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Abstract. This paper presents distinguishing and key recovery attacks
on the reduced-round SNOW-V and SNOW-Vi, which are stream ciphers
proposed for standard encryption schemes for the 5G mobile communi-
cation system. First, we construct a MILP model to search for integral
characteristics using the division property, and find the best integral dis-
tinguisher in the 3-, 4-, 5-round SNOW-V, and 5-round SNOW-Vi with
time complexities of 28, 216, 248, and 216, respectively. Next, we construct
a bit-level MILP model to efficiently search for differential characteristics,
and find the best differential characteristics in the 3- and 4-round ver-
sions. These characteristics lead to the 3-round differential distinguishers
for SNOW-V and SNOW-Vi with time complexities of 248 and 212 and
the 4-round differential distinguishers for SNOW-V and SNOW-Vi with
time complexities of 2103 and 239, respectively. Then, we consider single-
bit and dual-bit differential cryptanalysis, which is inspired by the exist-
ing study on Salsa and ChaCha. By carefully choosing the IV values and
differences, we can construct practical bit-wise differential distinguishers
for the 4-round SNOW-V, 4-, and 5-round SNOW-Vi with time com-
plexities of 24.466, 21.000, and 214.670, respectively. Finally, we improve
the existing differential attack based on probabilistic neutral bits, which
is also inspired by the existing study on Salsa and ChaCha. As a re-
sult, we present the best key recovery attack on the 4-round SNOW-V
and SNOW-Vi with time complexities of 2153.97 and 2233.99 and data
complexities of 226.96 and 219.19, respectively. Consequently, we signif-
icantly improve the existing best attacks in the initialization phase by
the designers.

Keywords: SNOW · Stream cipher · 5G · Integral attack · Differential
attack · Probabilistic Neutral Bits (PNB)

⋆ The part of this paper was presented at the 26th Australasian Conference on Infor-
mation Security and Privacy (ACISP 2021). This paper has extended our study by
adding the security analysis of SNOW-Vi.



1 Introduction

1.1 Background

SNOW-V, which is a new variant of a family of SNOW stream ciphers, was
proposed for a standard encryption scheme for the 5G mobile communication
system in 2019 by Ekdahl et al. [5]. To achieve the strong security requirements
by the 3GPP standardization organization for the 5G system, SNOW-V provides
a 256-bit security level against key recovery attacks with a 256-bit key and 128-
bit IV, while the claimed security of distinguishing attacks is only 264, i.e., the
length of keystreams is limited to at most 264 and also for a fixed key, the number
of different keystreams should be less than 264.

SNOW-V consists of a Linear Feedback Shift Register (LFSR) and Finite
State Machine (FSM). The overall structure of SNOW-V follows the design strat-
egy of SNOW 2.0 and SNOW-3G. It takes advantage of AES-NI and some SIMD
operations for efficient implementation in high-end software environments. Each
round has two AES-round operations to update the states of the FSM. As a re-
sult, SNOW-V achieves very impressive performance in software, e.g., 58 Gbps
for a long message, which is almost six times faster than that of SNOW-3G.

A slightly modified version of SNOW-V stream cipher, called SNOW-Vi, was
proposed by the same designers in 2021 [6]. The structural differences between
SNOW-V and SNOW-Vi are the LFSR update function and the location of the
tap T2. The purpose of this change is to better accommodate a fast software
implementation on lower grade CPUs which only supports 128-bit wide SIMD
registers. As a result, the increase in software performance is approximately 50%
in average, up to 92 Gbps for a long message.

The designers evaluated the security of division-property-based cube, time-
memory tradeoff, linear/correlation distinguishing, algebraic, and guess-and-
determine attacks on both ciphers [5, 6]. Among them, they found a key recovery
attack on the 3-round SNOW-V and SNOW-Vi by division-property-based cube
attacks, and concluded that more than four rounds provides sufficient security
against these attacks as the division-property-based distinguisher reaches only
four rounds of AES [17]. As a third-party evaluation, Jiao et al. proposed a
byte-based guess-and-determine attack on the full-round SNOW-V with a time
complexity of 2406 [10]. After Jiao et al.’s study [10] was reported, the designers
further improved the Jiao et al.’s attack, and proposed two guess-and-determine
attack on the full-round SNOW-V with time complexities of 2384 and 2378 [19].
These results improved the original evaluation by the designers [5], but its cost
is still much larger than the exhaustive 256-bit key search. Thus, to the best
of our knowledge, the best attack on SNOW-V and SNOW-Vi is the 3-round
division-property-based cube attack by the designers, respectively.

1.2 Our Contribution

In this study, we present the security analysis of SNOW-V and SNOW-Vi with
three attack vectors: integral, differential, and bit-wise differential attacks. These
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attacks are well-known attacks for stream ciphers. Nevertheless, the designers
did not perform the security evaluations for these important attacks. To fill this
gap, we evaluate thorough security against these attacks with state-of-the-art
search tools and techniques, and we show that these attacks sufficiently improve
the previous best attacks with respect to the attacked number of rounds and
attack complexity, as shown in Table 1. The details of our attacks are given as
follows.

Integral Attack By using a MILP-aided search method for the division prop-
erty, we show practical integral distinguishers for the 3-, 4-round SNOW-V, and
5-round SNOW-Vi with time complexities of 28, 216, and 216, respectively. Fur-
thermore, we find a 5-round integral distinguisher with a time complexity of 248

for the initialization of SNOW-V.

Differential Attack We perform a MILP-aided search for the differential charac-
teristics in the chosen-IV setting where differences are inserted in the IV domain.
Specifically, we build a bit-level model for each operation, such as the modular
addition, S-box, and linear operations. As a result, we find the 3-round differen-
tial distinguishers for SNOW-V and SNOW-Vi with time complexities of 248 and
212 and the 4-round differential distinguishers for SNOW-V and SNOW-Vi with
time complexities of 2103 and 239, respectively. Although the distinguishing at-
tack on the 4-round SNOW-V exceeds the data limitation of 264, it is important
to improve the understanding of the security of SNOW-V.

Bit-wise Differential Attack We conduct a single-bit and dual-bit differential
attack based on the existing study on the reduced-round Salsa and ChaCha
as reported by Choudhuri and Maitra [3]. In addition, we analyze the source
code of the LFSR update algorithm, and suggest that choosing IVs by limit-
ing the domain should suppress the propagation of differences throughout the
internal state of the target ciphers. As a result, we find practical bit-wise differ-
ential distinguishers for the 4-round SNOW-V, 4-, and 5-round SNOW-Vi with
time complexities of 24.466, 21.000, and 214.670, respectively. No study has been
reported on applying the bit-wise differential attack to LFSR-based stream ci-
phers; thus, we have demonstrated the effectiveness of the bit-wise differential
attack on LFSR-based stream ciphers.

Key Recovery Attack We apply the bit-wise differential attack based on prob-
abilistic neutral bits (PNB), which was proposed by Aumasson et al. [2], to a
key recovery attack on the target ciphers. To apply an existing attack, it is nec-
essary to perform the backwards computation in the target ciphers, but it is
difficult to perform this in LFSR-based stream ciphers. To solve this problem,
we replace all the backwards computations in the existing attack procedure with
forwards computations. As a result, we present a key recovery attack on the 4-
round SNOW-V and SNOW-Vi with time complexities of 2153.97 and 2233.99 and
data complexities of 226.96 and 219.19, respectively. To the best of our knowledge,
our attack is the best key recovery attack on the reduced-round SNOW-V and
SNOW-Vi.
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Table 1. Summary of our results.

Cipher Attack type Rounds Data Time Reference

SNOW-V

Integral/Distinguisher 3 28.00 28.00 Section 3

Integral/Distinguisher 4 216.00 216.00 Section 3

Integral/Distinguisher 5 248.00 248.00 Section 3

Differential/Distinguisher 3 248.00 248.00 Section 4

Differential/Distinguisher 4 2103.00 2103.00 Section 4

Differential Bias/Distinguisher 4 24.47 24.47 Section 5

Differential Bias/Distinguisher 5 236.87 236.87 Section 5

SNOW-Vi

Integral/Distinguisher 5 216.00 216.00 Section 3

Differential/Distinguisher 3 212.00 212.00 Section 4

Differential/Distinguisher 4 239.00 239.00 Section 4

Differential Bias/Distinguisher 4 21.00 21.00 Section 5

Differential Bias/Distinguisher 5 214.67 214.67 Section 5

Differential Bias/Distinguisher 6 238.19 238.19 Section 5

SNOW-V
Cube/Key Recovery 3 215.00 2255.00 [5]

Differential Bias/Key Recovery 4 226.96 2153.97 Section 6

SNOW-Vi
Cube/Key Recovery 3 24.00 2255.00 [6]

Differential Bias/Key Recovery 4 27.94 2233.99 Section 6

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we briefly describe
the specifications of SNOW-V and SNOW-Vi. In Section 3, we show the MILP
model for searching integral characteristics and provide integral distinguishers
for the 3-, 4-, 5- round SNOW-V, and 5-round SNOW-Vi. In Section 4, we show
the MILP model for searching differential characteristics and provide differen-
tial distinguishers for the 3- and 4-round versions. In Section 5, we introduce the
existing cryptanalysis method for bit-wise differential cryptanalysis and present
the efficient chosen-IV technique. We then provide bit-wise differential distin-
guishers for the 4-, 5-round SNOW-V, 4-, 5-, and 6-round SNOW-Vi. In Section
6, we describe our improvements to the existing differential attack and present
the best key recovery attack on the 4-round versions. Finally, Section 7 concludes
the paper.

