

Algorithm 4 Spend-I
INPUT: a transaction message µ; M,S ∈ Z+; Ain =
(act0,0, . . . , actM−1,N−1) where acti,j = (pki,j , cni,j)
is an account; ` ∈ [N]; (ask0, . . . , askM−1) where
aski = (ski, sni, cki, amtin,i) ∈ Sn̄+κ

1 × {0, 1}256 ×
Sn+κ+1

1 × [2r] and SN := (sn0, . . . , snM−1); PKout =
(pkout,0, . . . , pkout,S−1) where pkout,i ∈ Rn̄q ; Amtout =
(amtout,0, . . . , amtout,S−1) where amtout,i ∈ [2r].

Create output coins
1: IN := (pp, µ,Ain,SN,PKout)
2: A′ ← SamMat(ρ, q, n+ 3, n+ κ+ 3, “A”) as in (15)
3: B = w

√
d ((S + 1.5M)(n+ κ+ 1) + 2(n+ κ+ 3) + (n̂+ κ̂))

4: for i = 0, . . . , S − 1 do
5: (cnout,i, ckout,i, âi)←Mint(amtout,i), cnout,i :=(t(i), t

(i)
1)

6: wout,i = Byout,i for yout,i ← Dn+κ+1
B

7: end for
8: CNout :=(cnout,0, . . . , cnout,S−1), CKout :=(ckout,0, . . . , ckout,S−1)

Corrector well-formedness and CRT range proofs
9: for i = 0, . . . , r − 2 do . c0 = cr = 0

10: ci+1 = (ci +
∑S−1
j=0 amtout,j [i]−

∑M−1
j=0 amtin,j [i])/2

11: end for
12: c = Jc0, . . . , cr′−1, 0, cr′+1, . . . , cr−1K for r′ := r/2
13: y0 ← Dn+κ+1

B and retrieve a0, . . . , aN+1 in Alg. 5

14: w0 = By0 −
N−1∑
j=0

aj
M−1∑
i=0

t
(i)
in,j for cni,j = (t

(i)
in,j , v

(i)
in,j)

15: v = Aρ for ρ $← Sn+κ+3
1

16: C = 〈a′3,ρ〉+ c for a′3 = a3 · J0, 1r
′−1, 0, 1r

′−1K
17: wi = Ayi for yi ← Dn+κ+3

B and i = 1, 2

18: w = 〈a′3,y1〉 − 2σ(〈a′3,y2〉) + 〈b1,
S−1∑
i=0

yout,i − y0〉 +

N−1∑
j=0

aj
M−1∑
i=0

v
(i)
in,j − (aN − aN+1) · J0r′−1,−2, 1, 0r

′−1K

19: v2 = 〈a2,ρ〉+ g2 for g2 in (18)
20: COM := (CNout, {wout,i}S−1

i=0 ,w0,v, v2, C, w,w1,w2)
21: α0, . . . , αS−1, α

′
0, . . . , α

′
M−2 ← Expand(α, “Ch”) for

α← H′(IN,COM), where αi ∈ R∗q & α′i ∈ C′
22: v0 = 〈a1,y1〉+ ĝ0 for ĝ0 in (21)
23: v1 = 〈a1,ρ〉+ 〈a2,y1〉+ ĝ1 for ĝ1 in (21)

Linear combinations for aggregate 1-out-of-N proof
24: p̂ki,j = pki,j − G(sni) for i ∈ [M] & j ∈ [N]

25: Pj =
M−2∑
i=0

α′ip̂ki,j + p̂kM−1,j in Rn̄q for j = 0, . . . , N −1

26: s =
M−2∑
i=0

α′iski + skM−1

27: Continue with running RSign(µ, (P0, . . . , PN−1), `, s)

be used in these proofs. However, an important operation is
performed in Step 24 of Alg. 4 to prevent double-spending.
Intuitively, the idea here is that a public key pk must have
an “offset” G(sn) in its creation so that p̂k = pk− G(sn) can
become a commitment with a short known opening. Unless the
public key is generated as in Mint, the spender will not be
able to prove knowledge of an opening of p̂k as G is modelled
as a random oracle. That is, every PPT spender is bound to

10

Algorithm 5 RSign(µ, (P0, . . . , PN−1), `, sk) . Ring Sign.
INPUT: a message µ; commitments Pj ∈ Rn̄q for j =
0, . . . , N − 1; ` ∈ [N]; and sk = s ∈ Sn̄+κ

β .
ASSUME:‖s‖∞≤ β := wα min{M−1,

√
2(M − 1)}+1

1: Ba =
√

2w, φa = 10, φrs = 13, Brs = βw
√
d(n̄+ κ)

2: Bg1 = (φaBa)2d/2, Bg0 = (φaBa)2d(N − 1)/3
3: G′ ← SamMat(ρ, q̂, n̂, n̂+ κ̂+ 2N + 4, “G”)
4: Set k, b1−k ∈ {0, 1} s.t. b0−b1 = c32 ∈ {±1, 0} & bk = 0
5: b = (δ`,0, . . . , δ`,N−1, b0, b1)

6: a1, . . . , aN+1 ← DφaBa
and a0 = −

∑N−1
j=1 aj

7: a = (a0, . . . , aN+1), d =
(
−a2

0, . . . ,−a2
N+1

)
8: c = a ◦ (1N+1− 2 · b), for ◦ denoting entry-wise product

9: B=G′

rbb
c

, A=G′

raa
d

 for rb
$← Sn̂+κ̂

1 , ra← Dn̂+κ̂
B

10: E = Gy −
∑N−1
j=0 ajPj for y $← Dn̄+κ

φrsBrs

11: x = H(IN,COM, v0, v1, A,B,E)
12: fj = xδ`,j + aj for j = 0, . . . , N − 1
13: fN = xb0 + aN , fN+1 = xb1 + aN+1

14: f1 = (f1, . . . , fN+1) . f0 is excluded
15: if Rej(f1, x(δ`,1, . . . , δ`,N−1, b0, b1), φa,Ba), then Restart
16: g0 = f0(x−f0), g1 = (f1(x−f1), . . . , fN+1(x−fN+1))
17: if ‖g0‖∞ > Bg0 or ‖g1‖∞ > Bg1, then Restart
18: zb = ra + xrb . dim: n̂+ κ̂
19: z = y + xs . dim: n̄+ κ
20: if Rej(z, xs, φrs,Brs), then Restart
21: Run Spend-II

publishing the value γ in Mint as the serial number and no
PPT spender can find another γ′ such that G(γ) = G(γ′).

It’s easy to observe that a user may easily create two distinct
accounts with the same serial number. However, this does not
benefit the user since as soon as one of the accounts is spent,
the other becomes unspendable. This stems from the fact that
trying to spend the latter account requires using an already
used serial number, which will be rejected by the verifiers.

On the other hand, if an attacker (somehow) gets to know
an honest user account’s serial number, then he can create
a new account with that serial number to prevent the honest
user from spending her account. This can be easily prevented
as we discuss in Appendix D and is also not an attack against
balance, but is an attack against availability (see also [5,
Appendix B]).

Below we define some terms computed in the algorithms.
The verifier uses the middle expressions to compute hi’s
whereas the spender uses the last expressions. For i =
0, . . . , S − 1, let

hS = 〈a′3, z1〉 − xC = 〈a′3,y1〉 − xc, (16)

hi = 〈b1, zout,i〉 − xt(i)1 = 〈b1,yout,i〉 − xâi. (17)

Algorithm 6 Spend-II
1: zout,i = yout,i + xrout,i for rout,i := ckout,i & i ∈ [S]

Opening of C, σ(C) and sum of input coins
2: z0 = y0 + x

∑M−1
i=0 ri for ri = cki . dim: n+ κ+ 1

3: z1 = y1 + xρ . dim: n+ κ+ 3
4: z2 = y2 + σ−1(x)ρ . dim: n+ κ+ 3
5: if RejOp(({zout,i}i∈[S], z1, z2, z0, zb), ({xrout,i}i∈[S], xρ,

σ−1(x)ρ, x
∑M−1
i=0 ri, xrb), 1,B), then Restart

6: return π = (C,v, v1, v2, B, α, x,zout,0, . . . ,zout,S−1, z0,
z1, z2,f1, zb, z), Ain, CNout, PKout, SN, (CKout,Amtout)

Let us treat x as a variable and define the following equalities

hS(hS + x)(hS − x) =
g

(S)
0 + x · g(S)

1 +

x2 · g2 − x3 · (c(c− 1)(c+ 1)),
(18)

hi(hi + x) = g
(i)
0 + x · g(i)

