
Efficient Sorting of Homomorphic Encrypted
Data with k-way Sorting Network

Seungwan Hong1, Seunghong Kim1, Jiheon Choi2,
Younho Lee3, and Jung Hee Cheon1

1 Seoul National University, South Korea
{swanhong, 0815sy, jhcheon}@snu.ac.kr

2 Hanyang University, South Korea
2005cjh@naver.com

3 Seoul National University of Science and Technology, South Korea
younholee@seoultech.ac.kr

Abstract. In this study, we propose an efficient sorting method for en-
crypted data using fully homomorphic encryption (FHE). The proposed
method extends the existing 2-way sorting method by applying the k-
way sorting network for any prime k to reduce the depth in terms of
comparison operation from O(log22 n) to O(k log2k n), thereby improv-
ing performance. We apply this method to approximate FHE which is
widely used due to its efficiency of homomorphic arithmetic operations.
In order to build up the k-way sorting network, the k-sorter, which sorts
k-numbers with a minimal comparison depth, is used as a building block.
The approximate homomorphic comparison, which is the only type of
comparison working on approximate FHE, cannot be used for the con-
struction of the k-sorter as it is because the result of the comparison is
not binary, unlike the comparison in conventional bit-wise FHEs. To over-
come this problem, we propose an efficient k-sorter construction utilizing
the features of approximate homomorphic comparison. Also, we propose
an efficient construction of a k-way sorting network using cryptographic
SIMD operations.
To use the proposed method most efficiently, we propose an estimation
formula that finds the appropriate k that is expected to reduce the total
time cost when the parameters of the approximating comparisons and
the performance of the operations provided by the approximate FHE are
given. We also show the implementation results of the proposed method,
and it shows that sorting 56 = 15625 data using 5-way sorting network
can be about 23.3% faster than sorting 214 = 16384 data using 2-way.

1 Introduction

The importance of data privacy and the prevalence of the delegation-of-computation
paradigm have necessitated the processing of encrypted data. Fully homomorphic
encryption (FHE), an innovative method that facilitates operations on encrypted
inputs without decryption, has been developed to turn privacy-preserving com-
putation into reality [26]. FHE is especially useful in situations where analysis of

large-scale or privacy-sensitive data (e.g., patient DNA analyses) is delegated to a
cloud server, without the data themselves being disclosed to the cloud server [39,
31].

However, building applications using FHE is difficult because of the special
characteristics of FHE. First, FHE schemes support only a limited set of basic
operations, which are mainly addition and multiplication. When we design a
computational algorithm that takes plaintexts as input, we can use a variety
of computational tools and functions. However, when designing computational
algorithms that take FHE-encrypted data as inputs, we cannot use them unless
they can be implemented using the basic operations supported by FHE.

Second, because the intermediate result of a computational algorithm imple-
mented by FHE is in an encrypted state, it is difficult to improve the performance
of the algorithm by designing it to run based on the intermediate result. This
is in contrast to classic algorithms that take unencrypted inputs. For instance,
if a conditional statement is executed in an algorithm implemented using FHE
operations, the evaluation result of the conditional statement is in an encrypted
state. Thus, our algorithm cannot be designed to utilize the evaluation result to
improve the performance.

Lastly, for the sake of security, a small error value is added to a ciphertext
in FHE. The error value grows in proportion to the number of operations per-
formed on the ciphertext. If this error exceeds the limit, the error overwrites the
message hidden in the ciphertext. Consequently, the decryption cannot recover
the message anymore.

After a fresh ciphertext is generated as a result of encryption, we can perform
an operation supported by FHE with the ciphertext, and the result is again used
as an input for another operation, allowing repeated operations. Unfortunately,
there is a limit to the number of possible operations because the amount of error
inside the result increases each time an operation is performed. In order to over-
come this limitation and enable to perform more operations, a new ciphertext
can be created that contains the same message as the original ciphertext but
has a smaller error. This operation is called bootstrapping. Because the compu-
tational cost of bootstrapping is overwhelmingly high compared to other basic
operations in FHE, to save the computational cost, it is essential to use boot-
strapping as infrequently as possible when implementing algorithms with FHE
operations.

Recently, many FHE schemes have been developed. They can be classified
into two types according to the message storage method: bit-wise and word-wise.
Bit-wise FHEs [19, 22, 30] encrypt data in a bit-by-bit manner. They support fast
logical operations, such as comparison. However, bit-wise FHEs are inefficient
for arithmetic operations between multi-bit numbers (or word-sized numbers)
because only bit-wise operations are supported by them. Thus, a lot of operations
are needed to process multi-bit data, and the computational cost of the FHE
operation in bit-wise FHEs is very close to that in word-wise FHEs. On the
contrary, word-wise FHEs [5, 25, 28], which store messages as their word-sized
numbers, support high-speed arithmetic operations between messages. Moreover,

2

an efficient approximate comparison algorithm for word-wise encrypted data with
Single-Instruction Multiple-Data (SIMD) method was recently developed, which
enhanced the usability of the word-wise FHEs [15].

In this study, based on this approximate comparison algorithm, we target
efficient sorting of large numbers encrypted by a word-wise FHE. Among various
data processing techniques used as tools in many applications, sorting is one
of the most promising techniques that can be used for numerous applications,
such as in k-means clustering, top-k data operations, binning, and exploratory
statistical analysis of data. To build up a sorting method on encrypted data, two
elementary algorithms are used repeatedly as building blocks: one that compares
two or more data elements and the other that replaces the positions of the
data elements based on the comparison result. Unlike the comparison operation
provided by the order-preserving encryption (OPE) [1] where its comparison
result displays which of two input ciphertexts has a greater plaintext value than
the other, the FHE comparison operation produces a new ciphertext that has
the maximum value4 among the two plaintext values in the input ciphertexts.
However, due to the randomization performed on the comparison operation, it
is difficult to know which input ciphertext contains the same plaintext value as
the result of the comparison. This type of comparison does not compromise the
security of the encryption as opposed to OPE.

For that reason, in the case of Quick Sort, which is a repetition of classifying
the data to be sorted based on a selected pivot value, it is difficult to apply to
the encrypted data by FHE: If the ciphertext of a pivot value is compared with
a ciphertext containing a value, the comparison algorithm does not tell if the
value is greater than the pivot value or not. For the same reason, it is also dif-
ficult to apply well-known sorting algorithms with O(n log n) comparisons such
as Merge Sort. In particular, research has claimed that Quick Sort is impossible
to implement on top of secure FHEs [9]. Therefore, among the classical sorting
algorithms, researchers succeeded in constructing only inefficient sorting meth-
ods such as Bubble Sort or Insertion Sort, which requires O(n2) comparison
operations [8], for the encrypted data by FHE.

To avoid such disadvantages of classical sorting algorithms, recent studies
have mainly used the (2-way) Sorting Network algorithms, such as Batcher’s
Odd-Even Sort (BOES) or Bitonic Sort [24, 36]. Unlike most efficient classical
algorithms that determine the next comparison target based on the intermedi-
ate result, the sorting network is an algorithm that pre-determines the order of
computations. Although the sorting network has O(n log2 n) complexity, which
is more inefficient than optimal comparison-based sorting, it is considered to be
more friendly for sorting the data encrypted by FHE mainly because of the two
reasons: first, there is no need to know from which input ciphertext the cipher-
text of the larger (smaller) value came, and second, the sorting is completed by
performing the same operations of the same order regardless of the result of the
intermediate comparisons. Moreover, the sorting network is suitable for paral-

4 The ciphertext of the minimum value can be derived by the subtracting the output
ciphertext from the sum of both input ciphertexts.

3

lel computations so the depth of the algorithm is O(log2 n) when O(n) parallel
structure is given.

From the viewpoint of reducing the depth of the algorithm, Shi et al. proposed
the k-way sorting network [40], which is a generalized algorithm of the sorting
network. The k-way sorting network is an algorithm for a prime k that can
sort numbers using j-sorters, the algorithms that can sort j number of input
values, for j ≤ k, as a building block. A k-way sorting network consists of
a number of stages, each of which consists of some unit operations where a
unit operation can be divided into a comparison step and a swap step. In the
comparison step, for each of j data that would be sorted in j -sorter, a comparison
operation is performed for all possible pairs of them. Then, in the swap phase,
each j-sorter uses the result of the comparison to sort j data without using
any more comparison operations. In the case of the 2-way sorting network, the
comparison step performs a comparison between predetermined data pairs, and
the swap step computes the min-max function with one multiplication using the
comparison result. On the other hand, for k-way sorting network, the comparison
step performs

(
j
2

)
number of comparisons for each pair in group with j elements

in parallel for j ≤ k. After that, in the swap step, each of j elements must be
sorted using the comparison result.

The number of steps in the k-way sorting network is asymptoticallyO(k log2k n),
and more precisely, 5-way sorting network requires about 44% fewer stages com-
pared to 2-way when n is large. Since the number of steps is the number of
times to perform the parallel comparison operation, which affects the number of
bootstrapping, a larger k is more advantageous in the aspect of reducing depth
in FHE-based sorting. In order to implement k-way sorting network over FHE,
we need j-sorter algorithm for j ≤ k as a building block, which sorts j elements
using additions and multiplications under the condition that all possible pairs
comparisons are given.

1.1 Our Contribution

In this paper, we propose a new sorting algorithm that sorts small elements
efficiently with one comparison depth. Using our algorithm as a building block,
we enable exploiting k-way sorting network algorithm [40] to sort over large-scale
encrypted data by FHE. The sorting algorithm that we have devised can be
applied to FHE based on approximate operations and the exploitation of k-way
sorting network algorithm is the idea that can be generally applied to all FHE. As
we use k larger than 2 for large n, the number of stages required for k-way sorting
network is reduced while the cost for computing k-sorter is increased. Therefore,
if an appropriate k is used for a given n and an implementation environment
for FHE, the time cost required for sorting can be reduced compared to the
conventional 2-way method. To the best of our knowledge, our work is the first
attempt in the literature to apply k-way sorting network over encrypted data.

For more details, we first propose a new k-sorter algorithm which aims to
sort k elements using addition and multiplication only, in the condition that
comparisons of all possible pairs of k elements are given. The main purpose

4

of the algorithm is to perform sorting even if the comparison result is given
approximately. To achieve this, we exploit the computation method of finding
a maximum of two variables. Let θab be the comparison value of variables a, b,
i.e. θab = 1 if a > b and 0 otherwise. Then, the max value of (a, b) can be
computed with addition and multiplication by La>b(a, b) = θab · a+ (1− θab) · b.
In the above expression, we interpret the max function as a function that outputs
the internally dividing point between two numbers according to the comparison
result.