2 Specifications of SNOW-V and SNOW-Vi

2.1 Structure of SNOW-V

The overall structure of SNOW-V is shown in Figure 1. It consists of a Linear
Feedback Shift Register (LFSR) part and Finite State Machine (FSM) part.
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Fig. 1. Overall structure of SNOW-V.

The LFSR part takes a circular construction consisting of two shift registers
called LFSR-A and LFSR-B, both involving 16 cells with each cell size of 16
bits denoted by a15, . . . , a0 and b15, . . . , b0, respectively. Each cell represents an
element in F16

2 , and the elements of LFSR-A and LFSR-B are generated by the
following polynomials in F2[x]:

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1, (1)

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1. (2)

Let α ∈ FA
216 be a root of gA(x) and β ∈ FB

216 be a root of gB(x). At time

t ≥ 0, the LFSRs update sequences (a
(t)
15 , . . . , a

(t)
0 ) and (b

(t)
15 , . . . , b

(t)
0 ) using the

following expressions:

a
(t+1)
15 = b

(t)
0 + αa

(t)
0 + a

(t)
1 + α−1a

(t)
8 mod gA(α), (3)

a
(t+1)
i = a

(t)
i+1, (4)

b
(t+1)
15 = a

(t)
0 + βb

(t)
0 + a

(t)
3 + β−1b

(t)
8 mod gB(β), (5)

b
(t+1)
i = b

(t)
i+1, (6)

for i = 0, . . . , 14. The LFSRs update the internal state eight times in a single
step, i.e., 16 cells of the total 32 cells in the LFSR part can be updated in a
single step, and the two taps T1 and T2 will have the following new values:

T1(t) = (b
(8t)
15 , . . . , b

(8t)
8 ), (7)

T2(t) = (a
(8t)
7 , . . . , a

(8t)
0 ). (8)
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a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

α

β T1 128 bits

T2 128 bits

Fig. 2. LFSR structure of SNOW-Vi.

The FSM part takes the two taps, T1 and T2, from the LFSR part as the
inputs and generates a 128-bit keystream block z(t) at time t ≥ 0 as the output.
It consists of three 128-bit registers R1, R2, and R3. The symbol ⊕ denotes a
bit-wise XOR operation, and the symbol ⊞32 denotes parallel application of four
additions modulo 232. The four 32-bit parts of the 128-bit words are added with
carry, but the carry does not propagate from a lower 32-bit word to a higher
one. At time t ≥ 0, the FSM first outputs the keystream block, z(t), using the
following expression:

z(t) = (R1(t) ⊞32 T1
(t))⊕R2(t). (9)

Then, registers R2 and R3 are updated throughout a full AES encryption round
function as SubBytes, ShiftRows, MixColumns, and AddRoundKey, which are
denoted by AESR(IN,KEY ) with a 128-bit input block IN and a roundkey
KEY . The three registers are updated by the following expressions:

R1(t+1) = σ(R2(t) ⊞32 (R3(t) ⊕ T2(t))), (10)

R2(t) = AESR(R1(t), 0), (11)

R3(t) = AESR(R2(t), 0), (12)

where σ is a byte-oriented permutation given by

σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15]. (13)

2.2 Structure of SNOW-Vi

The overall structure of SNOW-Vi is almost the same as that of SNOW-V,
with the only difference in the LFSR update function and the tap T2 moved
to the upper half of LFSR-A. The LFSR structure of SNOW-Vi is shown in
Figure 2. The elements of LFSR-A and LFSR-B are generated by the following
polynomials in F2[x]:

gA(x) = x16 + x14 + x11 + x9 + x6 + x5 + x3 + x2 + 1, (14)
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gB(x) = x16 + x15 + x14 + x11 + x10 + x7 + x2 + x+ 1. (15)

At time t ≥ 0, the LFSRs update sequences (a
(t)
15 , . . . , a

(t)
0 ) and (b

(t)
15 , . . . , b

(t)
0 )

using the following expressions:

a
(t+1)
15 = b

(t)
0 + αa

(t)
0 + a

(t)
7 mod gA(α), (16)

a
(t+1)
i = a

(t)
i+1, (17)

b
(t+1)
15 = a

(t)
0 + βb

(t)
0 + b

(t)
8 mod gB(β), (18)

b
(t+1)
i = b

(t)
i+1, (19)

for i = 0, . . . , 14. After updating the LFSRs, the tap T2 will have the new value,

such as T2(t) = (a
(8t)
15 , . . . , a

(8t)
8 ).

2.3 Initialization

Let K = (k15, . . . , k0) denote a 256-bit key and IV = (iv7, . . . , iv0) denote a
128-bit initialization vector (IV), where each ki and ivj are 16-bit vectors for
0 ≤ i ≤ 15 and 0 ≤ j ≤ 7, respectively. The initialization begins with loading
the key and IV into the LFSRs and setting zero into the three registers using
the following expressions:

(a15, . . . , a0) = (k7, . . . , k0, iv7, . . . , iv0), (20)

(b15, . . . , b0) = (k15, . . . , k8, 0, . . . , 0), (21)

R1 = 0, R2 = 0, R3 = 0. (22)

The initialization consists of r steps (r = 16 in the original version), where the
structure is updated in the same way as in the keystream generation, with the
exception that the 128-bit keystream block z is not an output but is XORed into
the LFSR-A to positions (a15, . . . , a8) in every step. Additionally, at the two last
steps of the initialization, the 256-bit key is loaded into the register R1 using
the following expressions:

R1(r−2) = R1(r−2) ⊕ (k7, . . . , k0), (23)

R1(r−1) = R1(r−1) ⊕ (k15, . . . , k8), (24)

where time t = r − 1 denotes the last step of the initialization.
The designers limited the length of the keystream to a maximum of 264 bits

for a single key-IV pair and the number of different IVs to a maximum of 264

for each key.

3 MILP-aided Integral Distinguisher

In this section, we explore the security of SNOW-V and SNOW-Vi against inte-
gral attacks. To efficiently search for integral distinguishers in the initialization
phase of SNOW-V and SNOW-Vi, we exploit the division property proposed by
Todo [16]. Specifically, we utilize the MILP-based method [18] to evaluate the
propagation of the bit-based division property [17].
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3.1 The MILP Model

In this part, we describe how to construct the linear inequalities to model the
propagation of the division property for SNOW-V and SNOW-Vi. First, we
will show the constraints for the propagation of the bit-based division property
through COPY, XOR, and AND operations based on the work by Xiang et al. [18].
Then, we elaborate the MILP model for SNOW-V and SNOW-Vi based on
these constraints. Since SNOW-V and SNOW-Vi are basically the same structure
without the LFSR update function and the place of tap T2, we mainly describe
how to construct an MILP model for SNOW-V.

To find an integral distinguisher with the division property with MILP, we
do not need to optimize the objective function. Instead, we only need to confirm
whether the constructed MILP model is feasible or not, because we search the
properties such that the output is balanced or not by bit-wise. If it is infeasible,
an integral distinguisher can be obtained.

Xiang et al. first proposed the modeling method [18] for the propagation of
the bit-based division property through COPY, XOR, and AND operations. Then,
Sun et al. generalized these models [14] as specified below, which will be the
components in our MILP model for SNOW-V and SNOW-Vi.

MILP Model of COPY [14] :

{
M.var ← a, b1, . . . , bm as binary.

M.con ← a+ b1 + · · ·+ bm = 0.

MILP Model of XOR [14] :

{
M.var ← a1, . . . , am, b as binary.

M.con ← a1 + · · ·+ am + b = 0.

MILP Model of AND [18] :


M.var ← a1, a2, b as binary.

M.con ← b− a1 ≥ 0,

M.con ← b− a2 ≥ 0,

M.con ← b− a1 − a2 ≤ 0.

The pseudo code of our MILP model for SNOW-V is displayed in Algo-
rithm 1, where R denotes the number of rounds in the initialization phase and
the explanations for load, funcADD, funcAES, sigma, and funcLFSR are given
below.

load. K and IV are loaded into internal states.
funcADD. This function is a model for the 32-bit modular addition. We use the

modeling method proposed by Sun et al. [15] with COPY, XOR, and AND.
funcAES. This function consists of SubBytes, ShiftRow, MixColumns, and Ad-

dRoundKey of AES. For the modeling of the S-box, we use the modeling
method proposed in [18]. Logic Friday [4] is utilized to generate the con-
straints for the S-box. Thus, we obtain 241 linear inequalities to model the
S-box of AES. For the modeling of MixColumns, we use the modeling method
proposed in [14]. Specifically, the 4× 4 MDS matrix over the filed F8

2 is con-
verted to a 32× 32 binary matrix over the field, F2 [13]. Then, we construct
the model for MixColumn with COPY and XOR. Thus, 64 linear inequalities
can be used to model the MDS matrix used in AES.
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Algorithm 1 MILP model of division property for SNOW-V

1: procedure SNOWVcore(round R)
2: Prepare an empty MILP modelM
3: M.var ← S0

j for j ∈ {0, . . . , 511} and R10j , R20j , R30j for j ∈ {0, . . . , 127}
4: (M,S0,R20,R30,R10) = load(M,K, IV )
5: for r = 0 to R do
6: (M,T2r, Sr

128,...,255) = COPY(M, Sr
128,...,255)

7: (M,T1r, Sr
256,...,383) = COPY(M, Sr

256,...,383)
8: (M,Xr

R1,Y
r
R1) = COPY(M,R1r)