1 + x2 · (âi(âi − 1)), (19)

for some polynomials g2, g
(i)
0 , g

(i)
1 and i ∈ [S], all independent

of x. Therefore, for any α0, . . . , αS−1 ∈ R, we have

hS(hS + x)(hS − x) +

S−1∑
i=0

αihi(hi + x) = ĝ0 + x · ĝ1

+ x2

(
S−1∑
i=0

αiâi(âi − 1) + g2

)
− x3(c(c− 1)(c+ 1)), (20)

where

ĝ0 :=

S−1∑
i=0

αig
(i)
0 + g

(S)
0 , and ĝ1 :=

S−1∑
i=0

αig
(i)
1 + g

(S)
1 . (21)

The 1-out-of-N proof (or ring signature) described in Alg.
5 is a simplified version of that in [5] with some additional
steps. As we focus on medium-sized ring signatures (with ring
size N ≤ 100), we opt to use this simplified version. If a larger
ring size is desired, the logarithmic-sized ring signature in [5]
can be used. For wα = 39 as in our concrete parameter setting,
we computed empirically the probability that a particular
coefficient of s exceeds β := wα ·

√
2(M − 1) + 1 and found

that it is less than 2−94 for M ≤ 100. Note that the actual
“bad case” probability of Pr [‖xs‖ > Brs] is even much lower
than Pr [‖s‖∞ > β]. We performed a similar computation for
r′ := x

∑M−1
i=0 ri in z0, and found that the probability of

a particular coefficient of r′ exceeding w
√

1.5M in absolute
value is less than 2−101 for w = 56 and M ≤ 100. For
values of M � S, we can apply RejOp in Step 5 of Alg.
6 separately on z0 and the other vectors to reduce the proof
size by sampling the other vectors with a smaller standard
deviation.

It is easy to see that we can construct a value c32 ∈
{−1, 0, 1} by the difference of two bits b0, b1 ∈ {0, 1}. In
fact, one of the bi’s can always be set to zero. This is precisely
what is done in Step 4 of Alg. 5.

The verification function in Alg. 7 computes the “missing”
components that are not output in the proof, checks that
masked randomness openings are short and that the hash

11

inputs are consistent. The algorithms AccountGen, IsSpent
and CheckAct are assumed to be available and used implicitly
in Alg. 7 as described in Section IV.

Let us come back to the general case when we have
M input and S output accounts (without necessarily having
M,S ≤ 2). In this case, “corrector” values will fall in the
range [−(M − 1), S − 1] and we therefore need to prove
that the “corrector” commitment C encodes a polynomial
whose CRT slots are in the range [−(M − 1), S − 1]. In
fact, as discussed in [5], it is also sufficient to prove the CRT
slots are in some range U with [−(M − 1), S − 1] ⊆ U ⊆
[−(q − 1)/4, (q − 1)/4]. Hence, we can choose a set U of a
power-of-2 width. Let t = log2 |U |. Then, the spender proves
that commitments C0, . . . , Ct−1 encodes t polynomials with
binary CRT slots. Then, the spender and verifier construct
C :=

∑t−1
i=0 2iCi − JM − 1, . . . ,M − 1K. By construction,

C satisfies the desired property. Similarly, to construct an
encoding of c32 to “patch” C ′ in Alg. 7, we can use t
polynomials fN , . . . , fN+t−1.

We discuss in Appendix C how to extend MatRiCT+ to
provide recipient anonymity and auditability. In particular,
MatRiCT+ supports the same auditability feature as MatRiCT,
where an authority can revoke the anonymity of a user, e.g.,
in case of illegal activity. We can either allow the system
to enforce auditability or leave it optional for the user to
decide. This property is important to introduce some level of
accountability into applications where it is desirable.

A. Parameter Setting and Implementation
Our parameter setting is done to satisfy the requirements

listed in Assumption 1 in Section VI. We first set r = 64 as
64-bit precision is sufficient in practice. Then, as in MatRiCT,
we focus on M = S = 2 for the concrete parameter setting
as this is the most typical transaction scenario. We also set
N = 11 as in Monero, but other anonymity set sizes can of
course be supported.

We need Rq to split into exactly r = 64 factors, and
also want Rq̂ to split as much as possible while ensuring
challenge difference invertibility. We achieve this by restricting
the moduli q, q̂ to primes with q, q̂ ≡ 2r+ 1 (mod 4r). Then,
we set (d,w) = (256, 56) so that (i) any challenge difference
is invertible (except for a negligible probability of < 2−94)
by the results in Section III, and (ii) |C| is sufficiently large
(in particular, we get |C| > 2237). Then, we set wα = 39
so that |C′| > 2192. Both challenge sets C, C′ have enough
entropy. Finally, we set (n, n̄, κ) = (4, 4, 4), (n̂, κ̂) = (5, 5),
q = 167770241 and q̂ = 234−226−27+1. With this parameter
setting, the root Hermite factor (RHF), a standard metric to
estimate M-SIS/LWE hardness in practice, is between 1.0043
and 1.0049 for all M-SIS/LWE assumptions in Assumption
1. It is a common practice to choose a RHF around 1.0045
for 128-bit post-quantum security (see, e.g., [5]–[7], [9]). The
RHF calculations for M-SIS and M-LWE were done according
to the methodology described in [21, Section 3.2.4]. For M-
SIS∞ in Sub-Assumption 7, we used Dilithium’s scripts10. The

10https://github.com/pq-crystals/security-estimates

Algorithm 7 Verify
INPUT: µ, M,S ∈ Z+, Ain, PKout, SN as in Alg. 4;
CNout = (cnout,0, . . . , cnout,S−1); π = (C,v, v1, v2, B,
α, x, zout,0, . . . ,zout,S−1, z0, z1, z2,f1, zb, z).

Opening proof of output coins
1: A′ ← SamMat(ρ, q, n+ 3, n+ κ+ 3, “A”) as in (15)
2: Set φa,Ba,Bg1,Bg0,B, φrs,Brs as in Alg. 4 and 5
3: if ‖({zout,i}i∈[S], z1, z2, z0, zb)‖∞ > 6B, then return 0
4: for i = 0, . . . , S − 1 do
5: if ‖zout,i‖ > 1.2B

√
d(n+ κ+ 1), then return 0

6: wout,i = Bzout,i − xt(i) for cnout,i = (t(i), t
(i)
1)

7: hi = 〈b1, zout,i〉−xt(i)1 . for bin CRT proof of cnout,i
8: end for

Corrector well-formedness and CRT range proofs
9: if ‖z0‖ > 1.2 · B

√
d(n+ κ+ 1), then return 0

10: if ‖zi‖ > 1.2·B
√
d(n+ κ+ 3) for some i ∈ {1, 2}, then

return 0
11: C ′ = C · J0, 1r′−1, 0, 1r

′−1K, a′3 = a3 · J0, 1r
′−1, 0, 1r

′−1K

12: w0 = Bz0 −
N−1∑
j=0

fj
M−1∑
i=0

t
(i)
in,j for cni,j = (t

(i)
in,j , v

(i)
in,j)

13: w1 = Az1 − xv, w2 = Az2 − σ−1(x)v
14: u = (fN − fN+1) · J0r′−1,−2, 1, 0r

′−1K

15: w = 〈a′3, z1〉 − 2σ(〈a′3, z2〉) + 〈b1,
S−1∑
i=0

zout,i − z0〉 −

x
S−1∑
i=0

t
(i)
1 +

N−1∑
j=0

fj
M−1∑
i=0

v
(i)
in,j − xC ′ − u+ x2σ(C ′)

16: if α 6= H′(IN,COM) for IN,COM as in Alg. 4, then return 0

17: α0, . . . , αS−1, α
′
0, . . . , α

′
M−2 ← Expand(α, “Ch”) for

α← H′(IN,COM), where αi ∈ Rq & α′i ∈ C′
18: hS = 〈a′3, z1〉 − xC ′
19: v0 = hS(hS + x)(hS − x) +

∑S−1
i=0 αihi(hi + x)− xv1−

x2v2 + 〈a1, z1〉+ x〈a2, z1〉
Aggregate 1-out-of-N Proof

20: if ‖f1‖∞ > 6 · φaBa, then return 0
21: if ‖z‖ > 1.2 · φrsBrs

√
d(n̄+ κ) or ‖z‖∞ > 6 · φrsBrs,

then return 0
22: f0 = x−

∑N−1
j=0 fj for f1 = (f1, . . . , fN+1)

23: Define f := (f0, . . . , fN+1) and g0, g1 as in Alg. 5
24: g = (f0(x− f0), . . . , fN+1(x− fN+1))
25: if ‖g0‖∞ > Bg0 or ‖g1‖∞ > Bg1, then return 0
26: G′ ← SamMat(ρ, q̂, n̂, n̂+ κ̂+ 2N + 4, “G”)

27: A = G′

 zb
f
g

− xB in Rn̂q̂

28: Compute P0, . . . , PN−1 as in Alg. 4 using SN in the input
29: E = Gz −

∑N−1
j=0 fjPj

30: if x 6= H(IN,COM, v0, v1, A,B,E), then return 0
31: return 1

latter gave the largest RHF among our assumptions, but we
believe the Dilithium script underestimates this assumption’s
hardness and can be improved using “Asymmetric MSIS”
analysis as in [22] since the largest bound Bg0 is only for
a single coordinate of the vector over Rq̂ while all the other

12

https://github.com/pq-crystals/security-estimates

coordinates have a smaller upperbound. Also, the choice of
q is in fact slightly smaller than the maximum of βSIS, β

′
SIS

in Assumption 1. However, (q, 0, . . . , 0) is not an acceptable
solution in our case due to the additional infinity norm checks
(in particular, we still have q > 12B and q > 12φrsBrs).

