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Abstract

Quadratic AB (almost bent) functions are characterized by the property that the du-
als of their component functions are bent functions. We prove that these duals are also
quadratic and illustrate that these bent duals may give rise to vectorial bent functions (in
certain cases having a maximal output dimension). It is then natural to investigate when
the linear combinations of quadratic bent duals again yield quadratic bent functions.
A necessary and sufficient condition for ensuring the bentness of these linear combina-
tions is provided, by introducing a useful transform that acts on the Walsh spectrum of
dual functions. Moreover, we provide a rather detailed analysis related to the structure
of quadratic AB functions in the spectral domain, more precisely with respect to their
Walsh supports, their intersection, and restrictions of these bent duals to suitable sub-
spaces. It turns out that the AB property is quite complicated even in the quadratic case.
However, using the established facts in this article, we could for the first time provide the
design of quadratic AB functions in the spectral domain by identifying (using computer
simulations) suitable sets of bent dual functions which give rise to possibly new quadratic
AB functions in a generic manner. Using a simple non-exhaustive search for suitable sets
of defining bent duals f1, . . . , f5 on F4

2, we could easily identify 60 quadratic AB functions
F : F5

2 → F5
2. It turns out that all these functions are CCZ-equivalent to the Gold AB

function but none of these functions is a permutation. On the other hand, when n = 7,
the same approach provides several AB functions which are not CCZ-equivalent to Gold
functions.

1 Introduction

Mappings from Fn
2 to Fm

2 are called vectorial Boolean or (n,m)-functions. Any such function
F : Fn

2 → Fm
2 can be represented in the form

F (x) = (f1(x), f2(x), . . . , fm(x)) , x ∈ Fn
2

where fi : Fn
2 → F2, i = 1, . . . ,m, are called coordinate (Boolean) functions of F and non-

zero linear combinations of its coordinates c · F (c ∈ Fm
2 \ {0m}) are termed as component

functions. When n is odd, (n, n)-functions that offer optimal resistance against both linear
and differential cryptanalysis [13, 24] are called almost bent (AB) functions. There are a few
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known infinite families of AB functions and their complete classification seems to be elusive,
see for instance [9] for the list of known ones. Another combinatorial object of particular
importance in cryptography, coding and design theory, is a class of vectorial bent functions
having the property that all the component functions are bent which are characterized by
a unique feature of having a (uniform) flat Walsh spectrum. Nevertheless, it was shown by
Nyberg [26] that vectorial bent functions F : Fn

2 → Fm
2 may only exist when m ≤ n/2 and n

is necessarily even.
Even though there is an extensive research on both these classes of functions, so far

there has been no explicit connection between them. The main purpose of this article is to
establish some (partial) connections and indicate the possibility of relating these structures
through so-called duals of Boolean functions. The concept of dual was originally defined
for bent functions but later it was generalized to the so-called plateaued Boolean functions.
Employing the notion of dual of plateaued functions introduced in [20, 21], we provide some
theoretical results that indicate certain regularity in the dual space of AB functions. More
precisely, as already indicated in [20, 21], defining a dual of an s-plateaued function f on

Fn
2 (whose Walsh spectral values are in the set {0,±2

n+s
2 }) which distinguishes the signs of

non-zero spectral values, conveys more information about a given function. Indeed, if we
alternatively use the standard dual (which distinguishes zero and nonzero spectral values) in
the quadratic case the dual functions become only trivial.

It is well-known that the class of Gold functions [19], defined in the univariate form over
F2n as F (x) = xd, with d = 2i+1 and gcd(i, n) = 1 for odd n, are AB functions. It was proved
by Dobbertin (as reported in [9]) that all power APN functions are necessarily permutations in
odd dimension, and 3-to-1 in even dimension. There has been an extensive research regarding
the so-called CCZ equivalence (introduced in [10] and later named CCZ-equivalence in [4])
of known AB functions; and in particular the quadratic case received a lot of attention
[1, 2, 4, 7, 17, 18]. This class of functions also exhibits nice combinatorial, algebraic or graph
theoretic properties, though these features are generally non-constructive and to the best of
our knowledge have not been helpful in specifying new classes of AB functions [3, 4, 7, 17, 18]
Now, if F is represented as F = (f1, . . . , fn), where fi : Fn

2 → F2, all the nonzero linear
combinations of fi (components of F ) are quadratic semi-bent functions, thus their Walsh

spectral values belong to {0,±2
n+1
2 }. Quite some research has been done in the field of

quadratic semi-bent Boolean functions and for more details we refer to e.g. [25, 8, 14, 15].
Qu et al. [27] proved that all quadratic Boolean functions, as well as Maiorana-McFarland
and partial spread bent functions can be represented as the sum of two bent functions. It
is also known that all quadratic bent Boolean functions belong to the Maiorana-McFarland
class of bent functions.

Leander and McGuire [23] considered the problem of constructing bent from semi-bent
functions. In particular, it has been shown that two n-variable functions g and h (n odd) are
semi-bent with complementary Walsh supports (Sh∩Sg = ∅) if and only if the (n+1)-variable
function x 7→ f(x, xn+1) = g(x) + xn+1h(x), x ∈ Fn

2 , xn+1 ∈ F2 is bent. It is also known
that the restrictions of an n-variable bent function to any hyperplane and to the complement
of this hyperplane (viewed as (n− 1)-Boolean functions) are semi-bent. For more details on
the properties of semi-bent functions and their construction we refer to [25].

Because the components of Gold AB mappings are quadratic Boolean functions, their
Walsh supports (a subset of Fn

2 corresponding to nonzero spectral values) forms flats in Fn
2
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of even dimension, see [11]. This implies that the standard dual (which distinguishes the
zero and nonzero Walsh values) corresponds to an affine function. On the other hand, if we
focus on the alternative definition of a dual, the situation is quite different. Since in the case
of AB functions defined on Fn

2 , the cardinality of Walsh support of its component functions
(which are all semi-bent) is exactly 2n−1. Consequently, their duals can be defined on the
ambient space Fn−1

2 using some ordering (commonly lexicographic) to map bijectively the
Walsh support as a subset of Fn

2 to Fn−1
2 , see [20, 21] and Section 3.

Moreover, for Gold AB functions which are quadratic, the fact that the Walsh supports
of its component functions are affine subspaces implies (using the result in [20]) that their
corresponding duals on Fn−1

2 are bent functions. Hence, any Gold function F = (f1, . . . , fn)
will give rise to a set of dual bent functions {f∗1 , . . . , f∗n}, where each f∗i : Fn−1

2 → F2, and
we prove that each f∗i is necessarily quadratic, cf. Proposition 3.2. Moreover, these dual
bent functions may build vectorial bent functions which we also confirm through simulations.
Unfortunately, there is no clear structure which would indicate the choice of {f∗1 , . . . , f∗k},
where k ≤ (n − 1)/2, so that F ∗ = (f∗1 , . . . , f

∗
k ) is vectorial bent. This is especially true

when the output bent dimension is maximal, thus when k = (n − 1)/2, in which case such
vectorial bent functions do not always exist. In this direction, considering quadratic semi-bent
functions on Fn

2 , we derive a necessary and sufficient condition which ensures the bentness of
the linear combinations of f∗1 , . . . , f

∗
n. This is achieved through a useful transform that acts

on the Walsh spectrum of dual functions, but unfortunately the bent condition regarding the
linear combinations of duals is non-constructive.

In the second part of this article, we further investigate the structure of the corresponding
Walsh supports in the case of quadratic AB functions. Even though these Walsh supports are
affine hyperplanes, the dimension of their intersection and the properties of the restrictions
of dual functions have not been analyzed yet. More importantly, we consider the conditions
imposed on dual bent functions (and their restrictions), say f∗ and g∗ on Fn−1

2 , so that
the corresponding semi-bent functions f and g on Fn

2 have the property that f + g is again
semi-bent. We provide a necessary and sufficient condition that f + g is bent, which heavily
depends on the properties of the restrictions of duals. However, using the established facts
in this article, we could for the first time provide the design of quadratic AB functions in
the spectral domain by identifying (using computer simulations) suitable sets of bent dual
functions which give rise to possibly new quadratic AB functions in a generic manner. Using a
simple non-exhaustive search for suitable sets of defining bent duals f1, . . . , f5 on F4

2 we could
easily identify 60 quadratic AB functions F : F5

2 → F5
2. It turns out that all these functions

are CCZ-equivalent to the Gold AB function but none of these functions is a permutation.
On the other hand, when n = 7, the same approach provides several AB functions which are
not CCZ-equivalent to Gold functions.

The rest of this article is organized as follows. In Section 2, we give some basic definitions
related to Boolean functions. Using an alternative definition of a dual function of semi-bent
functions, in Section 3 we provide a theoretical treatment concerning vectorial bentness of the
dual functions. In Section 4, we consider the structure of dual bent functions and derive the
necessary and sufficient conditions that two quadratic dual bent functions on Fn−1

2 actually
specify two quadratic semi-bent functions on Fn

2 whose sum is again semi-bent. The design
of semi-bent functions in the spectral domain is further discussed in Section 5, where we
identify many quadratic AB functions by specifying suitable bent duals. Some concluding
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remarks are given in Section 6.

2 Definitions and terminology

The vector space Fn
2 is the space of all n-tuples x = (x1, . . . , xn), where xi ∈ F2. The all-zero

vector is denoted by 0n. For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn
2 , the usual dot product

over F2 is defined as x · y = x1y1 ⊕ · · · ⊕ xnyn. The weight wt(x) of x ∈ Fn
2 is computed as

wt(x) =
∑n

i=1 xi. By ”
∑

” we denote the integer sum (without modulo evaluation), whereas
”
⊕

” denotes the sum evaluated modulo two.
The set of all Boolean functions in n variables, which is the set of mappings from Fn

2 to
F2, is denoted by Bn. The set of affine functions in n variables is given by An = {a ·x⊕b : a ∈
Fn

2 , b ∈ {0, 1}}, and similarly Ln = {a · x : a ∈ Fn
2} ⊂ An denotes the set of linear functions.

The Walsh-Hadamard transform (WHT) of a Boolean function f in n variables, and its
inverse WHT, at any point u ∈ Fn

2 are defined, respectively, by

Wf (u) =
∑
x∈Fn

2

(−1)f(x)⊕u·x, (1)

(−1)f(x) = 2−n
∑
u∈Fn

2

Wf (u)(−1)u·x. (2)

The sequence of the 2n Walsh coefficients given by (1), as u goes through Fn
2 is called the

Walsh spectrum of f , denoted by

Wf = (Wf (u0), . . . ,Wf (u2n−1)),

where u0, . . . , u2n−1 ∈ Fn
2 are ordered lexicographically.

For an arbitrary Boolean function f : Fn
2 → F2, the set of its values on Fn

2 (the truth
table) is defined as Tf = (f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1, 1)). The corresponding
(±1)-sequence of f is defined as χf = ((−1)f(0,...,0,0), (−1)f(0,...,0,1), . . . , (−1)f(1,...,1,1)). A
class of Boolean functions on Fn

2 characterised by the property that their Walsh spectra is

three-valued (more precisely taking values in {0,±2
n+s
2 } for a positive integer s < n) are

called s-plateaued functions [28]. In case s = 1 (s = 2) for n odd (n even), the functions are
called semi-bent. For a bent Boolean function f defined on Fn

2 , its dual f∗ is defined as a
function from Fn

2 to F2, for which it holds that

(−1)f
∗(x) = 2−

n
2Wf (x), x ∈ Fn

2 .