9: (M,Xr
R2,Y

r
R2,W

r
R2) = COPY(M,R2r)

10: (M,Ur) = funcADD(M,T1r,Xr
R1)

11: (M,Zr) = XOR(M,Ur,Xr
R2)

12: (M,V r) = XOR(M,T2r,R3r)
13: (M, tmpr) = funcADD(M,V r,W r

R2)
14: (M,R3r+1) = funcAES(M,Y r

R2)
15: (M,R2r+1) = funcAES(M,Y r

R1)
16: (M,R1r+1) = sigma(M, tmpr)
17: for i = 0 to 7 do
18: (M,Sr,i+1) = funcLFSR(M,Sr,i)

19: if r ̸= R then
20: (M,Sr+1

0,...,127) = XOR(M,Sr,8
0,...,127,Z

r)

21: for j = 0 to 512 do
22: M.con← SR+1

j = 0

23: for j = 0 to 127 do
24: M.con← R1R+1

j = R2R+1
j = R3R+1

j = 0

25: M.con←
∑127

j=0 Z
R
j = 1

sigma. This function is used to permute the state in a byte-wise way as described
in Section 2.

funcLFSR. There are the operations of α, α−1, β, β−1, and XOR. It is a linear
transformation; thus, the division property of the input and the output are
constant. Hence, we can use the method from Sun et al. [14], and α, α−1,
β, and β−1 are each represented with a 16× 16 matrix over field F2, and we
obtain 64 linear inequalities. The funcLFSR in SNOW-Vi is constructed by
the same method as that of SNOW-V.

Our MILP model for SNOW-Vi is almost the same as Algorithm 1. To construct
an MILP model for SNOW-Vi, we need to change line 6 in Algorithm 1 into
”(M,T2r, Sr

0,...,127) = COPY(M, Sr
128,...,255)” and funcLFSR into that of SNOW-

Vi.

3.2 Our Search and Results

Since there are a total of 2128 patterns for IV on both SNOW-V and SNOW-Vi,
it is computationally infeasible to take all of them into account when searching
for integral distinguishers. Thus, we use a 3-step approach to efficiently find the
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Table 2. 3-Round Integral Distinguisher of SNOW-V

iv7 cccccccc cccccccc

iv6 cccccccc cccccccc

iv5 cccccccc cccccccc

iv4 cccccccc cccccccc

iv3 aaaaaaaa cccccccc

iv2 cccccccc cccccccc

iv1 cccccccc cccccccc

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu bbbbbbbb

uuuuuuuu uuuuuuuu uuuuuuuu bbbbbbbb

uuuuuuuu uuuuuuuu bbbbbbbb bbbbbbbb

uuuuuuuu uuuuuuuu bbbbbbbb bbbbbbbb

integral distinguisher for SNOW-V and SNOW-Vi. As an explanation of our
method, a, c, b, and u represent an active bit, a constant bit, a balanced bit,
and an unknown bit, respectively. In addition, A, C, B, and U denote an active
byte, a constant byte, a balanced byte, and an unknown byte, respectively. Our
search used Gurobi optimization 9.0 [9] as the solver with a 48-core Intel(R)
Xeon(R) Platinum 8260 CPU @ 2.40GHz for our experiments.

Step 1. We try to find the longest integral distinguisher by setting the 128-bit
IV as all A.

Step 2. To reduce the data complexity, we consider the case where there is at
least one byte in IV assigned to C and at least one byte assigned to A. When
16-byte input is all A, it is the same as Step 1. Also, when 16-byte input
is all C, the outputs becomes constants. Thus, these two patterns can be
omitted. As a result, there are 216 − 2 such patterns in total.

Step 3. We utilize the method [8] to reduce the data complexity. In [8], a is
only assigned to the MSB of each byte. First, we consider the case when
there is only one active bit and the total number of such patterns is

(
16
1

)
.

Then, we increase the number of a if we can find an integral distinguisher,
i.e., consider the case when there are 2, 3, 4, . . . , 16 active bits because IV is
a 16-byte value. Thus, a total of 216 − 1 patterns is taken into account in
our search.

Results for SNOW-V Our search found integral distinguishers in 3- and 4-round
distinguishers with time complexities of 28 and 216, as shown in Tables 2 and
3. Moreover, we can find a 5-round integral distinguisher for the initialization
phase of SNOW-V, as shown in Table 4. Specifically, when iv7, iv6, iv4 and iv0 is
constant, the least significant byte of iv2 and iv1 is constant, and the remaining
bytes of IV take all the possible 248 values, we can compute the sum of the
keystreams, z, generated by these 248 different IV ; thus, the sum in each of the
least two significant bits of z is always zero.
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Table 3. 4-Round Integral Distinguisher of SNOW-V

iv7 aaaaaaaa cccccccc

iv6 cccccccc cccccccc

iv5 aaaaaaaa cccccccc

iv4 cccccccc cccccccc

iv3 cccccccc cccccccc

iv2 cccccccc cccccccc

iv1 cccccccc cccccccc

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu bbbbbbbb

uuuuuuuu uuuuuuuu uuuuuubb bbbbbbbb

Table 4. 5-Round Integral Distinguisher of SNOW-V

iv7 cccccccc cccccccc

iv6 cccccccc cccccccc

iv5 aaaaaaaa aaaaaaaa

iv4 cccccccc cccccccc

iv3 aaaaaaaa aaaaaaaa

iv2 aaaaaaaa cccccccc

iv1 aaaaaaaa cccccccc

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuubb

Results for SNOW-Vi Our search found integral distinguishers in 5-round with
the time complexity of 216 as shown in Table 5. This is the same result as that
of SNOW-V in terms of the number of rounds, however, it should be mentioned
that the time complexity is reduced from 248 to 216 compared to SNOW-V.

4 MILP-aided Differential Distinguisher

In this section, we describe our investigation of the resistance of SNOW-V and
SNOW-Vi against differential attacks.Specifically, we focus on the initialization
phase and our aim is to find differential characteristics with a probability higher
than 2−128 using a MILP-based method [1, 7] as the IV size where differences of
128 bits can be inserted.

According to the specification of SNOW-V and SNOW-Vi, it can be observed
that there are 32 AES S-boxes and 8 modular additions (modulo 232) used for
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Table 5. 5-Round Integral Distinguisher of SNOW-Vi

iv7 cccccccc cccccccc

iv6 cccccccc cccccccc

iv5 cccccccc cccccccc

iv4 cccccccc cccccccc

iv3 cccccccc cccccccc

iv2 cccccccc cccccccc

iv1 aaaaaaaa aaaaaaaa

iv0 cccccccc cccccccc

z uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuuu

uuuuuuuu uuuuuuuu uuuuuuuu uuuuuuub

the 1-round state update, which are the only components where the difference
transitions are probabilistic.

4.1 The MILP Model

Here, we explain the details of our MILP modeling for searching differential
characteristics of SNOW-V and SNOW-Vi. Similarly to the case of the integral
attack, we mainly describe how to construct an MILP model for SNOW-V.

Throughout this paper,M.var,M.con, andM.obj represent the variables,
the constraints and the objective function in the MILP model, respectively.

Because the operations used in SNOW-V and SNOW-Vi include XOR, Sub-
Bytes, ShiftRows, MixColumns, modular addition, α, α−1, β, β−1, and sigma

(the byte-wise permutation), to construct an accurate model to describe the
bit-wise difference in propagation using these components, it is necessary to
construct the corresponding linear inequalities for each of them.

XOR. The following linear inequalities can be used to model x2 = x0 ⊕ x1

MILP Model of XOR :



x0, x1, x2 as binary.

−x0 − x1 − x2 ≥ −2,
−x0 + x1 + x2 ≥ 0,

x0 − x1 + x2 ≥ 0,

x0 + x1 − x2 ≥ 0.

load. K and IV are loaded into internal states.
funcAES. This function consists of the SubBytes, ShiftRows, MixColumns and

AddRoundKey of AES. As proposed in ref. [1], we utilize Logic Friday [4] to
automatically generate the linear inequalities for the AES S-box. There are a
total of 8302 linear inequalities needed to describe the difference distribution

12



Algorithm 2 MILP model of differential characteristics for SNOW-V

1: procedure SNOWVcore(round R)
2: Prepare an empty MILP modelM
3: M.var ← S0

j for j ∈ {0, . . . , 511} and R10j , R20j , R30j for j ∈ {0, . . . , 127}
4: (M,S0,R20,R30,R10) = load(M,K, IV )
5: for r = 0 to R− 1 do
6: (M,Ur) = funcADD(M, Sr

256,...,383,R1r)
7: (M,Zr) = XOR(M,Ur,R2r)
8: (M,V ) = XOR(M, Sr

128,...,255,R3)
9: (M, tmp) = funcADD(M,V ,R2r)
10: (M,R2r+1) = funcAES(M,R1r)
11: (M,R3r+1) = funcAES(M,R2r)
12: (M,R1r+1) = sigma(M, tmp)
13: for i = 0 to 7 do
14: (M,Sr,i+1) = funcLFSR(M,Sr,i)

15: (M,Sr+1
0,...,127) = XOR(M,Sr,8

0,...,127,Z
r)

16: (M,UR) = funcADD(M, SR
256,...,383,R1R)

17: (M,ZR) = XOR(M,UR,R2R)
18: M.obj ←Minimize (DCP )

table of the AES S-box. Because it is a linear transform, we could write the
4× 4 MDS matrix as a 32× 32 binary matrix. Using this method, modeling
MixColumns is equivalent to modeling several ⊕ operations.

funcADD. As proposed in ref. [7], we obtain 407 linear inequalities to model the
32-bit modular addition.

sigma. This function is used to permute the state in a byte-wise way, as de-
scribed in Section 2.

funcLFSR. This function consists of α, α−1, β, β−1, and XOR. Because α, α−1, β,
and β−1 are all linear transformations as well, we can derive the equivalent
16 × 16 binary matrix for all of them, which can be simply modeled by
considering the linear inequalities for the ⊕ operation. The funcLFSR in
SNOW-Vi is constructed by the same method as that of SNOW-V.