We implemented MatRiCT+ in C/C++ on a standard desk-
top machine with i7-7700K CPU.11 We employ (partial) NTT
multiplication for polynomial arithmetic over Rq and Rq̂ ,
and use SHAKE-256 to implement H and H′. AES-256
(with AES-NI instructions) in counter mode is used to realize
Expand. We adapt the FACCT sampler [23] in order to sample
from discrete Gaussian D. Since the FACCT sampler can
only support standard deviation being an integer multiple
of
√

1/(2 ln 2), we round the standard deviations B, φaBa,
φrsBrs up to the nearest integer multiples of

√
1/(2 ln 2). To

avoid timing leakage in Rej and RejOp, we adapt the constant-
time Bernoulli sampling technique with bias exp(x) from [23].
A sample of concrete runtimes of MatRiCT+ is given in Table
II, where the runtimes are the average number of cycles (of
1000 runs) divided by 3 · 106. We refer to Appendix C-C for
further details on the implementation and evaluation.

VI. SECURITY PROOFS

The correctness property of MatRiCT+ follows via straight-
forward investigation and we provide the anonymity proof in
Appendix G. To make the balance discussion more intuitive,
we use the following notations in terms of the two commitment
schemes “UMC” [24] and “HMC” (see Appendix B):

UMC(m1; r) =

(
B
b1

)
r +

(
0
m1

)
, and

HMC(m; r) = Gr +m · g,

where g is a uniformly random vector in Rn̄q . We denote the
set of non-zero differences of challenges in C by ∆C. We list
all the assumptions below and write “Sub-Assumption i” to
refer to a particular one.

Assumption 1.
1) Any y ∈ ∆C is invertible in Rq and in Rq̂ ,
2) Rq splits into exactly r factors,
3) (q̂ > max{d(2 + 12φaBa)2, 2N2}) or (q̂ > max{r(2 +

12φaBa)2, 2N2} and q̂ = 1 mod 2r),
4) q/2 > max{2M, 2S},
5) M-SISn,q,βSIS is hard for βSIS = 8w · 1.2B

√
d(n+ κ+ 3),

6) M-SISn̄,q,β′SIS
is hard for β′SIS = 2.4 · φrsBrs

√
d(n̄+ κ),

7) M-SIS∞n̂,q̂,Bmax
is hard for Bmax = 4w ·max{Bg0,Bg1, 6B},

8) M-LWEκ,q,1 is hard,
9) M-LWEκ̂,q̂,1 is hard.

A. Balance

The balance property is proven under three cases. The
adversary tries to (i) double-spend, which is prevented thanks
to the serial numbers; (ii) create a transaction with unmatching
input/output amounts, which is prevented by our novel balance

11The implementation source code is available at https://gitlab.com/
raykzhao/matrict plus.

proof; (iii) create a transaction without owning M accounts,
which is prevented by the aggregated one-out-of-many proof
(or the ring signature).

Theorem 1. (Balance) If the assumptions given in Assumption
1 hold, then MatRiCT+ is balanced without shuffling.

Proof. We study the balance property in 3 cases. In all cases,
we consider an algorithm S that runs a successful adversary
A against the balance game Exp:Balance. Note that every
spender performs the zero-knowledge proofs described in
Section V. Therefore, using a standard rewinding argument
and the extractor of the underlying zero-knowledge proofs (see
Appendix E for more details), the algorithm S can compute
(y, `, ŝ, âout,i, z̄out,i, r̂0, âin, c1, . . . , cr−1) with the following
properties

y · cnout,i = UMC(yâout,i; z̄out,i) for i ∈ [S − 1], (22)
yP` = HMC(0; ŝ), (23)

M−1∑
i=0

v
(i)
in,` = 〈b1, r̂0〉+ âin, (24)

S−1∑
i=0

âout,i − âin + Jc0 − 2c1, . . . , cr−1 − 2crK = 0, (25)

where

1) y ∈ ∆C,
2) c1, . . . , cr−1 ∈ [−(M − 1), S − 1] and c0 = cr = 0,
3) âout,i = Jb(0)

out,i, . . . , b
(r−1)
out,i K for some b(j)out,i ∈ {0, 1},

4) ‖z̄out,i‖∞ ≤ 12B and ‖z̄out,i‖ ≤ 2.4B
√
d(n+ κ+ 1),

5) ` ∈ {0, . . . , N − 1},
6) ‖ŝ‖∞ ≤ 12 · φrsBrs and ‖ŝ‖ ≤ 2.4 · φrsBrs

√
d(n̄+ κ).

Case 1 (Double-spend): Let Q be the maximum number
of any oracle queries A makes to any random oracle. Let
E2xspend be the event that A wins Exp:Balance in the fol-
lowing way: there exists sni∗ ∈ SN with 0 ≤ i∗ ≤M−1 such
that sni∗ /∈ L. Suppose that Pr[E2xspend] is non-negligible
and assumptions in the theorem statement hold. In this case,
S runs A in a modified game with a different simulation of
the random oracle G that works as follows: for each new i’th
query γi, instead of responding with an independent uniformly
random element of Rn̄q , S responds with HMC(0; zi) with an

independent zi
$← Sn̄+κ

1 . The attacker’s view in this modified
game is computationally indistinguishable from its view in the
original attack, by the assumed hardness of M-LWEκ,q,1, using
a hybrid argument over all the Q queries made by A to G in
the game.

Using this modified game, the S runs A with until E2xspend
happens three times with respect to distinct H outputs and the
same H inputs, and then runs the extractor of the 1-out-of-N
proof to obtain (23). This equation is equivalent to

y ·

(
M−2∑
i=0

α′ip̂ki,` + p̂kM−1,`

)
= HMC(0; ŝ), (26)

13

https://gitlab.com/raykzhao/matrict_plus
https://gitlab.com/raykzhao/matrict_plus

where p̂ki,` = pki,` − G(sni) for i ∈ [M] and sni’s are the
serial numbers A returns in his output transaction tx. By the
assumption that public keys are generated by PKGEN, we have

pki,` = HMC(0; ri) + G(γi), (27)

for some short vector ri’s and some 256-bit string γi’s. Since
sni∗ /∈ L, then γi∗ 6= sni∗ . Hence, we have

p̂ki∗,` = HMC(0; ri∗) + G(γi∗)− G(sni∗). (28)

Defining α′M−1 := 1, expanding (26) using (27), and moving
HMC commitments to the right-hand side of (26), we get

y

(
M−1∑
i=0

α′i(G(γi)− G(sni))

)
− HMC(0; ẑ) = 0, (29)

for ẑ := ŝ − y
∑M−1
i=0 α′iri. By definition of the modified

G oracle simulation, we have G(γi) = HMC(0; zi) and
G(sni) = HMC(0; z′i) for some zi, z′i. Therefore, we have

HMC(0; v) = 0, where v := y

(
M−1∑
i=0

α′i(zi − z′i)
)
− ẑ.

Since the norm bound on ŝ is much bigger than the bounds
for the remaining terms in v, we simply take ‖v‖ ≤
2.4φrsBrs

√
d(n̄+ κ). Let Ev 6=0

2xspend (resp. Ev=0
2xspend) denote

the subevents that partition E2xspend depending on whether

v 6= 0 (resp. v = 0). Therefore, if Ev 6=0

2xspend occurs, then v

is a solution to M-SISn̄,q,β′SIS
, so Pr[Ev 6=0

2xspend] is negligible
by hardness of M-SISn̄,q,β′SIS

. We can therefore assume that
Pr[Ev=0

2xspend] is non-negligible. If Ev=0
2xspend occurs, we con-

clude that

zi∗ = (yα′i∗)
−1

ẑ + yα′i∗z
′
i∗ − yα′i

∑
i 6=i∗

α′i(zi − z′i)

 . (30)

Note that since sni∗ 6= γi∗ we know that z′i∗ 6= zi∗ .
Furthermore, we can assume that none of the γi and sni
for i 6= i∗ are equal to γi∗ using that fact that the γi’s are
sampled at random and also as we can assume without loss
of generality sni 6= γi∗ for i 6= i∗ because in that case the
adversary consumes γi∗ and prevents it from being spent.
Therefore, S can compute zi∗ in terms of the other zi’s and
z′i’s. This directly gives an M-LWEκ,q,1 solver: Given an M-
LWE instance t = HMC(0; z), the M-LWE solver runs S in
the above game with the following modification: the M-LWE
solver guesses at the beginning of the game which among
all the QKG queries made by the PKGEN oracle to G is the
query γi∗ corresponding to the above double spending event
Ev=0

2xspend, and programs the random oracle as G(γ∗i) := t (i.e.
implicitly setting zi∗ := z) when answering that G query. All
other G queries are answered with independent zi as before.
With non-negligible probability Pr[Ev=0

2xspend]/QKG, the M-

LWE solver’s guess for i∗ is correct, and Ev=0
2xspend occurs,

so the M-LWE solver computes the M-LWE solution z using
(30), contradicting the assumed hardness of M-LWEκ,q,1.