A standard way of defining the dual f̃ : Fn
2 → F2 of an s-plateaued Boolean function f on Fn

2

is as follows:
f̃(x) = 2−

n+s
2 |Wf (x)|, x ∈ Fn

2 . (3)

The Sylvester-Hadamard matrix of size 2k × 2k, is defined recursively as:

H1 = (1), H2 =

(
1 1
1 −1

)
, H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
. (4)
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The i-th row of H2k we denote by H
(i)

2k
(i ∈ [0, 2k − 1]). Note that H

(i)

2k
= ((−1)ui·x0 , . . . ,

(−1)ui·x2k−1) = χ` (xj ∈ Fk
2) is a (±1)-sequence of a linear function ` : Fk

2 → F2, where
`(x) = ui · x (ui, x ∈ Fk

2).
Boolean functions f and g in n variables are extended affine equivalent (EA-equivalent)

if there exists a non-singular n×n matrix A over F2, binary vectors b and c of length n, and
a constant λ ∈ F2, such that

g(x) = f(Ax⊕ b)⊕ c · x⊕ λ, x ∈ Fn
2 ,

where with Ax we denote matrix multiplication. only when considering affine equivalence,
otherwise we use the standard notation for the dot product.

3 Vectorial bentness of duals for Gold-like functions

In this section, we analyse the duals of the Gold AB function F (x) = xd on Fn
2 (d = 2i +

1, gcd(i, n) = 1, n odd). For any nonzero v ∈ Fn
2 , we use Fv(x) = v · F (x), to denote the

component functions of F . We notice that the property of being AB is characterized by the
fact that all the component functions Fv are semi-bent.

In [11], it was proved that for any n, the Walsh support of any quadratic function on
Fn

2 is a flat on Fn
2 of even dimension. Since all Gold functions are quadratic, the following

proposition summarizes these observations and includes the Gold AB functions as a special
case.

Proposition 3.1. Let F : Fn
2 → Fn

2 be an AB power mapping. Suppose that the Walsh
supports Si of the component functions Fv of F are affine hyperplanes on Fn

2 . Then the duals
F̃v of the component functions Fv are linear functions on Fn

2 .

The classical definition of a dual that we used above does not take into account the signs
of Walsh coefficients. Therefore, another definition of a dual for an s-plateaued function f is
introduced in [20], and it is described as follows.

With Sf = {ω ∈ Fn
2 : Wf (ω) 6= 0} we denote the Walsh support of the function f . Its

dual function f∗ on Sf of cardinality 2n−s is defined as f∗ : Sf → F2 by

Wf (ω) = 2
n+s
2 (−1)f

∗(ω), (5)

for ω ∈ Sf . To specify the dual function as f
∗

: Fn−s
2 → F2, we use the concept of the lexico-

graphic ordering. That is, a subset E = {e0, . . . , e2n−s−1} ⊂ Fn
2 is ordered lexicographically if

|ei| < |ei+1| for any i ∈ [0, 2n−s − 2], where |ei| denotes the integer representation of ei ∈ Fn
2 .

More precisely, for ei = (ei,1, . . . , ei,n) we have |ei| =
∑n

j=1 ei,j2
n−j , thus having the most

significant bit of ei on the left-hand side. Now to define f∗ : Sf → F2 as a function from
Fn−s

2 to F2, we firstly impose an ordering on Sf as Sf = z⊕E = {ω0, . . . , ω2n−s−1} (z ∈ Sf ),
where E is lexicographically ordered and ωi = z ⊕ ei (i = 0, . . . , 2n−s − 1). For instance, let
an affine subspace Sf ⊂ F3

2 be given as

Sf = {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}.
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By fixing z = (0, 1, 1) ∈ Sf , we have that the lexicographically ordered linear subspace E is
given by

E = {e0, e1, e2, e3} = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)},

and consequently Sf is ”ordered” as Sf = {ω0, ω1, ω2, ω3} = {(0, 1, 1), (0, 1, 0), (1, 0, 1), (1, 0, 0)}.
By having Sf represented as Sf = z ⊕ E, we can make a direct correspondence be-

tween Fn−s
2 and Sf through E so that for the lexicographically ordered space Fn−s

2 =
{x0, x1, . . . , x2n−s−1}, we have

f∗(ωj) = f∗(z ⊕ ej) = f
∗
(xj), xj ∈ Fn−s

2 , ej ∈ E, j ∈ [0, 2n−s − 1]. (6)

In the sequel, whenever we use this definition of dual of an s-plateaued function f ∈ Bn, the
notation f

∗
refers to a function defined on Fn−s

2 .

3.1 Alternative duals of Gold AB functions

Let us consider an AB function F = (f1, . . . , fn) : Fn
2 → Fn

2 whose coordinate (semi-bent)
functions fi are all quadratic. From [11, Subsection 3.3.] it follows that their Walsh supports
are affine hyperplanes (flats of dimension n− 1). Following the result of Hodžić et al. [20] it
is known that if the Walsh support Sf of a semi-bent bent function f is a flat in Fn

2 (n odd),

then f is a semi-bent and only if the dual f
∗

is bent on Fn−1
2 .

In the context of a vectorial AB function F = (f1, . . . , fn), we have that the definition
of f∗i as a function on Fn−1

2 depends on the ordering of Sfi = zi ⊕ Ei ⊂ Fn
2 , which is im-

posed by choice of the vector zi ∈ Sfi and the lexicographic ordering of Ei. For different
choices of zi ∈ Sfi , we actually have that the same dual f∗i imposes different bent functions

f
∗
i : Fn−1

2 → F2. Note that by [20, Theorem 3.1-(ii)] all these duals are bent functions. How-
ever, it is not clear what is happening with linear combinations of these functions. Therefore,
we are interested in the following question:

Q1: Let F = (f1, . . . , fn) : Fn
2 → Fn

2 be a quadratic AB function, where Sfi are flats in
Fn

2 . For which choice of zi ∈ Sfi in the representation of Sfi = zi⊕Ei we have that the corre-

sponding duals f
∗
i : Fn−1

2 → F2 build a vectorial bent function G = (f
∗
i1 , . . . , f

∗
it) : Fn−1

2 → Ft
2

for some integers 1 ≤ i1 < . . . < it ≤ n (1 ≤ t ≤ n)?

Remark 1. As noted in [11, Subsection 3.3.], the Walsh support of any quadratic function
on Fn

2 is a flat of Fn
2 of even dimension. Conversely, any flat of Fn

2 of even dimension is
the Walsh support of a quadratic function. However, we note that there the exist plateaued
functions with linear/affine Walsh supports which are not quadratic (cf. [21, Example 3.1]).

In order to address the previous question, our goal is to analyse the linear combinations
of duals f

∗
i and the relation between the Walsh supports Sfi . Firstly, we start by considering

the sums of two functions f
∗
i ⊕ f

∗
j , 1 ≤ i < j ≤ n.

We recall that for a function h(x) = f(x) ⊕ g(x) defined on Fn
2 , by [15, Theorem 2.17.5]

we have that

Wh(v) = 2−n
∑
x∈Fn

2

Wf (x)Wg(x⊕ v), v ∈ Fn
2 . (7)
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Being motivated with this formula, we introduce the following notation. Let f1, . . . , fn : Fn
2 →

F2 be semi-bent and f
∗
1, . . . , f

∗
n : Fn−1

2 → F2 their corresponding duals. For W ∗i := Wf
∗
i

and

W ∗j := Wf
∗
j
, we define

Πij(x) = 2−
n−1
2 W ∗i (x)W ∗j (x), x ∈ Fn−1

2 . (8)

Since the duals are bent, we have that |W ∗i (x)| = |W ∗j (x)| = 2
n−1
2 , which implies that

Πij(x) = ±2
n−1
2 , for all x ∈ Fn−1

2 . Furthermore, for the coefficients Πij(x) we can define their
inverses Π−1

ij (x) as

Π−1
ij (x) = 2−(n−1)

∑
y∈Fn−1

2

Πij(y)(−1)x·y, x ∈ Fn−1
2 . (9)

We are interested in the sequence of coefficients {Πij(x0), . . . ,Πij(x2n−1−1)} (with {x0, . . . ,
x2n−1−1} representing lexicographically ordered Fn−1

2 ). In this context, we would like to see
whether some of these sequences (for some i and j) are corresponding to some bent functions
defined on Fn−1

2 (n odd). We introduce the following notation.

Spectral notation: Suppose we are given a sequence of integers W = (w0, w1, . . . , w2n−1)
(−2n ≤ wi ≤ 2n), which is not necessarily a Walsh spectrum of a Boolean function. In
accordance to (2), we denote its inverse as W−1 = (w′0, w

′
1, . . . , w

′
2n−1), where

w′k = 2−n
2n−1∑
i=0

wi · (−1)uk·xi , 0 ≤ k ≤ 2n − 1,

uk, xi ∈ Fn
2 ordered lexicographically. With respect to this notation, we note the following:

� If for all k ∈ {0, 1, . . . , 2n − 1} we have that |w′k| = 1, then there exists some Boolean
function f defined on Fn

2 for which wi = Wf (ui) (ui ∈ Fn
2 ), i.e., W =Wf .

� In addition to the previous comment, if n is even and all the values of W are ±2
n
2 , the

corresponding function f is bent.

In the following example, we show that certain sequences {Πij(x) : x ∈ Fn−1
2 }, depending on

the indices i and j, actually correspond to some bent functions defined on Fn−1
2 , for a given

Gold AB function F .

Example 3.1. Let us consider the Gold function F (x) = xd defined on Fn
2 , where (n, d) =

(5, 5). In Table 1 and 2 we give the products Πij(x) and their inverses Π−1
ij (x), where 1 ≤ i <

j ≤ 5 and x ∈ F5
2. We notice that for the pairs of indices (i, j) ∈ {(1, 2), (2, 3), (8, 5)}, it holds

that Π−1
ij (x) are equal to ±1 for all x ∈ F5

2. Notice that for (n, d) = (5, 5) there are exactly

three pairs (f∗i , f
∗
j ) of bent vectorial functions mapping from F4

2 → F2
2. The coordinates {i, j}

for which f∗ij = f
∗
i ⊕ f

∗
j is bent correspond to the coordinates for which the inverses Π−1

ij (x)
have values ±1 (Table 2). We obtained the same results for (n, d) = (5, 3) and (n, d) = (7, 9).