To search for the best differential characteristic, we minimize the objective
function, as follows:

R−1∑
r=0

(
7

31∑
m=0

Ar
m +

7∑
m=0

31∑
n=1

Mr
m[n]

)
+

4∑
m=0

31∑
n=1

MR
m[n].

Ar
i denotes the variable of S-box input, and Mr

m[n] = ¬eq(αr
m[n], βr

m[n], γr
m[n]),

i.e., eq(αr
m[n], βr

m[n], γr
m[n]) = 1 is same as αr

m[n] = βr
m[n] = γr

m[n]. αr
m[n] and

βr
m[n] denote the variables of modular addition inputs, and γr

m[n] denotes the
variables of modular addition output, and, αr

m[0], βr
m[0], γr

m[0] are the most sig-
nificant bit, respectively. We consider the differential probability of the modular
addition according to [11, 7], and we consider that the differential probability

13



Table 6. Differential characteristic probability (DCP) for the reduced initialization
round of SNOW-V

Rounds 1 2 3 4

Optimal DCP (whole IV space) 1 2−8 2−48 −
Optimal DCP (hamming weight of IV difference is one) 1 2−8 2−48 2−103

of AES S-box with 2−7 because we consider the worst case in the S-box. Algo-
rithm 2 shows the MILP model of differential characteristics for SNOW-V.

Similarly to the case of the integral attack, We can construct an MILP
model for SNOW-Vi based on that of SNOW-V with small changes. To con-
struct an MILP model for SNOW-Vi, we need to change line 8 in Algorithm 2
into ”(M,V ) = XOR(M, Sr

0,...,127,R3)” and funcLFSR into that of SNOW-Vi.

4.2 Our Search and Results

In our search, a difference will only be inserted in IV , i.e., we do not consider
related-key differential characteristics. We conduct this search on a computer
equipped with a 48-core Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz with
Gurobi optimization 9.0 [9].

Results for SNOW-V The search results of SNOW-V are displayed in Table 6.
For 3-rounds, the best differential probability of a single trail is estimated as
2−48 as shown in Table 7. It implies that a distinguishing attacks on 3-rounds
is feasible with 248 chosen IVs. Since we search the whole space of IV, these
differential probabilities are optimal for 1- to 3-rounds.

To search for more rounds, we constrain that the hamming weight of the
IV difference is one because the above optimal characteristic of 1- to 3-rounds
are started from the IV difference whose hamming weight one. In this way, we
search for differential characteristics up to 4-initialization rounds. As a result, we
found a differential characteristic with probability of 2−103 as shown in Table 8.
To mount the attack using this characteristic, it requires 2103 chosen IVs. So, it
exceeds the data limitations for a fixed key of 264. However, we believe that it
is meaningful for deeply understanding the security of SNOW-V, e.g., it might
be feasible in the weak-key setting.

Results for SNOW-Vi The search results of SNOW-Vi are displayed in Table 9.
For SNOW-Vi, we can evaluate the best differential probability of a single trail
in the whole IV space over 4-round. As a result, we found the differential charac-
teristic with probability of 2−39. The detailed differential characteristic is shown
in Table 10. It implies that a distinguishing attack on 4-round is feasible with
239 chosen IVs. It should be mentioned that this characteristic is the optimal for
4-round of SNOW-Vi.
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Table 7. Differential characteristics for 3-initialization rounds of SNOW-V

Input : IV 00000000000000000000000000000020

a0
15 · · · a0

0 0000000000000000000000000000000000000000000000000000000000000020

b015 · · · b00 0000000000000000000000000000000000000000000000000000000000000000

R10 00000000000000000000000000000000 1

R20 00000000000000000000000000000000

R30 00000000000000000000000000000000

a1
15 · · · a1

0 0000000000000000000000000000004000000000000000000000000000000000

b115 · · · b10 0000000000000000000000000000002000000000000000000000000000000000

R11 00000000000000000000000000000020 2−1

R21 00000000000000000000000000000000

R31 00000000000000000000000000000000

a2
15 · · · a2

0 0040000000000000000000000000002000000000000000000000000000000040

b215 · · · b20 0000000000200000000000000000001000000000000000000000000000000020

R12 00000000000000000000000000000000 2−8

R22 00000000000000000000000060202040

R32 00000000000000000000000000000000

a3
15 · · · a3

0 000000000020000000000000602020e000400000000000000000000000000020

b315 · · · b30 0000000000000000000000000000000800000000002000000000000000000010

R13 00000020000000200000002000000000 2−35

R23 00000000000000000000000000000000

R33 404080c0204060201f9d8282a06060c0

Output : z 00000020000000200000002000000008 2−4

5 Bit-wise Differential Distinguisher

In this section, we first introduce single-bit and dual-bit differential cryptanal-
ysis based on the study by Choudhuri and Maitra [3]. Then, we present an
effective chosen-IV technique for our cryptanalysis of the 4-round SNOW-V and
the 5-round SNOW-Vi. Finally, we provide the experimental results for bit-wise
differential biases using the chosen-IV technique.

5.1 Single-bit and Dual-bit Differential Cryptanalysis

To search for bit-wise differential biases of the reduced-round SNOW-V and
SNOW-Vi, we utilize single-bit and dual-bit differential cryptanalysis based on
the study on the reduced-round Salsa and ChaCha, as reported by Choudhuri
and Maitra [3].

Let ivi[j] be the j-th bit of the i-th element in IV for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 15

and let iv′i[j] be an associated bit with the input difference ∆
(0)
i,j = ivi[j]⊕ iv′i[j],

which is described as ID. Let zp[q] be the q-th bit of the p-th word in the first
output keystream block z for 0 ≤ p ≤ 15 and 0 ≤ q ≤ 7 and let z′p[q] be an

associated bit with the r-round output difference ∆
(r)
p,q = zp[q] ⊕ z′p[q], which is

described as OD. Note that iv0[0] and iv7[15] are the least significant bit (LSB)
and most significant bit (MSB) of IV, and z0[0] and z15[7] are the LSB and MSB

15



Table 8. The differential characteristic for 4-initialization rounds of SNOW-V

Input : IV 00000000000000000000000000000020

a0
15 · · · a0

0 0000000000000000000000000000000000000000000000000000000000000020

b015 · · · b00 0000000000000000000000000000000000000000000000000000000000000000

R10 00000000000000000000000000000000 1

R20 00000000000000000000000000000000

R30 00000000000000000000000000000000

a1
15 · · · a1

0 0000000000000000000000000000004000000000000000000000000000000000

b115 · · · b10 0000000000000000000000000000002000000000000000000000000000000000

R11 00000000000000000000000000000020 2−1

R21 00000000000000000000000000000000

R31 00000000000000000000000000000000

a2
15 · · · a2

0 0040000000000000000000000000002000000000000000000000000000000040

b215 · · · b20 0000000000200000000000000000001000000000000000000000000000000020

R12 00000000000000000000000000000000 2−8

R22 00000000000000000000000060202040

R32 00000000000000000000000000000000

a3
15 · · · a3

0 000000000020000000000000602020e000400000000000000000000000000020

b315 · · · b30 0000000000000000000000000000000800000000002000000000000000000010

R13 00000020000000200000002000000000 2−35

R23 00000000000000000000000000000000

R33 404080c04080c04080c0404030101020

a4
15 · · · a4

0 20600060003000200000002030101028000000000020000000000000602020e0

b415 · · · b40 0040000000480000000000200000000400000000000000000000000000000008

R14 40408010008040108040401040404000 2−42

R24 98818119877d7dfaa66262c400000000

R34 00000000000000000000000000000000

Output : z 5881010987b53dea262222d440404004 2−17

of z, respectively. For a fixed key and all possible choices of IVs, single-bit and
dual-bit differential probabilities are defined by

Pr
(
∆(r)

p,q = 1 | ∆(0)
i,j = 1

)
=

1

2
(1 + ϵd), (25)

Pr
(
∆(r)

p0,q0 ⊕∆(r)
p1,q1 = 1 | ∆(0)

i,j = 1
)
=

1

2
(1 + ϵd), (26)

where ϵd denotes the bias of the OD.
To distinguish the first keystream block z generated by the reduced-round

SNOW-V from true random number sequences, we utilize the following theorem
proved by Mantin and Shamir [12].

Theorem 1 ([12, Theorem 2]). Let X and Y be two distributions, and suppose
that the event e occurs in X with a probability p and Y with a probability p·(1+q).
Then, for small p and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with
a constant probability of success.

Let X be a distribution of the OD of true random number sequences, and Y be a
distribution of the OD of the first keystream block z generated by the reduced-
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Table 9. Differential characteristic probability (DCP) for the reduced initialization
round of SNOW-Vi

Rounds 1 2 3 4 5

Optimal DCP (whole IV space) 1 2−2 2−12 2−39 -

Optimal DCP (hamming weight of IV difference is one) - - - - -

round SNOW-V. Based on single-bit and dual-bit differential probabilities, the
number of samples to distinguish X and Y is O( 2

ϵ2d
) since p and q are equal to 1

2

and ϵd, respectively.

