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Abstract. The security of code-based cryptography usually relies on the hardness of
the syndrome decoding (SD) problem for the Hamming weight. The best generic algo-
rithms are all improvements of an old algorithm by Prange, and they are known under
the name of Information Set Decoding (ISD) algorithms. This work aims to extend ISD
algorithms’ scope by changing the underlying weight function and alphabet size of SD.
More precisely, we show how to use Wagner’s algorithm in the ISD framework to solve
SD for a wide range of weight functions. We also calculate the asymptotic complex-
ities of ISD algorithms, both for the classical and quantum case. We then apply our
results to the Lee metric, which is currently receiving a significant amount of atten-
tion. By providing the parameters of SD for the Lee weight for which decoding seems
to be the hardest, our study could have several applications for designing code-based
cryptosystems and their security analysis, especially against quantum adversaries.

1 Introduction

Code-based cryptography is one of the leading proposals for post-quantum cryp-
tography, and it traditionally relies on the hardness of the syndrome decoding
problem. For fixed q, n, k, w, the problem is defined as follows: starting from a
parity check matrix H ∈ Fn×(n−k)q , and a syndrome s ∈ Fn−kq , the goal is to
find a vector e ∈ Fnq such that He = s, and e has the Hamming weight(3) w.
This problem has been studied for a long time, and mostly for the alphabet
size q = 2. Despite many efforts, the best algorithms for solving this problem
[Pra62, Ste88, Dum91, Bar97, MMT11, BJMM12, MO15] require an exponen-
tial running time, and they are all refinements of the original Prange’s algorithm
[Pra62]. As such, they are all commonly known under one name: Information
Set Decoding (ISD) algorithms.

(3) The Hamming weight of a vector e = (e1, . . . , en) is |e|H
def
= |{i : ei 6= 0}|.



It is, however, notoriously difficult to put the syndrome decoding problem into
practice. For example, constructing an efficient signature scheme in code-based
cryptography often requires utilizing pseudo-random functions, and some other
cryptographic assumptions. A generalized version of the problem promises to
be harder and to offer a more exploitable structure that leads to creating more
efficient constructions. Like DURANDAL [ABG+19], some proposals replace the
Hamming weight with the rank metric based weight, which allows designers to
use a Schnorr-Lyubashevski type signature. Another proposal, WAVE signature
scheme [DST19], utilizes syndrome decoding problem for which q = 3, and the
Hamming weight is large. This further enables one to construct and exploit a
trapdoor one-way preimage sampleable function, which would not be possible
for q = 2 or q = 3 in small weight.

These examples already show the usefulness of going beyond q = 2 and the
Hamming weight setting. We are, however, still at an early stage of using these
variants for cryptographic schemes. Therefore, it is important to study their
hardness, especially against quantum computers, since a big appeal of code-
based cryptography is post-quantum security.

Our work. In this paper, we perform a generic analysis of different ISD algo-
rithms. The analysis is applicable to any weight function wt : Fnq → R+ satisfying

wt(e)
def
=
∑n
i=1 wt

′(ei), for some function wt′ : Fq → R+, and wt′(0) = 0. How-
ever, we primarily focus on the Lee weight analysis, and the comparison between
the Lee and Hamming weight. The reason we chose these two weight functions
is that the two are commonly encountered in coding theory, and both led to
proposals for cryptographic schemes.

Which ISD algorithms do we study here? We analyze algorithms by Prange and
Stern/Dumer and the ISD algorithms based on Wagner’s approach to solving a
Generalized Birthday problem [Wag02]. Starting from [BCDL19], where classical
algorithms for a ternary alphabet and the Hamming weight were analyzed, we
broaden the analysis to the higher alphabet sizes, usage of a different weight
function, and the study of both classical and quantum algorithms. This is the
first time such a generic analysis of quantum ISD algorithms was done since the
work of [KT17] that studied only the standard case of q = 2 and the Hamming
weight.

To perform such a generic analysis, we need a way of computing sphere surface
areas in a vector space endowed with an arbitrary metric. More precisely, we aim
to calculate the sizes of sets of the form {e ∈ Fnq : wt(e) = p}. To do this, we
start with the approach presented in [Ast84], applied to the Lee metric case, and
we derive a convex optimization method for calculating the asymptotic sphere
surface area independently of the metric. We thus provided a simple approach



to analyzing syndrome decoding problems in a vector space endowed with an
arbitrary metric and a weight function derived from it.

Our framework can also be used for studying the security of the Restricted
Syndrome Decoding problem [BBC+20a]. Nevertheless, it does not work for the
rank metric norm where we do not know how to construct ISD algorithms better
than Prange’s algorithm(4).

Notations

Throughout the paper, we use [n]
def
= {1, . . . , n} and, given a finite set E , we

denote by |E | its size. We consider a weight function wt : Fnq → R+ which
satisfies the following:

∃wt′ : Fq → R+ : wt′(0) = 0 and ∀e = (e1, . . . , en) ∈ Fnq , wt (e) =
∑
i

wt′(ei).