Before we state the main results related to the previous observations, we provide the
following two technical results. later.
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i j Πij(x), x ∈ Fn−1
2

1 2 (8, 8, 8,−8, 8, 8,−8, 8,−8, 8,−8,−8,−8, 8, 8, 8)

1 3 (8, 8, 8,−8, 8,−8, 8, 8,−8,−8,−8, 8,−8, 8,−8,−8)

1 4 (8, 8, 8,−8, 8, 8,−8, 8, 8,−8,−8,−8,−8, 8,−8,−8)

1 5 (8,−8,−8, 8, 8,−8,−8, 8, 8, 8,−8,−8, 8, 8,−8,−8)

2 3 (8, 8, 8, 8, 8,−8,−8, 8, 8,−8, 8,−8, 8, 8,−8,−8)

2 4 (8, 8, 8, 8, 8, 8, 8, 8,−8,−8, 8, 8, 8, 8,−8,−8)

2 5 (8,−8,−8,−8, 8,−8, 8, 8,−8, 8, 8, 8,−8, 8,−8,−8)

3 4 (8, 8, 8, 8, 8,−8,−8, 8,−8, 8, 8,−8, 8, 8, 8, 8)

3 5 (8,−8,−8,−8, 8, 8,−8, 8,−8,−8, 8,−8,−8, 8, 8, 8)

4 5 (8,−8,−8,−8, 8,−8, 8, 8, 8,−8, 8, 8,−8, 8, 8, 8)

Table 1: Products of the Walsh transforms W ∗i and W ∗j for (n, d) = (5, 5) and 1 ≤ i < j ≤ 5

i j Π−1
ij (x), x ∈ Fn−1

2

1 2 (1,−1, 1,−1,−1, 1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1)

1 3 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2,−2)

1 4 (0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0,−2)

1 5 (0, 0, 2, 2, 0, 0, 0, 0, 0, 0,−2, 2, 0, 0, 0, 0)

2 3 (1, 1, 1, 1, 1, 1,−1,−1, 1,−1,−1, 1, 1,−1, 1,−1)

2 4 (2, 0, 0, 0, 0, 0,−2, 0, 2, 0, 0, 0, 0, 0, 2, 0)

2 5 (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2,−2, 0, 2, 0)

3 4 (2, 0, 0, 0, 0, 0, 0,−2, 0, 0, 0, 2, 2, 0, 0, 0)

3 5 (0, 0, 0, 0,−2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0)

4 5 (1, 1,−1, 1,−1, 1, 1, 1,−1, 1, 1, 1,−1,−1, 1,−1)

Table 2: Inverses of the products given in Table 1

Lemma 3.1. Let f : Fn
2 → F2 be a bent Boolean function (n is even).

(a) The derivatives ∆af , a 6= 0, are all distinct.

(b) Suppose that for all a ∈ Fn
2
∗ the derivatives of f are affine of the form ∆af(x) =

ua · x⊕ ca, where ua ∈ Fn
2 , ca ∈ F2. If ∆af 6= ∆bf , then ua 6= ub.

Proof. (a) Let a 6= b, and suppose that ∆af(x) = ∆bf(x). Then,

∆af(x) = ∆bf(x)⇔ f(x)⊕ f(x⊕ a) = f(x)⊕ f(x⊕ b)
⇔ f(x⊕ a)⊕ f(x⊕ b) = 0

⇔ f(x⊕ a)⊕ f(x⊕ a⊕ (a⊕ b)) = 0

⇔ ∆a⊕bf(x⊕ a) = 0,

for all x ∈ Fn
2 , which contradicts with the balance of the derivatives of f(x⊕ a).

(b) Let a 6= b. Suppose that ∆af(x) = u · x⊕ c1 and ∆bf(x) = u · x⊕ c2. We have that

∆af(x) = u · x⊕ c1

8



⇔∆af(x) = ∆bf(x)⊕ c2 ⊕ c1

⇔∆a⊕bf(x) = c1 ⊕ c2.

Similarly as in (a), we would obtain that ∆a⊕bf(x) = c1⊕c2 for all x ∈ Fn
2 , which contradicts

to the fact that derivatives ∆a⊕bf(x) (with a 6= b) are balanced. Hence, distinct derivatives
have distinct linear terms.

Proposition 3.2. Let F = (f1, . . . , fn) : Fn
2 → Fn

2 be a Gold AB function. Then the duals
f
∗
i : Fn−1

2 → F2 of the coordinate functions fi : Fn
2 → F2 are quadratic bent functions.

Proof. Since F is a Gold AB function, for any non-zero vector c ∈ Fn
2 we denote by f(x) =

c · F (x), x ∈ Fn
2 . By relation (2) and Wf (u) = 2

n+1
2 (−1)f

∗(u), at any u ∈ Fn
2 we have that∑

ω∈Sf

(−1)f
∗(ω)⊕u·ω = 2

n−1
2 (−1)f(u), (10)

where Sf = z⊕E is the Walsh support of f and E = {e0, . . . , e2n−1−1} is a lexicographically
ordered linear subspace of Fn

2 , thus any ω ∈ Sf can be written as ω = z ⊕ ei for some ei ∈ E
and fixed z ∈ Sf . Using [20, Lemma 3.1], we have that Ln−1 ⊆ T` = {(u ·e0, . . . , u · e2n−1−1) :
u ∈ Fn

2}, which means that T` contains truth tables of all linear functions in n− 1 variables
Ln−1 (clearly T` is a multi-set of linear functions). We recall that AB Gold functions have
quadratic component (semi-bent) functions c ·F , and its Walsh supports are affine subspaces
of dimension n− 1 (see [11, Section 3.3.1]). By identifying a subset R ⊂ Fn

2 of those u which
give distinct linear functions in T` so that Ln−1 = {(u · e0, . . . , u · e2n−1−1) : u ∈ R}, then R
is a linear subspace of dimension n− 1.

Thus, for arbitrary vector u ∈ R the relation (10) is equivalent to∑
e∈E

(−1)f
∗(z⊕e)⊕u·e = Wf

∗(ϑu) = 2
n−1
2 (−1)f(u)⊕u·z, (ϑu ∈ Fn−1

2 ),

where f
∗
(xi) = f∗(z ⊕ ei) with xi ∈ Fn−1

2 denotes the dual of f viewed as a function on
Fn−1

2 , and for ϑu ∈ Fn−1
2 it holds that (ϑu · x0, . . . , ϑu · x2n−1−1) = (u · e0, . . . , u · e2n−1−1).

Furthermore, by [20, Theorem 3.1-(ii)] we have that f
∗

is a bent function in n− 1 variables

(n odd), and thus Wf
∗(ϑu) = 2

n−1
2 (−1)g(ϑu) implies that g (being the dual of f

∗
) is also a

bent function on Fn−1
2 .

Using the inequality that relates the degrees of a bent function and its dual [8] (recall
f
∗
, g are defined on Fn−1

2 ), we have that

n− 1

2
− deg(f

∗
) ≥

n−1
2 − deg(g)

deg(g)− 1
.

However, using the fact that g is actually a restriction of the function f to R and Wf
∗(ϑu) =

2
n−1
2 (−1)g(ϑu) = 2

n−1
2 (−1)f(u)⊕u·z, then f being quadratic implies that deg(g) ≤ 2. Note

that here the term u · v in f(u)⊕u · z is viewed as a linear function due to the fact that R is
a linear space ([20, Lemma 3.1]). Clearly, g being bent means exactly that deg(g) = 2. Thus,
we have that n−1

2 − deg(f
∗
) ≥ n−1

2 − 2, which gives that deg(f
∗
) ≤ 2. Using the fact that f

∗

is bent, we have that deg(f
∗
) = 2, and thus we get that f∗ is a quadratic bent function.
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3.2 Characterizing the bentness of the sum of bent duals

We again focus on quadratic semi-bent functions regardless of whether these constitute AB
functions or not. Since their duals are quadratic bent functions it is natural to consider the
problem of determining the conditions for preserving the bentness of the sum of these duals.
The bentness of the function f

∗
i ⊕ f

∗
j is characterized with the following result.

Theorem 3.1. Let f1, . . . , fk be quadratic semi-bent functions on Fn
2 , n odd, and f

∗
1, . . . , f

∗
k

their corresponding duals on Fn−1
2 . Then, f

∗
ij = f

∗
i ⊕ f

∗
j , 1 ≤ i < j ≤ k, is bent if and only if

|Π−1
ij (u)| = 1 for all u ∈ Fn−1

2 .

Proof. Let u 6= 0 be fixed.

Π−1
ij (u) = 2−(n−1)

∑
x∈Fn−1

2

Π∗ij(x)(−1)x·u = 2−
3
2

(n−1)
∑

x∈Fn−1
2

W ∗i (x) ·W ∗j (x)(−1)x·u

= 2−
3
2

(n−1)
∑

x∈Fn−1
2

 ∑
y∈Fn−1

2

(−1)f
∗
i (y)⊕y·x

 ·
 ∑

z∈Fn−1
2

(−1)f
∗
j (z)⊕z·x

 (−1)x·u

= 2−
3
2

(n−1)
∑

x,y,z∈Fn−1
2

(−1)f
∗
i (y)⊕f∗

j (z)(−1)x·(y⊕z⊕u)

= 2−
3
2

(n−1)
∑

y,z∈Fn−1
2

(−1)f
∗
i (y)⊕f∗

j (z)
∑

x∈Fn−1
2

(−1)x·(y⊕z⊕u)

= 2−
n−1
2

∑
y∈Fn−1

2

(−1)f
∗
i (y)⊕f∗

j (y⊕u) = 2−
n−1
2

∑
y∈Fn−1

2

(−1)f
∗
i (y)⊕f∗

i (y⊕u)⊕f∗
ij(y⊕u)

= 2−
n−1
2

∑
y∈Fn−1

2

(−1)∆uf∗
i (y)⊕f∗

ij(y⊕u) = (?)

Since the derivatives ∆uf
∗
i of the duals are all affine, we can write them as ∆uf

∗
i = au ·x⊕ cu

for some au ∈ Fn−1
2 , cu ∈ F2. Thus,

(?) = 2−
n−1
2

∑
y∈Fn−1

2

(−1)au·y⊕cu⊕f
∗
ij(y⊕u) = 2−

n−1
2

∑
x∈Fn−1

2

(−1)au·(x⊕u)⊕cu⊕f∗
ij(x)

= 2−
n−1
2

∑
x∈Fn−1

2

(−1)au·x⊕(au·u⊕cu)⊕f∗
ij(x) = 2−

n−1
2 · (−1)au·u⊕cu

∑
x∈Fn−1

2

(−1)au·x⊕f
∗
ij(x),

so, for all u 6= 0,

Π−1
ij (u) = ±2−

n−1
2 ·Wf∗

ij
(au). (11)

If u = 0, then

Π−1
ij (0) = 2−(n−1)

∑
x∈Fn−1

2

Πij(x)
(8),(9)

= 2−
n−1
2 Wf∗

ij
(0) (12)

10



From Lemma 3.1, we know that all the derivatives are distinct and have distinct linear terms.
That is, if u goes through Fn−1

2 , then au will also go through the whole vector space, with
possibly a different ordering. Hence, from (11) and (12), it follows:

|Π−1
ij (u)| = 1, ∀u ∈ Fn−1

2 ⇔ |Wf∗
ij

(au)| = 2
n−1
2 ,∀au ∈ Fn−1

2 .

Corollary 1. Let f1, . . . , fk be quadratic semi-bent functions on Fn
2 , n odd, and f

∗
1, . . . , f

∗
k

their corresponding duals on Fn−1
2 . Then, f

∗
i1...il

= f
∗
i1 ⊕ · · · ⊕ f

∗
il

, {i1, . . . , il} ⊆ {1, . . . , k},
is bent if and only if |Π−1

i1...il
(u)| = 1, for all u ∈ Fn−1

2 .