To be precise, suppose that the comparison value is given approximately,
which means that θab is close to 1 or 0 if |a− b| is large and outputs a number
close to 0.5 if |a− b| is small. If |a− b| is large so that the error between θab and
true comparison value is small enough, then La>b(a, b) outputs the value close
to max. Otherwise, then a and b are too close so θab is close to 0.5, but in this
case, since L outputs the internally dividing point between a and b, the output
would still close to both a and b, the candidates of max value. Consequently, we
can build a sorting algorithm with approximate comparison by the compositions
of L’s. In particular, our algorithm is made so that the sorting result is less than
a certain error compared to the true value even if an approximate comparison
is used. Because of that, our algorithm is useful for sorting over word-wise FHE
in which the approximate comparison is more efficient than the exact one.

Secondly, we propose a method of implementing the k-way sorting network
for FHE that supports SIMD operations and message rotation and provide the
time cost estimation formula of the proposed method that enables finding the
expected time cost for various k’s. In order to operate between two messages
stored in the same ciphertext, it is necessary to store them in the same location
for SIMD operation in the different ciphertext. This process can be done by
multiplying the ciphertext by a plain vector of 0s and 1s, called the masking
vector, to generate a new ciphertext containing only the desired message and
then rotating it to match the position. Using our SIMD-friendly method for the
k-way sorting network algorithm, it can be efficiently computed for when data
are packed in one ciphertext.

Since the depth consumed by the algorithm and the number of required mul-
tiplications can be determined in advance, we can analyze the total expected
computation cost in terms of the number of bootstrapping and multiplications
in FHE. In a practical situation, the implementation speed of an algorithm is
closely related not only to the algorithm itself but is also dependent on how
well the FHE library has been implemented or on the efficiency of the algorithm
used for bootstrapping. Therefore, we estimate the time cost of our algorithm
for each k under the condition of FHE implementation as well as the input size.
As a result, we propose an explicit formula for computing required depth and
the number of multiplications from the parameters n, k, the time cost of multi-
plication and bootstrapping, and the number of messages that can be contained
in one ciphertext. Using our estimation, we can predict the expected time cost
for various k so that the appropriate k can be estimated that works efficiently
with our method on the fixed implementation environment.

5

At last, we verify the performance of the proposed sorting method by imple-
menting it with CKKS FHE scheme [17]. Using our method, we show the results
of sorting n = km elements for some m in our concrete parameter setting for
implementation. Then, based on the implementation, we measure the elapsed
time for sorting various numbers in a PC environment. As a result of the per-
formance analysis, we confirm that it takes about 4.9 hours to sort 56=15625
multi-precision real numbers using 5-way sorting network, which is about 23.3%
times faster than the result for 214 = 16384 elements using 2-way sorting network
that takes about 6.4 hours in the same environment. We report implementation
results of our sorting algorithm over encrypted data for k ≤ 5 in Section 5.

1.2 Related Works

The problem of sorting over encrypted data was first addressed in [8]. In that
work, the authors defined HE-based comparison functions and swapping algo-
rithms through bit-wise encoding, and implemented Bubble Sort and Insertion
Sort with the hcrypt library [6]. They also proposed the LazySort algorithm,
which combines Bubble Sort and Insertion Sort to reduce the number of Re-
crypt operations in FHE.

Working to obtain a more efficient sorting algorithm for FHE, Chatterjee
and SenGupta [9] proved that, if partition-based sort can be be performed on
FHE data, the FHE scheme is insecure against indistinguishability under chosen-
plaintext attack (IND-CPA). Thus, to perform partition-based sorting such as
that achieved with Quick Sort, not only the plaintext but also the array indices
should be encrypted. For that case, however, the authors of [9] showed that im-
plementation of Quick Sort on an encrypted array yields no better performance
than those of other comparison-based sorting methods. In [24], Emmadi et al. re-
ported results for well-known sorting algorithms implemented on encrypted data.
Hence, they showed that BOES yields the best performance among the various
sorting techniques, such as Bubble Sort, Insertion Sort, and Bitonic Sort, over
integer-based HE [41].

In terms of 2-way sorting network, Kim et al. [36] implemented the Bitonic
Sort algorithm with SIMD operations on the Homomorphic Encryption Library
(HElib) [30]. They performed SIMD bit-wise operations on HElib to implement
reverse and bitonic merge algorithms for bitonic sequences. Recently, Lu et
al. [38] also implemented Bitonic Sort using their optimized framework PE-
GASUS. This work uses comparison operation by evaluating look-up tables on
ciphertexts and perform sorting 64 data in 409.09 seconds with 4 threads.

The main limitation of the above methods is that the operation depth for
sorting is too large, and thus, it is hard to obtain implementation results for
large data sizes. Cetin et al. [7] overcame this obstacle using an algorithm
that requires a log-scale depth corresponding to the number of messages and
bit lengths. However, that algorithm compares all message pairs, which becomes
infeasible if the number of messages exceeds thousands. Moreover, the algorithm
expresses sorting as a logical operation of comparison results, which is difficult
to apply for approximate FHE.

6

2 Preliminaries

2.1 Homomorphic Encryption (HE)

HE is a special type of encryption that supports arithmetic operations between
ciphertexts without decryption. HE is very useful in cases involving private data
as it allows analysis of encrypted data without information leakage from mes-
sages. HE was first proposed in a blueprint by Gentry and Boneh [26], and a
number of HE schemes have been suggested [2, 4, 14, 20, 21, 42, 23, 25, 27, 28] and
applied to various fields [3, 11, 29, 34].

In a HE scheme, a ciphertext is created with a small degree of noise to ensure
security. When certain operations are performed using ciphertexts, the resultant
ciphertext has greater noise than the input ciphertexts. Thus, the noise “grows”
whenever operations are performed using these ciphertexts. If the noise exceeds
certain bounds, however, the decryption algorithm does not function properly.
Hence, we can estimate the remaining number of possible consecutive operations
that can be performed on a ciphertext while preserving its correct decryptabil-
ity. We can say this is the ciphertext level in HE. To overcome this problem of
excessive ciphertext noise, Gentry suggested a so-called bootstrapping technique
to refresh the noise. Given a ciphertext with large noise, the bootstrapping al-
gorithm converts it to another ciphertext, which is the encryption of the same
message with small noise. This allows evaluation of functions with an arbitrary
number of levels without decryption. A HE scheme with bootstrapping is called
an FHE scheme. The main idea of bootstrapping is a creation of the new ci-
phertext that is the output of the decryption function implemented with FHE
operations, which takes the encrypted decryption key and the target cipher-
text to be refreshed. Most FHE schemes support elementary operations only,
but decryption requires complex non-polynomial operations such as modulus re-
duction; therefore, the cost of bootstrapping is incomparably larger than other
operations. Thus, one of the main research topics pertaining to FHE application
is reduction of the number of bootstrapping operations for improved efficiency.
Approximate Homomorphic EncryptionMost of FHE schemes have a mes-
sage space as Zp or a vector space Znp for some integers p and n. For p = 2, such
a message space is efficient for bit-wise computation. For general integer arith-
metic, however, bit-wise operations generate heavy cost and are, thus, unsuitable
in terms of efficiency. Selection of larger p increases the FHE operation cost.

In 2017, Cheon et al. proposed an approximate homomorphic encryption
scheme called HEaaN [14]. In HEaaN, the small amount of noise added to the
plaintext during the encryption process for ciphertext security is not removed
during decryption. The magnitude of this noise is very low compared to the
decryption result; therefore, the decryption result retaining the noise is regarded
as an “approximate” decryption result.

HEaaN also provides a rescaling operation to remove the least significant bits
of error, which causes the linear growth of the bit length of error proportionally
to the number of levels consumed. In this sense, we can represent a ciphertext’s
level by the bit-length of its modulus. The efficiency of HEaaNhas been proven

7

for many real-world applications, such as machine learning [34, 35] and cyber
physical system [11], and is still being improved with better bootstrapping algo-
rithms [10, 12]. We omit details of HEaaN scheme construction from this paper,
and use the algorithms listed below as black boxes. Note that, a fresh HEaaN
ciphertext is equipped with a modulus Q, which is reduced by 1/∆ for every
multiplication, where ∆ is a message scaling factor. If the minimal Q is reached
(related to bootstrapping), we use the bootstrapping algorithm to raise the mod-
ulus to some fixed value q0 < Q. We also remark that parameters N,∆,Q, and
s in setup should be the power of 2. Definitions of each algorithm in below. For
the details, we refer [14], and especially [10, 12] for bootstrapping.

– Setup(1λ, N,∆,Q, h, s) : Given a security parameter λ, a polynomial ring of
degree N , a rescaling factor ∆, ciphertext modulus Q, and a number of slots
s ≤ N/2, the algorithm outputs a secret key sk with hamming weight h, a
public key pk, a evaluation key evk, and a bootstrapping key bk.

– Enc(pk,m) : Given a public key pk and a message vector m ∈ Cs, the
algorithm outputs a ciphertext ct with modulus Q, which is the encryption
of ∆ ·m+e, i.e., the message is scaled by a factor ∆ and a small error vector
e ∈ Cn is added. The vector structure of m is preserved after the encryption.
We say the position where each element is m is placed in ct as slot.

– Dec(sk, ct) : Given a secret key sk and a ciphertext ct which is the encryption
of∆·m+e, the algorithm outputs the message vector with errorsm+∆−1 ·e.

– Add/Sub(ct1, ct2) : Given two m q-modulus ciphertexts ct1 and ct2, which
are encryptions of message vectors ∆ ·m1+e1 and ∆ ·m2+e2, respectively,
the algorithms outputs a q-modulus ciphertext ctadd/ctsub which is the en-
cryption of ∆ · (m1 ±m2) + e′ for some small error vector e′, respectively.

– Mult(evk, ct1, ct2): Given two q-modulus ciphertexts ct1 and ct2, which are
encryptions of message vectors ∆ ·m1+e1 and ∆ ·m2+e2, respectively, the
algorithms outputs a q/∆-modulus ciphertext ctmult which is the encryption
of ∆ ·m1 �m2 + e′ for some small error vector e′.

