
Neural-Network-Based Modeling Attacks on
XOR Arbiter PUFs Revisited

Nils Wisiol1, Khalid T. Mursi2, Jean-Pierre Seifert1 and Yu Zhuang3

1 Technische Universität Berlin {nils.wisiol,jean-pierre.seifert}@tu-berlin.de
2 College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi

Arabia; kmursi@uj.edu.sa
3 Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA;

yu.zhuang@ttu.edu

Abstract. By revisiting recent neural-network based modeling attacks on XOR Arbiter
PUFs from the literature, we show that XOR Arbiter PUFs and Interpose PUFs can
be attacked faster, up to larger security parameters, and with orders of magnitude
fewer challenge-response pairs than previously known.
To support our claim, we discuss the differences and similarities of recently proposed
modeling attacks and offer a fair comparison of the performance of these attacks by
implementing all of them using the popular machine learning framework Keras and
comparing their performance against the well-studied Logistic Regression attack.
Our findings show that neural-network-based modeling attacks have the potential to
outperform traditional modeling attacks on PUFs and must hence become part of
the standard toolbox for PUF security analysis; the code and discussion in this paper
can serve as a basis for the extension of our results to PUF designs beyond the scope
of this work.
Keywords: Physical Unclonable Function · Strong PUFs · Machine Learning ·
Modeling Attacks · XOR Arbiter PUF

1 Introduction
In all cryptographic applications deployed today, what distinguishes the legitimate user from
an adversary is the knowledge of the secret keys, which are found anywhere cryptography
is used, including in computers of microscopic scale embedded in digital door keys, credit
cards, and passports. As cryptography became more ubiquitous, gaining access to the
secret key itself became an important attack strategy, as the revealed secret key causes
the security guarantees of the employed scheme to collapse.

To mitigate such attacks, a branch of research on Physically Unclonable Functions
(PUFs) emerged [PRTG02], where the difference of the legitimate user and adversary is not
defined by knowledge, but by possession of a physical object. The physical object, called
PUF token, is assumed to exhibit highly individual physical behavior when prompted with
a physical stimulus such as a electrical signal or leaser beam. Further, it is assumed to be
physically unclonable, meaning that it is inherently impossible to produce two identical
tokens. The envisioned secret-free cryptography shall be based on this unique response
behavior of each individual unclonable token.

While such PUF-based, secret-free cryptography is by definition immune against attacks
that recover any secret key, adversaries may be able to study the individual behavior of a
PUF token and extrapolate it using a mathematical model, in which case it is impossible
for a remotely connected party to tell the original PUF token and mathematical model

mailto:{nils.wisiol,jean-pierre.seifert}@tu-berlin.de
mailto:kmursi@uj.edu.sa
mailto:yu.zhuang@ttu.edu


2 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

apart. If such modeling attacks succeed, the security of any cryptographic application
would collapse, just like in the case of a leaked secret key.

An important tool to launch modeling attacks ismachine learning, a highly parameterized
approach to create predictions from observed data by using specialized algorithms. In
the past two decades, machine learning has emerged as the tool of choice for the security
analysis of PUFs [GLC+04, RSS+10], where an attacker attempts to create a model
of a PUF token which, if successful, can be used to predict PUF responses with high
accuracy. Studies on modeling attacks hence represent an essential part of research on
PUFs and secret-free cryptography. With the growing popularity in both science and
industry as well as the rapid development of machine learning software frameworks such
as Tensorflow/Keras or Torch, we expect this to remain the case for the foreseeable future.

Traditionally, machine-learning-based modeling attacks on strong PUFs have been based
on the optimization of the parameters of a physically motivated model of the strong PUF1.
More recently, this approach was complemented by a modeling attack methodology based
on general models not derived from physical insights [YMIS16, MZAA19, AZA18, MTZ+20,
SLPC19, WMP+20] and models that are extensions of a physical model [SLPC19]. As
such attacks naturally do not require exact modeling of the PUF under attack, they allow
for rapid testing of PUF design ideas. Consequently, using general neural networks such
as the multilayer perceptron as an analysis tool for strong PUF design has found some
adoption.

For example, in a recent modeling attack on the Interpose PUF by Wisiol et al.
[WMP+20], the authors used such general models to demonstrate that also slight variations
of the PUF under attack are not promising candidates for a secure strong PUF. In another
modeling attack study, Santikellur et al. [SBC19] use a multilayer perceptron approach
to study the security of the MPUF, cMPUF, rMPUF, Lightweight Secure PUF, XOR
Arbiter PUF, and Interpose PUF. The authors of the SCA-PUF [ZXSO20] show that
their proposed design is more resilient than an XOR Arbiter PUF with respect to attacks
based on neural networks. In the security analysis of their novel PUF design based on a
subthreshold voltage divider array, Venkatesh et al. [VVXS20] provide a failed modeling
attack using a multilayer perceptron as evidence for the security of their proposal.

The quick advancement and rising popularity in modeling attacks based on neural
networks raise questions regarding the significance of the results obtained using such general-
purpose models. To estimate a PUF design’s security level, it is particularly important to
know, first, how the data and time complexity of general neural-network-based attacks
relate to more specialized physical-model-based attacks, second, how the chances of success
of these two types of attacks relate, and, third, how the various hyperparameters of such
attacks need to be configured.

In this work, we answer the above questions with respect to the XOR Arbiter PUF, an
electrical PUF design that is commonly used in PUF research as a baseline for comparison
or as a building block for novel PUF designs. With the contributions of this work, other
researchers are enabled to conduct similar analyses for other PUF designs. In more detail,
our contributions are:

1. We show that XOR Arbiter PUFs can be attacked faster, up to larger security
parameters, and with orders of magnitude fewer challenge-response pairs than
previously known by using generic neural networks, even if the implementation gives
reliable responses. We thereby show that neural networks are an essential tool in
PUF security analysis and falsify statements of Nguyen et al. [NSJ+19] made at
CHES 2019.

2. We show that our results reduce the data complexity of the Splitting Attack on
1A notable exception is the modeling of Bistable Ring PUFs without any model assumptions by Ganji

et al. [GTFS16].



Wisiol et al. 3

the Interpose PUF, thus demonstrate that the improved performance of neural-
network-based attacks has implications beyond the security of the XOR Arbiter PUF
itself.

3. We replicate three neural-network-based attacks and the physical-model-based
Logistic Regression attack on XOR Arbiter PUF from the literature and provide an
exhaustive and fair comparison of their performances. We overview and summarize
all four attacks, discussing differences and similarities, and justify design choices.

4. We falsify a recently claimed very low data complexity of XOR Arbiter PUF modeling
attacks [MTZ+20].

5. We provide a comprehensive, unified, and easy-to-use Python implementation of
all attacks in this work under an open-source license at https://github.com/
nils-wisiol/pypuf/tree/2021-mlp, integrated in the pypuf framework [WGM+21].

This paper is organized as follows. In the next section, we give an overview on work
that relates to modeling attacks on XOR Arbiter PUFs and modeling attacks using neural
networks. In Sec. 4, we discuss and evaluate the Logistic Regression attack as a baseline for
comparison of attacks in this work. In Sec. 5, 6, and 7, we replicate neural-network-based
attacks from the literature and discuss design choices as well as attack performance, with
a comparison of the attacks given in Sec. 8. We draw conclusions and discuss future work
in Sec. 9.

2 Related Work
The security analysis of PUFs is not limited to modeling attacks based on machine learning,
and not limited to the attacker model used in this work.

For XOR Arbiter PUF, the state-of-the-art attack operates on information about the
reliability with respect to a given challenge, i.e., on information about the probability that
the PUF token will produce the same response when given the same challenge [Bec15].
Given this information, the data complexity of the modeling of XOR Arbiter PUFs is
drastically reduced, even compared to the results of neural-network-based attacks in this
work. Recently, Tobisch et al. demonstrated that this attack methodology can be extended
to other PUF designs and launched an attack on the Interpose PUF [TAB21]. Chatterjee
et al. [CCMH21] used a reliability-based attack to show that the security level of the
S-PUF is drastically reduced within this attacker model.