Remark 1. The above proof implies that A must use the
honestly-created serial numbers in its output, i.e., p̂ki,` =
HMC(0; ski,`) for short secret keys ski,`’s. This also gives
that for a transaction with serial number sni’s, we have
L[sni].cn = cni,` for i ∈ [M]. We use this in the latter cases.

Case 2 (Unbalanced Amounts): Let Eunbal be the event that
A wins Exp:Balance in the following way: for all sni ∈ SN
where 0 ≤ i ≤ M − 1, sni ∈ L and L[sni].IsCrpt = 1.
Suppose that the assumptions in the theorem hold. S runs
A until Eunbal occurs three times with respect to distinct H
outputs and the same H inputs. Then, S computes (22), (24)
(25). Since the input coins are assumed to be generated by
MINT, the PPT adversary cannot compute any other opening
of
∑M−1
j=0 v

(j)
in,`, but the case where âin is the sum of M

polynomials with binary CRT slots by Sub-Assumption 5.
Hence, all CRT slots of âin are in [0,M − 1].

Now, using the fact that all CRT slots of all âout,i’s are
binary, all CRT slots of âin are in [0,M − 1] and c1, . . . , cr−1

are in [−(M − 1), S − 1], we conclude that (25) in each
CRT slot holds without mod q by Sub-Assumption 4. Fur-
ther, by Remark 1, v(i)

in,`’s correspond to the input coins
cni,` = L[sni].cn for i ∈ [M]. Denote by bi,j the j-th bit
of the i-th input amount for j ∈ [r] and i ∈ [M], i.e.,
âin =

∑M−1
i=0 Jbi,0, . . . , bi,r−1K. Using the fact that (25) holds

without mod q in each CRT slot, we get for j ∈ [r]

S−1∑
i=0

b
(j)
out,i −

M−1∑
i=0

bi,j + cj − 2cj+1 = 0. (31)

By the definition of Exp:Balance, the sum of the amounts
in Amtout (i.e., those corresponding to uncorrupted output
public keys) cannot exceed the sum of the amounts in all
output coins. From here, we look at the following sum where
amtin,i = L[sni].amt for sni = SN[i]

S′−1∑
i=0

Amtout[i]−
M−1∑
i=0

amtin,i ≤
S−1∑
i=0

r−1∑
j=0

2jb
(j)
out,i−

M−1∑
i=0

r−1∑
j=0

2jbi,j

=

r−1∑
j=0

2j

(
S−1∑
i=0

b
(j)
out,i −

M−1∑
i=0

bi,j

)
=

r−1∑
j=0

2j (2cj+1 − cj) = 0,

because c0 = cr = 0. The above gives
∑S′−1
i=0 Amtout[i] ≤∑M−1

i=0 amtin,i, yielding a contradiction with the winning
assumption of A in Exp:Balance.
Case 3 (forgery): Let Eforge be the event that A wins
Exp:Balance in the following way: there exists i∗ with
0 ≤ i∗ ≤M − 1 such that sni∗ ∈ L and L[sni∗].IsCrpt = 0.

Let QP be the number of PKGEN queries A makes. S
picks φ $← [1, QP] and sets pkφ = HMC(1; rφ) + G(snφ)

for rφ
$← Sn̄+κ

1 and snφ
$← {0, 1}256. Note that pkφ is

computationally indistinguishable from any public key gener-
ated by KeyGen due to the hiding property of HMC (i.e., by
M-LWEκ,q,1 assumption). For other PKGEN queries, S runs
KeyGen and returns the public key to A. Now, S runs A until

14

Eforge happens three times under the same Spend input and
for the same random oracle input with three different outputs
given by S, where
• the index i∗ is the same for all Eforge events, and
• pkφ ∈ Ain and it is not corrupted.

From here, S runs the extractor of the underlying zero-
knowledge proofs of tx as given in Appendix E and obtains
(23), which is equivalent to

y ·

(
M−2∑
i=0

α′ip̂ki,` + p̂kM−1,`

)
= Gŝ = HMC(0; ŝ). (32)

By Remark 1 and the assumption that all public keys are
generated by PKGEN, S knows the openings of all p̂ki,j’s.
Therefore, S knows sk0,`, . . . , skM−1,` ∈ Sn̄+κ

1 such that

p̂ki,` = HMC(0; ski,`), for i = 0, . . . ,M − 1. (33)

Now note that with probability 1/N , p̂kφ := pkφ − G(snφ)

is equal to one of the elements in {p̂k0,`, . . . , p̂kM−1,`}, say
p̂kφ = p̂kψ,` for ψ ∈ [0,M − 1]. Note again that by Remark
1, the adversary cannot use any other serial number than snφ.
Therefore, S can compute the following

yαψp̂kψ,` = HMC(0; ẑ), (34)

where ẑ := ŝ − y

(
M−1∑

i=0,i6=ψ
α′iski,`

)
for αM−1 = 1. By the

construction of p̂kφ = p̂kψ,`, we also have

yα′ψp̂kψ,` = HMC(yα′ψ; yα′ψrφ). (35)

Since y and α′ψ are invertible, yα′ψ is non-zero in (35).
Hence, (34) and (35) yields a binding collision, i.e., gives
a solution to M-SIS. Similar to Case 1, bounding ‖ẑ‖ by
‖ŝ‖ for simplicity, ẑ gives a solution to M-SISn̄,q,β′SIS

for
β′SIS = 2.4 · φrsBrs

√
d(n̄+ κ), which yields a contradiction

with Sub-Assumption 6.

ACKNOWLEDGMENTS

We thank Tim Ruffing for helping with the concrete run-
times of Omniring and Monero from [13]. This work was
supported in part by Australian Research Council Discovery
Grant DP180102199.

REFERENCES

[1] J. Gambetta, “Ibm’s roadmap for scaling quantum technology,” 2020,
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/,
accessed on Dec 2, 2020.

[2] V. Buterin, “Understanding serenity, part i: Ab-
straction,” 2015, https://blog.ethereum.org/2015/12/24/
understanding-serenity-part-i-abstraction/, accessed on Dec 3, 2020.

[3] M. F. Esgin, V. Kuchta, A. Sakzad, R. Steinfeld, Z. Zhang, S. Sun,
and S. Chu, “Practical post-quantum few-time verifiable random func-
tion with applications to algorand,” Cryptology ePrint Archive, Report
2020/1222, 2020, ia.cr/2020/1222 (to appear at FC’21).

[4] M. F. Esgin, O. Ersoy, and Z. Erkin, “Post-quantum adaptor signatures
and payment channel networks,” in ESORICS (2), ser. LNCS, vol. 12309.
Springer, 2020, pp. 378–397.

[5] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu, “MatRiCT:
Efficient, scalable and post-quantum blockchain confidential transactions
protocol,” in ACM Conference on Computer and Communications Se-
curity. ACM, 2019, pp. 567–584, (Full version at ia.cr/2019/1287).

[6] M. F. Esgin, R. Steinfeld, A. Sakzad, J. K. Liu, and D. Liu, “Short lattice-
based one-out-of-many proofs and applications to ring signatures,” in
ACNS, ser. LNCS. Springer, 2019, pp. 67–88, (Full version at ia.cr/
2018/773).

[7] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu, “Lattice-based zero-
knowledge proofs: New techniques for shorter and faster constructions
and applications,” in CRYPTO (1), ser. LNCS, vol. 11692. Springer,
2019, pp. 115–146, (Full version at ia.cr/2019/445).

[8] T. Attema, V. Lyubashevsky, and G. Seiler, “Practical product proofs for
lattice commitments,” in CRYPTO (2), ser. LNCS, vol. 12171. Springer,
2020, pp. 470–499.

[9] M. F. Esgin, N. K. Nguyen, and G. Seiler, “Practical exact proofs from
lattices: New techniques to exploit fully-splitting rings,” in ASIACRYPT
(2), ser. LNCS, vol. 12492. Springer, 2020, pp. 259–288.