– LeftRotate(evk, ct, d) : Given the q-modulus ciphertext ct, which is an encryp-
tion of ∆ ·m+ e and d > 0, the algorithm outputs a q-modulus ciphertext
ct′ which is an encryption of ∆ · (md, · · · ,ms−1,m0,m1, · · · ,md−1) + e′ for
some small error vector e′.

– RightRotate(evk, ct, d) : Given the q-modulus ciphertext ct, which is an en-
cryption of∆·m+e and d > 0, the algorithm outputs a q-modulus ciphertext
ct′ which is an encryption of ∆ · (ms−d, · · · ,mn−1,m0,m1, · · · ,ms−1−d)+e′

for some small error vector e′.
– BootStrapping(bk, ct) : Given a ciphertext ct with small modulus, the algo-

rithm outputs a ciphertext q0-modulus ct′ which is an encryption of the same
message vector.

We omit the public key as input when denoting the operations between ci-
phertexts (or ciphertext and plain vector) by common symbols, such as Enc(pk, ct) =
Enc(ct), Add(ct1, ct2) = ct1+ct2, Mult(evk, ct1, ct2) = ct1 ·ct2, if it does not make
any confusion.

8

2.2 Approximate Algorithms for Comparison Function

As noted above, current approximate HE schemes support addition and multipli-
cation only. This has the advantage that polynomial operations can be performed
on encrypted data. However, logical operations are difficult to implement with
the operations of HE. Therefore, to compute a comparison function, an approx-
imated version of a comparison function was proposed using polynomials.

Hereafter, we denote the approximate comparison for two inputs x, y by
(x > y) or (y < x). We define (x > y) by taking two inputs x, y ∈ (0, 1) and
outputs 1 if x � y or 0 if x � y. If x and y are close compared to iteration
number, then (x > y) outputs the value between 0 and 1.

Cheon et al. [15] suggested an efficient formula to compute approximate com-
parison function by compositing the same polynomials. More precisely, those
researchers have found (2d + 1)-degree polynomial fd(x) and gd(x) that satisfy
certain conditions. Further, repeated compositions of fd(x) and gd(x) output the
approximate value of the sign function.

The sorting method in this work employs the approximate comparison method
where fd and gd are chosen by d = 3, where

f3(x) = (35x− 35x3 + 21x5 − 5x7)/24,

g3(x) = (4589x− 16577x3 + 25614x5 − 12860x7)/210.

To minimize the multiplication depth, we compute the multiplication with co-
efficient integers through repeated addition, and perform division with a power
of two by divByPo2 algorithm. For the reference, graphs of f3, g3 and their com-
positions are shown in Fig. 1.

Note that, in [15], the authors recommended n = 4 for the optimal complex-
ity. However, since the leading coefficient of f4(= 35/128) and g4(= 46623/1024)
are positive, the f4 and g4 compositions may diverge if the absolute value of in-
put x exceeds 1. When this comparison algorithm is implemented on top of the
HEaaN library, if x is close to 1, the comparison result may diverge because
of the attached error, yielding an incorrect output. The authors mentioned this
problem for the max algorithm in their previous work [16], but the same problem
occurs for fn when n is even. Hence we select n = 3 in this work, which is the
optimal odd-n value.

In conclusion, in this paper, (x > y) is computed as follows for given iteration
numbers df and dg:

(x > y) := (f
(df)
3 ◦ g(dg)3 (x− y) + 1)/2. (1)

Here f (d) means f ◦ f ◦ · · · ◦ f , performed for d times.
For the analysis of error of approximate comparison, we need following def-

inition and theorem. To avoid confusion, we denote sign functions for intervals
[−1, 1] and [0, 1] by sgn[−1,1] and sgn[0,1], respectively. sgn[−1,1](x) outputs ±1
depending on whether x ≥ 0 or not, and sgn(x)[0,1](x) outputs 1 or 0 depending
on whether x ≥ 0.5 or not, respectively.

9

Fig. 1: Illustration of f3, g3, and their compositions. The compositions of g3 make
the absolute value of the output greater than 3/4. Then it becomes close to the
sign value of the input after compositions of f3.

Definition 1 [15] For α > 0 and 0 < ε < 1, we say a polynomial p is (α, ε)−close
to sign function sgn[−1,1](x) over [−1, 1] if it satisfies

||p(x)− sgn[−1,1](x)||∞,[−1,−ε]∪[ε,1] ≤ 2−α.

Similarly, p is (α, ε)−close to sign function sgn[0,1](x) over [0, 1] if it satisfies

||p(x)− sgn[0,1](x)||∞,[0,(1−ε)/2]∪[(1+ε)/2,1] ≤ 2−α.

Theorem 2 If dg ≥ 1/2+O(1)
log cd

· log(1/ε) + O(1) and df ≥ log(α−3)
log d + O(1), the

approximate comparison (a > b) = (f
(df)
d ◦ g(dg)d (a − b) + 1)/2 is (α, ε)-close to

sgn[0,1], i.e. it outputs an approximate value of comparison output within 2−α

error for a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

Proof. If (df , dg) satisfies the above condition, then the polynomial f (df)d ◦g(dg)d (x)
is (α − 1, ε)-close to sgn[−1,1] from [15, Theorem 2]. Then the result is directly
follows by scaling this polynomial to interval [0, 1] .

2.3 Security Models

Our scenario consists of two parties, data owner and service provider, who behave
as honest-but-curious model. Data owners want to share their data to obtain

10

the results of certain operations with the data, but they don’t want to leak any
information of data to the service provider while the service provider perform
the computation, denoted by a function f , to provide its service.

In our protocol, data owner encrypt her data m by her own FHE secret
key and provide the ciphertexts Enc(m) to service provider. Then, the ser-
vice provider manipulates the ciphertext to obtain the result of the own model
Enc(f(m)) using operations that FHE supports. Finally, the service provider give
back the result Enc(f(m)) to the data owner, and the data owner can receive
the desired output f(m) by decrypting the ciphertext with her own key.

Since IND-CPA security of FHE scheme guarantees that any adversary who
has the ciphertexts and the results homomorphic operations between them can-
not extract any information about the messages in ciphertexts, the security in
our scenario is secure under the security of FHE, regardless of what f is sup-
ported by the service provider since the service provider can only access to the
ciphertexts.

Recently, Li et al. [37] have noticed that the protocol using the approximate
FHE including CKKS requires more attention than the general FHE for security.
In short, we have to clear the lsb bits where only error value exists to preserve
the security. Otherwise, the secret key can be extracted from both ciphertext
and its decryption result. Therefore, users should be careful not to leak the
decrypted values or consider other scheme modifications that are currently being
researched [13].

2.4 Notations

All logarithms are of base 2 unless it is indicated. The set of finite non-negative
numbers is denoted by [n] = {1, · · · , n}. We call the ordered set of elements
by array and denote it by capital letter. The index of array starts with 1. For
instance, we denote arrays as A = (a1, · · · , an) or Bi = (bi1, · · · , bin). The number
of elements in array X is denoted by |X|. We use slice notation to represent part
of an array. Precisely, given s, f which are starting and final index of given array,
we define A[s:f] = (as, as+1, · · · , af). If the starting index s is 1 or the final index
f is |A|, the index in slice notation may be omitted, as A[:f] or A[s:]. For an
element x and an array A, the set of comparisons between x and all elements in
A is denoted by {(x > A)} = {(x > ai)}ai∈A or {(A > x)} = {1− (x > ai)}ai∈A
Similarly, we denote the set of comparisons between all possible pairs of arrays
A and B by {(A > B)} = {(ai > bj)}ai∈A,bj∈B . Also, every sorted array in this
paper is assumed to be written in decreasing order.

3 Our k-sorter Algorithm for encrypted data by FHE

The main purpose of our k-sorter algorithm is to sort encrypted data with the
comparison results that come after comparing all k numbers with each other
in a pair-wise manner using the approximate comparison algorithm in order to
minimize the computation depth in terms of the comparison operation.

11

The main difference between the exact comparison and the approximate com-
parison is that the result of the exact comparison is clearly binary therefore the
logical operations with the comparison results can be implemented using the
multiplication and addition operations. However, in the approximate compari-
son, the result is not binary: the result is just closed to either 0 or 1. For instance,
suppose three data a, b, c is given and let θab, θbc be the exact or approximate
comparison result for a, b and b, c, respectively. In order to obtain θabc which
represents whether a > b > c or not, we just need to calculate θab · θbc if both
are from exact comparison operations.

However, if the comparison is approximate, then θab and θbc are in the interval
(0, 1) and we only know that θab > 0.5 if and only if a > b. Suppose it satisfies
that a > b > c but two numbers in each pair of (a, b) and (b, c) are too close,
respectively, so that the comparison results are close to 0.5, say θab = 0.7 and
θbc = 0.6. In this case, θabc = θab · θbc = 0.42 < 0.5, which implies a > b > c is
false. Therefore, in order to perform sorting using approximate comparison, it
is necessary to have a new approach that requires further operations than just
using the logical operation.

To devise sorting algorithm based on not logical operations but approximate
comparisons, we recall trivial approach to find maximum between two elements
a, b with their comparison. Using our comparison notation, 2-max function can
be computed using the following formula:

max(a, b) = (a > b) · a+ (a < b) · b.

Since the equation (a > b)+ (a < b) = 1 is always satisfied due to the character-
istics of the method [15], max(a, b) is approximately equal to (a > b) · a+ (a <
b) · a = a when a and b are very close. Therefore, it outputs approximately cor-
rect value even when |a − b| is small and the approximate comparison value is
close to 0.5.

Exploiting this property, we define the function L as

L(a>b)(F,G) = (a > b) · F + (a < b) ·G.

Note that the definition of L is inspired by max functionmax(a, b) = La>b(a, b).
This function can be interpreted as returning F if a > b and G if a < b, respec-
tively. We propose a method of obtaining m-max function (which outputs m-th
maximum of given n inputs) for m ≤ n as a composition of L’s. Since L is
multivariate function, the definition of the term "composition of L" needs to
be clarified. We define a composition of L as L(L, L). One potential problem
of L(a>b)(F,G) is that if |a − b| is too small, the comparison results may out-
put the values closed to 0.5 and the error can be large. To find the m-th max,
we overcome this problem by selecting the functions that appropriately satisfy
F ≈ G if a ≈ b. More detail regarding this can be found in Lemma 2. Note
that, in each step, we can always select F and G that satisfy this condition,
as the m-max algorithm is symmetric. Equipping this condition, if a ≈ b, then
La>b(F,G) ≈ F ≈ G since (a > b) + (a < b) is always 1. In the rest of the sec-
tion, we develop our new k-sorter algorithm by the compositions of L function

12

only, and determine total error of the algorithm by showing that each part of
compositions forming as L(a>b)(F,G) satisfies F ≈ G if a ≈ b.