Proof. We prove the statement with induction over l. For l = 2 the statement follows from
Theorem 3.1. Let us suppose that the statement holds for l − 1. We have that

f
∗
i1...il

= f
∗
i1 ⊕ . . .⊕ f

∗
il

= f
∗
i1...il−1

⊕ f∗il .

Using Theorem 3.1 and the inductive hypothesis the result follows.

Corollary 2. Let F (x) = xd, d = 2i + 1, gcd(i, n) = 1, 1 ≤ i ≤ n−1
2 , be the Gold function

defined on F2n. With f1, . . . , fn we denote its coordinate functions and with f
∗
1, . . . , f

∗
n their

corresponding duals defined on Fn−1
2 . Then, f

∗
ij = f

∗
i ⊕ f

∗
j , 1 ≤ i < j ≤ n, is bent if and only

if |Π−1
ij (u)| = 1, for all u ∈ Fn−1

2 .

Proof. Since the coordinates of the Gold function are quadratic, their Walsh supports all
affine hyperplanes of even dimension n− 1 [11] and since the duals are quadratic as well by
Proposition 3.2, their derivatives must be affine [16, Proposition 2.1]. Thus the conditions of
Theorem 3.1 are satisfied and the result follows.

Similarly as Theorem 3.1 was stated in terms of bentness of f
∗
ij , we now consider the case

when these sums are s-plateaued.

Theorem 3.2. Let f1, . . . , fk be quadratic semi-bent functions on Fn
2 , n odd, and f

∗
1, . . . , f

∗
k

their corresponding duals on Fn−1
2 . Then, f

∗
ij = f

∗
i ⊕ f

∗
j , 1 ≤ i < j ≤ k, is s-plateaued, s ≥ 2

even, if and only if |Π−1
ij (u)| ∈ {0, 2s/2} for all u ∈ Fn−1

2 .

Proof. The proof follows directly from the assumptions of the theorem and the equalities (11)
and (12).

Remark 2. Since quadratic functions are either bent or plateaued (those with 3 values in the
spectrum) [12], Theorems 3.1 and 3.2 are providing the characterization of the sum of two
bent duals f

∗
i ⊕ f

∗
j , in terms of notation (8)-(9), obtained from quadratic semi-bent functions

in odd dimension.
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3.3 Identifying bent spaces via duals of Gold AB components

In this section, we provide some observations regarding the maximum dimension of vectorial
bent spaces obtained by considering the bent duals of Gold AB components. The main
conclusion is that there is no obvious connection between the vectorial semi-bent space and
its corresponding dual bent space. At least, it can be deduced that reaching the maximal
dimension of a vectorial dual bent space, given by the Nyberg’s bound, is not possible for
larger ambient spaces.

Suppose that F = (f1, . . . , fn) : Fn
2 → F2 is a Gold AB function, and let

βk = #{F ∗i1,...,ik : Fn−1
2 → Fk

2 | F ∗i1,...,ik is bent}

denote the number of bent k-vectorial Boolean functions F ∗i1,...,ik = (f
∗
i1 , . . . , f

∗
ik

) : Fn−1
2 → Fk

2,

{i1, . . . , ik} ⊂ {1, . . . , n}, #{i1, . . . , ik} ≤ (n−1)/2, composed of the bent duals f
∗
1, . . . , f

∗
n. In

Table 3, we give some computational results on βk obtained using the mathematical software
Sage.

Remark 3.1. We note here that all bent functions f
∗
i above are defined with respect to the

lexicographically ordered Sfi = {ω0, . . . , ω2n−1−1} as f
∗
i (xj) = f∗i (ωj) (j ∈ [0, 2n−1 − 1]). The

bentness of these functions holds due to [22, Proposition V.4] and [20, Theorem 3.1-(ii)],
since by [22, Proposition V.4] we have that for the lexicographically ordered affine subspace
Sfi = {ω0, . . . , ω2n−1−1} it holds that E = ω0 ⊕ Sfi = {0n, e1, . . . , e2n−1−1} with ej = ω0 ⊕ ωj

(j ∈ [0, 2n−1 − 1]) is ordered lexicographically.

We use the abbreviation DNE=Does Not Exist for the cases where the number of bent
coordinates is larger than Nyberg’s bound. As shown in Table 3, bent vectorial Boolean

n d β2 β3 β4 β5

5 3 5 DNE DNE DNE

5 5 3 DNE DNE DNE

7 3 13 4 DNE DNE

7 5 7 1 DNE DNE

7 9 13 6 DNE DNE

9 3 14 1 0 DNE

9 5 19 6 0 DNE

9 17 15 1 0 DNE

11 3 25 8 0 0

11 5 28 8 0 0

11 9 36 20 1 0

11 17 29 18 0 0

11 33 30 13 1 0

Table 3: Number of bent k-vectorial Boolean functions obtained from the duals of Gold AB
coordinates

functions that reach the Nyberg’s bound do not always exist (cf. the columns corresponding
to β4 and β5). This motivates the following question.
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Q2: What is the largest k for which a bent k-vectorial function (f
∗
i1 , . . . , f

∗
ik

) exists? Does

the choice of z ∈ Sfi in the definition of f
∗
i affect the existence of these functions?

Example 3.2. Let us consider F (x) = x5 defined on F25. For each coordinate fi of F =
(f1, . . . , f5) we are able to define 16 bent functions f

∗
i,z on F4

2 for a different choice of z ∈ Sfi
via (6). The entry (i, j) in Table 4 represents the set of functions

{f∗ij,{zi,zj} = f
∗
i,zi ⊕ f

∗
j,zj : zi ∈ Sfi , zj ∈ Sfj , 1 ≤ i < j ≤ 5}.

We note that since there are 16 choices for zi and zj, there are maximally 256 possibilities
for the functions f

∗
ij,{zi,zj} for each pair (i, j).

(i, j) β2 (i, j) β2 (i, j) β2 (i, j) β2

(1, 2) 256 (2, 3) 256 (3, 8) 0 (8, 5) 256

(1, 3) 0 (2, 8) 0 (3, 5) 0

(1, 8) 0 (2, 5) 0

(1, 5) 0

Table 4: Number of bent functions f
∗
ij,{zi,zj} on F4

2

Comparing Tables 2 and 4, we observe that the duals of coordinates whose sum is bent,
were not affected by the choice of the vector z ∈ Sf in (6). Thus, the choice of z in the support
does not affect the existence of bent vectorial Boolean functions. The same observations apply
to other Gold AB functions in dimensions n = 7 and n = 9 for different βk.

Regarding the question Q1, the observations presented in this section indicate that the
bentness of linear combinations f

∗
i1 ⊕ . . . ⊕ f

∗
ik

(for some ij ∈ {1, . . . , n}) is not expected

so easily, even if the functions f
∗
i are quadratic. In the following section, we focus on the

analysis of a sum of two semi-bent functions from the spectral point of view.

4 Characterizing semi-bentness in the spectral domain

In this subsection, we provide the spectral analysis of the sum of two quadratic semi-bent
functions f and g (as components of an AB permutation) in odd number of variables, whose
Walsh supports are affine subspaces. The case of non-quadratic semi-bent functions and the
case when the Walsh supports are non-affine sets is left as an interesting topic for further
investigation. The structure of this section is briefly summarized as follows:

We firstly show that if f and g are semi-bent such that f ⊕ g is semi-bent, then it
necessarily holds that dim(Sf ∩ Sg) = n − 2, and thus it is not possible that Sf = Sg or
Sf ∩ Sg = ∅ (Theorem 4.1). Based on this fact, we then show that f ⊕ g is semi-bent if and
only if the functions ϕu : Sf \ (Sf ∩Sg)→ F2, if u ∈ Sg, and ψu : Sf ∩Sg → F2, if u ∈ Fn

2 \Sg,
defined by

ϕu(ω) = f∗(ω)⊕ g∗(u⊕ ω), ω ∈ Sf \ (Sf ∩ Sg),

ψu(ω) = f∗(ω)⊕ g∗(u⊕ ω), ω ∈ Sf ∩ Sg,
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are either balanced, or have weights 2n−3± 2
n−1
2
−1 (Proposition 4.2). Here f∗ and g∗ are the

duals of f and g respectively, defined by (5). We note that #(Sf \ (Sf ∩Sg)) = #(Sf ∩Sg) =
2n−2. Furthermore, unlike in the case of (6), we are not concerned with the ordering of the
(n− 2)-dimensional affine subspaces Sf ∩Sg and Sf \ (Sf ∩Sg), since we are not able to fully
analyze their structure further as Boolean functions defined on Fn−2

2 .

Remark 4.1. Throughout the subsequent subsections, by ”an affine subspace” we mean a
proper coset of a linear subspace which does not contain the all-zero vector.

We start with the following well-known result in linear algebra.

Proposition 4.1. Let R and Q be two affine subspaces in Fn
2 of dimension n− 1. Then the

following three cases occur:

(i) R and Q are equal, i.e. R = Q.

(ii) R and Q are parallel, i.e. R ∩Q = ∅.

(iii) dim(R ∩Q) = n− 2.

Let f, g : Fn
2 → F2 (n odd) be two different semi-bent functions. For any vector u ∈ Fn

2 ,
we have the following computation:

Wf⊕g(u) =
∑
x∈Fn

2

(−1)f(x)⊕g(x)⊕u·x (2)
= 2−2n

∑
x∈Fn

2

∑
ω∈Sf

∑
z∈Sg

Wf (ω)Wg(z)(−1)ω·x⊕z·x⊕u·x

= 2−2n
∑
ω∈Sf

∑
z∈Sg

Wf (ω)Wg(z)
∑
x∈Fn

2

(−1)x·(ω⊕z⊕u)

=

 2−n
∑

ω∈Sf : z=u⊕ω∈Sg

Wf (ω)Wg(z), u ∈ Sf ⊕ Sg

0, u 6∈ Sf ⊕ Sg.
(13)

Applying Proposition 4.1 we have the following result.

Theorem 4.1. Let f, g, f⊕g : Fn
2 → F2 (n odd) be semi-bent functions, whose Walsh supports

are affine subspaces. Then:

(i) It is not possible that Sf = Sg or Sf ∩ Sg = ∅, thus it necessarily holds that dim(Sf ∩
Sg) = n− 2.

(ii) It holds that Sf ⊕ Sg = Fn
2 .

Proof. (i) Assume that Sf ∩Sg = ∅, then one of the sets Sf or Sg is a linear subspace (recall
dim(Sf ) = n− 1), which contradicts the assumption that Sf and Sg are affine subspaces.

On the other hand, let us assume that Sf = Sg. By representing Sf = Sg = v ⊕ S, for
some linear subspace S ⊂ Fn

2 (dim(S) = n − 1) and v 6∈ S, we have that Sf ⊕ Sg = S and
thus for every u 6∈ S by relation (13) we have that Wf⊕g(u) = 0. In addition, since f ⊕ g is
balanced (0n 6∈ Sf⊕g), then for u = 0n ∈ S we have that

Wf⊕g(0n) =
∑
x∈Fn

2

(−1)f(x)⊕g(x) = 0.
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Hence, we have that for at least 2n−1 + 1 = #(Fn
2 \ S ∪ {0n}) vectors u it holds that

Wf⊕g(u) = 0. Using the fact that |Wf⊕g(u)| ∈ {0, 2
n+1
2 } for all u ∈ Fn

2 , we have that∑
u∈Fn

2

W 2
f⊕g(u) ≤ (2n−1 − 1) · 2n+1 = 22n − 2n+1 < 22n,

which contradicts the Parseval’s identity stating that
∑

u∈Fn
2
W 2

f⊕g(u) = 22n. Therefore,

it holds that Sf = Sg is not possible. And finally, by Proposition 4.1-(iii) we have that
dim(Sf ∩ Sg) = n− 2.