[10] V. Lyubashevsky, N. K. Nguyen, and G. Seiler, “Practical lattice-based
zero-knowledge proofs for integer relations,” in CCS. ACM, 2020, pp.
1051–1070.

[11] S. Noether, “Ring signature confidential transactions for monero,” Cryp-
tology ePrint Archive, Report 2015/1098, 2015, ia.cr/2015/1098.

[12] T. H. Yuen, S. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and
D. Gu, “Ringct 3.0 for blockchain confidential transaction: Shorter size
and stronger security,” in Financial Cryptography and Data Security,
ser. LNCS, vol. 12059. Springer, 2020, pp. 464–483.

[13] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan,
and J. Wang, “Omniring: Scaling private payments without trusted
setup,” in CCS. ACM, 2019, pp. 31–48, (ia.cr/2019/580, 9-Apr-2020
version).

[14] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “Crystals–Dilithium: Digital signatures from module lattices,”
in CHES, vol. 2018-1, 2018.

[15] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryp-
tion with polylog overhead,” in EUROCRYPT, ser. LNCS, vol. 7237.
Springer, 2012, pp. 465–482.

[16] V. Lyubashevsky, “Lattice signatures without trapdoors,” in EURO-
CRYPT. Springer, 2012, pp. 738–755, (Full version).

[17] V. Lyubashevsky, N. K. Nguyen, and G. Seiler, “Shorter lattice-based
zero-knowledge proofs via one-time commitments,” Cryptology ePrint
Archive, Report 2020/1448, 2020, https://eprint.iacr.org/2020/1448.

[18] V. Lyubashevsky and G. Seiler, “Short, invertible elements in par-
tially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs,” in EUROCRYPT (1), ser. LNCS, vol. 10820.
Springer, 2018, pp. 204–224.

[19] D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case
problems over ideal lattices,” in EUROCRYPT, ser. LNCS, vol. 6632.
Springer, 2011, pp. 27–47.

[20] X. Wang, Y. Chen, and X. Ma, “Adding linkability to ring signatures
with one-time signatures,” in ISC, ser. LNCS, vol. 11723. Springer,
2019, pp. 445–464.

[21] M. F. Esgin, “Practice-oriented techniques in lattice-based cryptogra-
phy,” Ph.D. dissertation, Monash University, 5 2020, https://doi.org/10.
26180/5eb8f525b3562.

[22] J. Zhang, Y. Yu, S. Fan, Z. Zhang, and K. Yang, “Tweaking the
asymmetry of asymmetric-key cryptography on lattices: Kems and
signatures of smaller sizes,” in Public Key Cryptography (2), ser. LNCS,
vol. 12111. Springer, 2020, pp. 37–65.

[23] R. K. Zhao, R. Steinfeld, and A. Sakzad, “FACCT: fast, compact, and
constant-time discrete gaussian sampler over integers,” IEEE Trans.
Computers, vol. 69, no. 1, pp. 126–137, 2020.

[24] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert,
“More efficient commitments from structured lattice assumptions,” in
SCN, ser. LNCS, vol. 11035. Springer, 2018, pp. 368–385.

[25] Z. Liu, K. Nguyen, G. Yang, H. Wang, and D. S. Wong, “A lattice-based
linkable ring signature supporting stealth addresses,” in ESORICS (1),
ser. LNCS, vol. 11735. Springer, 2019, pp. 726–746.

[26] S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld, “Improved
security proofs in lattice-based cryptography: Using the Rényi diver-
gence rather than the statistical distance,” in ASIACRYPT (1), ser. LNCS,
vol. 9452. Springer, 2015, pp. 3–24.

15

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
ia.cr/2020/1222
ia.cr/2019/1287
ia.cr/2018/773
ia.cr/2018/773
ia.cr/2019/445
ia.cr/2015/1098
ia.cr/2019/580
https://eprint.iacr.org/2020/1448
https://doi.org/10.26180/5eb8f525b3562
https://doi.org/10.26180/5eb8f525b3562

TABLE VII
PROOF LENGTH COMPARISON (IN KB) AMONG RINGCT PROPOSALS

INCLUDING PRE-QUANTUM ONES.

Anonymity level 1/N = 1/11
#in’s → #out’s 2→ 2 20→ 2 50→ 2 100→ 2 PQ?a

Monero [11] 1.72 9.03 21.22 41.53 No
RingCT 3.0 [12] 1.41 2.16 3.22 4.84 No

Omniring [13] 0.78 0.84 0.91 0.97 No
MatRiCT [5] 110.00 310.00 610.00 1100.00 Yes
MatRiCT+ 47.40 59.48 60.60 63.59 Yes

a ‘PQ’ refers to being plausibly post-quantum (in ROM).

APPENDIX A
COMPARISON WITH OTHER RINGCT PROPOSALS

In this section, we provide a more detailed comparison be-
tween MatRiCT+ and other (pre-quantum) RingCT proposals.
Our goal here is to highlight the gap that remains between the
post-quantum and pre-quantum proposals. As far as the current
state of affairs is concerned, it is well-understood that lattice-
based schemes cannot reach the communication efficiency
of ECDLP-based proposals. A clear example of this is the
ordinary signatures, where the gap between ECDSA/Schnorr
signature and Dilithium [14] –a signature finalist in NIST’s
Post-Quantum Cryptography standardization process relying
on the same lattice assumption as MatRiCT+– is about 42×
(we refer to this 42× gap as “inherent gap”). Therefore, we do
not expect our proposal, MatRiCT+, to reach the communi-
cation efficiency levels of RingCT 3.0 [12] or Omniring [13],
but we discuss that the gap in the RingCT case is now (with
the introduction of MatRiCT+) substantially reduced.

Table VII summarizes the proof length comparison. Here,
the focus is on the increasing number of inputs as the
anonymity level and the number of output accounts does not
vary much in Monero. However, in the last 7 days at the time
of writing12, Monero recorded several hundreds of transactions
with 30+ inputs and close to 200 transactions with 100+
inputs. Therefore, we believe that it is important to consider
increasing number of inputs.

We can first notice that MatRiCT+ produces proofs of
similar lengths as Monero when the number of input accounts
is around 150. Moreover, we observe that the gap of around
60–70× between Omniring and MatRiCT+ remains similar
in Table VII, which means MatRiCT+ scales similarly for
increasing M as the shortest (pre-quantum) RingCT proposal.
MatRiCT+ scales even better than RingCT 3.0, where the gap
falls even to one-third of the “inherent gap”.

In terms of verification efficiency, which is the more impor-
tant computational aspect since every miner in the blockchain
runs verification, we have the following verification times for
Monero and Omniring reported from [13] with ring sizes N =
8, 16, 64. Monero: 18, 28, 87 ms, and Omniring: 13, 13, 23
ms. That is, MatRiCT+ verification is more than 4× faster
than both Omniring and Monero in the most typical case of
N ≈ 10. The transaction generation times are similar between

12https://pooldata.xmrlab.com/, (Accessed 21 April 2021)

Omniring and MatRiCT+ (for N ≤ 64), while Monero is
about 2× faster than MatRiCT+.

APPENDIX B
LATTICE-BASED COMMITMENT SCHEMES

We make use of two lattice-based commitment schemes,
namely ‘Hashed-Message Commitment’ (HMC) (see, e.g., [6],
[7]) and ‘Unbounded-Message Commitment’ (UMC) [24]. The
two commitment schemes are very similar in overall compu-
tations required, but have different advantages/disadvantages.

In HMC, the key generation function samples two uni-
formly random matrices A $← Rn×(n+κ)

q and B $← Rn×vq ,
which become the public commitment keys. To commit to
m ∈ Rvq , we sample a short randomness r according to
some distribution (often uniform on a narrow range or discrete
Gaussian with small standard deviation) and compute the
commitment C = Ar + Bm. The advantage of HMC is
that the commitment dimension does not increase with the
message dimension; however, HMC is binding only when the
input message m is of small norm.

In UMC, the key generation function samples random
matrices A $← Rn×(n+κ+v)

q and B $← Rv×(n+κ+v)
q , which

become the public commitment keys. Then, to commit to
m ∈ Rvq , we sample again a short randomness r and compute
the commitment t = Ar and tm = Br +m. One may see
t as the “binding part” and tm as the “message encoding
part”. The advantage of UMC is that we can now commit
to any message (regardless of its norm) and the message
encodings can be independently manipulated. However, the
commitment dimension (which is n + v) increases with the
message dimension v. In MatRiCT+, we exploit the best of
both schemes to design an efficient construction overall.