3.1 Our Divide-and-Conquer Algorithm

Before stating full structure of our algorithm, we first explain the main ideas in
our algorithm, which is to apply divide-and-conquer method.

To be precise, assume that arrays A(A′) can be divided into two disjoint sets
B(B′) and C(C ′), respectively, where B = {b1, · · · , bs}, C = {c1, · · · , ct}, B′
and C ′ are sorted arrays. In addition, the approximate comparisons {(B > C)},
{(B′ > C ′)} and {(A > A′)} are also given (recall that we denote the set of
comparisons of two arrays X,Y by {(X > Y)} = {(xi > yj)}(xi,yj)∈X×Y . In this
setting, our goal here is to obtain two results:

1. a sorted array of Z where Z = A as a set
(identically, Z ′ is a sorted array where Z ′ = A′).

2. {(Z > Z ′)}, which is necessary when computing a sorted sequence by merg-
ing Z and Z ′.

First, assuming that B,C and {(B > C)} are given, we aim to compute
Z = {z1, · · · , zs+t} which is the sorted array of B∪C. For i ∈ [s] and j ∈ [t], the
key idea is that the number of candidates of zi+j in B∪C can be reduced by using
the comparison result between bi and cj . If bi > cj , then the candidates that are
larger than bi are elements in B[:i − 1] and C[:j − 1] which means there are at
most i + j − 2 elements that are larger than bi. Since the number of elements
larger than zi+j is exactly i + j − 1, bi cannot be zi+j , and under the same
reason, b1, · · · , bi−1 also cannot be zi+j . Likewise, since all elements in B[:i] and
C[:j] are larger than cj+1, the number of elements larger than cj+1 is at least
i + j. Hence cj+1 cannot be zi+j , and under the same reason, cj+2, · · · , ct also
cannot be zi+j . Finally, the remaining candidates are in B[i+ 1:] ∪ C[:j]. Since
B[:i] should be larger than zi+j , zi+j is the j-th maximal element in remaining
candidates. If bi < cj , then symmetrically zi+j is the i-th maximal element of
B[:i] ∪ C[j + 1:].

In conclusion, let max
m

(B,C) be the m-th maximal element in the union of

two sorted arrays B,C for 1 ≤ m ≤ b s+t2 c. Then our merging algorithm can be
summarized by

max
m

(B,C) = L(bi>cj) (X,Y) (2)

where (i, j) = (bm2 c, d
m
2 e) and X,Y are defined recursively as

X = max
j

(B[i+ 1:], C[:j]), Y = max
i

(B[:i], C[j + 1:]).

Under this condition, the length of arrays to be merged is reduced into ap-
proximately half of the original length. Therefore, max

m
(B,C) can be computed

for any m by recursively repeating the above process with about logm recursive

13

Algorithm 1 m-th Max/Min Algorithms for 2 Sorted Arrays

1: function Max(m,B,C, {(B > C)})
2: . sorted arrays B = {b1, · · · , bs}, C = {c1, · · · , ct}
3: . (B > C), a set of comparisons between B and C
4: if |B| = 0 or |C| = 0 then
5: if |B| = 0 then return cm else return bm
6: else
7: (i, j)← (bm2 c, d

m
2 e)

8: left←Max(j, B[i+1:], C[:j], {(B[i+1:]>C[:j])})
9: right←Max(i, B[:i], C[j+1:], {(B[:i]>C[j+1:])})

10: return L(xi>yj) (left, right)
11: end if
12: end function

13: function Min(m,B,C, {(B > C)})
14: . sorted arrays B = {b1, · · · , bs}, C = {c1, · · · , ct}
15: . (B > C), a set of comparisons between B and C
16: if |B| = 0 or |C| = 0 then
17: if |B| = 0 then return ct−m+1 else return bs−m+1

18: else
19: (i′, j′)← (s− bm2 c, t− d

m
2 e)

20: left←Min(j′, B[:i′−1], C[j′:], {(B[:i′−1]>C[j′:])})
21: right←Min(i′, B[i′:], C[:j′−1], {(B[i′:]>C[:j′−1])})
22: return L(xi′<yj′) (left, right)
23: end if
24: end function

depth. The m-th minimal element in B ∪ C can be computed in similar logic.
The explicit algorithms to find m-th maximal/minimal element are stated in
Algorithm 1.

Secondly, assume that we have sorted A and A′ into Z and Z ′, respectively.
Our next goal is to compute {(Z > Z ′)} using comparisons results {(A > A′)}.
Note that the result in this step will be used for merging two sorted arrays Z and
Z ′. Our key idea is that if X and Y are sorted arrays, the comparisons {(X >
r)}(or {(r > Y)}) are also sorted(or reversely sorted, resp) for any element
r ∈ (0, 1). Precisely, (ai1 > a′j) > (ai2 > a′j) if and only if (ai1 > ai2) > 0.5
and (ai > a′j1) > (ai > a′j2) if and only if (a′j1 > a′j2) < 0.5. Hence, we can use
{(B > C)} when merging two sorted arrays {(B > a′j)} and {(C > a′j)} as if it
is the comparison output ((bi1 > a′j) > (ci2 > aj)), or similarly use it reversely
to merge {(ai > B′)} and {(ai > C ′)}.

In conclusion, to compute (zi > z′j) (or equivalently (z′j > zi) = 1−(zi > z′j)),
we basically need to apply the above merging process exactly twice. The first
step is to merge two sorted arrays of {(B > a′j)} and {(C > a′j)} for each
a′j ∈ A′. The comparison between them are given as {(B > C)} as explained in

14

previous paragraph. The output of the first step is {(Z > a′j)} and by repeating
this process for all a′j ∈ A′, we get {(Z > A′)}={(Z > B′)}∪{(Z > C ′)}. Along
with this result, the following step is to merge {(zi > B′)} and {(zi > C ′)} for
zi ∈ Z in which the comparison result between {(zi > B′)} and {(zi > C ′)} is
{(C ′ > B′)}. This step is also same with computing zi+j by replacing bi, ci with
(zi > b′i), (zi > c′i). The result of the second step is {(zi > Z ′)} and by repeating
this process for all zi ∈ Z, we obtain {(Z > Z ′)}.

Combining above two steps, we state the precise k-sorter algorithm, which
sorts array with k elements when the comparison of all possible pairs are already
given, in Algorithm 2. We also illustrate the whole progress of our algorithm in
the case of k = 2m (in this case the algorithm can be easily understood as
divide-by-half and merging method) in Figure 2.

Fig. 2: Diagram that summarizes the entire algorithm of k-sorter and depicts the
multiplication and depth consumed in each step

3.2 Complexity of k-Sorter

In this section, we calculate the asymptotic depth and multiplication complexity
of our k-sorter algorithm. In fact, the depth and complexity of an algorithm
that consists of polynomial operations can be dependent on how and in what
order the multiplication is done. We show that our k-sorter algorithm requires
log square depth and cubic complexity over input size k.

Prior to the examination, let’s define the term stage i as {a(i)1 , · · · , a(i)2m}
where the elements are grouped into sorted arrays of size 2i. For the better
understanding of the computation process, we assume k = 2m. If k is not a
power of 2, then k-sorter can be regarded as part of 2m-sorter where 2m > k.

As in the illustration in Figure 2, the whole algorithm consists of the compo-
sitions of function Merge. Let the multiplication complexity and depth of the
Merge algorithm in merging two sorted arrays of length 2n−1 be Cn and Dn,

15

Algorithm 2 k-Sorter Algorithm

1: function Sorter(A = {a1, · · · , ak}, {(A > A)})
2: . an array A and pairwise comparisons {(A > A)}
3: if k = 1 then
4: return A
5: end if
6: (s, t)← (bk2 c, d

k
2 e)

7: B ← Sorter(A[:s], {(A[:s] > A[:s])})
8: . A[:s] is sorted to B = {b1, · · · , bs}
9: C ← Sorter(A[s+1:], {(A[s+1:] > A[s+1:])})

10: . A[s+ 1:] is sorted to C = {c1, · · · , bt}
11: for j = s+ 1, · · · , k do
12: {(B>aj)}←

Sorter({(A[:s]>aj)}, {(A[:s]>A[:s])})
13: . ∪kj=s+1{(bi > aj)} = {(bi > A[s+1:])}
14: end for
15: for i = 1, · · · , s do
16: {(bi>C)}←

Sorter({(bi>A[s+1:]}, {(A[s+1:]>A[s+1:])})
17: . ∪si=1{(bi > C)} = {(B > C)}
18: end for
19: return Merge(B,C, {(B > C)})
20: end function

21: function Merge(B,C, {(B > C)})
22: . sorted arrays B = {b1, · · · , bs}, C = {c1, · · · , ct}
23: . {(B > C)}, a set of comparisons between B and C
24: k ← b s+t2 c
25: for i = 1, · · · , k do
26: zi ← Max(i, B,C, {(B > C)})
27: end for
28: for j = k + 2, · · · , s+ t do
29: zj ← Min(s+ t− j, B,C, {(B > C)})
30: end for
31: zk ←

∑s
i=1 bi +

∑t
j=1 cj −

∑
m∈[k],m 6=k+1 zm

32: return {z1, · · · , zs+t}
33: end function

respectively. Merge is a repetition of Max/Min algorithm so the complexity
and depth of Merge comes from that of Max algorithm as Min is almost same
with Max.

We note that the Max algorithm computes L function and the inputs of L
are recursively L’s. As in Algorithm 1, the composition occurs dlog ie times when
computing i-th maximal element of the merged array. Since L function consists

16

of one multiplication, the depth of computing i-th element is dlog ie. The depth
of merging sorted arrays of length 2n is the maximum of the depth of computing
i-th element for 1 ≤ i ≤ 2n. Therefore, Dn = dlog 2ne = n. From the Figure
2, we can observe that when merging sorted arrays of length 2n−1 in pairs to
obtain sorted arrays of length 2n, the comparison result {(a(n−1)i > a

(n−1)
j)}

needs to be merged simultaneously, which requires depth of 2Dn. If we let Fi as
the depth necessary to obtain {(a(i)i > a

(i)
j)} from {(a(0)i > a

(0)
j)} and T (m)

d as
the total depth required for sorting k = 2m elements,

Fi = Fi−1 + 2Di, T (m)
d = Fm−1 +Dm.