In contrast to the generic approaches used in this work, highly specialized attacks
based on machine learning are also an essential part of the security analysis of PUFs, as
demonstrated by Delvaux [Del19] in a collection of five attacks on PUFs with accompanying
lightweight obfuscation logic.

Another branch of security analysis of PUFs uses provable methods in the PAC
framework. In certain cases, this can be done without using a physically inspired model
[GTFS16], which relates to the application of generic neural networks in this work. Recently,
a semiautomated approach for analysis was proposed [CMH20].

Provable techniques have also been used by PUF designers to show a design to be secure,
such as a proposal to disallow the attacker from querying a large number of challenges
[YHD+16] or by basing the security of the PUF on a commonly used cryptographic
hardness assumption [HRvD+17]. These approaches, however, require to enlarge the
trusted computing base, which increases the attack surface of physical attacks.

Despite the ongoing setbacks in the design and implementation of secure PUFs, there
is also some research on PUF implementations with respect to the security against side-
channel information. Tajik et al. [TDF+14] attacked an Arbiter PUF implementation

https://github.com/nils-wisiol/pypuf/tree/2021-mlp
https://github.com/nils-wisiol/pypuf/tree/2021-mlp


4 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

using photonic emission analysis, confirming the accuracy of the delay-based Arbiter PUF
model as a byproduct. More recently, Aghaie and Moradi [AM20] proposed a general
technique to protect PUF implementations against attacks based on power side channel
analysis.

3 Preliminaries
3.1 Additive Delay Model
n-bit k-XOR Arbiter PUFs [GLC+04, SD07] can be modeled using Boolean functions
f : {−1, 1}n → {−1, 1} parameterized by real values W ∈ Rk×n and b ∈ Rk, where the
response to a challenge c ∈ {−1, 1}n is given by

f(c) = sgn
k∏

l=1
(〈Wl, x〉+ bl) .

In this setting the feature vector x ∈ Rn is a function of the given challenge c defined by
xi =

∏n
j=i cj . The parameterization W , called weights in this work, represents the physical

intrinsics of a particular PUF token. This model is commonly referred to as the additive
delay model. A physical motivation, derived from the intrinsic delay values of a Arbiter
PUF circuit, can be found in Appendix A.

In the case of Arbiter PUFs, i.e., k = 1, the additive delay model can be understood
as a hyperplane in n dimensions, dividing the edges of the Boolean cube {−1, 1}n (and,
by extension, Rn) into two regions labeled by the -1 and 1 responses of f . The boundary
between the two regions is a linear, or in case of nonzero bias, affine subspace of Rn. In
this sense, the model can be understood as linear. In an XOR Arbiter PUF, the decision
boundary in Rn becomes more complex, hence adding XOR operations increases the
nonlinearity of the model.

This linearity of the Arbiter PUF model is also the motivation of using the feature
map xi =

∏n
j=i cj . Without it, the decision boundary cannot easily be represented as a

hyperplane in Rn. This, however, is a prerequisite for the successful application of the
Logistic Regression attack [RSS+10] (cf. Sec. 4).

All modeling attacks in this work are based on simulated challenge-response data,
instead of real-world data obtained from physical implementations of Arbiter PUFs. The
reason for this is twofold. First, security analysis with a focus on the PUF design should
be done on ideal data, i.e., without regard to the properties of a specific implementation.
The implementation’s security should be studied separately in case the security analysis of
the ideal primitive is promising. Second, while FPGA implementations of Arbiter PUFs
suffer from known weaknesses, ASIC implementations are expensive and are well known to
behave very closely as predicted by the additive delay model [DV13, TDF+14].

For the modeling of noise, we rely on the model by Delvaux et al. [DV13]. In this
model, for each evaluation of the PUF, a Gaussian noise value with zero mean is added to
the delay difference of the two delay lines in the Arbiter PUF. That is, the Arbiter PUF
response is modeled as

f(c) = sgn (〈W,x〉+ b+N) ,

where N is chosen from a Gaussian distribution with zero mean and defined variance,
W ∈ Rn and b ∈ R model the Arbiter PUF physical properties, and x ∈ {−1, 1}n is the
feature vector corresponding to the given challenge c (see above and Appendix A). This
model extends to k-XOR Arbiter PUFs by drawing k independent noise values.

To measure how the noise influences the behavior of the PUF, we define the reliability
of the PUF as the expected value over the challenge space that the PUF will return the



Wisiol et al. 5

c1 = 1

c2 = −1

cn−1 cn

f(c)

(a) Schematic of an Arbiter PUF with n-bit
challenge c (represented with bit values from
{−1, 1}) and final response f(c).

⊕c1 = 1

c2 = −1

cn−1 cn

c1 = 1

c2 = −1

cn−1 cn

f(c)

(b) Schematic representation of a 2-XOR
Arbiter PUF with n-bit challenge c and final
response f(c).

Figure 1: Schematics of Arbiter PUF and XOR Arbiter PUF.

same response when given the challenge twice in independent evaluations,

reliability(f) = E
c

[
f (1)(c) = f (2)(c)

]
,

where f (1)(c), f (2)(c) are independent evaluations of the PUF token.
Given this definition, we can adjust the variance of the noise such that the reliability

of our simulation reaches a certain value.

3.2 Attacker Model
The standard attacker model for PUFs is based on the promise of increased hardware
security of PUF tokens, compared to the traditional approach of cryptographic hardware
extended by secure key storage. Hence, in the standard PUF attacker model, the adversary
gets physical access to the PUF token for some limited amount of time, allowing them
to collect a large number of challenge response pairs. (During that time, also hardware
attacks are allowed, but not studied in this work.)

Given this attacker model, XOR Arbiter PUFs and Interpose PUFs can be attacked
using information that is exposed by the per-challenge reliability, which the attacker can
recover by evaluating a challenge multiple times [Bec15, TAB21].

In this work, however, we consider the weaker attacker model introduced in the works
that we replicate, where the passive attacker only gets access to a large collection of
uniformly random challenges and the corresponding responses of the PUF. While this is, in
general, an unjustified restriction of the PUF attacker model, it is equivalent to a situation
where the reliability information of the PUF under attack is either not available or not
useful, which is the case for many novel PUF designs. Thus, the passive attacker model
serves an appropriate basis for our argument that neural-network-based modeling attacks
should become part of the standard security analysis of PUFs.

3.3 Methodology
To provide a fair comparison of the properties of four different machine learning modeling
attacks on XOR Arbiter PUFs, in this work, we reimplemented all attacks using the
popular Keras framework and ran all experiments on the same CPU. As the attacks run,
compared to previous works, relatively fast, we focus our attention on the comparison of



6 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

the data complexity, i.e., how much training data is required to obtain good modeling
predictions.

In this work, we do not report the exact accuracy metrics of prediction quality for
several reasons. First, the attacks that we study do not yield intermediate results when
correctly parameterized, i.e., the attacks end either with accuracy 50% or close to 100%.
Additionally, we observed that high-accuracy results can be further improved by letting
the training continue for a couple more epochs. Second, to impersonate a PUF token, no
extremely high accuracy is needed, and any prediction accuracy significantly better than
50% should be considered a security weakness of the PUF design [Del19]. Hence, instead of
prediction accuracy, we report the attack success rate, i.e., the proportion of independently
run attacks on independent PUF simulations that yielded prediction accuracy greater
than 90%. Given that virtually all successful attacks yielded accuracy 95% or better and
virtually all unsuccessful attacks yielded accuracy 55% or below, the success rate is very
insensitive to the exact choice of this threshold.

To make our work reproducible, we seed all involved random number generators with
defined values.

4 Baseline: Improved Logistic Regression Attack
In this work, we compare three neural network modeling attacks against the commonly
used Logistic Regression (LR) attack by Rührmair et al. [RSS+10] on XOR Arbiter PUFs.
The LR attack has become an important tool for the security analysis of delay-based PUFs
and is used in a large number of different works, including in the recent proposal of the
Interpose PUF [NSJ+19] and an attack on it [WMP+20]. As such, we use the results
obtained with the LR attack as a baseline for comparison in this work.