5.2 Chosen-IV Technique

We analyze the source code of the LFSR update algorithm in SNOW-V (refer to
Listing 1 for details) and notice the following two properties.

Property 1. The mul x function is executed 16 times in the LFSR update algo-
rithm, and the output varies with the value of the MSB.

Property 2. The mul x inv function is executed 16 times in the LFSR update

algorithm, and the output varies with the value of the LSB.

Listing 1. LFSR update algorithm in SNOW-V

1: typedef uint16_t u16;
2: u16 A[16], B[16]; // The 32 cells of the two LFSRs
3:
4: void lfsr_update ( void ){
5: for ( int i=0; i<8; i++ ){
6: u16 u = mul_x ( A[0], 0x990f ) ^ A[1] ^ mul_x_inv ( A[8], 0xcc87 ) ^ B[0];
7: u16 v = mul_x ( B[0], 0xc963 ) ^ B[3] ^ mul_x_inv ( B[8], 0xe4b1 ) ^ A[0];
8:
9: for ( int j=0; j<15; j++ ){

10: A[j] = A[j+1];
11: B[j] = B[j+1];
12: }
13:
14: A[15] = u;
15: B[15] = v;
16: }
17: }

Listing 2. mul x function

1: typedef uint16_t u16;
2:
3: u16 mul_x ( u16 v, u16 c ){
4: if ( v & 0x8000 ){
5: return ( v << 1 ) ^ c;
6: } else {
7: return ( v << 1 );
8: }
9: }

Listing 3. mul x inv function

1: typedef uint16_t u16;
2:
3: u16 mul_x_inv ( u16 v, u16 d ){
4: if ( v & 0x0001 ){
5: return ( v >> 1 ) ^ d;
6: } else {
7: return ( v >> 1 );
8: }
9: }
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Table 10. The differential characteristic for 4-initialization rounds of SNOW-Vi

Input : IV 00000000000000000000000000000008

a0
15, . . . , a

0
0 0000000000000000000000000000000000000000000000000000000000000008

b015, . . . , b
0
0 0000000000000000000000000000000000000000000000000000000000000000

R10 00000000000000000000000000000000 1

R20 00000000000000000000000000000000

R30 00000000000000000000000000000000

a1
15, . . . , a

1
0 0000000000000000000000000000001000000000000000000000000000000000

b115, . . . , b
1
0 0000000000000000000000000000000800000000000000000000000000000000

R11 00000000000000000000000000000000 2−2

R21 00000000000000000000000000000000

R31 00000000000000000000000000000000

a2
15, . . . , a

2
0 0000000000000000000000000010000800000000000000000000000000000010

b215, . . . , b
2
0 0000000000000000000000000000000800000000000000000000000000000008

R12 00000000000000000000000000000010 2−12

R22 00000000000000000000000000000000

R32 00000000000000000000000000000000

a3
15, . . . , a

3
0 0000000000000000000000100008001000000000000000000000000000100008

b315, . . . , b
3
0 0000000000000000000000000000000800000000000000000000000000000008

R13 00000000000000100000000000000008 2−20

R23 00000000000000000000000018080810

R33 00000000000000000000000000000000

a4
15, . . . , a

4
0 0000000000000010001000081838080800000000000000000000001000080010

b415, . . . , b
4
0 0000000000000000000000000010001000000000000000000000000000000008

R14 00000008000000000000000800001000 2−5

R24 00000000f4a5a551000000006c242448

R34 2424486c3060503080c0404003010102

Output : z 0x00000008f4a5a551000000086c343458

Listing 4. LFSR update algorithm in SNOW-Vi

1: typedef uint16_t u16;
2: u16 A[16], B[16]; // The 32 cells of the two LFSRs
3:
4: void lfsr_update ( void ){
5: for ( int i=0; i<8; i++ ){
6: u16 u = mul_x ( A[0], 0x4a6d ) ^ A[7] ^ B[0];
7: u16 v = mul_x ( B[0], 0xcc87 ) ^ B[8] ^ A[0];
8:
9: for ( int j=0; j<15; j++ ){

10: A[j] = A[j+1];
11: B[j] = B[j+1];
12: }
13:
14: A[15] = u;
15: B[15] = v;
16: }
17: }

When the MSB of the input v to the mul x function is 0, the output bits are
not properly mixed because the input v is only shifted one bit to the left (see
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step 7 in Listing 2). On the contrary, when the MSB of the input v to the mul x

function is 1, the output bits are sufficiently mixed since the input v shifted one
bit to the left is XORed with another input c (see step 5 in Listing 2). These lead
to Property 1 that the MSB of the input v to the mul x function affects whether
the output bits are mixed or not. Since the mul x inv function is calculated in
the similar manner as the mul x function, Property 2 implies that the LSB of
the input v to the mul x inv function affects whether the output bits are mixed
or not. Furthermore, these properties may be considered to affect whether the
propagation of differences is diffused or not.

Based on the two properties of the LFSR update algorithm in SNOW-V, we
present an effective chosen-IV technique for our cryptanalysis of the reduced-
round SNOW-V. In the SNOW-V initialization, IV is loaded into the eight cells
in the LFSR-A by assigning (a7, a6, . . . , a0) = (iv7, iv6, . . . , iv0). In addition, the
adversaries can choose arbitrary IVs as the ID. Therefore, choosing IVs whose
MSBs and LSBs are 0 should suppress the propagation of differences throughout
the internal state of SNOW-V during the initialization phase.

We define the following eight domains for single-bit and dual-bit differential
cryptanalysis of the reduced-round SNOW-V:

V0 = {xxxxxxxxxxxxxxxx(2) | x ∈ {0, 1}},
V1 = {0xxxxxxxxxxxxxx0(2) | x ∈ {0, 1}},
V2 = {00xxxxxxxxxxxx00(2) | x ∈ {0, 1}},
V3 = {000xxxxxxxxxx000(2) | x ∈ {0, 1}},
V4 = {0000xxxxxxxx0000(2) | x ∈ {0, 1}},
V5 = {00000xxxxxx00000(2) | x ∈ {0, 1}},
V6 = {000000xxxx000000(2) | x ∈ {0, 1}},
V7 = {0000000xx0000000(2) | x ∈ {0, 1}}.

On the other hand, the LFSR update algorithm in SNOW-Vi uses only the
mul x function, as shown in Listing 4; thus, we should consider only Property 1
and choosing IVs whose MSBs are 0 should suppress the propagation of differ-
ences throughout the internal state of SNOW-Vi during the initialization phase.

We define the following three domains for single-bit and dual-bit differential
cryptanalysis of the reduced-round SNOW-Vi:

V ′
0 = {xxxxxxxxxxxxxxxx(2) | x ∈ {0, 1}},
V ′
1 = {00000000xxxxxxxx(2) | x ∈ {0, 1}},
V ′
2 = {000000000000xxxx(2) | x ∈ {0, 1}}.

In the next subsection, we show our experimental observations of the bit-
wise differential biases of the reduced-round SNOW-V and SNOW-Vi for each
domain.
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Table 11. Best single-bit and dual-bit differential biases (log2) for 4-round SNOW-V.

Domain
Single-bit Dual-bit

ID OD |ϵd| ID OD |ϵd|

V0 ∆
(0)
10,7 ∆

(4)
0,0 -10.299 ∆

(0)
4,1 ∆

(4)
0,1 ⊕∆

(4)
1,1 -9.432

V1 ∆
(0)
3,1 ∆

(4)
0,0 -10.114 ∆

(0)
4,1 ∆

(4)
0,1 ⊕∆

(4)
1,1 -9.243

V2 ∆
(0)
4,2 ∆

(4)
0,0 -9.804 ∆

(0)
4,2 ∆

(4)
0,0 ⊕∆

(4)
1,0 -9.069

V3 ∆
(0)
0,5 ∆

(4)
2,4 -9.121 ∆

(0)
4,1 ∆

(4)
0,1 ⊕∆

(4)
1,1 -8.825

V4 ∆
(0)
6,6 ∆

(4)
8,2 -8.975 ∆

(0)
14,7 ∆

(4)
0,1 ⊕∆

(4)
1,1 -7.343

V5 ∆
(0)
13,4 ∆

(4)
7,3 -7.904 ∆

(0)
6,7 ∆

(4)
2,2 ⊕∆

(4)
3,2 -5.675

V6 ∆
(0)
13,1 ∆

(4)
5,4 -6.197 ∆

(0)
0,6 ∆

(4)
0,0 ⊕∆

(4)
1,7 -3.725

V7 ∆
(0)
14,1 ∆

(4)
12,3 -4.268 ∆

(0)
9,0 ∆

(4)
0,1 ⊕∆

(4)
3,2 -1.733

Table 12. Best single-bit and dual-bit differential biases (log2) for 5-round SNOW-V.