From the recurrence relation, the exact formula of T (m)
d can be computed as

T (m)
d = 2

m−1∑
i=1

Di +Dm = 2

m−1∑
i=1

i+m = m2 = O(log2 k).

For 2i−1 < l ≤ 2i, let the complexity of calculating the l-th maximal element of
the merged array as Cmax

m (l). The l-th maximal element can be expressed as i
compositions of functions. Within one composition operation, L takes two L as
its inputs(L(L(· · ·), L(· · ·))) so in total, L emerges 1 + 2 + · · · + 2i = 2i+1 − 1
times when computing l-th maximal element and so Cmax

m (l) = 2i+1 − 1 for
2i−1 < l ≤ 2i. Since Cmin

m (l) can be computed identically with Cmaxm (l), Cm can
be computed as

Cm =

2m−1∑
i=1

(Cmax
m (i) + Cmin

m (i))

= 2

m−1∑
i=0

(2i+1 − 1)(2i − 2i−1)

=
2

3
· (4m − 1)− (2m − 1) = O(22m).

Let T (m)
c be the total complexity of sorting k = 2m elements. Figure 2 shows

that the number of multiplications required for obtaining Ai = {a(i)j } is 2m−iCi.
In order to compute (Ai > Ai), the multiplication is operated 2(2m−2i)2m−i ·Ci
times. It is because there are 2m−i sorted arrays in stage i and for each sorted
array Ai−12k ∪ A

i−1
2k+1 of size 2i, the merge of (Ai−12k > r) and (Ai−12k+1 > r) of

which its cost is Ci occurs 2m − 2i times as the number of candidates of r is
2m − 2i. Also, this process is repeated twice when obtaining {(a(i+1)

k > a
(i+1)
l)}

from {(a(i)k > a
(i)
l)} as depicted in Figure 2. Based on this analysis, we can see

that the following recurrence relation holds

T (m)
c = 2T (m−1)

c + Cm + Cm−1 · 2(2m − 2m−1).

17

From the recurrence relation, the exact formula of T (m)
c can be computed as

Tc =
m∑
i=1

2m−i(1 + 2m+1 − 2i+1) · Ci

= O(22m
m−1∑
i=1

2i − 2m
m−1∑
i=1

22i) = O(23m) = O(k3).

3.3 Error Analysis of Algorithm

In this work, we assume that the encrypted data are compared by approximate
comparison algorithm [15]. Approximation comparison algorithms may not out-
put exact values, and most of them will output erroneous values. In this section,
we show that our algorithm works well with approximate comparison. Moreover,
we estimate the final error in the output of our sorter algorithm based on the
error in the approximate comparison that has already been analyzed. In the re-
minder of this section, we assume that the parameters (d, df , dg) are chosen to
satisfy that our approximate comparison is (α, ε)−close to sign function sgn[0,1]
as in Theorem 2.

At first, we state the error analysis of the function L. To do this, we define the
desired true value of L(x>y)(B,C)(or L is it is not confused) by T(x>y)(B,C)(or
T), i.e. T = T(x>y)(B,C) = B if x > y and C otherwise. Also, the true values
of B,C, and (x > y) are denoted by TB , TC , and t(x>y). Let the error of L be
E = E(x>y)(B,C) = |T(x>y)(B,C) − L(x>y)(B,C)| and the error of (x > y) be
ε(x>y) = |t(x>y) − (x > y)|.

Lemma 1 For x, y,B,C ∈ (0, 1), the error of L is bounded by E(x>y)(B,C) ≤
|B − C|/2. Moreover, if |x− y| ≥ ε, then E(x>y)(B,C) ≤ 2−α.

Proof. T(x>y)(B,C) = tx>y ·B + (1− t(x>y)) · C. By the definition of E ,

E(x>y)(B,C) = |((x > y)− tx>y) · (B − C)| ≤ |B − C|/2.

Here the last inequality comes from that the max error of approximate compari-
son is 1/2. If |x−y| ≥ ε, then by the definition of (α, ε)−closeness, |t(x>y)− (x >
y)| ≤ 2−α. Since |B − C| ≤ 1, the second inequality is obtained.

From the above lemma, we can observe that if it is guaranteed that B,C are
close if x, y are close, then E = |L − T| can be bounded by ε or 2−α regardless
of |x− y|. It is because if |x− y| ≥ ε, E ≤ 2−α and if |x− y| ≤ ε, E ≤ |B−C|2 ≤
|x−y|

2 ≤ ε
2 . The following lemma proves that |B−C| ≤ |x− y| within our divide-

and-conquer algorithm.

Lemma 2 Suppose two sorted arrays B,C are given and define X = max
j

(B[i+

1:], C[:j]), Y = max
i

(B[:i], C[j + 1:]) for some i, j. Assume that the (i + j)-th

maximal element is computed by max
i+j

(B,C) = L(bi>cj) (X,Y) as in Equation

(2). Then, |X − Y | ≤ |bi − cj |. Moreover, the error of L for maxi+j(B,C)(=
E(bi>cj)(X,Y)) satisfies E(bi>cj)(X,Y) ≤ max {ε/2, 2−α}.

18

Proof. Because cj ≤ c1, · · · , cj , X ≥ cj . If bi < cj , X = cj and if bi > cj , then
the number of elements that are larger than bi is at most j−1 in B[i+1:]∪C[:j].
Therefore, cj ≤ X ≤ max(bi, cj). Symmetrically, bi ≤ Y ≤ max(bi, cj). Thus,
we can conclude that |X − Y | ≤ |bi − cj |. Under the results in Lemma 1, if
|bi − cj | ≥ ε, then E ≤ 2−α. Otherwise, E ≤ |B − C|/2 ≤ |bi − cj |/2 < ε/2.
Therefore, E ≤ max {ε/2, 2−α}.

Next, we analyze the error of the composition of L in the setting of Algorithm
1. Firstly, we check that the error increases linearly with the composition of
L. For instance, an L is given as L(x>y)(A,B) where A,B are given as A =
L(x1>y1)(A1, B1), B = L(x2>y2)(A2, B2). If we assume that x > y and x1 > y1,
the true value is A1 and the error can be computed as

|A1 − L(x>y)(A,B)| ≤ |A− L(x>y)(A,B)|+ |A−A1|
≤ 2 ·max {ε/2, 2−α}.

In Algorithm 1, we remark that the inputs of L function are also L. To be
more specific, in Equation 2, X and Y can be expressed at L(bα>cβ)(P,Q) and
L(bγ>cδ)(R,S), respectively, and with further decomposition, max

i+j
(B,C) can be

expressed completely by L as L(L(· · · , · · ·), L(· · · , · · ·)). Let’s classify them by
the number of compositions and denote Sm as the set of functions in which the
number of compositions is m. More precisely, Sm = {L(A,B)|A,B ∈ Sm−1}.
Denote εm as the maximum of error of functions in Sm. We can bound the error
of the composition of L through the following lemma.

Lemma 3 εm ≤ εm−1 + ε
2 or εm ≤ 2−α. Thus, εm ≤ max (2−α, (m+1)

2 ε).

Proof. Choose f ∈ Sm, f = L(xi>yi)(A,B). If |xi−yi| ≥ ε, εm ≤ (t(xi>yi)−(xi >
yi)) ≤ 2−α by Lemma 1. If |xi − yi| < ε ,on the other hand, |A − B| ≤ |TA −
A|+ |TB −B|+ |TA−TB | ≤ εm−1 + |xi− yj |+ εm−1 where TA, TB refers to true
value of A,B, respectively. The second inequality holds by Lemma 2 and by the
definition of εm−1. Therefore, εm ≤ |A−B|2 ≤ εm−1 + ε

2 holds.

Theorem 3 Let Ek be the error of k-sorter. Then, it satisfies

Ek ≤ max (O(log k) · 2−α, O(log2 k) · ε)

regardless of inputs for sort.

Proof. From Figure 2, we can see that εi refers to the error occurred by com-
puting {a(i)} from {a(i−1)}. If we denote the true value of a(i)l based on the
assumption that {a(i−1)}’s are true values as T

a
(i)
l

, the error of k-sorter becomes

|T
a
(m)
l

−a(0)l | ≤ |Ta(0)l −a
(0)
l |+|Ta(1)l −a

(1)
l |+· · ·+|Ta(m)

l

−a(m)
l | wherem = dlog ke.

It holds due to Equation 3. |T
a
(i)
l

− a(i)l | ≤ max (2−α, (i+1)
2 ε) for all l by Lemma

3. Therefore, E = max {|T
a
(i)
l

− a(i)l |} ≤ max (2−α, (i+1)
2 ε).

19

There exists j such that j
2ε ≤ 2−α < j+1

2 ε. If j > m, E ≤ (m + 1)2−α =

O(log k) · 2−α. If j ≤ m. E ≤ j · 2−α +
m+1∑
i=j+1

i
2ε < j · j+1

2 ε+
m+1∑
i=j+1

i
2ε ≤

(m+1)2

2 ε.

Therefore, E ≤ max((m+ 1)2−α, (m+1)2

2 ε).

4 Proposed k-way Sorting Network for encrypted data
using our k-Sorter

Our sorting algorithm introduced in section 3 has the advantage that it can be
used even with approximate comparison results, but sorting n elements using
only this algorithm needs O(n2) comparisons and O(n3) time complexity, which
is still impractical. In this section, we propose a method of combining our algo-
rithm with k-way sorting network to reduce the required number of comparisons
and complexity for sorting the encrypted data. The k-way sorting network is an
algorithm that sorts n elements using j-sorter for j ≤ k, which sorts j elements
in unit time, as a building block. By using k-way sorting network, we can reduce
the total cost of sorting encrypted data compared to the previous works, which
have only used 2-way sorting networks. In addition, we provide a formula that
estimates which k-value is appropriate for a given implementation environment.
Throughout this section, let n be the number of elements and m = dlogk ne.