The LR attack is based on a physical model of the Arbiter PUF, which can be
represented as a hyperplane in n-dimensional space by converting a given challenge into
an appropriately chosen feature vector. A physical motivation for the feature vector used
in this and previous works can be found in Appendix A; if the Arbiter PUF uses any logic
to transform the challenge before applying it to the delay paths, this needs to be taken
into consideration as well. This Arbiter PUF model was extended to the XOR Arbiter
PUF using the observation that the XOR operation can be written in a differentiable way
by representing the Arbiter PUF response values by −1 and 1 and the XOR operation
with the real product of these values.

A large-scale study of Tobisch and Becker [TB15] determined training set sizes for the
LR attack that yield optimal results, i.e., have the lowest training times, and minimal
training set sizes, for which the attack was observed to work at least once, which we
confirmed and will use for comparison. To provide for a fair comparison with the neural
network attacks, we reimplemented the LR attack in the Keras machine learning framework.
Differences in performance hence may not only be caused by the usage of different CPUs,
but also by optimization differences in the implementations. Nevertheless, we obtain the
same number of required CRPs, which indicates that our implementation behaves similar
to the one of Tobisch and Becker.

To increase the training performance of the LR algorithm, we modified some details.
First, to reduce the number of epochs required for training, we introduced the usage of
mini batches, where the network is updated with the gradient not only after evaluating the
complete training data, but several times in each epoch. This allows for faster convergence,
but one must be careful to not choose the batch size too small. Too small batch sizes can
lead to noisy gradient values, which will in turn perform unhelpful updates on the network.

Second, we use Adam optimizer [KB17] instead of the originally used resilient backpro-
pagation, as the later works poorly together with the use of mini batches.

Third, we apply the tanh activation function to each of the k delay values computed



Wisiol et al. 7

Table 1: Empirical results on learning simulated XOR Arbiter PUFs obtained using our
Keras-based implementation of the LR attack. Reference values of Tobisch and Becker
[TB15] use up to 16 cores. (? Result obtained using a different number of CRPs.)

n k CRPs success rate duration (max. threads) memory [TB15]
64 4 30k 10/10 <1 min @ 4 <1 min
64 5 260k 10/10 4 min @ 4 <1 min
64 6 2M 20/20 <1 min @ 4 1 min
64 7 20M 10/10 3 min @ 4 55 min
64 8 150M 10/10 28 min @ 4 391 min
64 9 500M 7/10 14 min @ 40 132 GiB ?2266 min
64 10 1B 6/10 41 min @ 40 197 GiB -

by the respective arbiter chains, i.e. we change the model function from

fLR(c) = tanh
(

k∏
l=1

(〈Wl, x〉+ bl)
)

to f ′LR(c) = tanh
(

k∏
l=1

tanh (〈Wl, x〉+ bl)
)

This change was motiviated by the observation that in the traditional LR network, a single
arbiter chain can have large influence on the absolute value of the final output. However,
in the electrical circuit, no analogon to the absolute value exists. Instead, XOR Arbiter
PUF model weights can be scaled using positive scalars without affecting the computed
function. We speculate that different influences can hamper the training process, as weight
updates during backpropagation may be applied predominantly to influential arbiter chains.
Applying the tanh function ensures a more equalized influence of all arbiter chains on the
final output.

Even though our version of the LR attack technically does not fulfill the definition of
logistic regression anymore, we will refer to this version as the improved LR attack. A
sketch of the network structure used in the attack is displayed in Fig. 3d.

Using our Keras-based implementation together with these improvements, we could
increase the performance of the LR algorithm (with respect to wall clock time), which
is summarized in Tab. 1. We found that the largest proportion of the performance gain
is due to Keras, which allows for optimized and highly parallel computing, and to a
smaller extent due to our improvements. Similar to the attacks based on neural networks
shown below, performance of the improved LR attack crucially depends on the choice of
hyperparameters, in particular on a good combination of learning rate and batch size. The
number of required epochs is also heavily influenced by any early stopping logic, which may
depend on the validation accuracy or loss. We thus expect that the wall-clock performance
and the number of required epochs can be further reduced, e.g., by using a systematic
approach to find optimal hyperparameters. On the other hand, we expect that for the LR
attack, the data complexity cannot significantly be reduced by hyperparameter tuning.

Our numbers confirm once more [RSS+10, WMP+20] that the LR attack requires a
number of CRPs in the training set that grows exponentially with the number of employed
XORs in the target XOR Arbiter PUF. In Fig 4, we show the required training set size.
Based on a fitted function k 7→ α · ek using the least squares method, we predict the
number of required CRPs for k = 10 is 1.3 billion, for k = 11 is 3.6 billion, and for k = 12
is 1012.

5 Tensor Regression Network Attack by Santikellur et al.
To reduce the computational effort for modeling attacks on XOR Arbiter PUFs, Santikellur
et al. [SLPC19] proposed to use an efficient CP-Decomposition Tensor Regression Network



8 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

(ECP-TRN), which is parameterized by an integer rank R. To model an k-XOR n-bit
Arbiter PUF, the proposed model computes the function

f(x) = sgn
[

R∑
i=1

(
αi ·

k∏
l=1
〈wi,l, x〉+ bi,l

)]
,

where wi,l ∈ Rn and bl,i ∈ R. A drawing of the network structure is shown in Fig. 3c. Due
to the highly parallel structure of the network, the approach may benefit from performance
improvements during training. The parameters to be trained are αi, i ∈ {1, . . . , R}
and wl,i, bl,i, l ∈ {1, . . . , k}, i ∈ {1, . . . , R}. Hence, there are nkR + kR + R trainable
parameters.

Given this network structure, the network can be understood as an approach that
trains R XOR Arbiter PUF models in parallel. The final response of the model is then
computed as the weighed sum of the R model outputs, then the sign of the response is
returned. After the training completes, the network is filled with R sets of XOR Arbiter
PUF weights, which raises the question how the individual prediction accuracy differs from
the overall prediction accuracy reported by Santikellur et al.

For our experiments operating on simulations of 4, 5, and 6-XOR Arbiter PUFs with
64-bit challenge lengths, we found that in all successfully trained networks, exactly one of
the R trained models showed high correlation with the simulation weights, whereas the
other R − 1 had no correlation. This finding was confirmed by the prediction accuracy:
R − 1 of the models in the successfully trained network had an individual prediction
accuracy of around 50%, whereas exactly one had high prediction accuracy. Using the
single model allowed for even higher prediction accuracy than using the fully trained
network, as the noise of the R − 1 low-correlation models is removed. We can conclude
that the R-rank model of the ECP-TRN does not provide benefits over the 1-rank model.

As the final response of the ECP-TRN network is computed as the weighed sum of
the R individual model responses, the individual models influence each others training
process through the backpropagation algorithm. To examine if this interdependency during
training provides an advantage to the modeling attack, we run many attack attempts on a
single PUF under attack, i.e., we restart the training process with different initializations of
the model, while keeping the PUF simulation and CRP set constant. In the case of many
attack attempts, the training of each attempt is independent of the training process of the
other attempts, above-mentioned interdependency is removed. This allows us to compare
the performance metrics of rank R ECP-TRN attacks using a single attack attempt versus
rank 1 ECP-TRN using R attack attempts. The results are displayed in Tab. 2.

In none of the cases that we studied, we found that the training of a rank R ECP-TRN
did not surpass the success rate of just running R independent learning attempts using a
rank 1 ECP-TRN.

Unfortunately, we were not able to replicate the ECP-TRN results of Santikellur et
al. [SLPC19] exactly as published in the original paper. While the 64-bit 4-XOR case
could be replicated, our experiments for 5-XOR and 6-XOR required significantly more
CRPs for reliable convergence than originally claimed. For 7-XOR and larger, we failed to
achieve any success using the proposed high-rank model. We suspect that the reason for
the larger requirement of CRPs is either caused by the different behavior of Keras internals
compared to the original Tensorflow v1 implementation, or, considered more likely, by
some differences in CRP generation. We further discuss this in Sec. 8 and 9.