(1)

This weight function is usually - but not always - obtained as wt(x) = d(x, 0)

where d is a distance. We will sometimes use the terminology of distance instead
of weight when this is the case. When q and wt are fixed and explicit, we define
the surface area of a sphere of weight w in a vector space of dimension n as:

Snw
def
=
∣∣{e ∈ Fnq : wt (e) = w}

∣∣ .
2 Quantum preliminaries

We refer to [NC00] for a basic introduction to quantum computing. In this paper,
we use the canonical gate model where the running time of a quantum algorithm
is the number of gates in its corresponding circuit description. We utilize the
QRAM model, for which we assume the operation UQRAM : |i〉 |y〉 |b1, . . . , bn〉 →
|i〉 |y + xi〉 |b1, . . . , bn〉 can be done in time polylog(n) when each bi is a single
bit.

Grover’s algorithm. [Gro96] For a function f : {0, 1}n → {0, 1} that has an
efficient classical description, Grover’s algorithm can find x such f(x) = 1 in
time O(poly(n)2n/2) if such an x exists and output ’no solution’ otherwise.

(4) There are other algorithms [BBB+20, BBC+20b] based on Gröbner basis that per-
form better than ISD algorithms for the rank metric.



Amplitude amplification. [BH97] Fix a function f : {0, 1}n → {0, 1} that has an
efficient classical description. Consider then a quantum algorithm A that out-
puts x such that f(x) = 1 with probability p and does not perform intermediate
quantum measurements. Using amplitude amplification, one can find x such that
f(x) = 1 by making O( 1√

p ) calls to A . Notice that if we start from a classical
algorithm A , there are generic ways to run A coherently as a quantum algo-
rithm A ′ that does not have intermediate quantum measurements and behaves
exactly like A .

3 Syndrome Decoding Problems

When we fix an alphabet size q and a weight function wt, the syndrome decoding
problem is defined as follows:

Problem 1. Syndrome Decoding SD(n, k ≤ n,w)
– Input: A matrix H ∈ F(n−k)×n

q , a column vector (the syndrome) s ∈ Fn−kq .

– Goal: Find a column vector e ∈ Fnq s.t. He = s and wt (e) = w.

The decision version of this problem, which asks whether there exists a vector
e of weight w such that He = s, is NP-complete for q = 2 with the Hamming
weight function [BMvT78].

Consider now the input distribution D sampled as follows: pick a random matrix
H ∈ F(n−k)×n

q of rank n − k, pick a random e ∈ Fnq with wt(e) = w, and
output (H, s = He). Notice that the problem always has at least one solution
for this distribution and that SD is believed to be hard, even against quantum
computers. That is why, in this paper, we study algorithms for SD with this
input distribution. We only consider a prime q to avoid attacks that would use
sub-fields of the alphabet field Fq.
Another problem of interest, which we call Checkable Multiple Syndrome De-
coding, is the following:

Problem 2. Checkable Multiple Syndrome Decoding CMSD(n,m,w, Y, Z)

– Input: A matrix H ∈ Fm×nq , a syndrome s ∈ Fmq .

– Goal: output the description of a function f : [Y ] → Fnq such that f is
efficiently computable, and |{e : e ∈ Im(f),He = s and wt (e) = w}| = Z.

This problem is a bit funny looking at first sight, but we are interested in it
because, in our framework, it is used as a building block for solving the generic
SD problem. It is very similar to asking for Z solutions to the syndrome de-
coding problem. Indeed, from a description f , one can output Z solutions to



SD in time Y by enumerating all the f(1), . . . , f(Y ). Reciprocally, if one can
find Z solutions e1, . . . , eZ to SD(n,m,w) in time T ≥ Z, then one can solve
CMSD(n,m,w, Y, Z) by defining f(i) = ei.

In the quantum setting, we want to have access to the function f but without
paying for a time cost of Z for writing down these solutions. That will allow
us to search over solutions more efficiently, using Grover’s algorithm, and also
justifies the slightly odd definition. Another remark is that while f should be
efficiently computable, it need not have an efficient description. Typically, f can
store some large precomputed databases, but computing f(x) will only query
the database a small number of times.

4 Information Set Decoding Algorithms for any Metric

We present Information Set Decoding algorithms for SD, which consist of a
partial Gaussian elimination followed by solving an instance of CMSD. The
description here is essentially the one from [BCDL19] with the difference that
here we use the CMSD problem.

4.1 Information Set Decoding Framework

Fix H ∈ F(n−k)×n
q of rank (n − k) and s ∈ Fn−kq . Recall that we want to find

e ∈ Fnq such that wt (e) = w and He = s. Let us introduce `, p, Y, and Z, four
parameters of the system that we consider fixed for now. In this framework,
an algorithm for solving SD(n, k, w) consists of 4 steps: a permutation step, a
partial Gaussian Elimination step, a CMSD step, and a test step.

1. Permutation step. Pick a random permutation π. Let Hπ be the matrix H

with the columns permuted according to π. We now want to solve SD(n, k, w)

on inputs Hπ and s.
2. Partial Gaussian Elimination step. If the top left square submatrix of Hπ

of size n − k − ` is not of full rank, go back to step 1 and choose another
random permutation π. That happens with constant probability.(5) If the
submatrix is of full rank, perform Gaussian elimination on the rows of Hπ

using the first n−k− ` columns. Let now S ∈ F(n−k)×(n−k)
q be the invertible

matrix corresponding to this operation. There are two matrices then, H′ ∈
F(n−k−`)×(k+`)
q and H′′ ∈ F`×(k+`)q , such that:

SHπ =

(
1n−k−` H′

0 H′′

)
.