(ii) The fact that Sf ⊕ Sg = Fn
2 follows directly since Sf ∪ E = Fn

2 and Sf ∩ E = ∅.

Theorem 4.1-(ii) implies that the second case in (13), that is the case when u 6∈ Sf ⊕ Sg,
never occurs. This motivates us to further investigate the relation (13) with respect to the
Walsh supports Sf and Sg. The main goal now is to find a precise description of vectors
u ∈ Fn

2 and ω ∈ Sf for which z = u⊕ω ∈ Sg. Based on this analysis, we will later investigate
the duals f∗ and g∗.

Analyzing further (13): Let Sf and Sg be represented as

Sf = τ ⊕ E and Sg = µ⊕ T,

where E, T ⊂ Fn
2 are linear subspaces and τ 6∈ E, µ 6∈ T . Since by Theorem 4.1-(i) we have

that Sf ∩ Sg 6= ∅ with dim(Sf ∩ Sg) = n− 2, let Λ ⊂ T be a set for which it holds that

Λ = Sf ∩ T.

Clearly, the set Λ has also the property that Sf = Λ∪ (Sf ∩Sg) and Λ∩ (Sf ∩Sg) = ∅. Since
Sf , Sg are affine subspaces, it holds that Sf ∩ Sg is also a linear or affine space. Thus, by
dim(Sf ∩ Sg) = n− 2 we have that Λ is either a linear or affine space with dimension n− 2.
We distinguish the following two cases:

Case I: Let u ∈ Sg = µ ⊕ T . This means that u can be written as u = µ ⊕ tu, for
some tu ∈ T . By Λ = Sf ∩ T we have that

u⊕ ω =

{
µ⊕ tu ⊕ ω ∈ µ⊕ T = Sg, when ω ∈ Λ,
µ⊕ tu ⊕ (µ⊕ tω) ∈ T, when ω = µ⊕ tω ∈ Sf\Λ = Sf ∩ Sg.

(14)

Here, tu and tω are some vectors from T used to represent the vectors u and ω ∈ Sf . From
(14) we have that u ⊕ ω ∈ Sg only in the case when ω ∈ Λ, which means that (13) can be
further written as

Wf⊕g(u) = 2−n
∑

ω∈Λ⊂Sf : z=u⊕ω∈Sg

Wf (ω)Wg(z)

= 2
∑

ω∈Λ⊂Sf

(−1)f
∗(ω)⊕g∗(u⊕ω), (15)

where in the last step we used Wf (ω) = 2
n+1
2 (−1)f

∗(ω) and Wg(u ⊕ ω) = 2
n+1
2 (−1)g

∗(u⊕ω).
It is important to note that the value g∗(u⊕ ω) in (15) is well defined for every ω ∈ Λ, since
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by (14) we have that u⊕ Λ ⊂ Sg (recall that g∗ is a mapping defined on Sg).

Case II: Let u ∈ T = Fn
2 \ Sg. Similarly, we have that

u⊕ ω ∈
{

T, when ω ∈ Λ,
Sg, when ω ∈ Sf\Λ.

(16)

Consequently, by (16) the relation (13) can be written as

Wf⊕g(u) = 2
∑

ω∈Sf\Λ

(−1)f
∗(ω)⊕g∗(u⊕ω), (17)

where Sf\Λ = Sf ∩ Sg.
To unify Cases I and II, we finally have that (13) (with respect to u ∈ Fn

2 ) is given as

Wf⊕g(u) =


2
∑

ω∈Λ⊂Sf

(−1)f
∗(ω)⊕g∗(u⊕ω), u ∈ Sg, Λ = Sf \ (Sf ∩ Sg),

2
∑

ω∈Sf\Λ=Sf∩Sg

(−1)f
∗(ω)⊕g∗(u⊕ω), u ∈ T = Fn

2 \ Sg.
(18)

Remark 4.2. In (18), we have that the semi-bentness of f ⊕g depends on functions f∗(ω)⊕
g∗(u⊕ω), where ω are either from Λ = Sf \(Sf ∩Sg) or Sf\Λ = Sf ∩Sg. Due to the influence
of the vector u ∈ Fn

2 , it is not clear whether the function g∗(u ⊕ ω) in (18) represents the
restrictions of the dual g∗ to Sf ∩ Sg and Sg \ (Sf ∩ Sg), or not.

Assuming that Wf⊕g(u) ∈ {0,±2
n+1
2 } holds for all u ∈ Fn

2 , from (18) we conclude that∑
ω∈Λ⊂Sf

(−1)f
∗(ω)⊕g∗(u⊕ω),

∑
ω∈Sg\Λ

(−1)f
∗(ω)⊕g∗(u⊕ω) ∈ {0,±2

n−1
2 }, ∀u ∈ Fn

2 .

Since dim(Λ) = dim(Sg\Λ) = n − 2, this does not imply that the functions ω ∈ Λ →
f∗(ω) ⊕ g∗(u ⊕ ω) and ω ∈ Sf\Λ → f∗(ω) ⊕ g∗(u ⊕ ω) are semi-bent on Fn−2

2 . At least, we
can provide the following characterization of these functions.

Proposition 4.2. Let f, g, f ⊕ g : Fn
2 → F2 (n odd) be semi-bent functions, whose Walsh

supports are affine subspaces. In addition, let Sg be represented as Sg = µ⊕T , where T ⊂ Fn
2

is a linear subspace and µ 6∈ T . Denoting by Λ = Sf ∩ T (dim(Λ) = n− 2), it holds that the
functions

ϕu : Λ→ F2, ϕu(ω) = f∗(ω)⊕ g∗(u⊕ ω) for u ∈ Sg,
ψu : Sf\Λ→ F2, ψu(ω) = f∗(ω)⊕ g∗(u⊕ ω) for u ∈ Fn

2 \ Sg,

are either balanced, or have weights 2n−3 ± 2
n−1
2
−1.

Proof. One proves the statement by using the fact that Wf⊕g(u) ∈ {0,±2
n+1
2 }, the relation

(18), and the fact that for any Boolean function g ∈ Bm it holds that wt(g) = 2m−1 −
1
2Wg(0m).
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In the following example, we briefly indicate what kind of structure the function ϕu may
possess (similarly one can consider the function ψu).

Example 4.1. Let F (x) = xd (d = 2k + 1, gcd(n, k) = 1, k ≤ (n − 1)/2) be a Gold AB
function defined on F2n whose components are denoted by Fi and its corresponding Walsh
support by Si, i ∈ {1, . . . , 2n − 1}. Moreover, by F ∗i we denote the duals of Fi defined with
(5).

Since Si are affine subspaces for all i ∈ {1, . . . , 2n−1}, we can represent the affine subspace
Λ = {λ0, . . . , λ2n−2−1} = Si\(Si ∩ Sj) = Si\Sj (1 ≤ i < j ≤ 2n − 1) as Λ = α + Γ with
λk = α + γk, where Γ = {γ0, . . . , γ2n−2−1} is a lexicographically ordered (n − 2)-dimensional
linear subspace. Clearly, Λ (and thus α and Γ) depends on indices i and j. Now, by defining
the function ϕi,j,u : Si \ (Si ∩ Sj)→ F2 as a function in n− 2 variables as

ϕi,j,u(xk) = ϕu(λk) = ϕu(α+ γk) = F ∗i (λk)⊕ F ∗j (u⊕ λk), u ∈ Sj ,

where k ∈ [0, 2n−2−1] and Fn−2
2 = {x0, . . . , x2n−2−1} is lexicographically ordered. Using Sage

(for any d described above) we observe that for n = 5 the functions ϕij,u are either linear or
semi-bent, while for n = 7, 9 they are either semi-bent or 3-plateaued (the non-zero Walsh

coefficients are ±2
(n−2)+3

2 = ±2
n+1
2 ).

Remark 4.3. The previous example indicates that the functions ϕu and ψu seem to have a
plateaued-like spectrum, at least for quadratic AB functions. However, due to the presence of
the vector u in their definition, the properties of these functions remain unclear and thus a
more rigorous theoretical analysis is required.

5 Designing quadratic AB functions in the spectral domain

In this section, we specify a search technique for finding quadratic AB functions (the design
being performed in the spectral domain), which turns out to be quite successful. More pre-
cisely, we demonstrate the existence of many different bent duals (f̃1, . . . , f̃n), used to specify
the coordinate functions f1, . . . , fn of F , so that F is a quadratic AB function. For n = 5,
the AB functions constructed in this way turn out to be CCZ-equivalent to Gold functions.
Nevertheless, in this case, none of the found functions is a permutation which is the property
of Gold AB monomials. On the other hand, when n = 7, the same approach provides several
AB functions which are not CCZ-equivalent to Gold functions.

Notation: Throughout the section, we denote by f1, . . . , fn : Fn
2 → F2 and Fi = vi ·

(f1, . . . , fn) the coordinate and component functions, respectively, of a given Gold function,
where Fn

2 = {v0, v1, . . . , v2n−1} is ordered lexicographically. The corresponding Walsh sup-
ports of Fi will be denoted by Si. The Walsh support of a coordinate function fi will be
denoted by Sfi .

In the following example, we observe that the cardinalities of intersections of the Walsh
supports of component functions of F (x) = x5, for n = 5, 7, 9, follow certain patterns.
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Example 5.1. Let f1, . . . , f5 : F5
2 → F2 be the coordinate function of the Gold function

F (x) = x5 : F25 → F25. We observe that the following intersections of k-tuples of the Walsh
supports satisfy the following (with 1 ≤ i1 < · · · < ik ≤ 5)

| ∩2
k=1 Sfik | = 8,

| ∩3
k=1 Sfik | = 4,

| ∩4
k=1 Sfik | = 2,

| ∩5
i=1 Sfi | = 1.

Hence, the cardinalities of these intersections are of the form 25−m, where the parameter m
is the number of intersected Walsh supports. Similarly, one can verify that the same pattern
holds for the remaining Gold AB functions when n = 5, 7, 9.

While Proposition 4.1 regards the dimension of intersection of two linear/affine subspaces
of dimension n− 1 (n odd), in the following result we describe the dimension of intersection
of more than two affine subspaces.