6 Multilayer Perceptron Attack by Aseeri et al.
After an attack on 3-XOR 64-bit Arbiter PUFs by Yashiro et al. [YMIS16] using a neural
network with autoencoders and an attack by Alkatheriri et al. [AZ17] on Feed-Forward



Wisiol et al. 9

Table 2: Comparing single-attempt attacks using rank R ECP-TRN versus R-attempt
attacks using rank 1 ECP-TRN. Our results indicate that the training of the ECP-TRN
does not benefit from interaction of the models; but gives some indication to the contrary.
Compared to the figures of Santikellur et al. [SLPC19], in some cases we increased the
number of CRPs to obtain any successful results.

[SLPC19] our attempts total run
n k CRPs CRPs R per run runs success rate
64 4 40k 40k 1 5 10 100%
64 4 40k 40k 5 1 10 100%
64 5 80k 320k 1 10 10 90%
64 5 80k 320k 10 1 10 90%
64 6 400k 800k 1 10 10 80%
64 6 400k 800k 10 1 10 80%
64 7 800k 800k 1 100 5 20%
64 7 800k 800k 1000 1 4 0%

Arbiter PUFs using a multilayer perceptron, Aseeri et al. [AZA18] were the first ones to
attack XOR Arbiter PUFs of large size using neural networks.

While much of their work focused on the fact that their version of the modeling
attack can be run on a regular laptop computer, i.e., on a machine without GPU, but
with limited memory and just using a single core of a consumer CPU, their attack also
achieves a significant reduction in both time and data complexity, compared to the then
state-of-the-art LR attack by Tobisch and Becker [TB15].

Unfortunately, the source code of this attack was not immediately available after
publication, and some attempts to replicate the work failed [SBC19]. This may be the
reason this work so far found little attention within the PUF community and was not
sufficiently considered in the security analysis of the Interpose PUF [NSJ+19].

The original implementation of this attack was done using scikit learn. As part of our
comparison of neural network attacks, in this work, we reimplemented the network used
by Aseeri et al. using the Keras machine learning framework and were able to replicate all
of their results. An overview of our replicated results can be found in Tab. 3, including
an extension to the 64-bit 9-XOR and 128-bit 8-XOR cases. While the original figures
strictly use single-core performance on a consumer CPU, we used up to 40 cores in parallel.
To allow for comparison, we include an estimation of the single-core performance of our
implementation by multiplying the measured wall clock time with the maximal number
of threads our experiment allowed. This overestimates the time required by our attack,
especially for cases where multi-threading allows only for little speedup, i.e., for small
training sets.

Aseeri et al. did not include arguments for the specific hyperparameter settings they
used in their attack. We include a discussion of the multilayer perceptron hyperparameters
in 7. A comparing overview can be found in Tab. 5; a drawing of the network can be
found in 3a.

7 Multilayer Perceptron Attack by Mursi et al.

7.1 Neural Network used by Mursi et al.
In follow-up work to Aseeri et al. [AZA18] and Santikellur et al. [SBC19] (not to be
confused with the ECP-TRN model), Mursi et al. [MTZ+20] presented an enhancement of



10 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

Table 3: Extended results on learning simulated XOR Arbiter PUFs obtained using our
Keras-based implementation of the multilayer perceptron attack by Aseeri et al. [AZA18].
?To allow for comparison with the original figures, we computed an approximation of
the duration using a single core. The performance loss is caused by the lower single-core
performance of our CPUs (Intel Xeon E5-2630 v4) compared to Aseeri et al.’s (Intel Core
i7). All of our experiments use up to 40 threads; Aseeri et al. used only one.

success single core duration
n k CRPs rate duration memory this work? [AZA18]
64 4 400k 10/10 <1 min <1 GiB 11 min <1 min
64 5 400k 10/10 <1 min <1 GiB 17 min <1 min
64 6 2M 9/10 <1 min 1 GiB 8 min 7 min
64 7 5M 9/10 <1 min 2 GiB 20 min 12 min
64 8 30M 10/10 3 min 8 GiB 102 min 23 min
64 9 80M 9/10 86 min 29 GiB 3438 min -

128 4 400k 10/10 <1 min <1 GiB 17 min 1 min
128 5 3M 10/10 <1 min 2 GiB 33 min 5 min
128 6 20M 10/10 <1 min 10 GiB 28 min 19 min
128 7 40M 10/10 5 min 20 GiB 181 min 90 min
128 8 100M 1/10 45 min 50 GiB 1813 min -

the multilayer perceptron XOR Arbiter PUF modeling attack, claiming to reduce the data
and time complexity of XOR Arbiter PUF modeling attack by several orders of magnitude.
We falsify their empirical results, but show that their attack still requires fewer CRPs than
other response-based XOR Arbiter PUF modeling attacks. Consequently, we are able to
demonstrate that XOR Arbiter PUFs can be attacked up to higher security parameters
than previously known, posing a challenge to implementors who need to keep the noise
low enough to allow for the fabrication of XOR Arbiter PUFs with such large security
parameters.

To attack a n-bit k-XOR Arbiter PUF, Mursi et al. propose to use a neural network
that consists of three fully connected hidden layers of sizes 2k−1, 2k, 2k−1. We depict such
a network in Fig. 3b. By its design, this model uses fewer trainable parameters than the
MLP-approach by Aseeri et al. and the high-rank approach by Santikellur et al., which
can benefit training. Nevertheless, it uses orders of magnitude more parameters than the
traditional LR attack. For example, in the attack of a 64-bit 9-XOR Arbiter PUF, LR
uses 585 trainable parameters, while the MLP attack in this section uses 66,560.

Mursi et al. also use the tanh activation function for the hidden layers, compared to
the usage of ReLU by Aseeri et al. We surmise that this benefits training of the network as
it enables weight update for neurons that compute a negative value. While Santikellur et
al. [SBC19] argue that tanh suffers from the vanishing gradient problem, the successful use
of tanh in the MLP attack can be explained by the relatively shallow three-layer structure
of the neural network, which makes the vanishing gradient problem unlikely to appear
[MTZ+20]. A detailed comparison of hyperparameters as used in the different attacks
showed in this paper can be found in Tab. 5.

7.2 Replication and Results
To make the various neural-network-based attacks comparable, we reimplemented the
attack by Mursi et al. using the Keras machine learning framework and found that their
results could not be replicated. The difference in attack performance of our implementation
and the original could be traced back to a bug in the CRP generator used by Mursi et al.,
which was based on a simulation of the delays. For each PUF instance, 4n delays were



Wisiol et al. 11

supposed to be drawn independently from a Gaussian distribution with mean 300 and
variance 40; given a challenge, the delay difference can then be computed and converted
into the PUF response. Due to the bug, about 20% of the randomly drawn delays were
inadvertently set to zero. This was difficult to notice from the CRP data, as the bias was
hardly influenced and the MLP-based attack does not recover the simulation delays or
weights, but a neural network that is hard to be interpreted.

To study the attack by Mursi et al., we use our reimplementation of the neural network
attack and the pypuf CRP generator [WGM+21] used throughout this work and in a
recent LR-based attack on the Interpose PUF [WMP+20]. The CRP generation is, for
performance reasons, based on the equivalent approach of using weights instead of delays.
(For a formal proof and how to convert delays and weights, see Appendix A). We found
that while the attack performance reported by Mursi et al. significantly benefited from
the faulty CRP generation, the results obtained on valid CRPs still improve on the LR
attack in terms of data complexity by an order of magnitude, with increasing advantage
for an increasing number of XORs, cf. Fig. 4. We also observed an improvement in run
time. Detailed results are reported in Tab. 4.

For challenge lengths 128 and 256, we found that the data complexity grows fast with
the number of XORs. Nevertheless, for 128 bit challenges, it remains below the figures that
Tobisch and Becker [TB15] reported for the LR attack; for 256 bit challenges we could not
find numbers in the literature to compare to. However, the LR attack is known to have
polynomially increasing data complexity in the challenge length [WMP+20]. The steeply
increasing required number of CRPs of the MLP attack could be caused by an inherent
effect of the XOR Arbiter PUF structure, or by a mismatch of hyperparameters or neural
network structure on the model. Considering everything, we conclude that there is no
evidence that increasing the challenge length will be an effective defense against modeling
attacks and let this question open to be studied in case sufficiently large XOR Arbiter
PUFs can be built.