(5) For q = 2, this happens with probability at least 0.288 and this probability increases
as q increases (see [Coo00], for example).



A vector e ∈ Fnq can be written as e =

(
e′

e′′

)
, where e′ ∈ Fn−k−`q and

e′′ ∈ Fk+`q , and one can write Ss =

(
s′

s′′

)
, with s′ ∈ Fn−k−`q and s′′ ∈ F`q.

Hπe = s ⇐⇒ SHπe = Ss

⇐⇒
(
1n−k−` H′

0 H′′

)(
e′

e′′

)
=

(
s′

s′′

)
⇐⇒

{
e′ +H′e′′ = s′

H′′e′′ = s′′
(2)

To solve the problem, we try to find a solution
(
e′

e′′

)
to the above system

such that wt (e′′) = p and wt (e′) = w − p.
3. The CMSD step. Solve CMSD(k + `, `, p, Y, Z) on input (H′′, s′′), and let f

be the output function.
4. The test step. For each i ∈ [Y ], let e′′i = f(i) and let e′i = s′ −H′e′′i . For

each i such that H′′e′′ = s′′, Equation (2) ensures that Hπ

(
e′i
e′′i

)
= s. If

wt (e′′i ) = p and wt (e′i) = w − p, ei =

(
e′i
e′′i

)
is therefore a solution to

SD(n, k, w) on inputs Hπ and s. The solution to SD(n, k, w) can then be
turned into a solution of the initial problem by permuting the indices, as
detailed in Equation (3) below. If we do not find any solution after checking
all i ∈ [Y ], we go back to step 1.

At the end of the protocol, we have a vector e such thatHπe = s and wt (e) = w.
Let eπ−1 be the vector e with the permuted coordinates according to π−1. Hence,

Heπ−1 = Hπe = s and wt (eπ−1) = wt (e) = w. (3)

Therefore, eπ−1 is a solution to the problem.

4.2 Information Set Decoding: Complexity Analysis (Classical and
Quantum)

We fix q and a weight function wt. Recall that for any n and w, the surface area
of a sphere (according to wt) of radius w in Fnq is defined as:

Snw = |{e ∈ Fnq : wt (e) = w}|.

With this definition at hand, we now present the complexity analysis of the
algorithm for solving SD(n, k, w) for fixed parameters `, p, Y, Z (see section 4.1
for more details).



Lemma 1. Let P1 be the probability that at step 4, for a fixed i, wt (e′i) = w−p.
We have:

P1 = min{1, O(
Sn−k−`w−p

max{1,min{Snwq−`, qn−k−`}}
)}.

This lemma can be seen as a generalization of Proposition 2 of [BCDL19] (where
a max was omitted) for any weight function.

Proof. Let S = {e : wt (e) = w ∧ Hπe = s} be the set of solutions to our

syndrome decoding problem on input Hπ, s. Let also S2 = {e =

(
e′

e′′

)
: wt (e) =

w ∧H′′e′′ = s′′}, where H′′ is the matrix from step 2. By definition, S ⊆ S2,
so we have that S has average size max{1, Snwq−(n−k)} and S2 has average size
max{Snwq−`, 1}.
Fix i and e′′i = f(i) satisfying H′′e′′i = s′′ and wt (e′′i ) = p. Ti ={
ei =

(
e′i
e′′i

)
: wt (ei) = w

}
. Ti is of average size Sn−k−`w−p . Step 4 will find a so-

lution if Ti ∩ S 6= ∅. Since Ti ⊆ S2 and is uniformly distributed in this set, this
happens with the following probability:

P1 = min{1, O(
|Ti||S|
|S2|

)} = min{1, O(
Sn−k−`w−p ·max{1, Snwq−(n−k)}

max{Snwq−`, 1}
)}

= min{1, O(
Sn−k−`w−p

max{1,min{Snwq−`, qn−k−`}}
)}.

We now present our generic formula for the running time of the Information Set
Decoding algorithm from Section 4.1.

Proposition 1. Fix parameters `, p, Y , and Z of the information set decoding
algorithm. The classical running time of the algorithm, TISD, is given as:

TISD = O

(
max

{
1,

1

P1Z

}
· (poly(n) + TCMSD + poly(n)Y )

)
,

where P1 is the probability from the above lemma, and TCMSD is the running
time of step 3, i.e., the time required for solving CMSD(k + `, `, p, Y, Z).

Proof. Steps 1 and 2 take time poly(n), step 3 takes time TCMSD, and step 4

takes time poly(n) for each i ∈ [Y ], hence the right part of the expression. How
many times does the algorithm loop over this process? Step 2 succeeds with
constant probability, and step 4 finds a solution with probability 1− (1− P1)

Z ,



so it loops over the steps O
(

1
1−(1−P1)Z

)
= O

(
max

{
1, 1

P1Z

})
times, hence the

result.