4.1 k-way Sorting Network

k-way sorting network algorithm for plaintext data was suggested from [40]. In
this section, we introduce the outline of the algorithm and analysis on the number
of stages briefly. For a prime k, the k-way sorting network is a recursive algorithm
which repeats the process of forming a sorted array of length kl by merging k
number of sorted arrays of length kl−1 for 1 ≤ l ≤ m. When an array of length
kl consists of k sorted arrays of length kl−1, the algorithm can be understood by
the following three steps. Firstly, the process begins with dividing each sorted
array of length kl−1 into k sorted arrays of kl−2, regrouping each i-th array
for 1 ≤ i ≤ k into arrays of kl−1 and merging each group of them. Since each
divided array of length kl−2 is also sorted, this merging algorithm can be done
by recursive formula. The next step is to align newly sorted arrays of kl into
a matrix of k × kl and to sort along the lines of slope i for 1 ≤ i ≤ bk2 c. The
final step is to apply (k − 1)-sorter on the first k−1

2 elements of r-th row and
the latter k−1

2 elements of r + 1-th row for 1 ≤ r ≤ km − 1. We categorize each
stage as the step of applying sorters in parallel by type i for 0 ≤ i ≤ dk2 e. Type
dk2 e refers the third step and denote a stage as type i if the slope of sorters is i
(0 ≤ i ≤ dk2 e). We note that according to the algorithm, the size of sorters are
inconsistent when sorting along diagonals of same slope since the size of sorters
are smaller near the corner. For the purpose of efficient implementations, we will
regard all the sorters of slope i to be j-sorter (j = bk−1i c + 1), the maximum
length among them.

20

Fig. 3: An example of sorting 32 numbers using 3-way sorting network. Blue
arrows refer to the direction of the sorting indicating to which the larger values
are moving. The green cell has a greater value than the blue cells and a less one
than the red.

Figure 3 exemplifies the procedure of sorting 32 numbers with 3 and 2-sorter.
As seen in the figure, 3-sorters are applied in parallel horizontally then vertically.
Then 2 and 3-sorters are applied along the line of slope 1 and 2, respectively.
From the figure, it can be seen that the range of rank values, or the number of
elements equal or less than the element, that each cell value can have decreases
as sorting progresses. For example, in part (A) of the figure, the rank of the
center cell (green) ranges from 4 to 6. However, in (B), after sorting in the slope
1 direction, the rank value of the corresponding position is fixed as 5. Finally, the
sorting is terminated when all cell’s ranks are fixed to a single one, respectively.
Also, we can easily find that the depth of this sorting network is 4(= (log3 9)

2).
We denote the detail in Section 4.2.

Analyzing the recursive algorithm explicitly, the number of stages of type 0,
i.e. where k-sorter is applied in parallel is m since it emerges once per merging
step. In addition, the number of stages of type i for i ≥ 1 is m(m−1)

2 because
when merging sorted arrays of ki into an array of ki+1, sorting along lines of
slope i emerges i times and thus the total frequency is 1+· · ·+(m−1) = m(m−1)

2 .
The final step of the algorithm also shows up m(m−1)

2 times for the same reason
and therefore, the total number of stages of k-way sorting network for length km
is Nm,k = m+ dk/2e ·m(m− 1)/2.

4.2 FHE-friendly Algorithms for Sorting

This section describes exploitation of our k-sorter algorithm to construct a FHE-
friendly k-way sorting network algorithm. To accelerate the running time of
sorting, we propose a method of exploiting our k-sorter algorithm to imple-

21

Fig. 4: 5-way sorting network for 52 numbers. Each line represents a k-sorter and
the multiple dots on each line represent input numbers. The 5 arrows on the
left depict the primary stage in which 5 neighboring numbers are sorted and
the arrow on the right indicates the arrangement direction, from minimum to
maximum.

ment k-way sorting network using SIMD operations and message rotations. Our
implementation method can be applied to the general k, but for the sake of
understanding, we describe the algorithm through an example in the case of
k = 5.

In each stage, the algorithm consists of two main steps: first, computing
approximate comparison in parallel that are necessary to run k-sorter are com-
puted, and second, the k-sorter algorithms described in Section 3 using the com-
parison outputs. Recall that we may need to use k-sorters for multiple k values
in the same stage. In the case of k = 5, there are stages of four types, from type 0
to 4. Therefore, an SIMD algorithm must be constructed for each type. However,
if a method of running the 2-, 3-, 4-, and 5-sorter algorithms in parallel were
devised, that method can be applied to stages regardless of types. Thus, in this
section, we assume that j-sorters for j ≤ k are executed at the same time. Note
that the k-way sorting network used here has two important features in each
stage: first, the distance between the input messages for each k-sorter algorithm
is always the same, and second, these inputs never overlap. For instance, consider
the third stage for sorting of 52 elements as shown in Figure 4. In that stage, all
2-, 3-, 4-, and 5-sorters appear. We denote 25 elements by x1, x2 · · · , x25 in or-
der, check that the 2-sorter inputs are (x2, x6) and (x20, x24), the 3-sorter inputs

22

are (x3, x7, x11) and (x15, x19, x23), the 4-sorter inputs are (x4, x8, x12, x16) and
(x10, x14, x18, x22), and 5-sorter inputs are (x5, x9, x13, x17, x21). These inputs
are illustrated in Figure 5.

Fig. 5: Example of 25-sorter third stage. This stage consists of all 2-, 3-, 4-, and
5-sorters, and the distances between neighboring slots are all 4. None of the
inputs overlap and, thus, parallel operation is possible.

Parallel Comparisons The first step of each stage of k-way sorting network
for SIMD operations is the computation of the comparison function. Because the
comparison function is applied to the same slots in each ciphertext,

(
k
2

)
pairs of

numbers can be compared simultaneously.
As each number is contained in a different slot and the comparison algorithm

runs for each slot in SIMD-wise sense, we use rotation operations to match the
slots to be compared. When the ciphertext is rotated, the slots that are not of
interest also move. Therefore, we first multiply the ciphertext by a scalar vector,
referred to as the masking vector, to extract our target slots. In this case, the
masking vector consists of the value 1 for our target slot for extraction and 0 for
the other slots.

In detail, the comparison part consists of two steps. First, the messages are
rotated to match the slots for comparison and subtraction is performed. Second,
the approximate comparison algorithm is implemented on the ciphertext, so
that each slot contains the appropriate comparison output, SIMD-wisely. The
comparison algorithm simply implements Equation 1; thus only the rotation step
requires explanation here.

Focusing on slots of our interest only, we denote a vector with slots which
are the inputs of 3-sorters only and omit others as

[a, b, c] := (· · · , a, · · · , b, · · · , c, · · ·)

where a, b, and c are three inputs of 3-sorter. We also similarly define vectors with
slots corresponding to the 4- and 5- sorter inputs as [a, b, c, d] and [a, b, c, d, e],
respectively.

23

Let us begin with the 3-sorter case. We simply denote the ciphertext as
ct = Enc([a, b, c]), and let the distance between the slot locations of a and
b(or b and c) be `. We wish to rotate ct by ` to obtain ct1=Enc([b, c, a]) and
to implement a comparison algorithm on ct and ct1. For the rotation, we use
the two mask vectors mask3,left = [1, 1, 0] and mask3,right = [0, 0, 1]. We com-
pute ct3,left = ct · mask3,left and ct3,right = ct · mask3,right, which are Enc([a, b, 0])
and Enc([0, 0, c]), respectively. This facilitates retrieval of the desired ciphertext
ctrot = RightRotate(ct3,left, `) + LeftRotate(ct3,right, 2`) = Enc([c, a, b]), which is
the desired output. Finally, we compute comparison algorithm comp(ct, ctrot).
The output comp1 = Enc([(a > c), (b > a), (c > b)]) is returned.

More generally, let the inputs of a k-sorter be ct = Enc([a1, · · · , ak]). Multiply
maskk,left = [1, · · · , 1, 0] and maskk,right = [0, · · · , 0, 1] to ct to obtain ctk,left and
ct3,right, respectively. Then, we are able to compute ct1 = RightRotate(ctk,left, `)+
LeftRotate(ctk,right, (k − 1)`), which is the encryption of {ai+1 − ai} (regarding
ak+i = ai). In a similar way, ct1, · · · , ctb k2 c where ctj = {ai+j − ai} can be
computed. The final step is to run comparison algorithm for cti’s to obtain the
encrypted comparison results comp1, · · · , compb k2 c

.

In the case that the number of slots s is large enough, then we can store 2
or more ciphertexts into one ciphertext and thus reduce the number of compu-
tations for comparison. For instance, if n < s

2 , then it means that cti contains n
nonzero elements and the rest of the slots are filled with zeros, as cti = Enc(mi||0)
for mi ∈ Cs/2 (here || means the concatenation of two vectors). Then, we rotate
ciphertext ct2i and add to ct2i−1 to get ct′i = Enc(m2i−1||m2i) containing two
plain vectors. Now we run comparison function for ct2i for 1 ≤ i ≤ 1

2b
k
2 c to get

comp′i, which reduces the number of comparison operations by half. Finally, we
multiply masking vector (1||0), (0||1) to comp′i and by rotating the latter one,
we get comp2i−1 and comp2i. Generalizing this step, we can reduce the number
of comparisons by concatenating n0 number of ciphertexts when n < s

n0
, which

maximizes the efficiency of parallel computing.
Slot Alignment In the next step, the ciphertext and comparison results, which
are positioned in the ct, comp1, and comp2 slots, should be collected into a sin-
gle slot through rotation. In 5-sorter, for instance, let ct = Enc([a, b, c, d, e]),
and let comp1 and comp2 be the encrypted comparison results. For the iMax
computation, ten comparison results distributed in five comp1 and comp2 slots
must be gathered and computed in one slot. Precisely, we wish to obtain ct1 =
Enc([a, 0, 0, 0, 0]), · · · , ct5 = Enc([e, 0, 0, 0, 0]) and cta>b = Enc([(a > b), 0, 0, 0, 0]),
· · · , ctd>e = Enc([(d > e), 0, 0, 0, 0]). To achieve this, we multiply each ci-
phertext by a masking vector for each slot, and then rotate the ciphertext
so that the desired slots are located in the first slot. For instance, to obtain
ct3 = Enc([c, 0, 0, 0, 0]), we perform the masking vector multiplication ct′3 =
ct · [0, 0, 1, 0, 0] = Enc([0, 0, c, 0, 0]), and then rotate 2` to the left. The manda-
tory input values for iMax computation are then stored separately in the first slot
of the 5 sorter. Similarly we match the slots for each comparison results by mul-
tiplying the matching masking vector and performing rotation. By running the
5-sorter algorithm, we finally obtain the outputs in the first slots of ct1, · · · , ct5

24

and cta>b, · · · , ctd>e. Similarly, for the k-sorter algorithm, we obtain k and
(
k
2