Proposition 5.1. Let S1, . . . , Sn be affine subspaces in Fn
2 of dimension n − 1 such that

dim(Si ∩ Sj) = n − 2 for all 1 ≤ i < j ≤ n. With Si1,...,ic = Si1 ∩ · · · ∩ Sic we denote the
intersection of c ≥ 2 arbitrary (fixed) affine subspaces Si1 , . . . , Sic, where 1 ≤ i1 < · · · < ic ≤
n. Then

dim(Si1,...,ic−1,ic) ∈ {dim(Si1,...,ic−1), dim(Si1,...,ic−1)− 1}. (19)

Proof. We prove the statement by the mathematical induction. Using the given assumptions
and Theorem 4.1 we have that dim(Si ∩ Sj) = n− 2 (1 ≤ i < j ≤ n), and thus (19) holds for
c = 2. Suppose that (19) holds for some c > 2. In order to prove that (19) holds for some
c+ 1, that is,

dim(Si1,...,ic,ic+1) ∈ {dim(Si1,...,ic), dim(Si1,...,ic)− 1},

we compute the following:

n ≥ dim(Si1,...,ic−1 ⊕ Sic) = dim(Si1,...,ic−1) + dim(Sic)− dim(Si1,...,ic)
⇒ dim(Si1,...,ic) ≥ dim(Si1,...,ic−1) + (n− 1)− n
⇒ dim(Si1,...,ic) ≥ dim(Si1,...,ic−1)− 1.

On the other hand, Si1,...,ic−1,ic ⊆ Si1,...,ic−1 implies that dim(Si1,...,ic−1,ic) ≤ dim(Si1,...,ic−1).
Hence,

dim(Si1,...,ic−1) ≥ dim(Si1,...,ic−1,ic) ≥ dim(Si1,...,ic−1)− 1,

and thus it holds that

dim(Si1,...,ic−1,ic) ∈ {dim(Si1,...,ic−1), dim(Si1,...,ic−1)− 1},

which completes the proof.

Referring to Example 5.1 and Proposition 5.1, we state the following conjecture that
addresses the gold AB function of the form F (x) = x2s+1 (n = 2k+ 1, 1 ≤ s ≤ k, gcd(s, n) =
1), which specifies (19) more precisely.
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Conjecture 1. Let f1, . . . , fn be the coordinate functions of the Gold function F (x) = x2s+1

defined on F2n, where n = 2k + 1 and 1 ≤ s ≤ k with gcd(s, n) = 1. Let also Si denote
the Walsh support of fi, i = 1, . . . , n. Let Si1,...,ic = Si1 ∩ · · · ∩ Sic be the intersection of c
arbitrary (fixed) affine subspaces Si1 , . . . , Sic, where 1 ≤ i1 < · · · < ic ≤ n. Then, it holds
that

dim(Si1,...,ic) = dim(Si1,...,ic−1)− 1. (20)

Remark 5.1. We observe that intersection of the Walsh supports of the coordinate functions
of F (x) = x2i+1 (n = 2k + 1, 1 ≤ i ≤ k, gcd(i, n) = 1), for n ∈ {5, 7, 9, 11}, always satisfies
the relation (20). For a graphical representation, we refer to Figure 1 given in Appendix,
cf. Section 6.1. On the other hand, for the quadratic AB function F (x) = x3 + Tr(x9) [5]
(CCZ-inequivalent to the Gold function for n ≥ 6) for n ∈ {9, 11}, these intersections are
not uniform as in the Gold case and they generally correspond to (19). A precise description
of the intersection structure of the Walsh supports for different (in)equivalent AB functions
is an interesting research challenge.

5.1 Constructing AB functions on F5
2

In the following example, we construct five semi-bent functions using the so-called spectral
approach which has been described by [21, Theorem 3.1]. We notice that any semi-bent
function with linear/affine Walsh support necessarily has a bent dual (in lower number of
variables).

Example 5.2. With T1, . . . , T5 we denote the truth tables of five bent functions in four
variables. It turns out that these five bent functions (found by a computer search) will give
rise to an AB function defined on F5

2.

T1 = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1)

T2 = (1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1)

T3 = (0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0)

T4 = (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0)

T5 = (0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0)

From Example 5.1 and Figure 1, we see that the Walsh support of any Gold coordinate behaves
in a special manner. More precisely, if S1, . . . , S5 are the Walsh supports as in Example 5.1,
then we can represent

⋃5
i=1 Si as a disjoint union of sets EI of the form

EI =
⋂
i∈I

Si \
⋃

j∈N\I

Sj , (21)

where ∅ 6= I ∈ P(N) and N = {1, 2, . . . , 5} (for a graphical representation see Figure 1
in Appendix). Here, P(N) denotes the set of all non-empty different subsets of the set N .
Moreover, there are 25 − 1 choices for EI since this is exactly the number of non-empty sets
in P(N). Hence, for the sets EI , where I ∈ P(N) we have that

5⋃
i=1

Si =
⋃

∅6=I∈P(N)

EI , |EI | = 1, EI ∩ EJ = ∅ (I ∩ J = ∅). (22)
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In addition, we observe that the affine hyperplanes Si (from Example 5.1) are given as
Si = {x = (x1, . . . , x5) ∈ F5

2 : xi = 1}, i = 1, . . . , 5, and they satisfy (22).
Using the method proposed in [21, Theorem 3.1], we can construct a semi-bent function

fi from Ti and Si (i = 1, . . . , 5) as follows. For instance, let us construct the function
f1 from T1 and S1, as the construction of f2, . . . , f5 goes similarly. Firstly, we note that
S1, . . . , S5 are ordered lexicographically. Let S1 = s0 ⊕ L = {s0, s1, . . . , s24−1} ⊂ F5

2, where
L = {0, e1, . . . , e24−1} ⊂ F5

2 is a linear subspace and let {x0, . . . , x24−1} = F4
2 be ordered

lexicographically. Let the spectrum W1 : F5
2 → Z be defined as

W1(u) =

{
(−1)T1(xi) · 2

5+1
2 , u = s0 ⊕ ei ∈ S1,

0, u /∈ S1.

By applying the inverse Walsh-Hadamard transform (2) to the spectrum W1 = {W1(x) : x ∈
F5

2}, we obtain the truth table of f1 (clearly having W1 = Wf1), cf. Algorithm 1. Using the
same approach we obtain the truth tables of f2, . . . , f5, which are given as:

Tf1 = (0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0),

Tf2 = (1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0),

Tf3 = (0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1),

Tf4 = (0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1),

Tf5 = (0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1).

Using Sage, we confirm that F = (f1, . . . , f5) is an AB function CCZ-equivalent to the Gold
function. Using the primitive polynomial p(x) = x5 + x2 + 1 and the generating element a
for which p(a) = 0, the univariate form of the function F is given by:

F (x) = (a3 + a)x24 + (a4 + a3 + a2 + a+ 1)x20 + (a2 + a+ 1)x18 + (a4 + a+ 1)x17

+(a4 + a3 + a2 + a)x16 + (a3 + 1)x12 + x10 + (a4 + a+ 1)x9 + (a4 + a2)x8

+(a4 + a3 + a)x6 + (a4 + a3)x5 + a4x4 + (a4 + a+ 1)x3 + (a4 + a)x2 + (a3 + a2 + a)x+ a

More formally, given an affine Walsh support and a bent dual function, the process of
deriving semi-bent functions is specified in Algorithm 1 below. On the other hand, the search
for suitable bent duals that specify an AB function is summarized in Algorithm 2.

Algorithm 1 Construction of semi-bent functions via bent functions and Walsh supports

Input: bent function f in n variables, n-dimensional affine subspace S.
Output: semi-bent function g in n+ 1 variables with Walsh support S.
SemibentFromBent(S, f, n)

1: A = [x.base(10) for x ∈ S]
2: Wf = [0 for i ∈ range(n+ 1)]
3: for x ∈ A do
4: Wf (x) = (−1)f(A.index(x)) · 2

n+1
2

5: end for
6: return g =invWHT(Wf )
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Algorithm 2 List of AB functions defined on Fn+1
2 from (T ,S)

Input: (n, T ,S), where T is the list of truth tables of bent functions in n variables and
S = {S1, . . . , Sn} are n-dimensional subspaces of Fn+1

2 .
Output: List of AB functions F : Fn+1

2 → Fn+1
2 whose coordinates have Walsh supports

in S and their duals are in T .

1: C = Combinations(T , n+ 1)
2: for c ∈ C do
3: L = [ ]
4: for i ∈ range(n+ 1) do
5: f = SemibentFromBent(S[i], T [c[i]], n)
6: L.append(f)
7: end for
8: if isAB(L) then
9: A.append(L)

10: end if
11: end for
12: return A

The above example is a special instance of a computer search for suitable duals performed
on a pool of 20 random bent functions in 4 variables, which gives

(
20
5

)
= 15504 possibilities

to select five bent duals for the coordinate functions. In this search, the five Walsh supports
of the coordinate functions are defined as above, i.e., as

Si = {x = (x1, . . . , x5) ∈ F5
2 : xi = 1}, i = 1, . . . , 5.

Thus, we obtain 15504 pairs (T, S), where T = {T1, . . . , T5} are five bent functions in
4 variables and S = {S1, . . . , S5} are the previously defined Walsh supports. This search
method is described in Algorithm 2. Among the 15504 pairs (T, S), there are exactly 60 pairs
(T, S) that specify AB functions. Nevertheless, all these AB functions (listed in Appendix-
Section 6.2) are CCZ-equivalent to some Gold function, which seems to be a consequence
of the small ambient space. It is interesting to notice that none of the listed functions is a
permutation even though the Gold AB functions are bijective mappings (any monomial AB
function is necessarily a permutation).

On the other hand, one may attempt to use equivalent bent duals T ′ = {T ′1, . . . , T ′5} of
bent functions T = {T1, . . . , T5}. In this context, by constructing semi-bent functions out
of pairs (T ′, S) (where S = {S1, . . . , S5}), we could observe that the AB property is rather
sensitive to such a transformation, and quite remarkably none of the vectorial functions
constructed from (T ′, S) was an AB function.

Remark 5.2. When considering the function F (x) = x3 + Tr(x9), x ∈ F29, we noticed that
the intersections are not as uniform as in the Gold case. That is, if S1, . . . , S9 are the Walsh
supports of the coordinate functions, then for I ∈ P(N), N = {1, . . . , 9}, we have that

|EI | ∈ {0, 2}, EI ∩ EJ = ∅ (I ∩ J = ∅), (23)

where EI is defined by (21).
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In the previous example, we have fixed the Walsh supports S = {S1, . . . , S5} that satisfy
the “uniform” intersection (corresponding to (22)) and we searched for bent functions T such
that the sets of duals T = {T1, . . . , T5} and Walsh supports S (briefly denoted by a pair
(T, S)) gives us an AB function. Let us now consider an example for the second case, i.e.
when the sets EI satisfy (23). We define the Walsh supports to be

Si = {x = (x1, . . . , x5) ∈ F5
2 : xi ⊕ xi+1 mod 5 = 1}, i = 1, . . . , 5.

These supports obviously satisfy (23). Using Sage and the previously described method, we
have taken 20 random bent functions in 4 variables and considered all possible 5-tupples,
i.e.

(
20
5

)
possibilities for T . In total, we were able to find 44 pairs (T, S) for which the

constructed vectorial function is AB. Furthermore, all the functions are CCZ-equivalent to
some Gold function.

Remark 5.3. Using Sage, for the component functions of the AB functions listed in Appendix-
Sections 6.2, we note that the functions ψu,i,j and ϕu,i,j (as described in Example 4.1) are
semi-bent Boolean functions in 3 variables for any choice of Walsh supports Si, Sj and of
components fi, fj of F .