The quantum setting. Our formulation allows for a simple extension to the quan-
tum setting. We consider the algorithm described earlier with the following two
changes: (1) in step 4, the algorithm uses Grover’s search to check whether there
is i such that f(i) gives us a solution; (2) for each loop, i.e., each time the algo-
rithm starts from step 1, it finds a solution with probability p = Ω(min{1, P1Z}).
This loop can be made coherently with a quantum algorithm A that does not
do intermediate measurements and outputs a solution with probability p. The
algorithm then use amplitude amplification to find a solution by repeating the
loop O( 1√

p ) times.

Proposition 2. Fix parameters `, p, Y, and Z of the information set decoding
algorithm. The quantum running time of the algorithm, TQISD, is given as:

TQISD = O

(√
max

{
1

ZP1
, 1

}
·
(
poly(n) + TCMSD + poly(n)

√
Y
))

,

where P1 is the probability from Lemma 1, and TCMSD is the running time of
step 3, i.e., of solving CMSD(k + `, `, p, Y, Z).

Proof. Again, Steps 1 and 2 take time poly(n), and step 3 takes time TCMSD.
In step 4, the algorithm runs Grover’s search, so this whole step takes time
poly(n)O(

√
Y ). That can be done because the function on input i determines

whether wt (e′i) = w − p runs in polynomial time (since f runs in polynomial

time). As we described above, we repeat the loop O
(√

max
{

1
ZP1

, 1
})

times,

which gives the result.

The full ISD algorithm. To find the best ISD algorithm for solving SD(n, k, w),
we minimize the running time of the algorithm presented earlier over parameters
p, `, Y, and Z. In many cases, we do not have full control over Y and Z, which are
predetermined from other values. For instance, in Wagner’s algorithm, we present
next, there is an extra parameter a (the number of levels) that predetermines Y
and Z, so we optimize over p, `, and a.

5 Solving CMSD

This section presents our analysis of the application of Wagner’s algorithm
[Wag02] to solving CMSD(N,m0N,ω0N,Y, Z)

(6). We first present the list merg-
(6) As Wagner’s algorithm is used for solving Generalized Birthday Problem, it can be

easily seen that is well suited for solving CMSD problems, too.



ing procedure, which we utilize throughout the section, and then the two versions
of our algorithm: the first one that aims to solve the CMSD problem using classi-
cal algorithms only, and the second one that utilizes both classical and quantum
algorithms.

Notice here the change of the variables’ names when referring to the CMSD
problem. It is introduced so that our statements can be made independently of
the previous section. Notice also that the asymptotic values of the algorithms’
running times are calculated when N goes to +∞ and that when presenting a
proof, we ignore all the polynomial and constant terms.

5.1 List Merging

Let us take 3 lists of vectors in Fnq : L1, L2, and L. Take also a set J ⊆ [n] and
a random vector t ∈ F|J|q . The merging of L1 and L2 into L is done using the
following algorithm:

List merging algorithm.

– Start from an empty list L, and sort the elements of L1 according to the
lexicographic order on the J coordinates.

– For each vector y ∈ Fnq from the list L2, search for elements x ∈ Fnq of L1

that satisfy: x|J = y|J + t|J , where x|J
def
= (xj)j∈J , y|J

def
= (yj)j∈J , and

t|J
def
= (tj)j∈J . For each solution found, add x + y in L and register the

references to x and y.

Running time. Sorting L1 on J coordinates is done in time O(log(|L1|)) us-
ing dichotomic search. If there are sy solutions for a fixed y, the algorithm
takes O(sy log(|L1|)) time to find them, and the total size of L is

∑
y sy. There-

fore, the algorithm takes time Õ (|L1|) for the first step, i.e., to sort L1, and
it takes Õ (max{|L2|,

∑
i sy}) for the second step. Overall, the algorithm takes

time Õ(max{|L1|, |L2|, |L|}).

Expected number of solutions. If the elements in L1 and L2 are random vectors
in Fnq , there is, on average, |L| = |L1||L2|

q|J|
elements in the merged list.

List merging operator. To enable a succinct representation of this procedure in
the rest of the text, we define the list merge operator on a set J and random
vector t, denoted as ./tJ :

L = L1 ./
t
J L2 = {x+ y : x ∈ L1,y ∈ L2,x|J + y|J = t|J}.



5.2 First Variant

We present here an approach to solving the CMSD problem, based on Wagner’s
algorithm [Wag02], which utilizes classical algorithms only and is closely related
to the original Wagner’s algorithm.

We start from relevant definitions. For a number of levels a, where 2a|n, and for
each i ∈ [2a], we define:

Ii
def
= {b ∈ Fnq : b = (0(i−1)n/2a ,bi,0

(2a−i)n/2a) with bi ∈ Fn/2
a

q ∧wt (bi) = Nω0/2
a},

Lfi
def
= {H · b}b∈Ii

, (7)

where H is a parity check matrix, defined in Section 4.1.

The sets used for the indexing the lists in the merging procedure (as described
in Section 5.1) are chosen so that they form a partition of [n], i.e.:

∀j, j′ ∈ [a], Jj ⊆ [n],
⋃
j

Jj = [n], Jj ∩ Jj′ = ∅, when j 6= j′.