In light of the reduced data complexity, we come to the conclusion that a model with
far more trainable parameters is able to outperform a model with fewer model parameters,
which falsifies the claim by Nguyen et al. that the LR attack is the best performing among
the XOR Arbiter PUF attacks [NSJ+19].

As a byproduct of our replication of the attack, we find that a relatively small proportion
of zero-valued delays in the XOR Arbiter PUF can lead to a large loss of data complexity for
the modeling attack. With this in mind, implementors of PUFs should treat any significant
deviation from simulation-based attack results on real-world data with additional scrutiny
on the validity of their implementation. In future security analyses of PUFs, the detailed
validity of the simulation in use needs to be established, otherwise the analysis could over-
or underestimate the PUF’s security. Such validation is especially challenging when using
generic models such as the MLP for modeling attacks. However, in case of the Arbiter
PUF, several independent results confirming the validity of the additive delay model exist
[GLC+04, TDF+14, DV13].

7.3 Hyperparameter Optimization
As a technical note, we found it difficult to configure the hyperparameters of the attack by
Mursi et al. While the processing of the training data in mini batches provides benefits
regarding the run time, and thus the development of the attack, it also requires to adjust
the learning rate appropriately. In Fig. 2 we report the success rate of MLP-based
attacks on 4-XOR 64-bit and 8-XOR 64-bit for a large variety of different configurations of
learning rate and batch size, showing that only an appropriate combination of those two
hyperparameters will yield a successful attack. We speculate that on the one hand, for high
learning rates on small batches, the gradient direction is too noisy to yield a meaningful
update to the model, and on the other hand, that for low learning rates on large batches



12 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

0.
00

01

0.
00

02

0.
00

05

0.
00

1

0.
00

2

0.
00

5

0.
01

0.
02

0.
05 0.

1

0.
2

0.
5

1.
0

learning rate

10
20

100
200
500

1000
2000
5000

10000
20000
50000

bl
oc

k 
siz

e
41% 53% 63% 68% 52% 11% 0% 0% 0% 0% 0% 0% 0%
33% 48% 60% 64% 69% 19% 0% 0% 0% 0% 0% 0% 0%
12% 31% 51% 56% 60% 66% 39% 3% 0% 0% 0% 0% 0%
6% 19% 46% 55% 59% 63% 55% 26% 0% 0% 0% 0% 0%
3% 10% 35% 48% 56% 56% 59% 50% 3% 0% 0% 0% 0%
0% 8% 24% 43% 49% 54% 52% 44% 31% 0% 0% 0% 0%
0% 1% 14% 33% 46% 49% 44% 33% 36% 21% 0% 0% 0%
0% 1% 6% 17% 34% 39% 29% 22% 5% 4% 0% 0% 0%
0% 0% 4% 19% 34% 30% 27% 16% 3% 0% 0% 0% 0%
0% 0% 3% 7% 19% 28% 19% 16% 3% 0% 0% 0% 0%
0% 0% 0% 5% 7% 6% 5% 4% 1% 0% 0% 0% 0%

(a) 4-XOR Arbiter PUF, 50k CRPs, 100+ runs
each

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 0.002 0.005
learning rate

500
750

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
20000
50000

bl
oc

k 
siz

e

40% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 60% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 40% 30% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 20% 50% 40% 10% 0% 0% 0% 0% 0% 0% 0%
0% 0% 40% 60% 60% 50% 0% 0% 0% 0% 0% 0%
0% 0% 20% 50% 60% 50% 40% 20% 0% 0% 0% 0%
0% 0% 20% 40% 40% 60% 60% 40% 30% 10% 0% 0%
0% 0% 0% 30% 50% 40% 60% 50% 50% 20% 0% 0%
0% 0% 0% 30% 50% 60% 50% 60% 60% 40% 0% 0%
0% 0% 0% 0% 50% 50% 50% 70% 60% 60% 0% 0%
0% 0% 0% 10% 40% 40% 50% 60% 60% 50% 0% 0%
0% 0% 0% 0% 0% 0% 30% 30% 30% 40% 60% 0%
0% 0% 0% 0% 0% 0% 0% 0% 10% 10% 30% 10%

(b) 8-XOR Arbiter PUF, 6M CRPs, 10 runs
each

Figure 2: Success rate for training an 64-bit XOR Arbiter PUFs with the attack by Mursi
et al. [MTZ+20], with varying learning rates and block sizes. For each combination, 10
learning attempts were run.

the learning process runs into the maximum number of epochs before a convergence could
be achieved.

7.4 Noise Resilience and Application to the Splitting Attack

During our experiments, we found the attack to work in the presence of noise without
significant changes in data complexity when compared to the noise-free case. This is
surprising, as the MLP attack, in contrast to the LR attack, is not restricted to functions
of a certain class. Nevertheless, the training converges to the desired XOR Arbiter PUF
model and approaches the maximum predictive power. Note that the noise resilience is
not a prerequisite for a successful attack for an active attacker, as they could also query a
challenge multiple times and remove noise efficiently by majority voting the responses. We
report detailed results on the noise resilience in Tab. 4.

We also report that the MLP-based attack can be used as a drop-in replacement of
the LR attack in the Splitting Attack on the Interpose PUF [NSJ+19, WMP+20]. We
found that, similar to the results we obtained on XOR Arbiter PUFs, the data complexity
of the Splitting Attack can be significantly reduced. We were able to attack a 64-bit
(1, 7)-Interpose PUF with 6 million CRPs in minutes, compared to 20 million CPRs and
20 hours required by the original implementation.

In the splitting attack on the Interpose PUF, essentially two XOR Arbiter PUFs are
attacked. First, the attack on the lower layer uses all available CRP data, then the attack
on the upper layer of the Interpose PUF can only use about one half of the available CRP
data. Compared to the XOR Arbiter PUF, this results in effectively doubling the data
complexity of the splitting attack for Interpose PUFs of size (x, x), and no increase in
data complexity for designs (x, y) where x < y. We extrapolate our attack results (Tab. 4)
and conclude that the MLP attack is able to attack 64-bit (1,11) Interpose PUFs using
325M CRPs (Wisiol et al. [WMP+20] originally used 750M to attack the (1,9) version),
and 650M CRPs to attack a 64-bit (11,11)-Interpose PUF. While this has two orders of
magnitude larger data complexity than the attacks by Tobisch et al. [TAB21], the MLP
attack provides better convergence rate and faster computation time.

These results demonstrate that the MLP-based attack is resilient against both label
and feature noise, which makes it suitable in a variety of different attack scenarios, such as
when XOR Arbiter PUF attacks are used as a building block in modeling attacks on PUFs
that are composed of XOR Arbiter PUFs.