)
ciphertexts that contains each element and their comparison, respectively.
Running k-sorter After slot alignment, now we can compute k-sorter through
SIMD operation. The important point here is that in the case of slots where
we actually need to compute j-sorter for j less than k, we have to assume that
there are zeros in the remaining k − j slots that we don’t consider or else, the
inputs of 2-sorter can be pushed back while running k-sorter and overlap with
inputs of other sorters. This can be solved by adding a dummy comparison to the
ciphertext corresponding to the comparison. Since our k-sorter algorithm sorts
only with the comparison value regardless of the given elements, if we add 1 to
the empty comparison slot that is not used in j-sorter, it works as the slots we
don’t consider is smaller than the j elements we want to sort, so the j elements
will sorted in the first j ciphertexts. To explain through an example, suppose
we want to run 2- and 3-sorters in one message vector as [(a2, b2), (a3, b3, c3)].
Here, (a2, b2) and (a3, b3, c3) are the 2- and 3-sorter inputs, respectively. After
comparison and slot alignment , we obtain the following ciphertexts:

ct1 = Enc([(a2, 0), (a3, 0, 0)]

ct2 = Enc([(b2, 0), (b3, 0, 0)]

ct3 = Enc([(0, 0), (c3, 0, 0)]

ct(a>b) = Enc([((a2 > b2), 0), ((a3 > b3), 0, 0)])

ct(a>c) = Enc([(1, 0), ((a3 > c3), 0, 0)])

ct(b>c) = Enc([(1, 0), ((b3 > c3), 0, 0)])

Here we add 1 to the first slots for 2 sorter in ct(a>c) and ct(b>c), which are
originally not used for 2-sorter. Note that the process works as if the hidden
third input c2 in ct3 is smaller than a2 and b2, so parallel computation of the
3-sorter works well for sorting of two items (this case is treated as if (a2, b2, 0)
is being sorted).

After all above steps, we operate the slot alignment reversely (only for outputs
for k-sorter) to get the ciphertext that contains the array that sorting operation
for one stage is completed. We illustrate the example of whole method in Figure
6.

4.3 Time Cost Estimation of k-way Sorting Network

Our goal in this section is to estimate the ideal time of sorting n elements through
k-way sorting network for each k depending on the implementation environment.
Since k-way sorting network operates only on inputs of size power of k, we append
0’s to the given array to make the length to km which is the smallest power of
k larger than n.

First, let’s define the terms to be used throughout this subsection: we de-
note the depth and multiplication complexity of the j-sorter and a comparison
operation by (Dsorter(j), Csorter(j)) and (Dcomp, Ccomp), respectively. From Section
4.1, we can observe that k-way sorting network is the recursive algorithm of

25

Fig. 6: Illustration of proposed parallel algorithm for the stage with slope 1 in
5-way sorting network. Assuming that all 2- to 5-sorters are run simultaneously,
this figure shows the values of each slot in each parallel algorithm step.

forming a sorted array of length kl by merging sorted arrays of length kl−1.
Thus, each stage in k-way sorting network can be classified according to i, the
stage type and kl, the size of merging. Using these variables, we denote (i, l) as
the characteristic of a stage. If the characteristic of stage is (i, l), let ji be the
maximum size of the sorter of this stage, S(i,l) be the number of ji sorters being
implemented in the stage.

Prior to the examination, we make two assumptions to simplify the compu-
tation. First, since the cost of multiplying masking vector is comparably smaller
than other operations, we ignore the multiplication cost and the depth for mask-
ing vectors. Second, we assume that the sorters in a stage of type i are all
ji-sorters as the implementation is following our method in Section 4.2.

To compute ji and S(i,l) based on above assumptions, we consider each cases
for slope i. If i = 0, the slope of sorters is 0, so S(i,l) is equal to km

k = km−1. If
i = dk2 e, according to Section 3, ji = k − 1. When we merge k number of sorted
arrays of length kl−1, (k−1)-sorter is implemented kl−1−1 times in total. Since

26

such merging occurs km−l times, we get S(i,l) = km−l ·(kl−1−1) = km−1−km−l.
For other i’s, ji is bk−1i c+ 1 since the slope is i and 0 ≤ y < k. To count S(i,l),
we regard km = k · km−1 elements as a matrix A = (ax,y) where 0 ≤ x < km−1

and 0 ≤ y < k. Then, instead of counting S(i,l), we can count the number of
starting points of each ji-sorters. If ax,y ∈ A is a starting entry of a ji-sorter, it
should satisfy two conditions: ax−i,y+1 ∈ A and ax+i,y−1 /∈ A. We can count the
number of (x, y) satisfying the conditions to be i ·kl−1+k−3i. Such feature also
occurs km−l times, the number of sorters is km−l · (i · kl−1 + k − 3i). In short,
S(i,l) and ji are computed as

S(i,l) =

km−1 if i = 0

km−1 − km−l if i = dk2 e
i · km−1 + km−l · (k − 3i) otherwise

,

ji =

k if i = 0

k − 1 if i = dk2 e and k > 2

bk−1i c+ 1 otherwise
.

Next we examine the expected time by counting the number of multipli-
cations and bootstrappings. Assuming that the characteristic of stage is (i, l),
we can count them by consider the number of required ciphertexts for pack-
ing in comparison and swap step, denote by N comp

(i,l) and N swap
(i,l) , respectively. In

each stage, assuming that the characteristic of stage is (i, l), let dcomp,(i,l) and
dsorter,(i,l) be the required depth for the comparison and ji-sorter steps in the k-
sorting network, respectively. Since our algorithm computes all sorters in a stage
with the ji-sorter, the number of comparisons in the stage is

(
ji
2

)
·S(i,l). Since we

have s number of slots to compute comparisons in one ciphertext, the required
number of ciphertexts is N comp

(i,l) = d
(
ji
2

)
·S(i,l)/se. Also, in the swap step, we uses

j slots for computing j-sorter, the number of slots for computing swap step is at
most ji · S(i,l). To simplify our estimation, we choose N swap

(i,l) by its upper bound,
so that N swap

(i,l) = dji · S(i,l)/se by packing s elements in one ciphertexts.
Using above number of ciphertexts, the number of multiplications and boot-

strappings are followed directly. First, the number of multiplicationsM(i,l) is

M(i,l) = N comp
(i,l) · Ccomp +N swap

(i,l) · Csorter(ji).

Since the number of boots depends much more on the implementation method
than the number of multiplications, it is difficult to estimate the exact num-
ber. Therefore, we first count the depth required for the entire algorithm, then
divide it by d, the restored depth per one bootstrapping, to find the expected
number instead. At this time, by multiplying the depth required at each step by
the number of ciphertexts required for the operation at that step, the expected
number of bootstrappings is made close to the exact value. Also, we ignore the
required depth for multiplying by masking vectors, this is because the required
number of depths for the masking vector is very small compared to other pro-
cesses, and when implemented using the CKKS scheme, the consumed depth can

27

be further reduced by choosing the scaling factor for the masking vector smaller
than that used in the ciphertext. Using the above method for expected number
of bootstrapping B(i,l), the formula for computing B(i,l) is almost as same as one
forM(i,l) with additional division by d. In short, B(i,l) is computed as

B(i,l) = (N comp
(i,l) · Dcomp +N swap

(i,l) · Dsorter(ji))/d.

The total time cost can be estimated by using the ratio between the time
cost of multiplication and bootstrapping, denoted by γ. In conclusion, the total
estimated time is the sum ofM(i,l) + γ · B(i,l) for every stages.

Remark 1. Our estimation shows the optimal implementation in theory and it
is useful to see the tendency of expected time cost from various k and the imple-
mentation environment. However, the estimated results do not directly refer to
the real time cost. The crucial reason of the expected difference is that the max-
imum number of depths cannot always be obtained from each bootstrapping.
To compute the k-sorter algorithm, we create several ciphertexts from a given
ciphertext to place the values to be sorted and their comparisons results in the
same slot. At this time, if the remaining depth of the initial ciphertext was not
enough for the k-sorter algorithm, bootstrapping operation should be applied to
all ciphertexts in the process of the k-sorter algorithm. Instead, it is practically
more efficient to bootstrap the initial ciphertext and then multiplying masking
vectors to process the k-sorter algorithm, which significantly reduces the number
of bootstrapping. In addition, our estimation ignores the cost of multiplication
and depth for masking vectors, which is relatively small compared to the cost of
comparisons, but it could increase as k becomes larger. In short, we notice that
our estimation does not show the exact difference of the time cost for various k
in real time, and recommend to use it to estimate the cost difference in the ideal
implementation.

5 Experimental Results

5.1 Parameter Selection

For HEaaN, we fix the dimension N = 217, ∆ = 240, and hamming weight h =
128 and the secret key is chosen from the ring with ternary secret distribution,
i.e. all nonzero coefficients of secret key are ±1. Then we can set the largest
modulus Q to 22900 by considering the state-of-the-art attacks for ring LWE
encryption schemes for sparse ternary secret [18]. To achieve larger modulus for
ciphertexts, we need additional parameter dnum, which refers the number of
evaluation keys used for key-switching algorithm in multiplication or rotation
of HEaaN. Using large dnum, the number of evaluation keys increased, but it
enables to set larger initial ciphertext modulus Q0, which can be computed as
Q0 = Q ·dnum/(dnum+1).We set dnum = 3 and so that the ciphertext modulus
Q0 is 22175.We refer [32] for the detail of relationship between dnum and security
level.

28

For the approximate comparisons, we set df , dg from fixed error size. Since
the elements are natural numbers less than n, the minimum difference between
different numbers is 1

n if the numbers are normalized. If Ek is bounded by 1
2n ,

different numbers can be well sorted by k-sorter as 1
n = 1

2n + 1
2n ≥ E

k + Ek.
According to Theorem 3, Ek ≤ 1

2n if max((log k+1)2−α, (log k+1)2

2 ε) ≤ 1
2n holds.

Thus, ε and α can be determined and so does df and dg through Theorem 2.

5.2 Time Cost Estimation

Fig. 7: Graph of time estimation for sorting with k-way sorting network for each
k = 2, 3, 5, 7 in different number of SIMD operation(or number of slots) en-
vironments, especially s = 214, 215, and 216. The parameters for approximate
comparison are chosen to satisfy desired error bound as 1/2n for k-sorter in each
stage.