Domain
Single-bit Dual-bit

ID OD |ϵd| ID OD |ϵd|

V0 ∆
(0)
12,6 ∆

(5)
12,3 -13.943 ∆

(0)
7,7 ∆

(5)
4,2 ⊕∆

(5)
15,5 -12.771

V1 ∆
(0)
0,5 ∆

(5)
10,6 -13.971 ∆

(0)
0,1 ∆

(5)
3,3 ⊕∆

(5)
13,2 -12.819

V2 ∆
(0)
14,7 ∆

(5)
2,3 -14.055 ∆

(0)
4,4 ∆

(5)
4,0 ⊕∆

(5)
14,6 -12.622

V3 ∆
(0)
4,0 ∆

(5)
15,1 -14.021 ∆

(0)
11,0 ∆

(5)
9,3 ⊕∆

(5)
11,7 -12.671

V4 ∆
(0)
1,4 ∆

(5)
5,2 -14.147 ∆

(0)
9,1 ∆

(5)
8,3 ⊕∆

(5)
14,3 -12.713

V5 ∆
(0)
15,4 ∆

(5)
2,0 -14.047 ∆

(0)
6,7 ∆

(5)
7,5 ⊕∆

(5)
15,4 -12.669

V6 ∆
(0)
2,5 ∆

(5)
15,6 -14.081 ∆

(0)
11,1 ∆

(5)
4,0 ⊕∆

(5)
15,2 -12.820

V7 ∆
(0)
6,7 ∆

(5)
6,7 -13.589 ∆

(0)
0,7 ∆

(5)
1,2 ⊕∆

(5)
6,1 -12.408

5.3 Experimental Results

We have conducted experiments to search for the bit-wise differential biases of
the reduced-round SNOW-V and SNOW-Vi. The following is our experimental
environment: five Linux machines with 40-core Intel(R) Xeon(R) CPU E5-2660
v3 (2.60GHz), 128.0 GB of main memory, a gcc 7.2.0 compiler, and the C pro-
gramming language.

Bit-wise Differential Biases of SNOW-V To search for single-bit (or dual-bit)
differential biases of the reduced-round SNOW-V, our experiments have been
conducted with 28 (or 26) trials using 224 IDs for each key, excluding domain
V7. Since domain V7 contains only 216 elements, we have conducted experiments
with 216 (or 214) trials using 216 IDs for each key to search for the single-bit (or
dual-bit) differential biases.
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Table 13. Best single-bit and dual-bit differential biases (log2) for 4-round SNOW-Vi.

Domain
Single-bit Dual-bit

ID OD |ϵd| ID OD |ϵd|

V ′
0 ∆

(0)
1,0 ∆

(4)
0,0 0 ∆

(0)
1,0 ∆

(4)
0,0 ⊕∆

(4)
0,1 0

V ′
1 ∆

(0)
1,0 ∆

(4)
0,0 0 ∆

(0)
1,0 ∆

(4)
0,0 ⊕∆

(4)
0,1 0

V ′
2 ∆

(0)
1,0 ∆

(4)
0,0 0 ∆

(0)
1,0 ∆

(4)
0,0 ⊕∆

(4)
0,1 0

Tables 11 and 12 show the best single-bit and dual-bit differential biases for
the 4- and 5-round SNOW-V. As shown in Table 11, we obtain higher biases when
the domain is restricted using the chosen-IV technique. For example, we obtain
the best single-bit (or dual-bit) differential bias of |ϵd| = 2−4.268 (or 2−1.733) for
domain V7, whereas we find |ϵd| = 2−10.299 (or 2−9.432) for domain V0. However,
as shown in Table 12, all of the best single-bit and dual-bit differential biases are
almost constant regardless of the domain in the 5-round SNOW-V. These results
demonstrate that the chosen-IV technique is valid for the 4-round SNOW-V, but
not for the 5-round SNOW-V.

For the 4-round SNOW-V, the best dual-bit differential bias in domain V7,
i.e., |ϵd| = 2−1.733, provides a practical bit-wise differential distinguisher. Ac-
cording to Theorem 1, 24.466 samples suffice to distinguish the 4-round SNOW-V
from a true random number generator with a constant probability of success.
Similarly, for the 5-round SNOW-V, the best dual-bit differential bias in domain
V2, i.e., |ϵd| = 2−12.622, provides the best bit-wise differential distinguisher. Al-
though the best dual-bit differential bias in domain V7 is higher than that in
V2, i.e., |ϵd| = 2−12.408, that in domain V7 cannot provide the best differential
distinguisher because domain V7 contains only 216 elements. Thus, 226.244 sam-
ples suffice to distinguish the 5-round SNOW-V from a true random number
generator; however, the accuracy of the experimental results may be insufficient
because we have conducted experiments with only 224 IDs to observe the dif-
ferential biases. To search for more precise dual-bit differential biases for the
5-round SNOW-V, we have focused on the best ID-OD pair in each domain
(excluding domain V7) listed in Table 12, and have conducted additional ex-
periments with 28 trials using 232 IDs for each key. Consequently, we obtain

the best dual-bit differential biases in domain V4, such that ID is ∆
(0)
9,1, OD

is ∆
(5)
8,3 ⊕ ∆

(5)
14,3, and |ϵd| is approximately 2−17.934; thus, our experiments have

revealed that at least 236.868 samples suffice to distinguish the 5-round SNOW-V
from a true random number generator.

Bit-wise Differential Biases of SNOW-Vi To search for single-bit or dual-bit
differential biases of the reduced-round SNOW-Vi, our experiments have been
conducted with 28 trials using 224 IDs for each key.

Table 13 shows the best single- and dual-bit differential biases of |ϵd| = 1
regardless of the domain in the 4-round SNOW-Vi; thus, these biases provide
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Table 14. Best single-bit and dual-bit differential biases (log2) for 5-round SNOW-Vi.

Domain
Single-bit Dual-bit

ID OD |ϵd| ID OD |ϵd|

V ′
0 ∆

(0)
7,0 ∆

(5)
0,0 -10.910 ∆

(0)
12,0 ∆

(5)
0,0 ⊕∆

(5)
0,1 -11.508

V ′
1 ∆

(0)
1,0 ∆

(5)
0,0 -9.510 ∆

(0)
9,1 ∆

(5)
0,0 ⊕∆

(5)
0,5 -9.759

V ′
2 ∆

(0)
4,0 ∆

(5)
0,1 -6.835 ∆

(0)
9,2 ∆

(5)
0,0 ⊕∆

(5)
0,1 -7.216

Table 15. Best single-bit and dual-bit differential biases (log2) for 6-round SNOW-Vi.

Domain
Single-bit Dual-bit

ID OD |ϵd| ID OD |ϵd|

V ′
0 ∆

(0)
2,4 ∆

(6)
13,5 -14.045 ∆

(0)
15,1 ∆

(6)
4,0 ⊕∆

(6)
7,3 -13.647

V ′
1 ∆

(0)
13,5 ∆

(6)
2,6 -13.951 ∆

(0)
10,5 ∆

(6)
1,2 ⊕∆

(6)
14,1 -13.546

V ′
2 ∆

(0)
1,1 ∆

(6)
14,4 -14.027 ∆

(0)
10,5 ∆

(6)
2,2 ⊕∆

(6)
8,2 -14.726

practical bit-wise differential distinguishers. According to Theorem 1, 21.000 sam-
ples suffice to distinguish the 4-round SNOW-Vi from a true random number
generator with a constant probability of success. Incidentally, we obtain a total
of 2749 biases of |ϵd| = 1 for the 4-round SNOW-Vi, but only some of the results
are shown in the table due to space constraints.

Table 14 shows the best single- and dual-bit differential biases for the 5-round
SNOW-Vi, and we obtain higher biases when the domain is restricted using the
chosen-IV technique, e.g., the best single-bit (or dual-bit) differential bias of
|ϵd| = 2−6.835 (or 2−7.216) for domain V ′

2, whereas |ϵd| = 2−10.910 (or 2−11.508)
for domain V ′

0. For the 5-round SNOW-Vi, the best single-bit differential bias
in domain V ′

2, i.e., |ϵd| = 2−6.835, also provides a practical bit-wise differential
distinguisher. Thus, 214.670 samples suffice to distinguish the 4-round SNOW-V
from a true random number generator with a constant probability of success.

Table 15 shows the best single- and dual-bit differential biases for the 6-round
SNOW-Vi, and all of the best single-bit and dual-bit differential biases are almost
constant regardless of the domain in the 6-round SNOW-Vi; thus, these results
demonstrate that the chosen-IV technique is valid for the 5-round SNOW-Vi,
but not for the 6-round SNOW-Vi. For the 6-round SNOW-Vi, the best dual-
bit differential bias in domain V ′

1, i.e., |ϵd| = 2−13.546, provides the best bit-
wise differential distinguisher with 228.092 samples. However, the accuracy of the
experimental results may be insufficient because we have conducted experiments
with only 224 IDs to observe the differential biases. To search for more precise
single- and dual-bit differential biases for the 6-round SNOW-Vi, we have focused
on the best ID-OD pair in each domain listed in Table 15, and have conducted
additional experiments with 28 trials using 232 IDs for each key. Consequently,
we obtain the best single-bit differential biases in domain V ′

1, such that ID is

22



∆
(0)
13,5, OD is ∆

(6)
2,6, and |ϵd| is approximately 2−18.597; thus, our experiments have

revealed that at least 238.194 samples suffice to distinguish the 6-round SNOW-Vi
from a true random number generator.

6 Key Recovery Attack

In this section, we describe a key recovery attack on the 4-round SNOW-V and
SNOW-Vi. To the best of our knowledge, our attack is the best key recovery
attack on the reduced-round SNOW-V and SNOW-Vi since the cube attack on
the 3-round SNOW-V and SNOW-Vi proposed by Ekdahl et al. [5, 6], which
was the best to date. Our proposed attack is an improvement on the differential
attack based on a technique called probabilistic neutral bits (PNB) proposed by
Aumasson et al. [2].

6.1 Differential Attack Based on Probabilistic Neutral Bits (PNB)

Aummason et al. proposed a differential attack based on PNB and applied it
to Salsa and ChaCha [2]. In this subsection, we introduce their attack to clarify
the difference from our proposed attack, which is described in Section 6.2. Their
attack consists of two phases: precomputation and online phases. The precompu-
tation phase is further divided into three phases: differential characteristic search
(as described in Section 5.1), PNB identification, and probabilistic backwards
computation phases.