5.2 Constructing AB functions on F7
2

For n = 7, by using Algorithm 2, we were able to find suitable pairs of Walsh supports and
bent functions in six variables, such that the resulting mappings are AB functions on F7

2.
Similarly as before, the Walsh supports behave in a pattern identical to (22) and (23). Fur-
thermore, using the mathematical software Magma, it could be confirmed that the obtained
AB functions are not CCZ-equivalent to the Gold AB function. In Appendix - Section 6.3, we
list these AB functions. However, a much rigorous theoretical approach is needed to have a
better understanding of these intersections, that is, to find explicit conditions for (T, S) such
that the constructed vectorial bent function is always AB and hopefully CCZ-inequivalent to
the Gold function. We leave this investigation as an open problem for further research.

Similarly as in the case when n = 5 (cf. Remark 5.3), we observe that the functions ψu,i,j

and φu,i,j (for n = 7) are semi-bent functions in 5 variables. However, this holds only for
those functions whose Walsh supports are affine subspaces. For some of the AB functions
listed in the Appendix-Section 6.3, we observe that the Walsh-supports are linear subspaces.
Because of this, we need to redefine the functions ψu and ϕu in Proposition 4.2, so that they
are well-defined mappings.

Using similar observations as in (14) and (16), the mappings ϕu and ψu can be redefined
as follows:

ϕu : Sf\Λ→ F2, ϕu(ω) = f∗(ω)⊕ g∗(u⊕ ω) for u ∈ Sg,
ψu : Λ→ F2, ψu(ω) = f∗(ω)⊕ g∗(u⊕ ω) for u ∈ Fn

2 \ Sg,

Notice that the only difference between the above definition of ϕu and ψu and those given
in Proposition 4.2 is that we switched the domains of the functions. Again, using Sage, we
could confirm that in the case of linear Walsh supports, the functions ψu,i,j and ϕu,i,j (as
described in Example 4.1 and defined as above) are semi-bent functions in five variables for
any choice of Walsh supports Si, Sj and of components fi, fj of F , where F is from the list
of AB functions in Appendix-Section 6.3.
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6 Conclusions

In this article, we employed the concept of dual of s-plateaued functions introduced in [20, 21]
to analyze the structure of quadratic AB functions and to address the problem of designing
AB functions in the dual (spectral) domain. It turns out that even the quadratic case (along
with the fact that the corresponding Walsh supports are affine hyperplanes) is quite compli-
cated. Nevertheless, the presented results are quite promising and there seems to be a greater
potential in this approach which can eventually be further developed to efficiently deal with
the quadratic case.
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Appendix

6.1 Intersection of the Walsh supports for the Gold coordinate functions

S

S

S
3

S

Figure 1: Graphical representation of the intersection of Walsh supports of the coordinate
functions fi for the Gold function F (x) = xd on F25 , d = 3, 5

6.2 A list of AB functions constructed by the spectral method for n = 5

The functions F : F5
2 → F5

2 below are specified as integer outputs when the input x goes
through F5

2 ordered lexicographically.

(2, 15, 4, 25, 22, 19, 1, 20, 9, 2, 10, 17, 15, 12, 29, 14, 30, 31, 17, 0, 0, 9, 30, 7, 20, 19, 30, 9, 24, 23, 3, 28)

(18, 31, 4, 25, 22, 3, 17, 20, 9, 18, 26, 17, 15, 12, 13, 30, 14, 15, 17, 0, 0, 25, 14, 7, 20, 3, 14, 9, 24, 23, 19, 12)

(18, 23, 12, 17, 6, 19, 1, 12, 9, 10, 18, 9, 15, 28, 13, 6, 6, 7, 17, 8, 24, 9, 22, 31, 28, 27, 14, 17, 16, 7, 27, 20)

(26, 31, 4, 17, 6, 27, 9, 4, 1, 2, 26, 9, 15, 20, 5, 14, 14, 7, 25, 0, 16, 1, 22, 23, 20, 27, 6, 25, 24, 15, 27, 28)

(2, 15, 20, 29, 6, 19, 17, 0, 29, 22, 30, 17, 27, 8, 25, 14, 30, 27, 5, 4, 16, 13, 10, 19, 0, 3, 14, 9, 12, 23, 3, 28)

(18, 15, 20, 29, 6, 3, 17, 0, 13, 22, 30, 17, 27, 24, 25, 14, 14, 27, 5, 4, 16, 29, 10, 19, 16, 3, 14, 9, 12, 7, 3, 28)

(26, 15, 20, 5, 6, 11, 9, 0, 5, 6, 30, 25, 11, 16, 17, 14, 14, 19, 13, 20, 16, 21, 18, 19, 16, 27, 6, 9, 28, 15, 11, 28)

(10, 23, 24, 29, 22, 3, 13, 0, 17, 10, 2, 1, 31, 12, 5, 14, 22, 15, 9, 8, 8, 25, 30, 23, 8, 23, 22, 17, 4, 19, 19, 28)

(26, 7, 24, 13, 6, 3, 13, 0, 1, 10, 18, 17, 15, 28, 21, 14, 6, 31, 9, 24, 24, 25, 30, 23, 24, 23, 6, 1, 20, 3, 3, 28)

(10, 31, 20, 17, 22, 9, 9, 6, 17, 0, 10, 11, 31, 4, 5, 14, 30, 7, 9, 0, 0, 19, 22, 21, 6, 27, 20, 25, 10, 29, 25, 30)

(26, 15, 16, 13, 6, 9, 5, 2, 1, 0, 26, 19, 15, 20, 29, 14, 6, 23, 9, 16, 16, 27, 22, 21, 26, 31, 4, 9, 30, 1, 9, 30)

(18, 31, 8, 29, 30, 1, 21, 18, 9, 16, 18, 19, 7, 12, 13, 30, 14, 7, 17, 0, 8, 19, 6, 5, 18, 15, 12, 9, 22, 25, 25, 14)

(0, 21, 30, 27, 22, 11, 9, 4, 27, 8, 16, 19, 31, 4, 21, 30, 28, 13, 11, 10, 8, 17, 30, 23, 4, 19, 6, 1, 2, 29, 1, 14)

(0, 5, 18, 31, 14, 27, 21, 8, 27, 24, 24, 19, 23, 4, 29, 6, 20, 21, 3, 10, 16, 1, 14, 23, 8, 15, 14, 1, 14, 25, 1, 30)

(12, 13, 18, 27, 2, 27, 21, 4, 19, 20, 28, 19, 31, 0, 25, 14, 20, 17, 15, 2, 16, 13, 2, 23, 8, 11, 2, 9, 14, 21, 13, 30)
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(0, 7, 30, 21, 6, 17, 17, 10, 29, 28, 22, 27, 25, 8, 27, 6, 22, 19, 5, 12, 24, 13, 2, 27, 10, 9, 12, 3, 6, 21, 9, 22)

(28, 15, 18, 13, 8, 3, 15, 8, 1, 4, 26, 19, 5, 24, 23, 6, 2, 27, 13, 24, 20, 21, 18, 31, 24, 23, 2, 1, 30, 9, 13, 22)

(6, 19, 28, 29, 16, 13, 11, 2, 25, 14, 6, 5, 31, 0, 1, 10, 26, 9, 9, 14, 14, 21, 28, 19, 4, 21, 18, 23, 0, 25, 23, 26)

(3, 26, 29, 20, 23, 4, 1, 2, 28, 1, 7, 10, 27, 12, 8, 15, 27, 10, 1, 0, 12, 23, 30, 21, 2, 23, 29, 24, 6, 25, 17, 30)

(15, 2, 29, 4, 19, 20, 17, 2, 16, 13, 23, 30, 15, 24, 24, 27, 19, 18, 9, 28, 4, 15, 14, 17, 14, 31, 1, 4, 26, 1, 5, 10)

(17, 26, 15, 20, 5, 20, 3, 2, 14, 1, 21, 10, 11, 30, 8, 13, 11, 8, 17, 2, 30, 7, 28, 21, 18, 21, 13, 26, 22, 11, 17, 28)

(25, 10, 23, 16, 7, 28, 25, 22, 0, 1, 11, 30, 29, 20, 6, 27, 11, 18, 9, 4, 20, 5, 6, 3, 22, 29, 17, 14, 10, 9, 29, 10)

(25, 26, 7, 16, 7, 28, 9, 6, 0, 1, 27, 14, 13, 20, 6, 11, 11, 2, 25, 4, 20, 5, 22, 19, 22, 29, 1, 30, 26, 9, 29, 26)

(25, 10, 19, 20, 5, 30, 31, 16, 4, 5, 11, 30, 25, 16, 6, 27, 11, 18, 9, 4, 20, 5, 6, 3, 16, 27, 23, 8, 14, 13, 25, 14)

(25, 26, 3, 20, 5, 30, 15, 0, 4, 5, 27, 14, 9, 16, 6, 11, 11, 2, 25, 4, 20, 5, 22, 19, 16, 27, 7, 24, 30, 13, 25, 30)

(17, 18, 11, 28, 21, 14, 31, 16, 12, 29, 19, 22, 9, 0, 6, 27, 11, 10, 25, 12, 12, 21, 14, 3, 16, 3, 7, 0, 22, 29, 17, 14)

(17, 18, 15, 24, 21, 14, 27, 20, 8, 25, 19, 22, 13, 4, 6, 27, 11, 10, 25, 12, 12, 21, 14, 3, 20, 7, 3, 4, 18, 25, 21, 10)

(13, 0, 31, 6, 19, 20, 17, 2, 16, 13, 23, 30, 13, 26, 26, 25, 17, 16, 11, 30, 4, 15, 14, 17, 14, 31, 1, 4, 24, 3, 7, 8)

(1, 18, 31, 20, 31, 14, 8, 1, 26, 15, 20, 25, 23, 0, 16, 31, 31, 4, 13, 14, 2, 27, 25, 24, 5, 24, 7, 2, 11, 20, 0, 7)

(17, 18, 15, 24, 21, 14, 26, 21, 8, 25, 18, 23, 13, 4, 6, 27, 11, 10, 25, 12, 12, 21, 15, 2, 21, 6, 3, 4, 19, 24, 20, 11)

(7, 18, 29, 28, 17, 12, 10, 3, 24, 15, 6, 5, 31, 0, 0, 11, 27, 8, 9, 14, 14, 21, 29, 18, 5, 20, 19, 22, 1, 24, 22, 27)

(15, 18, 29, 28, 17, 4, 10, 3, 16, 15, 6, 5, 31, 8, 0, 11, 19, 8, 9, 14, 14, 29, 29, 18, 13, 20, 19, 22, 1, 16, 22, 27)

(16, 13, 23, 26, 6, 3, 16, 5, 11, 16, 24, 19, 31, 28, 29, 14, 13, 28, 2, 3, 17, 24, 15, 22, 21, 2, 14, 9, 11, 4, 1, 30)

(0, 29, 23, 26, 22, 3, 0, 5, 27, 0, 8, 3, 31, 12, 13, 14, 29, 12, 2, 3, 1, 24, 31, 22, 5, 18, 30, 25, 11, 20, 17, 30)

(24, 29, 7, 22, 6, 27, 8, 1, 7, 4, 28, 11, 11, 16, 1, 14, 13, 0, 30, 7, 17, 4, 19, 18, 17, 26, 6, 25, 31, 12, 25, 30)