We show the result of time cost estimation from our formula in Section 4.3
for k = 2,3,5,7 and s = 214, 215 and 216. Based on the experiment result in our
implementation environment, we have set γ = 84.67 as the multiplication and
bootstrapping takes 66.3 and 0.783 seconds on average and we have set d = 27
as we are able to obtain up to 27 modulus through one bootstrapping. Figure
7 displays the time required for sorting n ≤ 215 numbers. From the graphs in
Figure 7, we can observe that the decrease in time is greater as s increases if k is
large: If k = 2, there is almost no change in the time for different s. On the other
hand, if k = 5 or 7, the time for sorting decreases as s gets larger. Such relation

29

k size (df , dg)
Time Errors (log) Memory
(min) Max Avg (GB)

2

512 (3, 6) 150.57 -15.97 -17.37 23.39
1024 (4, 7) 186.00 -14.61 -16.93 24.20
2048 (4, 7) 223.25 -14.92 -16.78 24.75
4096 (4, 8) 276.53 -13.60 -16.06 24.93
8192 (4, 8) 329.13 -13.00 -15.79 25.26
16384 (4, 8) 384.43 -11.62 -14.82 25.29

3

729 (4, 7) 129.38 -14.48 -16.88 26.85
2187 (4, 8) 182.11 -14.46 -16.31 28.01
6561 (4, 9) 263.73 -12.39 -14.97 28.39
19683 (4, 10) 314.28 -10.95 -13.78 28.35

5
625 (4, 8) 114.32 -13.29 -16.82 37.84
3125 (4, 9) 192.83 -13.53 -16.93 46.11
15625 (4, 10) 294.81 -13.66 -16.54 55.40

Table 1: Performance of sorting over encrypted data with k-way sorting network
for various k, fixing the number of slots s = 215.

between k and s exists because the number of ciphertexts used in comparison
step is d

(
k
2

)
·S(0,0)/se = d(k−1)/2·km/se. Therefore, more comparison operations

can be parallelized when s exceeds 2 · 5m for k = 5 or 3 · 7m for k = 7.

5.3 Performance of k-way Sorting Networks over Encrypted Data

For the purpose of verifying our estimation, we have implemented our algorithm
using CKKS FHE scheme with an improved bootstrapping technique [10, 12].
Our artifact is publicly available at [33], and the experiment was performed in
Ubuntu 18.04.2 LTS environment, run on an AMD Ryzen(TM) 9 3950X CPU
with 128GB memory and 32 threads.

Table 1 lists the performance results of the proposed sorting algorithm for
k = 2, 3, 5 and various parameters, visualized in Figure 8. The selected data
for the experiment were random real numbers between 0 and 1. The time was
measured as the total run time of sorting algorithm over encrypted data only,
with the encryption or decryption time being omitted. After the proposed sorter
was executed over encrypted data, the original data were sorted in plain and
compared with decrypted data in terms of the average of absolute values of
error.

In the result, there are cases where the maximum error between the encrypted
sort result and the true value exceeds the error bound we wanted. This is because
errors are basically included in the operations in the CKKS scheme, which is
based on approximate computation. Since we concretely analyzed the error of

30

Fig. 8: The illustration of Time and data size from Table 1 with the number
of slots s = 215. Recall that the number of stage for sorting n elements using
k-sorting network is O(k · log2k n).

our k-sorter algorithm, as the depth of the algorithm increases, errors from the
FHE operation may cause to increase the maximal error after sorting.

Compared to our estimation in Section 5.2, It can be seen that our implemen-
tation result is almost as same as the estimation result for s = 215. In particular,
takes 294.81 minutes to sort 56 = 15625 elements using 5-way, which is reduced
by 23.3% compared to the time cost for sorting 214 = 16384 which are 384.43
minutes.

References

1. A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving symmetric
encryption,” in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2009, pp. 224–241.

2. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for a ring-
based fully homomorphic encryption scheme,” in IMA International Conference on
Cryptography and Coding. Springer, 2013, pp. 45–64.

3. C. Boura, N. Gama, and M. Georgieva, “Chimera: a unified framework for b/fv,
tfhe and heaan fully homomorphic encryption and predictions for deep learning,”
Cryptology ePrint Archive, Report 2018/758, Tech. Rep., 2018.

4. Z. Brakerski, “Fully homomorphic encryption without modulus switching from clas-
sical gapsvp,” in Annual Cryptology Conference. Springer, 2012, pp. 868–886.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” ACM Transactions on Computation Theory
(TOCT), vol. 6, no. 3, p. 13, 2014.

31

6. M. Brenner and H. Perl, “Sm: libscarab software library.”
7. G. S. Çetin, Y. Doröz, B. Sunar, and E. Savaş, “Depth optimized efficient ho-

momorphic sorting,” in International Conference on Cryptology and Information
Security in Latin America. Springer, 2015, pp. 61–80.

8. A. Chatterjee, M. Kaushal, and I. Sengupta, “Accelerating sorting of fully ho-
momorphic encrypted data,” in International Conference on Cryptology in India,
vol. 13, no. 3. Springer, 2013, pp. 262–273.

9. A. Chatterjee and I. SenGupta, “Sorting of fully homomorphic encrypted cloud
data: Can partitioning be effective?” IEEE Transactions on Services Computing,
vol. 13, no. 5, pp. 545–558, 2020.

10. H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for approximate
homomorphic encryption,” Cryptology ePrint Archive, Report 2018/1043, 2018.
[Online]. Available: https://eprint.iacr.org/2018/1043

11. J. H. Cheon, K. Han, S. Hong, H. J. Kim, J. Kim, S. Kim, H. Seo, H. Shim,
and Y. Song, “Toward a secure drone system: Flying with real-time homomorphic
authenticated encryption,” IEEE Access, vol. 6, pp. 24 325–24 339, 2018. [Online].
Available: https://doi.org/10.1109/ACCESS.2018.2819189

12. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” in Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part I, 2018, pp. 360–384. [Online]. Available:
https://doi.org/10.1007/978-3-319-78381-9_14

13. J. H. Cheon, S. Hong, and D. Kim, “Remark on the security of ckks scheme in
practice,” IACR Cryptol. ePrint Arch, vol. 2020, p. 1581, 2020.

14. J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2017, pp. 409–437.

15. J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic comparison methods
with optimal complexity,” in Advances in Cryptology – ASIACRYPT 2020. Cham:
Springer International Publishing, 2020, pp. 221–256.

16. J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical method for
comparison on homomorphically encrypted numbers,” in International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
2019, pp. 415–445.

17. J. H. Cheon, D. Kim, Y. Kim, and Y. Song, “Ensemble method
for privacy-preserving logistic regression based on homomorphic encryp-
tion,” IEEE Access, vol. 6, pp. 46 938–46 948, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2866697

18. J. H. Cheon, Y. Son, and D. Yhee, “Practical fhe parameters against lattice at-
tacks,” 2021.

19. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds,” in International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
2016, pp. 3–33.

20. ——, “Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds,” in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2016, pp. 3–33.

21. A. Costache and N. P. Smart, “Which ring based somewhat homomorphic encryp-
tion scheme is best?” in Cryptographers’ Track at the RSA Conference. Springer,
2016, pp. 325–340.

32

22. Y. Doröz, Y. Hu, and B. Sunar, “Homomorphic aes evaluation using ntru.” IACR
Cryptology ePrint Archive, vol. 2014, p. 39, 2014.

23. L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic encryption in less
than a second,” in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2015, pp. 617–640.

24. N. Emmadi, P. Gauravaram, H. Narumanchi, and H. Syed, “Updates on sorting
of fully homomorphic encrypted data,” in 2015 International Conference on Cloud
Computing Research and Innovation (ICCCRI). IEEE, 2015, pp. 19–24.

25. J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption.”
IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

26. C. Gentry and D. Boneh, A fully homomorphic encryption scheme. Stanford
University Stanford, 2009, vol. 20, no. 09.

27. C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the aes circuit,”
in Annual Cryptology Conference. Springer, 2012, pp. 850–867.

28. C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in Annual
Cryptology Conference. Springer, 2013, pp. 75–92.

29. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy,” in International Conference on Machine Learning, 2016, pp. 201–
210.

30. S. Halevi and V. Shoup, “Helib-an implementation of homomorphic encryption,”
Cryptology ePrint Archive, Report 2014/039, 2014.

31. K. Han, S. Hong, J. H. Cheon, and D. Park, “Efficient logistic regression on large
encrypted data.” IACR Cryptology ePrint Archive, vol. 2018, p. 662, 2018.

32. K. Han and D. Ki, “Better bootstrapping for approximate homomorphic encryp-
tion,” in Cryptographers’ Track at the RSA Conference. Springer, 2020, pp. 364–
390.

33. S. Hong, “k_way_sort_enc.” [Online]. Available:
https://hub.docker.com/repository/docker/swanhong/k_way_sort_enc

34. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression
model training based on the approximate homomorphic encryption,” IACR
Cryptology ePrint Archive, vol. 2018, p. 254, 2018. [Online]. Available:
http://eprint.iacr.org/2018/254

35. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic regression based
on homomorphic encryption,” IACR Cryptology ePrint Archive, vol. 2018, p. 74,
2018. [Online]. Available: http://eprint.iacr.org/2018/074

36. P. Kim, Y. Lee, and H. Yoon, “Sorting method for fully homomorphic encrypted
data using the cryptographic single-instruction multiple-data operation,” IEICE
Transactions on Communications, vol. 99, no. 5, pp. 1070–1086, 2016.

37. B. Li and D. Micciancio, “On the security of homomorphic encryption on approx-
imate numbers,” IACR Cryptol. ePrint Arch, vol. 2020, p. 1533, 2020.

38. W.-j. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “Pegasus: Bridging polynomial
and non-polynomial evaluations in homomorphic encryption.”

39. S. Park, M. Kim, S. Seo, S. Hong, K. Han, K. Lee, J. H. Cheon, and S. Kim,
“A secure snp panel scheme using homomorphically encrypted k-mers without snp
calling on the user side,” BMC genomics, vol. 20, no. 2, p. 188, 2019.

40. F. Shi, Z. Yan, and M. Wagh, “An enhanced multiway sorting network based on
n-sorters,” in 2014 IEEE Global Conference on Signal and Information Processing
(GlobalSIP). IEEE, 2014, pp. 60–64.

33

41. N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively
small key and ciphertext sizes,” in International Workshop on Public Key Cryp-
tography. Springer, 2010, pp. 420–443.

42. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2010, pp. 24–43.

34