PNB Identification Phase. PNB is a concept which divides the secret key
bits into two sets: m-bit significant key bits and n-bit non-significant key bits.
To identify these two sets, Aumasson et al. focused on the amount of influence
which each secret key bit has on the output difference OD, and defined that
amount as neutral measure.

Definition 1 ([2, Definition 1]). The neutral measure of the key bit κi with
respect to the output difference OD is defined as γi, where Pr = 1

2 (1 + γi) is the
probability that complementing the key bit κi does not change the OD.

For example, according to Definition 1, we have the following singular cases of
the neutral measure:

– γi = 1: OD does not depend on the i-th key bit, i.e., it is non-significant.
– γi = 0:OD is statistically independent of the i-th key bit, i.e., it is significant.

To identify the PNB by using the concept of the neutral measure, we perform
the following procedure after the differential characteristic search phase:

Step 1. Compute the keystream pair Z,Z ′ corresponding to the input pair

X(0), X ′(0) with the input difference ∆
(0)
i,j . Note that the keystream Z is

derived by X(0) +X(R) in the case of Salsa and ChaCha.
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Step 2. Prepare a new input pair X
(0)

, X ′(0) with the key bit position i of the
original input pair X(0), X ′(0) flipped by one bit.

Step 3. Compute the internal state pair Y (r), Y ′(r) with Z −X
(0)

, Z ′ −X ′(0)

for r < R, as inputs to the inverse function of the initialization in the case
of Salsa and ChaCha.

Step 4. Compute Γ
(r)
p,q = yp[q]⊕ y′p[q], where yp[q] and y′p[q] are the q-th bit of

the p-th word of Y (r) and Y ′(r), respectively.
Step 5. Repeatedly perform Steps 1-4 by using different input pairs with the

same ∆
(0)
i,j ; compute the neutral measure as Pr(∆

(r)
p,q = Γ

(r)
p,q |∆(0)

i,j = 1) =
1
2 (1+ γi), where ∆

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Section 5.1).
Step 6. Set a threshold γ and put all key bits with γi < γ into a set of significant

key bits (of size m) and those with γi ≥ γ into a set of non-significant key
bits (of size n).

Probabilistic Backwards Computation Phase. In the differential charac-
teristic search phase, we derive the r-th round differential biases from input pairs
with the chosen input difference, i.e., this implies that we perform the forwards
computation in the target cipher. However, in the case of Salsa and ChaCha, we
can also derive the r-th round differential biases from the obtained keystream
by performing the backwards computation, which is called the probabilistic back-
wards computation.

In the probabilistic backwards computation phase, we perform the following
procedure after the PNB identification phase:

Step 1. Compute the keystream pair Z,Z ′ corresponding to the input pair

X(0), X ′(0) with the input difference ∆
(0)
i,j .

Step 2. Prepare a new input pair X̂(0), X̂ ′(0) with only non-significant key bits
reset to a fixed value (e.g., all zero) from the original input pair X(0), X ′(0).

Step 3. Compute the internal state pair Ŷ (r), Ŷ ′(r) with Z − X̂(0), Z ′ − X̂ ′(0)

for r < R, as inputs to the inverse function of the initialization in the case
of Salsa and ChaCha.

Step 4. Compute Γ̂
(r)
p,q = ŷp[q]⊕ ŷ′p[q], where ŷp[q] and ŷ′p[q] are the q-th bit of

the p-th word of Ŷ (r) and Ŷ ′(r), respectively.
Step 5. Repeatedly perform Steps 1-4 by using different input pairs with the

same ∆
(0)
i,j ; compute the r-round bias ϵa as Pr(∆

(r)
p,q = Γ̂

(r)
p,q | ∆(0)

i,j = 1) =
1
2 (1+ ϵa), where ∆

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Section 5.1).

According to [2], the bias ϵ is approximated as ϵd · ϵa and considered to compute
the overall complexity of the attack on the R-round target cipher.

Online Phase. According to [2], we perform the following procedure after the
precomputation phase:
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Step 1. For an unknown key, we collect N keystream pairs where each pair is
generated by a random input pair (satisfying the relevant input difference).

Step 2. For each choice of the subkey (i.e., the m-bit significant key bits) do:

Step 2-1. Derive the r-th round differential biases from the N keystream
pairs by performing the backwards computation.

Step 2-2. If the optimal distinguisher legitimates the subkeys candidate as
a (possibly) correct one, we perform an additional exhaustive search over
the n non-significant key bits in order to check the correctness of this
filtered subkey and to find the non-significant key bits.

Step 2-3. Stop if the correct key is found, and output the recovered key.

Complexity Estimation. According to [2, 3], given samples N and probability
of false alarm is Pfa = 2−α, the time complexity of the attack is given by

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√
1− ϵ2

ϵ

)2

,

for probability of non-detection Pnd = 1.3× 10−3. In practice, α (and hence N)
is chosen such that it minimizes the time complexity of the attack.

6.2 Application to SNOW-V and SNOW-Vi

In this subsection, we present how to apply the differential attack based on
PNB, as described in Section 6.1, to the reduced-round SNOW-V and SNOW-
Vi. However, its application to SNOW-V and SNOW-Vi, unlike the existing
attacks on Salsa and ChaCha, is difficult to compute the difference biases from
the obtained keystreams by performing the backwards computation, i.e., it is
difficult to perform in the same procedure as Step 3 in the PNB identification
phase and Step 3 in the probabilistic backwards computation phase, as described
in Section 6.1.

To solve this problem, in our proposed attack, we replace the backwards
computations in these steps with the forwards computations. Our attack consists
of three precomputation phases: differential characteristic search (as described in
Section 5.1), PNB identification, and probabilistic forwards computation phases.
The online phase is a similar procedure to that described in Section 6.1, i.e., we
simply replace the backwards computation with the forwards computation in
Step 2-1 of the online phase.

PNB Identification Phase. In the PNB identification phase, we replace Step
3 in the existing phase with a step to perform the forwards computation. Ad-
ditionally, it is not necessary to perform Step 1 in the existing phase because
no backwards computation is performed. In summary, for the application to
SNOW-V and SNOW-Vi, we perform the following procedure after the differen-
tial characteristic search phase:
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Step 1. Prepare a new input pair X
(0)

, X ′(0) with the key bit position i of the
original input pair X(0), X ′(0) flipped by one bit. Note that, according to
Section 2.3, an input X(0) of SNOW-V and SNOW-Vi is initialized from a
secret key and an initialization vector.

Step 2. Compute the keystream pair z, z′ with X
(0)

, X ′(0) as inputs to the
r-round initialization of SNOW-V and SNOW-Vi.

Step 3. Compute Γ
(r)
p,q = zp[q]⊕ z′p[q], where zp[q] and z′p[q] are the q-th bit of

the p-th word of z and z′, respectively.
Step 4. Repeatedly perform Steps 1-4 by using different input pairs with the

same ∆
(0)
i,j ; compute the neutral measure as Pr(∆

(r)
p,q = Γ

(r)
p,q |∆(0)

i,j = 1) =
1
2 (1+ γi), where ∆

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Section 5.1).
Step 5. Set a threshold γ, put all key bits with γi < γ into a set of significant

key bits (of size m) and those with γi ≥ γ into a set of non-significant key
bits (of size n).

Probabilistic Forwards Computation Phase. Similar to the proposed PNB
identification phase, we improve the existing probabilistic backwards computa-
tion phase. In summary, for the application to SNOW-V and SNOW-Vi, we
perform the following procedure after the PNB identification phase:

Step 1. Prepare a new input pair X̂(0), X̂ ′(0) with only non-significant key bits
reset to a fixed value (e.g., all zero) from the original input pair X(0), X ′(0).

Step 2. Compute the keystream pair ẑ, ẑ′ with X̂(0), X̂ ′(0) as inputs to the
r-round initialization of SNOW-V and SNOW-Vi.

Step 3. Compute Γ̂
(r)
p,q = ẑp[q]⊕ ẑ′p[q], where ẑp[q] and ẑ′p[q] are the q-th bit of

the p-th word of ẑ(r) and ẑ′(r), respectively.
Step 4. Repeatedly perform Steps 1-4 by using different input pairs with the

same ∆
(0)
i,j ; compute the r-round bias ϵa as Pr(∆

(r)
p,q = Γ̂

(r)
p,q | ∆(0)

i,j = 1) =
1
2 (1+ ϵa), where ∆

(r)
p,q is the output difference derived during the differential

characteristic search (as described in Section 5.1).

Complexity Estimation. In our proposed attack, we can construct the fol-
lowing two independent distinguishers:

– A distinguisher based on the differential bias ϵd.
– A distinguisher based on the bias ϵa.

This is because these biases are derived from the (secret) internal states in the ex-
isting attacks, whereas they are derived from the keystreams, which are obtained
by an adversary under the known plaintext attack scenario, in the application
to SNOW-V and SNOW-Vi. Thus, the number of samples N for our attack is
given by

N ≈ max

((√
α log 4 + 3

√
1− ϵ2d

ϵd

)2

,

(√
α log 4 + 3

√
1− ϵ2a

ϵa

)2)
.
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Table 16. The best parameters for our attack in domain V0 for the 4-round SNOW-V
for each threshold γ, where m is the size of significant key bits.