Wisiol et al. 13

Table 4: Empirical results on learning simulated XOR Arbiter PUFs obtained using our
improved implementation of the neural network attack by Mursi et al. [MTZ+20]. The
learning was configured to stop at validation accuracy 95%, the variance of added noise
was configured such that the simulation achieves the given reliability value (“rel.”).

rel. n k CRPs success duration memory [MTZ+20]
rate (max. threads) CRPs duration

1.00 64 4 150k 10/10 <1 min @ 40 1 GiB 42k <1 min
1.00 64 5 200k 10/10 <1 min @ 20 3 GiB 255k 2 min
1.00 64 6 2M 10/10 <1 min @ 40 2 GiB 680k 1 min
1.00 64 7 4M 10/10 <1 min @ 40 3 GiB 1.7M 5 min
1.00 64 8 6M 7/10 13 min @ 4 4.2M 9 min
1.00 64 9 45M 10/10 16 min @ 40 14 GiB
1.00 64 10 119M 7/10 291 min @ 40 41 GiB
1.00 64 11 325M 10/10 1898 min @ 40 104 GiB
1.00 128 4 1M 9/9 <1 min @ 40 1 GiB
1.00 128 5 1M 10/10 <1 min @ 40 2 GiB
1.00 128 6 10M 9/10 <1 min @ 20 5 GiB
1.00 128 7 30M 10/10 2 min @ 20 20 GiB
1.00 256 4 6M 10/10 1 min @ 40 6 GiB
1.00 256 5 10M 10/10 3 min @ 40 11 GiB
1.00 256 6 30M 0/8 - @ 40 33 GiB
1.00 256 7 100M 1/10 8 min @ 40 98 GiB
0.85 64 4 180k 9/10 <1 min @ 4 0 GiB
0.85 64 5 150k 10/10 <1 min @ 4 0 GiB
0.85 64 6 2M 10/10 <1 min @ 4 1 GiB
0.85 64 7 4M 9/9 3 min @ 4 2 GiB



14 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

8 Comparison
Of the three studied neural-network-based modeling attacks and the improved LR attack
used as a baseline for comparison, we found that the claims by Mursi et al. [MTZ+20]
could be traced back to an error in CRP generation, which leaves the work by Santikellur
et al. [SLPC19] to claim, to the best of our knowledge, the lowest data complexity of XOR
Arbiter PUFs in the literature. However, we were unable to replicate these attacks for the
cases of 7-XOR and larger.

Among the attacks successfully replicated in this work, we found the attack by Mursi
et al. [MTZ+20] to have, despite a relatively high number of trainable parameters, the
lowest data complexity. Being an enhancement of neural network attacks presented by
Aseeri et al. [AZA18] and Santikellur et al. [SBC19] (not to be confused with the ECP-
TRN), we attribute the advantage in data complexity to the choice of network size and
hyperparameters, concluding that a further reduction of complexity may well be possible
for more carefully optimized settings.

Comparing the data complexity of the MLP-attack by Mursi et al. to the results
obtained with our improved version of the LR attack, we find that MLP only has advantages
in data complexity for medium size and large XOR Arbiter PUFs, but not for very small
designs. Next to the above-mentioned steep increase of data complexity for larger challenge
lengths of the MLP-attack (cf. Sec. 7), we read this as evidence that the neural network
structure is not optimal with respect to arbitrary values of challenge length and number of
XORs.

Comparing the complexity of the MLP-attack by Mursi et al. with the MLP-attack by
Aseeri et al., we find that the main differences of the attacks are the network shape and
the choice of activation function in the hidden layers. As discussed above, we speculate
that the ReLU activation function hampers weight updates during the backpropagation
process and thus constitutes a disadvantage in the learning process.

For a detailed comparison of the four modeling attacks, we provide graphs of the
network structure in Fig. 3, display the chosen hyperparameters in Tab. 5, and provide an
overview over the data complexities in Fig. 4.

We do not include a detailed comparison of run times, as most of the attacks presented
in this work run in minutes, which makes a valid comparison difficult. Furthermore, using
the Keras-based implementation, our attacks can be run in a variety of different settings,
i.e., on CPUs and GPUs, with and without multithreading, which will lead to different
run times. In any event, none of the attack times reported in this work are prohibitively
long for an attacker.

9 Conclusion
In this work, we compared three neural-network-based XOR Arbiter PUF modeling
attacks [SLPC19, AZA18, MTZ+20] against a baseline given by an improved version of the
Logistic Regression modeling attack. While we could not replicate experiments that claim
extremely low data complexity of attacks, our results prove that even XOR Arbiter PUFs
with perfectly reliable responses can be attacked faster, with far fewer challenge-response
pairs than previously known, and consequently up to much security parameters. As
increasing the security parameter of XOR Arbiter PUFs is technologically challenging,
our results cast further doubt that XOR Arbiter PUFs of sufficient security level can be
fabricated. Given the large hyperparameter space of neural-network-based attacks, it is
well possible that with more optimization, the attack performance can be further improved.

Providing the implementations of all four attacks studied in this work in a common
framework and tested on a common platform, we are able to provide a fair comparison
of their performances and confirm that previously reported better performances are not



Wisiol et al. 15

(a) The feed-forward neural network
architecture for 3-XOR 64-bit using Aseeri’s
model [AZA18]. Since k is equal 3, the
hidden layers consists of 8 neurons each. The
architecture changes based on the number of
streams in an k-XOR Arbiter PUF; the hidden
layers use the ReLU activation function.

(b) The feed-forward neural network
architecture for 3-XOR 64-bit using Mursi’s
model [MTZ+20]. Since k is equal 3, the first
and third hidden layers consists of 4 neurons
each, the second layer however possesses 8
neurons. The architecture changes based on
the number of streams in an k-XOR Arbiter
PUF; the hidden layers use the tanh activation
function.

(c) The neural network architecture used by
Santikellur et al. [SLPC19], which is a parallel
structure containing R models as used in the
LR attack (Fig. 3d) and computing the weighed
sum of all outputs. Here shown for R = 2.

(d) The network architecture used by our
improved version of the LR attack [RSS+10].
The network very closely follows inspirtation
derived from a physical model of the XOR
Arbiter PUF.

Figure 3: Neural network comparison for XOR Arbiter PUF modeling attacks.



16 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

Table 5: Original parameter comparison of machine Learning attack methods on XOR
Arbiter PUFs. k refers to the number of Arbiter PUFs in the XOR Arbiter PUF under
attack. For this work, we reimplemented all attacks to obtain a fair comparison. Note
that our implementation of the LR attack [RSS+10] also includes changes that improve
attack performance.

Santikellur et al. Aseeri et al. Mursi et al. Rührmair et al.
[SLPC19] [AZA18] [MTZ+20] [RSS+10]

Library tensorflow v1 sklearn Keras numpy
Method TRN MLP MLP LR
Architecture many delay mod. (2k, 2k, 2k) (2k−1, 2k, 2k−1) delay model
Hid. lay. activ. — ReLU tanh —
Output activ. Sigmoid Sigmoid Sigmoid Sigmoid
Optimizer Adam Adam Adam RProp
Loss function BCE BCE BCE BCE
Learning rate (multiple) 10−3 adaptive RProp default
Initializer Glorot Normal Glorot Unif. Gaussian Gaussian

3 4 5 6 7 8 9 10 11
k

104

105

106

107

108

109

1010

Tr
ai

ni
ng

 S
et

 S
ize

n = 64

3 4 5 6 7 8 9 10 11
k

Tr
ai

ni
ng

 S
et

 S
ize

n = 128

Attack
Aseeri et al. (Kers)
Improved LR (Keras)
Santikellur et al. (Keras)
Mursi et al. (Keras)

Figure 4: CRPs used by the attacks shown in this work for 64-bit Arbiter PUF with k
individual arbiter chains. Our implementation of the attack by Mursi et al. outperforms
the improved LR attack by an order magnitude with regard to data complexity. It improves
on the attack by Aseeri et al. by cutting the number of required CRPs approximately in
half.



Wisiol et al. 17

just due to better frameworks or faster CPUs, but are an intrinsic property of the strategy
employed by Mursi et al.’s multilayer perceptron-based modeling attack [MTZ+20].

The MLP’s advantage in data complexity lets us conclude that neural-network-based
attacks should become part of the standard toolkit for PUF security analysis, as on the
one hand, they allow for rapid testing for PUF design ideas [WMP+20], and on the other
hand, as we showed in this work, they may be able to provide lower attack time or data
complexity. However, we explicitly do not advocate for neural-network-based attacks to
replace the study of PUF design by specialized attacks inspired from physical models. In
the case of XOR Arbiter PUFs, the physically inspired model still has important relevance
to the MLP-attack, as it provides the features on which the modeling is based. Hence,
attempting the MLP attack without any knowledge of the physical model would be to
no avail, as the neural-network-based attacks studied in this work fail when operating on
challenge bits, except for toy-sized XOR Arbiter PUFs.

In an application of the MLP attack to the Splitting Attack on Interpose PUFs, we
underlined the importance of adding MLP to the standard toolkit for PUF security
evaluation and demonstrated that the low data complexity shown in this work has
applications beyond the XOR Arbiter PUF.