We refer to [21, Section 3.2.2] for a good collective discus-
sion of both schemes and also to, e.g., [6], [7], [24] for more
details. Both schemes are well-known to be computationally
hiding based on M-LWE and computationally binding based
on M-SIS. We also note that the commitment matrices can
be equivalently sampled in a more structured fashion with
some entries set to be 0 or 1. This saves some computation in
practice and we employ this strategy in the implementation.
However, in order not to clutter the presentation, we do not
present the algorithms this way. The security aspects are not
affected by this change (see [21, Section 3.2.2]).

APPENDIX C
MORE ON MATRICT+

A. Adding Recipient Anonymity

We can employ a standard method to add recipient
anonymity to MatRiCT+, which can be seen as the lattice
analog of the technique used in Monero. In particular, when
spending to a user with a long-term public pk (generated
exactly as in KeyGen), the spender creates a fresh public-
secret key pair (pk′, sk′) ← KeyGen() and sets the output
public key to be pko = pk + pk′. Since sk′ is sampled
independently and pk′ is computationally indistinguishable

16

https://pooldata.xmrlab.com/

from a random element in Rn̄q by M-LWEκ,q,1, pko does not
leak any information about pk. Hence, recipient anonymity
is achieved. The spender forwards sk′ to the recipient along
with the output coin opening. This approach has already been
formally analyzed in the lattice setting in [25].

B. Adding Auditability

We can use the same idea in [5, Section 6] to extend
MatRiCT+ to provide auditability. In particular, we would
need to insert a Regev-style trapdoor into the commitment
matrix G′ as described in [5, Section 6.1] so that the commit-
ment B can be decryptable using the trapdoor (known to some
authority). The advantage in our case is that the commitment
B now only encodes the user index together with a few extra
bits, while a similar commitment in MatRiCT [5] encodes the
user index as well as all the output coin bits (i.e., extra S · r
bits). Combined with the fact that MatRiCT requires larger
parameters, the components in B that we do not want to
recover in decryption have a much bigger norm in MatRiCT,
which then puts stronger requirements on the parameters for
the auditable version. In particular, MatRiCT+ requires only
q̂ ≈ 234 while MatRiCT already has q̂ ≈ 253 (without even
considering auditability requirements). Hence, the existing q̂
in MatRiCT+ is already sufficient, but we additionally need to
adjust the parameters to make sure that M-LWEn̂−1,q̂,1 is hard
(to make sure that trapdoor remains hidden), which means we
just need to increment n̂ to 6.

Note that the auditability property can be enforced by mak-
ing sure that verification checks whether a certain commitment
matrix (that has an unknown trapdoor) is used. Therefore, we
can either have the auditability optional or have it enforced.

C. More on Implementation and Evaluation of MatRiCT+

As in [8], [9], we sample the fresh randomnesses over
S1 as follows to make the sampling computationally easy.
Each coefficient of a randomness polynomial in S1 is sampled
from the binomial distribution on {−1, 0, 1}, where 0 is
sampled with probability 6/16 and each of ±1 is sampled
with probability 5/16.

We set A = [In ‖ ∗], B = [In ‖ ∗], G′ = [I n̂ ‖ ∗] and
G = [I n̄ ‖ ∗], where ∗ denotes entries chosen uniformly at
random from its respective domain. Similarly, ai = (0n, ei, ∗)
for i = 1, 2, 3, and b1 = (0n, e1, ∗), where e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1). Moreover, instead of
computing a′3 = a3 · J0, 1r

′−1, 0, 1r
′−1K, we set a3 to have a

zero in the two CRT slots indexed by 0 and r′.
MatRiCT+ accompanied by the ring signature in [5] (in-

stead of the simplified version given in this paper) achieves
a proof length logarithmic in M , polylogarithmic in N and
linear in S. It seems hard to avoid the linear dependence on S
since each output coin opening needs to be masked separately
as the openings may be transferred to different recipients.
Transaction generation and verification runtimes are linear
in M,N and S, which is inherent as the computation must
depend on all input, output and decoy accounts. A sample of
concrete proof lengths and the public key length of MatRiCT+

are provided in Table I, where the bit-length computation of a
discrete Gaussian sample is done by calculating its entropy.

APPENDIX D
DISCUSSION ON SERIAL NUMBERS

As discussed in Section V, the generation of an account’s
serial number in MatRiCT+ does not depend on any secret
information and anyone can “claim” any serial number. This
way, an attacker can try to prevent an honest user, say Alice,
from being able to spend her account. For this, the attacker
would need to learn Alice’s serial number sn and record a valid
transaction with sn on blockchain before Alice’s transaction
with the serial number sn is recorded on blockchain. First,
such an attack does not lead to a violation of the security prop-
erties in our security model. This would be an attack against
availability as an honest user is prevented from spending her
coins (i.e., a potential “denial-of-spending” attack).

If we want to prevent such an attack surface, then there
is indeed an easy solution as described in [20]. In particular,
instead of choosing a serial number sn at random, we set sn
to be the public key of a one-time signature (OTS). Then, in
Spend, we ask the spender to sign the hash of the transaction
output using OTS. Since only the owner of the OTS secret
key can perform this signing, the attackers are prevented from
claiming the serial numbers of others. We refer to [20] for a
more formal treatment.

In practice, Alice can keep the serial number sn secret until
she wants to use it in a blockchain transaction. Therefore, the
attacker has a very limited window to launch such a denial-of-
spending attack, i.e., the attack needs to be done in the period
between the time Alice submits her transaction and when it
gets recorded on blockchain. Given this limited time frame,
using a short DL-based signature such as ECDSA to serve
as OTS above is likely to be a sufficient solution. Here, the
attacker would need to break a new DLP instance for each user
he wants to target and, in fact, the cost of such a (quantum)
attack is likely to be well-above the transaction amount Alice
is prevented from spending in most of the typical transactions.
Hence, the attack may not even be worthwhile, let alone being
feasible.

In general, any OTS scheme (which may just be an ordinary
signature) can be used as a tool to circumvent the above
attacks. Using a scheme with minimal total size of a public
key and a signature would lead to the minimal communication
overhead.

APPENDIX E
OVERALL WITNESS EXTRACTION OF THE UNDERLYING

ZERO-KNOWLEDGE PROOF

In this section, we present a description of the overall
witness extraction procedure of the interactive zero-knowledge
proof underlying MatRiCT+. The difference in the inter-
active protocol is that the prover sends the components
wout,i,w0,w1,w2, w, v0, A,E in its move to the verifier, who
then checks whether they are consistent as in Alg. 7 (rather

17

than computing them and checking the hash). We use the
assumptions listed in Assumption 1.

Assume that the witness extractor E is given
3 accepting protocol transcripts with the same
(IN,COM, v0, v1, v2, A,B,E), distinct challenges x, x′

and x′′ and some responses denoted analogous to the
challenges (e.g., z, z′, z′′). As discussed in the 3 special
soundness of [7, Theorem 2] and [5, Appendix E], E computes

fj = xbj + âj , (36)
f ′j = x′bj + âj , (37)

f ′′j = x′′bj + âj , (38)

for j = 0, . . . , N + 1, where bj := (fj − f ′j)(x − x′)−1 and
âj := fj − xbj , using Sub-Assumptions 1 and 7. We aim to
show that bj ∈ {0, 1} ⊂ R for all j = 0, . . . , N + 1. Again,
following the steps of [7, Theorem 2] and [5, Appendix E],
we have

bj(bj − 1) = 0 in Rq̂, (39)

for j = 0, . . . , N + 1. Note that ‖(x − x′)bj‖∞ = ‖fj −
f ′j‖∞ ≤ 12 · φaBa for j = 1, . . . , N + 1. By Sub-Assumption
3 and Corollary 3, we conclude that bj ∈ {0, 1} for all j =
1, . . . , N + 1. We still need to prove b0 ∈ {0, 1}.

Now, by construction, we have

x =

N−1∑
j=0

fj =

N−1∑
j=0

(xbj + âj) = x

N−1∑
j=0

bj +

N−1∑
j=0

âj . (40)

Similarly, we have x′ = x′
∑N−1
j=0 bj +

∑N−1
j=0 âj . Therefore,

we get x − x′ = (x − x′)
∑N−1
j=0 bj , which implies (by Sub-

Assumption 1)

N−1∑
j=0

bj = 1, (41)

which implies b0 = 1−
∑N−1
j=0 bj . Using this equality together

with (39) for j = 0, we have1−
N−1∑
j=1

bj

N−1∑
j=1

bj

 = 0 in Rq̂. (42)

Since the left hand side of the above is just an integer less than
N2, which is less than q̂/2 by Sub-Assumption 3, the above
equality holds over Z and thus

∑N−1
j=1 bj ∈ {0, 1}. Hence,

b0 ∈ {0, 1} by (41). This concludes that bj ∈ {0, 1} for all
j = 0, . . . , N + 1.