The random vectors (again, described in Section 5.1) are chosen such that they
satisfy the following constraint:

∀i ∈ [2a], ∀j ∈ [a], tij ∈ Fnq ,
∑
i

(tij)|Jj = s|Jj ,

where s|Jj refers to the syndrome, from Section 4.1, indexed by Jj .

List creation and merging. The algorithm starts by constructing 2a lists of the
same sizes: Li ⊆ Lfi , for all i ∈ [2a](8). At each algorithm’s level, the lists are
then taken by pairs, {L2i−1, L2i}, and merged using the list merging procedure
described in the previous subsection. More precisely, at the first level, the pairs
are merged on a set J1 and a random vector ti1 (i.e., ./

ti1
J1

is performed). From the
2a−1 created lists, at the second level, pairs are taken again and merged similarly
using the operator ./t

i
2

J2
, for each i ∈ [2a−2]. The same procedure continues up to

the top level, where only 2 lists remain and the list merging is performed using
./

t1a=s|Ja

Ja
. A function f , required for the CMSD problem, is then constructed

using the method described in Section 3.

(7) From the definitions, it can be easily seen that |Lfi | =
sω0
2a

.
(8) There are previous description where Li = Lfi , but the inclusion improves the algo-

rithm efficiency.



One can check that the final list created by this algorithm contains solutions to
the problem. In particular, elements of top level’s list are of the form H ·b, with
wt(b) = Nω0. That comes from the property of the weight function we use (see
Equation (1)) and the definitions given earlier in this subsection. An example of
the algorithm for a = 3, i.e., three levels algorithm, is presented below.

Fig. 1. First variant of Wagner’s based algorithm for a = 3.

Proposition 3. (9) Fix parameters m0, ω0, as well as a number of levels, a. Let
sω0

= limn→∞
1
n logq(S

n
nω0

), u = min{ sω0

2a ,m0/a}, and x = m0 − (a− 1)u. The
first variant of the algorithm on a levels solves the CMSD(N,m0N,ω0N,Y, Z)

problem in time TCMSD, where

Z = qN(2u−x+o(1)), TCMSD = qN(u+o(1)), Y = TCMSD,

and the o(1) hides an expression that goes to 0 as N goes to +∞.

(9) Notice that Y and Z in both propositions are determined by m0, ω0, and a and
cannot be chosen arbitrarily.



Proof. Let us take all bottom list Li, . . . , L2a , to be random subsets of size
qNu of Lfi , . . . , L

f
2a , respecitvely

(10). Without loss of generality, we also choose
|Jj | = u, for j ∈ [2a−1], and |Ja| = x. We thus have that Y = qNu. Furthermore,
from the merging algorithm, described earlier in this subsection, we know that
all the lists up to the top level are of size qNu, and the list at the top level
is of size qN(2u−x). As all the elements in the final list are solutions to the
original problem, we expect Z = qN(2u−x) solutions, on average. All the list
mergings take time qNu, except the last one that takes time qN(2u−x), hence
TCMSD = max(qNu, qN(2u−x)). From the proposition, we know that u ≤ m0/a

and x = m0 − (a− 1)u, which implies x ≥ m0/a ≥ u, and thus TCMSD = qNu.
Therefore, we have an algorithm that finds Z = qN(2u−x) solutions in time
TCMSD = qNu, and for Y = TCMSD = qNu.

5.3 Second Variant

Starting from the original Wagner’s algorithm [Wag02], we derive a quantum
version of it and utilize it as part of an algorithm that solves the CMSD
problem. Our results are presented in the rest of the section.

We start from relevant definitions. For a number of levels a, where 2a+1|n and,
for each i ∈ [2a − 1], we define:

Ii
def
= {bi ∈ Fnq : bi = (0(i−1)n/(2a+1), b̃i,0

((2a+1)−i)n/(2a+1))

with b̃i ∈ Fn/(2
a+1)

q ∧ wt
(
b̃i

)
= Nω0/(2

a + 1)},

Lfi
def
= {H · bi}bi∈Ii

.

For i = 2a, we let:

I2a
def
= {b2a ∈ Fnq : b2a = (0(2a−1)n/(2a+1), b̃2a)

with b̃2a ∈ F2n/(2a+1)
q ∧ wt

(
b̃2a

)
= 2Nω0/(2

a + 1)},

Lf2a
def
= {H · b2a}b2a∈I2a

, (11)

(10) Notice that limn→∞
1
N

logq |L
f
i | = limN→∞

1
N

logq S
N/2a

Nω0/2a
= 1

2a
sω0 , so we can

choose asymptotically any u ≤ sω0
2a

.
(11) From the definitions, it can be easily seen that |Lfi | =

sω0
2a+1

, for all i ∈ [2a − 1], and
|Lf2a | =

2sω0
2a+1

, for i = a.



In both cases, H is a parity check matrix, which is defined in Section 4.1.

Like in the first variant of the algorithm, the indexing sets, J1, . . . , Ja, are chosen
so that they form a partition of [n]. The random vectors, tij ∈ Fnq , for all i ∈ [2a]

and all j ∈ [a], also satisfy the same constraints as in the first variant (for more
details, see Section 5.2).