We falsified claims of Mursi et al. [MTZ+20] of extremely low data complexity of XOR
Arbiter PUF modeling attacks and reevaluated their results, showing that their attack
still has data complexity an order of magnitude lower than state-of-the-art attacks. We
further falsified the claims of Nguyen et al. [NSJ+19] that the Logistic Regression attack
has the lowest data complexity among all modeling attacks on XOR Arbiter PUFs.

To facilitate future security analyses of PUFs and to avoid errors in such attacks, we
publish all our implementations as a free open-source contribution to the pypuf framework
[WGM+21], and encourage the PUF community to do similarly. The code of this work
and the above detailed discussion of attack methodology, hyperparameter choices, and
network design shed light on some of the inner workings of MLP-based PUF modeling
attacks and may help to apply the MLP approach to other PUF designs.

Our results raise the question if reliability-based attacks like the recently presented one
by Tobisch et al. [TAB21] can benefit from the neural network approach in a similar way.
If so, that may pave the way to generalize reliability attacks to PUF designs other than
the XOR Arbiter PUF (and its variants).

Finally, with XOR Arbiter PUF, Interpose PUFs, and Feed-Forward Arbiter PUFs
[AZ17] successfully attacked, it will be interesting to see which other PUF designs neural-
network-based attacks will be able to model.

Acknowledgements
The authors would like to thank Pranesh Santikellur for helpful comments on the TRN-based
attack. We further thank Ahmad O. Aseeri for providing the source code of their attack
and Johannes Tobisch for the helpful discussion of details on their LR implementation.
Finally, we acknowledge the provided computing time of Technische Universität Berlin.

The research was supported in part by the National Science Foundation under Grant
No. CNS-1526055.

References
[AM20] Anita Aghaie and Amir Moradi. TI-PUF: Toward Side-Channel Resistant

Physical Unclonable Functions. IEEE Transactions on Information Forensics
and Security, 15:3470–3481, 2020.



18 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

[AZ17] Mohammed Saeed Alkatheiri and Yu Zhuang. Towards fast and accurate
machine learning attacks of feed-forward arbiter PUFs. In 2017 IEEE
Conference on Dependable and Secure Computing, pages 181–187, August
2017.

[AZA18] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri. A Machine Learning-Based
Security Vulnerability Study on XOR PUFs for Resource-Constraint Internet of
Things. In 2018 IEEE International Congress on Internet of Things (ICIOT),
pages 49–56, July 2018.

[Bec15] Georg T. Becker. The Gap Between Promise and Reality: On the Insecurity
of XOR Arbiter PUFs. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems – CHES 2015, Lecture Notes
in Computer Science, pages 535–555. Springer Berlin Heidelberg, 2015.

[CCMH21] Durba Chatterjee, Urbi Chatterjee, Debdeep Mukhopadhyay, and Aritra Hazra.
SACReD: An Attack Framework on SAC Resistant Delay-PUFs leveraging
Bias and Reliability Factors. February 2021.

[CMH20] D. Chatterjee, D. Mukhopadhyay, and A. Hazra. PUF-G: A CAD Framework
for Automated Assessment of Provable Learnability from Formal PUF
Representations. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–9, November 2020.

[Del19] J. Delvaux. Machine-Learning Attacks on PolyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUF–FSMs. IEEE Transactions on Information Forensics
and Security, 14(8):2043–2058, August 2019.

[DV13] Jeroen Delvaux and Ingrid Verbauwhede. Side channel modeling attacks on
65nm arbiter PUFs exploiting CMOS device noise. In Hardware-Oriented
Security and Trust (HOST), 2013 IEEE International Symposium On, pages
137–142. IEEE, 2013.

[GLC+04] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Identification and authentication of integrated circuits. Concurrency
and Computation: Practice and Experience, 16(11):1077–1098, September
2004.

[GTFS16] Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert. Strong
Machine Learning Attack Against PUFs with No Mathematical Model. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems – CHES 2016, Lecture Notes in Computer Science,
pages 391–411. Springer Berlin Heidelberg, 2016.

[HRvD+17] C. Herder, L. Ren, M. van Dijk, M. Yu, and S. Devadas. Trapdoor
computational fuzzy extractors and stateless cryptographically-secure physical
unclonable functions. IEEE Transactions on Dependable and Secure
Computing, 14(1):65–82, January 2017.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs], January 2017.

[MTZ+20] Khalid T. Mursi, Bipana Thapaliya, Yu Zhuang, Ahmad O. Aseeri, and
Mohammed Saeed Alkatheiri. A Fast Deep Learning Method for Security
Vulnerability Study of XOR PUFs. Electronics, 9(10):1715, October 2020.



Wisiol et al. 19

[MZAA19] Khalid T Mursi, Yu Zhuang, Mohammed Saeed Alkatheiri, and Ahmad O
Aseeri. Extensive examination of xor arbiter pufs as security primitives for
resource-constrained iot devices. In 2019 17th International Conference on
Privacy, Security and Trust (PST), pages 1–9. IEEE, 2019.

[NSJ+19] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood,
Ulrich Rührmair, and Marten van Dijk. The Interpose PUF: Secure PUF
Design against State-of-the-art Machine Learning Attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 243–290, August
2019.

[PRTG02] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical
One-Way Functions. Science, 297(5589):2026–2030, September 2002.

[RSS+10] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas,
and Jürgen Schmidhuber. Modeling Attacks on Physical Unclonable Functions.
In Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS ’10, pages 237–249, New York, NY, USA, 2010. ACM.

[SBC19] Pranesh Santikellur, Aritra Bhattacharyay, and Rajat Subhra Chakraborty.
Deep Learning based Model Building Attacks on Arbiter PUF Compositions.
page 10, 2019.

[SD07] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions for
Device Authentication and Secret Key Generation. In Proceedings of the 44th
Annual Design Automation Conference, DAC ’07, pages 9–14, New York, NY,
USA, 2007. ACM.

[SLPC19] Pranesh Santikellur, Lakshya, Shashi Ranjan Prakash, and Rajat Subhra
Chakraborty. A Computationally Efficient Tensor Regression Network based
Modeling Attack on XOR APUF. In 2019 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pages 1–6, December 2019.

[TAB21] Johannes Tobisch, Anita Aghaie, and Georg T. Becker. Combining
Optimization Objectives: New Modeling Attacks on Strong PUFs. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 357–
389, February 2021.

[TB15] Johannes Tobisch and Georg T. Becker. On the scaling of machine learning
attacks on PUFs with application to noise bifurcation. In International
Workshop on Radio Frequency Identification: Security and Privacy Issues,
pages 17–31. Springer, 2015.

[TDF+14] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry
Nedospasov, Clemens Helfmeier, Christian Boit, and Helmar Dittrich. Physical
Characterization of Arbiter PUFs. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Camille Salinesi,
Moira C. Norrie, and Óscar Pastor, editors, Advanced Information Systems
Engineering, volume 7908, pages 493–509. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[VVXS20] Abilash Venkatesh, Aishwarya Bahudhanam Venkatasubramaniyan, Xiaodan
Xi, and Arindam Sanyal. 0.3 pJ/Bit Machine Learning Resistant Strong PUF
Using Subthreshold Voltage Divider Array. IEEE Transactions on Circuits
and Systems II: Express Briefs, 67(8):1394–1398, August 2020.



20 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

[WGM+21] Nils Wisiol, Christoph Gräbnitz, Christopher Mühl, Benjamin Zengin, Tudor
Soroceanu, and Niklas Pirnay. pypuf: Cryptanalysis of Physically Unclonable
Functions, 2021.

[WMP+20] Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen, Marian
Margraf, Jean-Pierre Seifert, Marten van Dijk, and Ulrich Rührmair. Splitting
the Interpose PUF: A Novel Modeling Attack Strategy. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 97–120, June 2020.