Combining this fact and (41), there exists a single index
` ∈ {0, . . . , N − 1} such that b` = 1, and bj = 0 for all j 6= `
and j ∈ [N]. From here, it’s easy to see using (36) and (37)
that

fj − f ′j =

{
0 if j 6= `,

x− x′ if j = `.
(43)

for j = 0, . . . , N − 1. With the above, we see that all the
summations of the form

∑N−1
j=0 (fj − f ′j)Aj (for some term

Aj) reduces to (x− x′)A`, which we will use below.

Next, as in the soundness proof of [7, Theorem 3], the
extractor E recovers ŝ := z − z′ with ‖ŝ‖∞ ≤ 12 · φrsBrs
and ‖ŝ‖ ≤ 2.4 · φrsBrs

√
d(n̄+ κ) such that

(x− x′)P` = Gŝ. (44)

We use the above opening to get a contraction with Sub-
Assumption 6 in the proof of Theorem 1. Now, using the
“weak opening” idea from [8], by Sub-Assumption 5, E further
computes (r̂0, âin, ĉ, ĝ2, ρ̂, r̂out,i, âout,i) for i ∈ [S] such that

cnout,i = (t(i), t
(i)
1) = (Br̂out,i, 〈b1, r̂out,i〉+ âout,i), (45)

M−1∑
j=0

t
(j)
in,` = Br̂0, [by (43)] (46)

M−1∑
j=0

v
(j)
in,` = 〈b1, r̂0〉+ âin, (47)

v = Aρ̂, (48)
C ′ = 〈a′3, ρ̂〉+ ĉ, (49)
v2 = 〈a2, ρ̂〉+ ĝ2, (50)

and

z̄0 := z0 − z′0 = (x− x′)r̂0, (51)
z̄1 := z1 − z′1 = (x− x′)ρ̂, (52)

z̄2 := z2 − z′2 = σ−1(x− x′)ρ̂, (53)
z̄out,i := zout,i − z′out,i = (x− x′)r̂out,i, (54)

for i = 0, . . . , S − 1 and

z1 = ŷ1 + xρ̂, (55)
z′1 = ŷ1 + x′ρ̂, (56)
z′′1 = ŷ1 + x′′ρ̂, (57)

zout,i = ŷout,i + xr̂out,i, (58)

z′out,i = ŷout,i + x′r̂out,i, (59)

z′′out,i = ŷout,i + x′′r̂out,i, (60)

for some ŷ1 and ŷout,i’s (not necessarily short). Observe that
the above has the same structure with the responses in an
honest protocol run, but we just don’t have the property that
the vectors on the right hand side are short. Thus, by the
construction of h0, . . . , hS and using (45), (49) and (50), we
end up with an expression similar to (20). Particularly, we get

− x3 [ĉ(ĉ− 1)(ĉ+ 1)]

+ x2

[
S−1∑
i=0

αiâout,i(âout,i − 1) + g2 − ĝ2

]
+ x[∗] + [∗] = 0,

where ∗ denotes some terms that are not important and g2 is
some term as in (18). The equation above also holds for the
other challenges x′ and x′′. Hence, by Sub-Assumption 1, we
get ĉ(ĉ−1)(ĉ+1) = 0 and

∑S−1
i=0 αiâout,i(âout,i−1)+g2−ĝ2 =

0. Now, it is important to observe that âout,i’s, ĝ2, and g2 are all
independent of αi’s as they are part of commitments computed
before receiving the challenges αi’s (or running the random
oracle H′). Hence, except with a negligible probability, the

18

only way they can sum up to zero is if âout,i(âout,i − 1) = 0
for all i = 0, . . . , S − 1 (and g2 − ĝ2 = 0).

Overall, we conclude that âout,i has binary CRT slots for all
i = 0, . . . , S− 1 and that all CRT slots of ĉ are in {−1, 0, 1}.
In fact, by construction, the verifier removed the CRT slots
indexed by 0 and r′ of ĉ, so they’re equal to 0.

Now, we get to the crucial part that is unique to our work.
Let’s look at the difference of two responses of Step 15 of
Alg. 7. We have

0 = 〈a′3, z̄1〉 − 2σ(〈a′3, z̄2〉) + 〈b1,

S−1∑
i=0

z̄out,i − z̄0〉

− y
S−1∑
i=0

t
(i)
1 + y

M−1∑
i=0

v
(`)
in,j − yC

′ − ū+ y2σ(C ′), (61)

where ū = u− u′ = y(bN − bN+1) · J0r′−1,−2, 1, 0r
′−1K and

y = x − x′. Define cr′ := bN − bN+1 ∈ {−1, 0, 1}, which
means y−1ū = J0r

′−1,−2cr′ , cr′ , 0
r′−1K. Multiplying (61) by

y−1 and substituting Equations (45) to (54), the inner product
expressions cancel out and we get

S−1∑
i=0

âout,i − âin + ĉ− 2σ(ĉ) + J0r
′−1,−2cr′ , cr′ , 0

r′−1K = 0.

By Sub-Assumption 2, all the terms in the
above equation has exactly r CRT slots. Denote
ĉ = J0, c1, . . . , cr′−1, 0, cr′+1, . . . , cr−1K. Then,
we have ĉ − 2σ(ĉ) + J0r

′−1,−2cr′ , cr′ , 0
r′−1K =

Jc0 − 2c1, . . . , cr−1 − 2crK for c0 = cr = 0 and
c1, . . . , cr−1 ∈ {−1, 0, 1}. Hence,

S−1∑
i=0

âout,i − âin + Jc0 − 2c1, . . . , cr−1 − 2crK = 0, (62)

where c0 = cr = 0 and c1, . . . , cr−1 ∈ {−1, 0, 1}.
In the general case where we don’t necessarily have M =

S = 2, the only change to the above arguments is that the
CRT slot ci’s of ĉ are proven to be in [−(M − 1), S − 1].

APPENDIX F
FORMAL CORRECTNESS AND ANONYMITY OF RINGCT

We use the correctness and anonymity definitions from [5].
Correctness: A RingCT protocol is said to be ε-correct if

the following holds for any pp← Setup(1λ), any M,N,S ∈
Z+, (pk0, sk0), . . . , (pkM−1, skM−1) ← KeyGen(pp) such
that IsSpent(SerialGen(ski)) = 0 for all i = 0, . . . ,M − 1,
any amt0, . . . , amtM−1, amtout,0, . . . , amtout,S−1 ∈ V such
that

∑M−1
i=0 amti =

∑S−1
i=0 amtout,i, any set PKout of arbitrarily

generated output public keys and any set Ain\Rin of arbitrarily
generated decoy accounts,

Pr

[
Verify(tx,B) 6= ∅ :

(tx,CKout)← Spend(Ain,Rin,Kin,PKout,Amtout)

]
≥ 1−ε

where cni = Mint(amti, cki) for some cki’s in the do-
main of coin keys, acti ← AccountGen(pki, cni) for
i = 0, . . . ,M − 1, Rin = {act0, . . . , actM−1}, Amtout =

{amtout,0, . . . , amtout,S−1}, Ain and tx are as in Table IV, and
Kin = {(sk0, ck0, amt0), . . . , (skM−1, ckM−1, amtM−1)}. If
ε = 0, then the protocol is said to be perfectly correct. If
ε = negl(λ), then it is said to be statistically correct.

Anonymity: A RingCT protocol is said to be anonymous
if the following holds for all PPT adversaries A and pp ←
Setup(1λ)

Pr [A wins the game Exp:Anonymity] ≤ 1/2 + negl(λ),

where Exp:Anonymity is defined as follows.
1) (Ain,PKout,Amtout,R

0
in,R

1
in, st) ← AORC(pp) : A is given

pp and access to all oracles, and then outputs two target sets
of accounts to be spent as (Ain,PKout,Amtout,R

0
in,R

1
in, st)

where
• st is some state information to be used by A in the next

stage,
• Ain,PKout and Amtout are as in Table IV,
• R0

in,R
1
in ⊂ Ain such that both R0

in and R1
in contain exactly

one account from each row of Ain.
2) (txi,CK

i
out) ← Spend(Ain,R

i
in,K

i
in,PKout,Amtout) for i =

0, 1 : Both sets R0
in and R1

in of real input accounts are spent
with the arguments specified by A where
• Kiin is the set of account secret keys of the accounts in
Riin retrieved from L for i = 0, 1.

If Verify(txi,B) = ∅ for some i ∈ {0, 1}, then set tx0 =
tx1 =⊥.

3) b← {0, 1}
4) b′ ← AORC(txb,CK

b
out,Amt0in,Amt1in, st) : A is given access

to all the oracles, the state st, one of the Spend outputs,
and the input amounts in K0

in and K1
in. Then, A outputs a

guess for the real input of the Spend output provided.
A wins the game Exp:Anonymity if the following holds
• all public keys and coins in R0

in and R1
in are generated by

PKGEN and MINT, respectively, and all accounts in R0
in and

R1
in are generated by ACTGEN,

• all public keys in PKout are generated by PKGEN,
• tx0 6=⊥ and tx1 6=⊥,
• no account (including its public key and coin) in R0

in or R1
in

has been corrupted (i.e., queried to CORRUPT),
• (·,Riin·, ·) has never been queried to SPEND for i = 0, 1,
• b′ = b.