In this variant, all the bottom lists, L1, . . . , L2a−1, are of the same sizes, except
the rightmost one, L2a , which is quadratically larger than the others. We thus
change our definitions of Lfi accordingly (see definitions above). In contrast to the
first variant, the algorithm does not create the rightmost list. It instead computes
and sorts the other lists in lexicographical order on the indices of corresponding
Jj , for all j ∈ [a]. For each element of L2a , it then finds a corresponding element
(if one exists) in the top list using an efficient (quantum) routine, for example,
Grover’s search algorithm. For the rest of the lists, the algorithm use the same
merging method as in the first variant (see Section 5.2). An example of the
algorithm on three levels is presented below.

Let us now construct the function f as it is required for the CMSD problem.
First, let y1

2a , . . . ,y
Y
2a be the elements of L2a , i.e., the elements of the bottom

right list. For a fixed k, we aim to find y′1, . . . ,y
′
2a−1 that satisfy the following:

for ∀i ∈ [2a − 1], y′i ∈ Li and
∑
i y
′
i + yk2a = s. If they exist, for each i, we

find the associated bi (from the definition of Ii above) such that Hbi = y′i
and Hb2a = yk2a . If there are several such combinations, we take the first one
according to the lexicographical order. Finally, let us take ek =

∑
i bi, so that

we have Hek = s. We then define f as follows:

f(k) =

{
ek, if such a vector exists,
0, otherwise.

The function f then can be described as follows. On an input k, f takes yk2a ,
from the list L2a , and checks if it can be summed with y′2a−i from the left
neighbouring list, L2a−i, so that they appear in the solution sum. Again, if we
have several such combinations, we take any one of them, for example, the first
one in lexicographical order. The function repeats that at each level until it fails
(in which case it outputs 0), or it arrives to the top list, where it outputs the
corresponding ek.

Proposition 4. (9) Fix parameters m0, ω0, as well as a number of levels, a. Let
sω0

= limn→∞
1
n logq(S

n
nω0

), u′ = min{ sω0

2a+1 ,m0/a}, and x = m0− (a−1)u. The
second variant of the algorithm on a levels solves the CMSD(N,m0N,ω0N,Y, Z)

problem in time TCMSD, where

Z = qN(3u′−x+o(1)), TCMSD = qN(u′+o(1)), Y = qN(2u′+o(1)),

and the o(1) hides an expression that goes to 0 as N goes to +∞.



Proof. We choose lists L1, . . . , L2a−1 to be random subsets of size qNu
′
of

Lf1 , . . . , L
f
2a−1, respectively. We also choose L2a so that is a random subset of Lf2a

and that it is of size qN2u′ . Without loss of generality, we choose Jj such that
|Jj | = u′, for all j ∈ [2a−1], and |Ja| = x. We then have that Y = q2Nu

′
. After

the list merging at each level up to the top one, the new lists are of expected size
qNu

′
, except the rightmost one, at each level, that is of expected size qN2u′ . At

the top level, there is one list of the expected size qNu
′
and one of the expected

size qN2u′ . Since |Ja| = x, the expected size of the top list, that is the expected
number of solutions to be find by the algorithm, is Z = qN(3u′−x). The time
for which the algorithm finds Z solutions is calculated as follows. Constructing
and sorting the lists to compute f take time qN(u′+o(1)) (omitting the constant
multiplicative term 2a), but computing f afterwards take polynomial time, so
we finally have TCMSD = qN(u′+o(1)). The number of k such that f(k) outputs a
good solution is actually the size of Ltop, i.e., qN(3u′−x) and, since f : [Y ]→ Fnq ,
this proves our proposition.

Fig. 2. Second variant of Wagner’s based algorithm for a = 3.



Final remarks. Our ISD algorithm aims to solve an instance of CMSD(k +

`, `, p, Y, Z). That means we can use the above propositions to calculate the
asymptotic running time of the algorithm described in section 4.1. We first define
N = k + `,m0 = `

k+` , and ω0 = p
k+` , and then do the following: we plug

Proposition 3 into Proposition 1, for the classical case, and plug Proposition 4
into Proposition 2, for the quantum case. We then optimize parameters of our
ISD algorithm over k, `, and a by minimizing the algorithm’s running. From
the values of k, `, and a, we finally extract Y and Z and obtain the asymptotic
running time of the algorithm in both the classical and quantum case.

6 Computing Surface Area of a Sphere

We here rely primarily on the combinatorial approach presented in [Ast84]. Some
of the other methods are shown in more recent papers as, for example, [GS91],
[BB19], [WKH+21]. We decided to use the approach from [Ast84] as it enables
us to derive a generic method for calculating the asymptotic value of the sphere
surface area independently of the weight function and the alphabet size.