[YHD+16] Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell, Srinivas
Devadas, and Ingrid Verbauwhede. A Lockdown Technique to Prevent Machine
Learning on PUFs for Lightweight Authentication. IEEE Transactions on
Multi-Scale Computing Systems, 2(3):146–159, July 2016.

[YMIS16] Risa Yashiro, Takanori Machida, Mitsugu Iwamoto, and Kazuo Sakiyama.
Deep-Learning-Based Security Evaluation on Authentication Systems Using
Arbiter PUF and Its Variants. In Kazuto Ogawa and Katsunari Yoshioka,
editors, Advances in Information and Computer Security, volume 9836, pages
267–285. Springer International Publishing, Cham, 2016.

[ZXSO20] Haoyu Zhuang, Xiaodan Xi, Nan Sun, and Michael Orshansky. A Strong
Subthreshold Current Array PUF Resilient to Machine Learning Attacks.
IEEE Transactions on Circuits and Systems I: Regular Papers, 67(1):135–144,
January 2020.

A Arbiter PUF Delays and Weights

An Arbiter PUF with n stages, once set up with a challenge c ∈ {−1, 1}n, accumulates
signal propagation delays for two electrical signals traveling though the stages of the
Arbiter PUF. In stage i, the additional delays for the two signals are either dTT

i and dBB
i

(if c = −1) or dTB
i and dBT

i (if c = 1). We define the total accumulated delay after stage
i as dT

i for the top output of that stage, and dB
i for the bottom output of that stage.

Additional delays are added at each stage, i.e.

dT
i =

{
dT

i−1 + dTT
i (c = −1) ,

dB
i−1 + dBT

i (c = 1) ,

dB
i =

{
dB

i−1 + dBB
i (c = −1) ,

dT
i−1 + dTB

i (c = 1) .

The initial delays are zero, dT
0 = dB

0 = 0. The delay difference after the i-th stage is
∆Di = dT

i − dB
i ; we abbreviate the delay difference after the n-th stage to ∆Dn = ∆D.

Theorem 1. For n ∈ N and given delay values dTT
i , dTB

i , dBT
i , dBB

i ∈ R+ such that for all
c ∈ {−1, 1} , for 1 ≤ i ≤ n, there exists w ∈ Rn and b ∈ R

∆D = 〈w, x〉+ b,



Wisiol et al. 21

where x = (xi)i =
(∏n

j=i cj

)
i
. For even n we have

w = 1
2



dTT
1 − dBB

1 − dBT
1 + dTB

1
−dTT

2 + dBB
2 + dBT

2 − dTB
2 + dTT

1 − dBB
1 + dBT

1 − dTB
1

dTT
3 − dBB

3 − dBT
3 + dTB

3 − dTT
2 + dBB

2 − dBT
2 + dTB

2
...

−dTT
n−2 + dBB

n−2 + dBT
n−2 − dTB

n−2 + dTT
n−3 − dBB

n−3 + dBT
n−3 − dTB

n−3
dTT

n−1 − dBB
n−1 − dBT

n−1 + dTB
n−1 − dTT

n−2 + dBB
n−2 − dBT

n−2 + dTB
n−2

−dTT
n + dBB

n + dBT
n − dTB

n + dTT
n−1 − dBB

n−1 + dBT
n−1 − dTB

n−1


,

b = 1/2
(
dTT

n − dBB
n + dBT

n − dTB
n

)
;

Similar formulae exist for odd n.
Proof. The proof is by induction over i. For i = 1 we have

∆D1 = dT
1 − dB

1 =
{
dTT

1 − dBB
1 (c1 = −1 ⇐⇒ 1/2− 1/2c1 = 1) ,

dBT
1 − dTB

1 (c1 = 1 ⇐⇒ 1/2− 1/2c1 = 0) .

Using the fact that 1/2− 1/2c1 ∈ {0, 1}, we can write

∆D1 = (1/2− 1/2c1)
(
dTT

1 − dBB
1
)

+ (1− (1/2− 1/2c1))
(
dBT

1 − dTB
1
)

= (1/2− 1/2c1)
(
dTT

1 − dBB
1
)

+ (1/2 + 1/2c1)
(
dBT

1 − dTB
1
)

= c1 · 1/2
(
dBB

1 − dTT
1 + dBT

1 − dTB
1
)︸ ︷︷ ︸

w
(1)
1

+1/2
(
dTT

1 − dBB
1 + dBT

1 − dTB
1
)︸ ︷︷ ︸

b(1)

=
〈
x(1), w(1)

〉
+ b(1)

where c(1) =
(
c

(1)
1

)
∈ {−1, 1}1, x(1) =

(∏1
j=i c

(1)
i

)
i

=
(
x

(1)
1

)
= (c1) and w(1) =

(
w

(1)
1

)
∈

R1.
Assuming ∆Di−1 =

〈
x(i−1), w(i−1)〉+ b(i−1), we have

∆Di = dT
i − dB

i =
{
dT

i−1 + dTT
i − dB

i−1 − dBB
i (ci = −1 ⇐⇒ 1/2− 1/2ci = 1) ,

dB
i−1 + dBT

i − dT
i−1 − dTB

i (ci = 1 ⇐⇒ 1/2− 1/2ci = 0) ,

=
{

∆Di−1 + dTT
i − dBB

i (ci = −1 ⇐⇒ 1/2− 1/2ci = 1) ,
−∆Di−1 + dBT

i − dTB
i (ci = 1 ⇐⇒ 1/2− 1/2ci = 0) ,

Using the fact that 1/2− 1/2ci ∈ {0, 1}, we can write

∆Di = (1/2− 1/2ci)
(
∆Di−1 + dTT

i − dBB
i

)
+ (1/2 + 1/2ci)

(
−∆Di−1 + dBT

i − dTB
i

)
= ci · 1/2

−dTT
i + dBB

i + dBT
i − dTB

i︸ ︷︷ ︸
2ŵ(i)

−2∆Dn−1

− 1/2
(
dTT

i − dBB
i + dBT

i − dTB
i

)︸ ︷︷ ︸
b̂(i)

= ci ·
(
ŵ(i) −∆Di−1

)
+ b̂(i)

= ci ·
(
ŵ(i) −

〈
x(i−1), w(i−1)

〉
− b(i−1)

)
+ b̂(i)

= ci ·

ŵ(i) −

i−1∑
l=1

w
(i−1)
l

i−1∏
j=l

cj

− b(i−1)

+ b̂(i)

=

i−1∑
l=1
−w(i−1)

l

i∏
j=l

cj

+
(
ŵ(i) − b(i−1)

)
ci + b̂(i).



22 Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited

Setting Ri 3 w(i) =
(
−w(i−1)

1 , . . . ,−w(i−1)
i−1 , ŵ(i) − b(i−1)

)
and b(i) = b̂(i) we continue

∆Di =
i∑

l=1
w

(i)
l

i∏
j=l

cj + b̂(i) =
〈
w(i), x(i)

〉
+ b(i).

Finally, for i = n, we set w = w(n),x = x(n), and b = b(n) and conclude that

∆D = 〈w, x〉+ b.

Hence, an Arbiter PUF with positive delays dTT
i , dTB

i , dBT
i , dBB

i for each stage i can be
modeled as claimed.

Corollary 1. Assuming the delays dTT
i , dTB

i , dBT
i , dBB

i for an Arbiter PUF are distributed
according to a Gaussian with all the same mean and variance σ2, the weights w and bias b
of ∆D = 〈w, x〉+ b are distributed according to

w0 ∼ N
(
0, σ2) , wi ∼ N

(
0, 2σ2) , b ∼ N

(
0, σ2) .


	Introduction
	Related Work
	Preliminaries
	Additive Delay Model
	Attacker Model
	Methodology

	Baseline: Improved Logistic Regression Attack
	Tensor Regression Network Attack by Santikellur et al.
	Multilayer Perceptron Attack by Aseeri et al.
	Multilayer Perceptron Attack by Mursi et al.
	Neural Network used by Mursi et al.
	Replication and Results
	Hyperparameter Optimization
	Noise Resilience and Application to the Splitting Attack

	Comparison
	Conclusion
	Arbiter PUF Delays and Weights