APPENDIX G
ANONYMITY PROOF OF MATRICT+

We analyze the anonymity of MatRiCT+ in the setting
where Alg. 1 is always used as the rejection sampling
method. The reason for this is that the analysis with op-
timized rejection sampling Alg. 2 requires major changes
in the security model as a more extended view of the
transactions is needed because the coin keys appear in (at
most) two transactions (not just one). We leave this more
detailed investigation as a future work. The only additional
‘hint’ given to the adversary in the case of using Alg. 2 is
the sign of 〈({zout,i}i∈[S], z1, z2, z0, zb), ({xrout,i}i∈[S], xρ,

σ−1(x)ρ, x
∑M−1
i=0 ri, xrb)〉, where ρ, rb are freshly sampled

19

for each transaction and rout,i, ri are used in at most two
transactions.

Theorem 2. (Anonymity) Let A be a PPT adversary, AdvLWE
A

be the advantage of A over solving M-LWEκ,q,1, AdvLWE2

A be
the advantage of A over solving M-LWEκ̂,q̂,1, and ε(φ) ≤
2−100/µ(φ) for µ defined in Alg. 1 be the statistical distance
between the resulting distribution after rejection sampling with
parameter φ and the corresponding simulated distribution. The
advantage of A against Exp:Anonymity without shuffling
of MatRiCT+ using rejection sampling in Alg. 1 is at most

AdvAno
A ≤ (M+1)·AdvLWE2

A +AdvLWE
A +ε(φa)+ε(φrs)+ε(1).

Proof of Theorem 2. The proof uses the simulation of the un-
derlying zero-knowledge proofs, where the indistinguishability
is either due to an M-LWE assumption or rejection sampling.
Let us consider the following games.
Game0 : is identical to Exp:Anonymity without shuffling.
Game1 : First, the challenger simulates the responses where
the rejection sampling is applied. In Algorithm 5 and 6,
it replaces all the polynomials in f1 by random samples
of DφaBa

, all the polynomials in zb, z0, z1, z2 by random
samples of DB, all the polynomials in z by random samples
of DφrsBrs . This game is statistically indistinguishable from
the previous game due to rejection sampling.∣∣∣AdvGame0

A −AdvGame1

A

∣∣∣ ≤ ε(φa) + ε(φrs) + ε(1).

Game2 : In Algorithm 5, the challenger replaces B by a uni-
formly random element in Rn̂q̂ . This game is computationally
indistinguishable from Game1 by M-LWEκ̂,q̂,1 hardness.∣∣∣AdvGame1

A −AdvGame2

A

∣∣∣ ≤ AdvLWE2

A .

Game3 : In Algorithm 4, the challenger replaces
(v, v1, v2, C) by a uniformly random element in Rn+3

q . This
game is computationally indistinguishable from the previous
game by M-LWEκ,q,1 hardness.∣∣∣AdvGame2

A −AdvGame3

A

∣∣∣ ≤ AdvLWE
A .

Game4 : The challenger replaces serial numbers by uniformly
random elements in {0, 1}256 and the public keys pki,`’s in Rin
(i.e., the `-th column of Ain) by uniformly random elements
in Rn̄q for i = 0, . . . ,M − 1. This game is computationally
indistinguishable from Game3 by M-LWEκ,q,1 hardness.∣∣∣AdvGame3

A −AdvGame4

A

∣∣∣ = M ·AdvLWE2

A .

Note that CKout,CNout,Amtout and PKout are all independent
of Rin and Kin. So, in Game4, the output of Spend is
independent of Rin and Kin, and thus independent of b. Hence,
A has probability 1/2 of outputting b′ = b in Game4.

APPENDIX H
PROOF OF LEMMA 1

Proof. We first notice that P2 can be rewritten as the dis-
tribution of the random variable Y2 :=

∑
j∈[w] hjζ

kj
i over

Zq , with (h = (h1, ..., hw),k = (k1, ..., kw)) sampled from a

distribution D2 as follows: hj’s are identically and indepen-
dently distributed (iid) uniformly on {−1, 1}, and k is sampled
uniformly at random from the set of all w-tuples from [r] with
distinct coordinates (i.e. kj 6= kj′ for j 6= j′).

As outlined above, our first step (below) is to compute a
bound M1 on a slightly different distribution P1 of random
variable Y1 :=

∑
j∈[w] hjζ

kj
i defined similarly to Y2 except

that in the distribution D1 of (k,h), the kj’s are sampled iid
from the uniform distribution on [r] (i.e. without the distinct
coordinate requirement). As our second step, we note that the
support Supp(D2) of D2 is a subset of the support Supp(D1)
of D1, and for every (k,h) in the support of D2, we have
D2(k,h) = η ·D1(k,h), where η := |Supp(D1)|

|Supp(D2)| = rw̃(r−w̃)!
r! .

Since Y1, Y2 are computed as the same function of (k,h), it
follows that P2(y) ≤ ηP1(y) for all y in the support of P2

(this can be seen as a simple application of the probability
preservation property of Rényi divergence of order ∞, used
in different contexts in [26]), and hence M2 ≤ η ·M1.

To complete our first step and prove the Lemma, it therefore
suffices to bound M1. For this, we follow a Fourier anal-
ysis approach. As in the proof of [8, Le. 3.2], we rewrite
P1 : Zq → [0, 1] in terms of its Fourier transform P̂1 over
Zq (with respect to the orthogonal Fourier basis {χj(x) =
exp(−2πıjx/q)}j∈Zq , where ı :=

√
−1) to get:

P1(y) =
1

q
+

1

q

∑
j∈Z∗q

P̂1(j) · exp(−2πıjy/q). (63)

As the coordinates of h and k are iid, P̂1 is the w̃-fold self-
convolution of the distribution µ of each term hjζ

kj
i in Y1. So

from the convolution property of the Fourier transform, we
have P̂1(j) = µ̂(j)w̃, where µ(0) = 0, and for s ∈ {−1, 1}
and k ∈ [r], µ(sζki) = Pr[hj = s] · Pr[kj = k] =
(1/2) · (1/r) = 1

2r . Since ζri = −1, v = sζki runs through
all elements of the group < ζi > of 2r’th roots of unity in
Z∗q as (s, k) run through {−1,+1} × [r], so µ is the uniform
distribution on < ζi >. Computing the Fourier transform µ̂ of
µ, we get for each j ∈ Z∗q that

µ̂(j) :=
1

2r

∑
v∈<ζi>

exp(2πıjv/q) =
1

2r

∑
k∈[2r]

exp(2πıjζki /q)

=
1

r

∑
k∈[r]

cos(2πjζki /q),

where we have used ζri = −1, cos(.) is even, and sin(.) odd.
So we have (this part is similar to [8, Le.3.3]):

P1(y) =
1

q

1 +
∑
j∈Z∗q

µ̂(j)w̃ exp(−2πıjy/q)

≤ 1

q

1 +
∑
j∈Z∗q

|µ̂(j)|w̃
 =

1

q

1 + 2r
∑

j∈Z∗q/<ζi>

|µ̂(j)|w̃
 ,

where the inequality uses the triangle inequality (taking mag-
nitude) and the equality uses the fact that µ̂(j) = µ̂(j′) for

20

j, j′ in the same coset of < ζi > in Z∗q and that the size of
each coset is 2r. The last bound is M1, as claimed.

21

	Introduction
	Our Contributions
	Our Techniques and Results
	Overview of MatRiCT+

	Preliminaries
	Security Assumptions
	Power-of-2 Cyclotomic Rings and Galois Automorphisms
	Rejection Sampling

	New Tools for Lattice-Based Proof Systems
	New Results on Invertibility of Challenge Differences
	New Results on Power-of-2 Cyclotomic Rings

	Formal Model for RingCT-like Protocols
	Security Definitions

	MatRiCT+: Our Efficient Lattice-Based RingCT
	Parameter Setting and Implementation

	Security Proofs
	Balance

	References
	Appendix A: Comparison with Other RingCT Proposals
	Appendix B: Lattice-Based Commitment Schemes
	Appendix C: More on MatRiCT+
	Adding Recipient Anonymity
	Adding Auditability
	More on Implementation and Evaluation of MatRiCT+

	Appendix D: Discussion on Serial Numbers
	Appendix E: Overall Witness Extraction of the Underlying Zero-Knowledge Proof
	Appendix F: Formal Correctness and Anonymity of RingCT
	Appendix G: Anonymity Proof of MatRiCT+
	Appendix H: Proof of Lemma 1