Proposition 5. Fix a parameter q, and a weight function wt′ satisfying Equa-
tion 1. Let the set C be defined as follows:

C
def
= {c = (c1, · · · , cq) : i ∈ [q], ci ∈ N,

q∑
i=1

ci = n,

q∑
i=1

ciwt
′(i) = w},

where w ∈ N, w ≤ n max
i∈{1,··· ,q}

wt′(i). The sphere surface area, and its cor-

responding asymptotic value when n gows to +∞, are given by the following
expressions:

Snw =
∑
c∈C

(
n

c

)
(12). (4)

sω = lim
n→+∞

max
c∈C

( q∑
i=1

−ci
n
logq

ci
n

)
. (5)

Proof. Let us first take a multiset of size n where elements are taken from [q], and
each element is repeated ci times, for each i ∈ [q]. The number of permutations
of such a multiset is given by the multinomial coefficient, defined as

(
n

c1,...,cq

) def
=

n!
c1!...cq !

. This number corresponds to the number of vectors consisting of c1 ones,
c2 twos, ..., cq values of q. By the definition of the set C, and the sphere surface
area, we thus have Snw =

∑
c∈C

(
n
c

)
.

(12) (
n
c

)
denotes a multinomial coefficient.



Given the classical combinatorial result for the number of multinomial coeffi-
cients for a fixed n and q, the size of a set C, and thus the number of the
elements in the sum, is upper bounded by

(
n+q−1
q−1

)
. The upper and lower bounds

of Snw are then given by max
c∈C

(
n
c

)
≤ Snw ≤

(
n+q−1
q−1

)
max
c∈C

(
n
c

)
.

Following the same line of reasoning as in [Ast84], i.e., by taking logq
of each part of the equation above, multiplying them by 1

n , where
n→ +∞, and using Stirling’s approximation we finally obtain: sω =

lim
n→+∞

maxc∈C

(∑q
i=1−

ci
n logq

ci
n

)
.

This proposition can be observed as a generalization of the combinatorial ap-
proach presented in [Ast84] for any weight function and arbitrary alphabet size.
Using the same reasoning, we calculate the asymptotic value of the sphere sur-
face area, sω, by reducing the Expression 5 to the following convex optimization
problem:

Problem 3. Let λ = (λ1, ..., λq−1), and λi ∈ R+ for each i ∈ [q].

– Maximize: −
∑q
i=1 λi logq λi,

– Subject to:
∑q
i=1 λi = 1,

∑q
i=1 λiwt

′(i) = ω.

It can be easily verified that when replacing the optimization variable λi with
ci/n from (5), the optimization problem remains convex. If we denote by
λ̃ = (λ̃0, λ̃1, ..., λ̃q−1) the solution of Problem 3, the asymptotic value of the
sphere surface area is calculated as sω = −

∑q−1
i=0 λ̃i logq λ̃i. Notice here that we

do not compute only the surface areas but also the typical weight pattern of
words of Lee weight w, i.e. the c ∈ C that maximizes the quantity in Equation
5. This is necessary if we want to use this problem in Stern’s signature scheme.

It can be shown that Problem 3 belongs to the subclass of the convex optimiza-
tion problems, namely the class of conic optimization problems [BV14]. As such,
it is susceptible to solving via MOSEK solver [ApS21], so we utilize MOSEK
as a primary computational tool. Nevertheless, to be solved via MOSEK, Prob-
lem 3 needs to be transformed so that it aligns with the standard form of conic
optimization problems, as presented in the following problem:

Problem 4. Let λ def
= (λ1, ..., λq) ∈ Rq+ and τ def

= (τ1, ..., τq) ∈ Rq+.

– Maximize:
∑q
i=1 τi,

– Subject to:
∑q
i=1 λi = 1,

∑q
i=1 λi wt

′(i) = ω, (1, λ, τ) ∈ Kexp.



where the constraint (1, λ, τ) ∈ Kexp means that τi ≤ −λi logq λi, for each
i ∈ [q].(13) It can be easily verified that Problem 3 and Problem 4 are equivalent,
hence finding a solution of either of the two yields the asymptotic value of the
sphere surface area.

7 Results

We use our framework to compare SD with the Hamming and Lee weight. For
q = 2 and q = 3, the weight functions are the same by their definitions. For q > 3,
however, our numerical results show that the asymptotic complexities of the
problem differ in these two cases and that the problem is indeed harder in the Lee
weight case. We present here the comparison of the complexities of our classical
ISD algorithm in the Lee and Hamming weight setting and in the parameter
range that is interesting from the perspective of the hardest instances of the SD
problem. It can be easily verified that the complexity of the hardest instances of
the Lee SD problem is indeed higher than that of the hardest Hamming instances.
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Fig. 3. Comparison of the Hamming and Lee SD problem: for a fixed q and R, the
exponents α s.t. T ime = 2αn are given as a function of ω∗, where ω∗ = ω in the
Hamming weight case, and ω∗ = ωbq/2c in the Lee weight case.

(13) The notation Kexp comes from the MOSEK optimizer[ApS21] and represents the
exponential convex cone.



In the rest of the analysis, we focus on the SD problem in Lee weight. The
following plot illustrates some of the numerical results we obtain.
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Fig. 4. Hardness of the Lee SD problem: The exponents α of the binary asymptotic
complexity, T ime = 2αn, of four ISD algorithms in Lee weight setting.