(12, 29, 19, 26, 26, 3, 12, 13, 19, 4, 28, 19, 23, 8, 17, 22, 21, 8, 14, 11, 1, 20, 19, 30, 9, 18, 2, 1, 15, 28, 13, 6)

(16, 23, 15, 20, 6, 17, 0, 11, 13, 12, 22, 11, 9, 24, 11, 6, 7, 2, 20, 13, 25, 12, 19, 26, 27, 24, 12, 19, 23, 4, 25, 22)

(16, 15, 31, 12, 14, 1, 0, 3, 13, 4, 22, 19, 1, 24, 27, 14, 15, 18, 4, 21, 25, 20, 19, 18, 19, 24, 12, 11, 23, 12, 9, 30)

(20, 11, 31, 12, 10, 5, 0, 3, 9, 0, 22, 19, 5, 28, 27, 14, 11, 22, 4, 21, 29, 16, 19, 18, 23, 28, 12, 11, 19, 8, 9, 30)

(16, 7, 27, 20, 6, 3, 20, 9, 11, 26, 16, 25, 31, 28, 29, 6, 7, 20, 0, 11, 27, 26, 5, 28, 25, 12, 14, 3, 7, 0, 9, 22)

(4, 19, 31, 28, 18, 15, 8, 1, 27, 14, 4, 5, 31, 0, 1, 10, 27, 8, 8, 15, 15, 22, 29, 16, 5, 20, 18, 23, 3, 24, 21, 26)

(20, 3, 31, 12, 0, 15, 10, 1, 9, 12, 22, 23, 13, 16, 19, 10, 11, 26, 8, 29, 29, 20, 31, 18, 21, 22, 2, 5, 19, 8, 5, 26)

(16, 31, 6, 29, 23, 0, 17, 18, 13, 20, 30, 19, 9, 8, 10, 31, 14, 11, 20, 5, 0, 29, 10, 3, 18, 1, 13, 10, 31, 20, 16, 15)

(16, 7, 30, 21, 7, 0, 17, 10, 13, 28, 22, 27, 25, 24, 26, 7, 6, 19, 4, 13, 24, 29, 2, 27, 26, 9, 13, 2, 7, 4, 8, 23)

(16, 23, 14, 21, 23, 0, 17, 26, 13, 28, 22, 27, 9, 8, 10, 23, 6, 3, 20, 13, 8, 29, 2, 11, 26, 9, 13, 2, 23, 20, 24, 7)

(24, 11, 18, 21, 7, 12, 29, 2, 5, 20, 26, 31, 25, 16, 22, 11, 10, 19, 8, 5, 20, 21, 6, 19, 18, 9, 5, 10, 15, 12, 8, 31)

(24, 11, 22, 17, 7, 12, 25, 6, 1, 16, 26, 31, 29, 20, 22, 11, 10, 19, 8, 5, 20, 21, 6, 19, 22, 13, 1, 14, 11, 8, 12, 27)

(24, 11, 18, 21, 5, 30, 31, 16, 5, 4, 10, 31, 25, 16, 6, 27, 10, 19, 8, 5, 20, 5, 6, 3, 16, 27, 23, 8, 15, 12, 24, 15)

(16, 19, 10, 29, 21, 14, 31, 16, 13, 28, 18, 23, 9, 0, 6, 27, 10, 11, 24, 13, 12, 21, 14, 3, 16, 3, 7, 0, 23, 28, 16, 15)

(24, 11, 22, 17, 5, 30, 27, 20, 1, 0, 10, 31, 29, 20, 6, 27, 10, 19, 8, 5, 20, 5, 6, 3, 20, 31, 19, 12, 11, 8, 28, 11)

(24, 9, 22, 19, 5, 30, 27, 20, 3, 2, 8, 29, 29, 22, 6, 25, 8, 17, 10, 7, 20, 7, 6, 1, 20, 29, 19, 14, 11, 8, 28, 11)

(4, 17, 30, 23, 25, 14, 11, 0, 27, 10, 20, 25, 21, 6, 18, 29, 24, 5, 14, 15, 4, 27, 26, 25, 4, 29, 7, 2, 11, 16, 0, 7)

(4, 13, 27, 10, 27, 16, 20, 7, 24, 5, 22, 19, 4, 27, 26, 29, 29, 16, 7, 18, 8, 7, 2, 21, 3, 26, 8, 9, 21, 14, 14, 13)

(20, 25, 15, 30, 27, 4, 16, 19, 8, 21, 22, 23, 4, 11, 10, 25, 9, 0, 19, 6, 12, 23, 6, 1, 23, 14, 8, 13, 17, 26, 30, 9)

(12, 1, 31, 6, 19, 20, 17, 2, 17, 12, 23, 30, 13, 26, 26, 25, 17, 16, 10, 31, 5, 14, 15, 16, 14, 31, 0, 5, 25, 2, 6, 9)

(8, 13, 23, 14, 30, 17, 25, 10, 20, 1, 26, 19, 0, 31, 22, 21, 21, 24, 11, 26, 0, 7, 6, 29, 14, 19, 1, 0, 25, 14, 14, 5)

(14, 19, 28, 29, 16, 5, 11, 2, 17, 14, 7, 4, 30, 9, 1, 10, 18, 9, 8, 15, 14, 29, 29, 18, 12, 21, 18, 23, 1, 16, 22, 27)

(6, 19, 28, 29, 17, 12, 10, 3, 24, 15, 6, 5, 30, 1, 1, 10, 26, 9, 8, 15, 14, 21, 29, 18, 5, 20, 19, 22, 0, 25, 23, 26)

(14, 19, 28, 29, 17, 4, 10, 3, 16, 15, 6, 5, 30, 9, 1, 10, 18, 9, 8, 15, 14, 29, 29, 18, 13, 20, 19, 22, 0, 17, 23, 26)

(7, 16, 29, 18, 26, 15, 8, 5, 24, 9, 19, 26, 23, 4, 20, 31, 25, 2, 14, 13, 7, 30, 24, 25, 2, 31, 4, 1, 14, 17, 0, 7)

(7, 18, 29, 16, 24, 15, 10, 5, 26, 9, 17, 26, 23, 6, 20, 29, 25, 2, 14, 13, 7, 30, 24, 25, 0, 29, 6, 3, 12, 19, 2, 5)
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6.3 A list of AB functions constructed by the spectral method for n = 7

A list of AB functions with the intersection of their coordinate Walsh supports corresponding
to (22):

(0, 1, 14, 25, 84, 71, 106, 111, 44, 27, 100, 69, 57, 28, 65, 114, 118, 117, 52, 33, 60, 45, 78, 73, 111, 90, 107, 72, 100, 67, 80, 97, 117, 58, 66, 27, 110,

51, 105, 34, 67, 58, 50, 93, 25, 114, 88, 37, 12, 65, 119, 44, 9, 86, 66, 11, 15, 116, 50, 95, 75, 34, 70, 57, 72, 67, 61, 32, 104, 113, 45, 34, 71, 122, 116,

95, 38, 9, 37, 28, 95, 86, 102, 121, 97, 122, 104, 101, 101, 90, 26, 51, 26, 55, 85, 110, 32, 101, 108, 63, 79, 24, 51, 114, 53, 70, 63, 90, 27, 122, 33, 86,

56, 127, 56, 105, 73, 28, 121, 58, 24, 105, 94, 57, 40, 75, 94, 43)

(0, 1, 68, 85, 112, 119, 42, 61, 113, 32, 33, 96, 35, 116, 109, 42, 126, 107, 10, 15, 92, 79, 54, 53, 10, 79, 106, 63, 10, 73, 116, 39, 54, 61, 54, 45, 69, 72,

91, 70, 123, 32, 111, 36, 42, 119, 32, 109, 70, 89, 118, 121, 103, 126, 73, 64, 14, 65, 42, 117, 13, 68, 55, 110, 127, 24, 60, 75, 25, 120, 68, 53, 92, 107,

11, 44, 24, 41, 81, 112, 29, 110, 110, 13, 41, 92, 68, 33, 59, 24, 92, 111, 45, 8, 84, 97, 43, 70, 44, 81, 78, 37, 87, 44, 52, 9, 39, 10, 115, 72, 126, 85,

71, 62, 112, 25, 112, 15, 89, 54, 93, 116, 126, 71, 72, 103, 117, 74)

A list of AB functions with the intersection of their coordinate Walsh supports corre-
sponding to (23):

(0, 0, 28, 24, 86, 70, 122, 110, 82, 112, 67, 101, 124, 78, 93, 107, 114, 116, 34, 32, 58, 44, 90, 72, 107, 79, 54, 22, 91, 111, 54, 6, 119, 61, 59, 117, 30,

68, 98, 60, 30, 118, 95, 51, 15, 119, 126, 2, 92, 16, 92, 20, 43, 119, 27, 67, 126, 16, 115, 25, 113, 15, 76, 54, 98, 126, 10, 18, 101, 105, 61, 53, 85, 107, 48,

10, 42, 4, 127, 85, 46, 52, 10, 20, 55, 61, 35, 45, 82, 106, 123, 71, 51, 27, 42, 6, 124, 42, 68, 22, 68, 2, 76, 14, 112, 4, 69, 53, 48, 84, 53, 85, 105,

57, 29, 73, 79, 15, 11, 79, 46, 92, 87, 33, 112, 18, 57, 95)

(0, 1, 40, 57, 88, 95, 12, 27, 68, 89, 122, 119, 125, 102, 63, 52, 38, 51, 108, 105, 80, 67, 102, 101, 115, 122, 47, 54, 100, 107, 68, 91, 87, 114, 66, 119,

10, 41, 99, 80, 31, 38, 28, 53, 35, 28, 92, 115, 10, 59, 125, 92, 121, 78, 114, 85, 83, 126, 50, 15, 65, 106, 92, 103, 112, 39, 77, 10, 58, 107, 123, 58, 29, 86,

54, 109, 54, 123, 97, 60, 47, 108, 112, 35, 75, 14, 104, 61, 83, 12, 26, 85, 86, 15, 99, 42, 126, 13, 126, 29, 49, 68, 77, 40, 31, 112, 9, 118, 49, 88, 91, 34,

90, 61, 56, 79, 59, 90, 37, 84, 42, 81, 94, 53, 42, 87, 34, 79)

(0, 1, 118, 103, 106, 109, 78, 89, 80, 31, 25, 70, 77, 4, 86, 15, 60, 41, 84, 81, 52, 39, 14, 13, 28, 71, 75, 0, 99, 62, 102, 43, 34, 25, 83, 120, 12, 49, 47,

2, 99, 22, 45, 72, 58, 73, 38, 69, 80, 127, 63, 0, 28, 53, 33, 24, 97, 0, 49, 64, 90, 61, 88, 47, 102, 83, 37, 0, 71, 116, 86, 117, 90, 33, 38, 77, 12, 113,

34, 79, 49, 16, 108, 93, 114, 85, 125, 74, 125, 18, 31, 96, 73, 32, 121, 0, 108, 99, 40, 55, 9, 0, 31, 6, 65, 0, 58, 107, 83, 20, 122, 45, 117, 110, 47, 36,

114, 111, 122, 119, 40, 125, 77, 8, 88, 11, 111, 44)
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