γ ID OD m ϵa ϵd α Data Time Probability

1.00 ∆
(0)
4,3 ∆

(4)
0,0 ⊕∆

(4)
1,0 127 1.000 2−9.548 109 226.96 2153.97 1.000

0.90 ∆
(0)
4,0 ∆

(4)
0,0 ⊕∆

(4)
1,0 82 2−0.183 2−9.546 154 227.36 2109.37 0.958

0.80 ∆
(0)
4,0 ∆

(4)
0,0 ⊕∆

(4)
1,0 72 2−0.538 2−9.546 164 227.44 299.45 0.729

0.70 ∆
(0)
4,0 ∆

(4)
0,0 ⊕∆

(4)
1,0 67 2−0.714 2−9.546 169 227.48 294.48 0.650

0.60 ∆
(0)
4,0 ∆

(4)
0,0 ⊕∆

(4)
1,0 66 2−0.830 2−9.546 170 227.48 293.49 0.542

0.50 ∆
(0)
4,3 ∆

(4)
0,0 ⊕∆

(4)
1,0 61 2−1.388 2−9.548 175 227.52 288.53 0.334

Additionally, the time complexity of our attack is given in the same way as that
of the existing attacks [2, 3], as described in Section 6.1.

6.3 Experimental Results

We have conducted experiments to find the best parameters for our attack on
the reduced-round SNOW-V and SNOW-Vi. The following is our experimental
environment: five Linux machines with 40-core Intel(R) Xeon(R) CPU E5-2660
v3 (2.60GHz), 128.0 GB of main memory, a gcc 7.2.0 compiler, and the C pro-
gramming language.

Key Recovery Attack on SNOW-V To find the best parameters for our attack
on the reduced-round SNOW-V, our experiments have been conducted with 28

trials using 224 IDs for each key excluding domain V7. Since domain V7 contains
only 216 elements, we have conducted experiments with 216 trials using 216 IDs
for each key. In addition, we need to consider the possibility that our attack
has no validity because the application to SNOW-V, unlike the existing attacks
on Salsa and ChaCha, only perform the forwards computation throughout all
phases. To calculate the success probability of our attack, our experiments have
been conducted with 1000 trials by using the best parameters obtained from the
experiments. In our experiments, we consider the attack to be failed if we can
guess a subkey candidate with a higher bias ϵ∗a than the bias ϵa obtained from
the correctly guessed subkey.

Tables 16 and 17 show the best parameters for our attack in domains V0
and V7 on the 4-round SNOW-V for each threshold γ. Based on these tables, we
appear to be able to perform our attack on the 4-round SNOW-V with the least
time complexity of 260.35 by using the parameter for the threshold γ = 0.50 in
domain V7, but it has no validity because its success probability is zero. However,
as shown in these tables, we can perform our attack with a success probability
of one by using the parameter for the threshold γ = 1.00 in both domains V0
and V7. This is because all key bits with a threshold γi ≥ γ = 1.00 are put into
the set of non-significant key bits, and these have no influence on the output
difference, i.e., this implies that we can always guess all the m-bits subkeys in
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Table 17. The best parameters for our attack in domain V7 for the 4-round SNOW-V
for each threshold γ, where m is the size of significant key bits.

γ ID OD m ϵa ϵd α Data Time Probability

1.00 ∆
(0)
1,6 ∆

(4)
0,0 ⊕∆

(4)
1,1 149 1.000 2−1.878 108 211.59 2154.60 1.000

0.90 ∆
(0)
10,7 ∆

(4)
0,0 ⊕∆

(4)
2,7 84 2−0.123 2−1.747 167 211.84 295.86 0.858

0.80 ∆
(0)
10,7 ∆

(4)
0,0 ⊕∆

(4)
2,7 74 2−0.570 2−1.747 177 211.91 285.93 0.253

0.70 ∆
(0)
10,7 ∆

(4)
0,0 ⊕∆

(4)
2,7 71 2−0.646 2−1.747 181 211.94 281.95 0.150

0.60 ∆
(0)
10,7 ∆

(4)
0,0 ⊕∆

(4)
2,7 64 2−1.037 2−1.747 187 211.98 275.99 0.012

0.50 ∆
(0)
1,6 ∆

(4)
0,0 ⊕∆

(4)
1,1 47 2−1.742 2−1.878 203 212.35 260.35 0.000

Table 18. The best parameters for our attack on the 4- and 5-round SNOW-Vi for
the threshold γ = 1.00, where m is the size of significant key bits.

RoundDomain ID OD m ϵa ϵd α Data Time

4 V ′
0 ∆

(0)
9,5 ∆

(4)
0,7 226 1, 000 2−0.862 27 27.94 2233.99

5 V ′
2 ∆

(0)
1,0 ∆

(5)
0,0 239 1, 000 2−7.531 1 219.19 2258.34

the online phase. As a result, we can perform our attack on the 4-round SNOW-
V with a time complexity of 2153.97 and data complexity of 226.96 by using the
parameter for the threshold γ = 1.00 in domain V0; this is the best key recovery
attack on the reduced-round SNOW-V.

Key Recovery Attack on SNOW-Vi To find the best parameters for our attack
on the reduced-round SNOW-Vi, our experiments have been conducted with 28

trials using 224 IDs for each key. As discussed at the previous paragraph, we
can perform our attack on the 4-round SNOW-V with a success probability of
one by using the parameter for the threshold γ = 1.00; thus, we should perform
our attack on the reduced-round SNOW-Vi by focusing solely on the threshold
γ = 1.00.

As described in Section 5, we obtain the best single- and dual-bit differential
biases of |ϵd| = 1 for the 4-round SNOW-Vi. However, ID-OD pairs with these
biases cannot be used in our attack because they do not work properly in the
PNB identification phase (i.e., all key bits can be included in the set of non-
significant key bits). Due to this, we randomly selected 40 ID-OD pairs with
biases of |ϵd| < 1 to properly perform our attack on the 4-round SNOW-Vi.

Table 18 shows our findings of the best parameters for our attack on the 4-
and 5-round SNOW-Vi, respectively. We can perform our attack on the 4-round
SNOW-Vi with a time complexity of 2233.99 and a data complexity of 27.94 by

using the best parameter, such that domain is V ′
0, ID is ∆

(0)
9,5, OD is ∆

(4)
0,7, and

α = 27. Similarly, we can perform our attack on the 5-round SNOW-Vi with
a time complexity of 2258.34 and a data complexity of 219.19 by using the best

parameter, such that domain is V ′
2, ID is ∆

(0)
1,0, OD is ∆

(5)
0,0, and α = 1; however,

this is beyond the security level of SNOW-Vi. Consequently, we have presented
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the best key recovery attack on the 4-round SNOW-Vi. It should be noted here
that our attack still has room for improvement since we have tried only 40 ID-
OD pairs with biases of |ϵd| < 1 to properly perform our attack on the 4-round
SNOW-Vi.

6.4 Discussion

The distinguishing attack on the reduced-round SNOW-Vi can be a little stronger
than that on the reduced-round SNOW-V. This is because we can construct the
5-round practical distinguisher for SNOW-Vi, even though we can only construct
the 4-round practical distinguisher for SNOW-V. Conversely, the key recovery
attack on the reduced-round SNOW-Vi may be slightly weaker than that on
the reduced-round SNOW-V, as described in this section. Here, we discuss the
factors that induce the difference between the distinguishing and key recovery
attacks on the reduced-round SNOW-V and SNOW-Vi.

The structural differences between SNOW-V and SNOW-Vi are the LFSR
update function and the location of the tap T2. First, we focus on the difference
in the LFSR update function. According to [6, Section 3.2], the new LFSR in
SNOW-Vi has a maximum cycle length of 2512−1; thus, it has the same prop-
erty as the LFSR in SNOW-V. Next, we focus on the difference in the location
of the tap T2, whose values are loaded into the register R1 in the FSM part.
The tap T2 in SNOW-V is the location where the 128-bit IV is loaded during
the initilization phase, while the tap T2 in SNOW-Vi is the location where a
half of the 256-bit key is loaded during the initilization phase. Given that our
distinguishing attacks use the IV difference, it should be more resistant to our
distinguishing attacks if the IV difference is easily propagated to the FSM part
immediately after the initialization phase; thus, this factor leads to strong re-
sistance to our distinguishing attacks on SNOW-V, due to the location of the
tap T2. On the other hand, we use the key difference in our key recovery attack
since non-significant key bits are reset to a fixed value (e.g., all zero) during the
probabilistic forwards computation phase (see Section 6.2). It should be more
resistant to our key recovery attack if the key difference is easily propagated to
the FSM part immediately after the initialization phase; thus, this factor leads
to strong resistance to our key recovery attack on SNOW-Vi, due to the location
of the tap T2.

7 Conclusion

In this study, we have analyzed the security of SNOW-V and SNOW-Vi with
three attacks: the MILP-aided integral attack, the MILP-aided differential at-
tack, and the bit-wise differential attack. These attacks allow us to construct
practical distinguishers of up to four rounds for SNOW-V and five rounds for
SNOW-Vi. Furthermore, the differential biases obtained by the bit-wise differ-
ential attack can be integrated into our improved key recovery attack based on
probabilistic neutral bits, which is inspired by the existing study on Salsa and
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ChaCha [2, 3]. As a result, we have presented the best key recovery attack on the
4-round SNOW-V and SNOW-Vi with time complexities of 2153.97 and 2233.99

and data complexities of 226.96 and 219.19, respectively. Consequently, we have
improved the best existing attack, which was evaluated by the designers, in the
initialization phase of the reduced-round SNOW-V and SNOW-Vi.
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