We observe that for any fixed q and R, the asymptotic complexity of our algo-
rithms, as a function of ω∗, has 2 local maxima: at some values ω∗− ∈ [0, x) and
ω∗+ ∈ (x, b q2c], with x = q2−1

4q
(14). Moreover, these local maxima always satisfy:

ω∗− = ω ∈ [0, x) st. sω = (1−R).(15)

ω∗+ =

{
ω ∈ (x, b q2c] st. sω = (1−R)(15) if such an ω exists
b q2c otherwise.

This characterization of the local maxima is particularly useful when aiming to
obtain the hardest instances of a problem. Namely, for a fixed q, it allows us to
find the R that yields the hardest problem and then to check only the 2 corre-
sponding weights, ω− and ω+, to obtain the hardest instance. That makes our
calculations more efficient, which becomes increasingly important as q increases
and the convex optimization part of the calculations becomes costly due to the
number of constraints in Problem 3.

(14) This value corresponds to the average Lee weight of a vector chosen uniformly at
random.

(15) In that case, we have Snw = qn−k, which is the case where we have on average 1

solution to the SD problem on random inputs H, s.



It is also important to notice here that many previous papers only consider
the case ω∗− and miss out on very interesting parameter ranges where, for the
lower values of q, the problem is typically the hardest. Nevertheless, we also
observe that as q increases, the plots become symmetric between small weight
and large weight. Therefore, we can expect that for relatively high values of
q the difference between the small and large weights would become negligible.
However, we cannot verify this claim due to the high computational cost of such
verification.

The properties we observe here hold for all ISD algorithms we consider, in both
classical and quantum settings. However, it is worth noticing that while these
seem to be a generic property of ISD algorithms, there might be other algorithms
for which these properties do not hold.

Parameters for which the problem is the hardest.

To find the hardest instances of the problem, for a given q, we rely on the
observation about the local maxima, ω∗− and ω∗+, and we optimize over R to
obtain the hardest instance. For the sake of simplicity, in Table 1, we present
only the results of the analysis of the classical and quantum Wagner’s based
ISD algorithms and remark that the other two ISD algorithms exhibit similar
behaviour.

q
Classical Wagner ISD complexity Quantum Wagner ISD complexity
R ω/bq/2c α α̂ R ω/bq/2c α α̂

3 0.370 1.000 0.269 0.170 0.369 1.000 0.148 0.093
5 0.572 1.000 0.357 0.154 0.569 1.000 0.206 0.089
13 0.480 0.957 0.522 0.141 0.501 0.962 0.283 0.076
43 0.454 0.954 0.794 0.146 0.472 0.959 0.429 0.079
163 0.442 0.967 1.117 0.152 0.464 0.971 0.607 0.083
331 0.438 0.974 1.291 0.154 0.464 0.978 0.703 0.084

Table 1. Hardest instances of Lee SD problem: the asymptotic complexity exponents,
α and α̂, correspond to the binary asymptotic complexity, T ime = 2αn, and q-ary
asymptotic complexity, T ime = qα̂n, respectively.

It can be readily verified that the complexity of a problem, expressed as
2n(α+o(1)), becomes higher as q increases. That is expected since the inputs’
size also increases, and we do not get this extra difficulty for free. If, for exam-
ple, we want to use this problem in Stern’s signature scheme, where the signature
size essentially scales with the size of q-ary vectors of size n or n−k, this increase



of the input size becomes relevant. Therefore, we propose the scaling where the
complexity is of the form qn(α̂+o(1)) instead of 2n(α+o(1)), and we refer to them
as q-ary asymptotic complexity and binary asymptotic complexity, respectively.
Observing q-ary complexity, the problem now is the hardest for q = 3. Intri-
cately, q-ary complexity diminishes and then increases again at some point as q
increases. Hence, it would be interesting to calculate the asymptotic q-ary com-
plexity when both q and n grows beyond bounds. We can also observe that while
for q = 3 and q = 5 the optimal values were for ω∗ = 1, this property does not
hold for larger q. Nevertheless, it remains in the range close to 1 (typically, in the
range (0.95, 1]). We can see, as well, that the hardest instances of the problem
occur at the mid-range code rates and, typically, in the range (0.35, 0.6).

8 Conclusion

This paper analyzes different ISD algorithms, both in the classical and quantum
regimes, for solving SD problems with varying sizes of alphabet and different
weight functions. In the numerical part of the paper, we focused on analyzing the
Hamming and Lee weight cases as representative examples of weight functions.

Our results show that, for a fixed alphabet size q > 3, the complexity of the
hardest instances of SD problem is higher in the Lee than in the Hamming weight,
as well as that the hardest instances occur at high weights. That is true both
in the classical and quantum setting. We also show that the problem remains
exponentially hard for conveniently chosen parameters both in the classical and
quantum setting for the class of the algorithms we consider. Finally, for a fixed
alphabet size, we offer a rough estimate of the parameters’ ranges for which the
SD problem in Lee weight is typically the hardest.

These results have several implications for designers that want classical
and quantum security estimates for their code-based schemes using differ-
ent weight functions as, for example, for WAVE or other recently proposed
schemes[BBC+20a]. For the quantum setting, our algorithms have almost a
quadratic improvement over the classical setting, so it is important to update
the parameters if we want to achieve quantum security.
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