
Verifiable Decryption in the Head

Kristian Gjøsteen1 ID , Thomas Haines1, Johannes Müller2 ID ,

Peter Rønne2 ID , and Tjerand Silde1 ID

1 Norwegian University of Science and Technology
{kristian.gjosteen,thomas.haines,tjerand.silde}@ntnu.no

2 University of Luxembourg
{johannes.mueller,peter.roenne}@uni.lu

Abstract. In this work we present a new approach to verifiable decryp-
tion which converts a 2-party passively secure distributed decryption pro-
tocol into a 1-party proof of correct decryption. To introduce our idea, we
first present a toy example for an ElGamal distributed decryption pro-
tocol before applying our method to a lattice-based scheme. This leads
to an efficient lattice-based verifiable decryption with only one server; it
has lightweight computations as we reduce the need of zero-knowledge
proofs. We believe the flexibility of the general technique is interesting
and provides attractive trade-offs between complexity and security, in
particular for the interactive variant where the online phase can be very
efficient.

Keywords: Verifiable decryption · MPC in the head · Passively secure
distributed decryption · Lattice-based cryptography.

1 Introduction

There are many applications where we not only need to decrypt a ciphertext,
but also prove that we have decrypted the ciphertext correctly without revealing
the secret key. This is called verifiable decryption. Examples include mix-nets
used for anonymous communication [SSA+18], decryption of ballots in electronic
voting [HM20], and various uses of fully homomorphic encryption [LW18]. In
particular, such applications usually require the decryption of a large number of
ciphertexts.

It is well-known how to do verifiable decryption for public-key encryption
schemes based on discrete logarithms (for ElGamal, proving the equality of two
discrete logarithms [CP92] will do). Except for the recent preprint by Lyuba-
shevsky et al. [LNS20] (which provides a rather complicated decryption proof
consisting of a mix of proofs of linear relations, proofs of shortness and range
proofs), no efficient and straight-forward zero-knowledge proofs (ZKPs) of cor-
rect decryption are known for lattice-based cryptography or other post-quantum
encryption schemes. This state-of-affairs is unsatisfying, in particular because
many applications that require ZKPs of correct decryption should also be secure

https://orcid.org/0000-0001-7317-8625
https://orcid.org/0000-0003-2134-3099
https://orcid.org/0000-0002-2785-8301
https://orcid.org/0000-0002-5455-0409

in the face of quantum computers which are becoming increasingly more power-
ful. For example, the electronic voting systems Helios [Adi08], Scytl [Scy18] or
the Estonian voting protocol [HW14] are using classical encryption schemes and
decryption proofs with corresponding quantum threats to the long-term privacy
of the voters.

On the contrary, there do exist efficient and straightforward lattice-based
encryption schemes with distributed decryption. In such a scheme, the decryp-
tion key is shared among several players. Decryption is done in a distributed
fashion by each player creating a decryption share, which can be individually
verified, and a reconstruction algorithm can recover the message from the de-
cryption shares. Distributed decryption allows more general methods to recover
the message, such as general multi-party computation. There are many useful
and efficient lattice-based threshold cryptosystems and distributed decryption
schemes [BLO18,BD10,BKP13,BS13,BGG+18,DPSZ12,DOTT20]. In particu-
lar, if the security requirements are relaxed, lattice-based distributed decryption
can be very straight-forward.

Our main idea is to use MPC in the head [IKOS07] in conjunction with a
2-party passively secure distributed decryption scheme to construct a verifiable
decryption scheme; however, we shall see that there are various technical chal-
lenges. To achieve the desired level of security, we run the 2-party decryption
scheme on the ciphertexts many times locally, and then reveal a random subset
of keys, one for each run, allowing others to verify that the decryption was done
correctly.

1.1 Contribution

Our main contribution is a transformation from a 2-party passively secure dis-
tributed decryption scheme to a 1-party verifiable decryption scheme. To achieve
this, we use MPC in the head with the 2-party decryption scheme. The idea is
that the prover runs the 2-party decryption protocol many times and reveals the
resulting decryption shares. The interactive verifier will then, for each run of the
decryption scheme, ask to see one of the two decryption keys and any randomness
involved in creating the corresponding decryption shares. With this information,
it is straight-forward for the verifier to ensure that half of the decryption shares
were generated honestly.

As usual, the idea is that if the prover cheats, the verifier will have probability
(close to) 1/2 of detecting this in each round. If a cheating prover is consistently
successful, we can use rewinding to extract both secret shares. Furthermore, if
the 2-party decryption scheme is passively secure, revealing one share will not
reveal anything about the secret key itself.

There are four remaining obstacles, two easy and two somewhat trickier. The
first easy obstacle is that in a threshold public key encryption scheme or dis-
tributed decryption scheme, the decryption key shares are generated as part of
key generation. We already have a decryption key, but we need to create many
independent sharings of that key. For discrete logarithm-based schemes like El-
Gamal, this is usually trivial. For the schemes we consider, it is still not hard, but

2

it follows that we do not have a fully general reduction from 2-party distributed
decryption to (1-party) verifiable decryption. The second easy obstacle is that
given both secret key shares we want to recover the secret key. We solve this
by extending the notation of a distributed decryption function with a function
which recovers the key from the shares. This is easy to satisfy in practice.

The third obstacle is that the verifier needs to make sure that the revealed
key is correct. For ordinary threshold decryption schemes, this can often be
avoided, either because the dealer is trusted or replaced by some multi-party
computation. Therefore, we need to use a non-generic solution here. For batched
decryption, the main observation is that we only verify the key once for each
run of the 2-party decryption scheme, not once per ciphertext in the batch. The
number of runs essentially corresponds to the security parameter, which in many
applications will be significantly smaller than the number of ciphertexts.

The final obstacle is related to our security proof. We need to simulate both
shares of the decryption key, any auxiliary information related to them, and
decryption shares. Again, although similar techniques are common in the con-
struction of threshold public key encryption scheme, the security definitions do
not actually require their presence. Since we need them, our approach is again
somewhat non-generic.

On the other hand, since we intend to verify correctness of decryption shares
by revealing decryption key shares and any randomness involved, we can make
do with a passively secure distributed decryption scheme, simplifying our work.

The result is a construction from a somewhat specialized 2-party distributed
decryption scheme to a verifiable decryption scheme. Since the security require-
ments for the distributed decryption scheme are shifted compared to traditional
threshold decryption schemes, this will allow us to use very simple threshold
decryption. This means that it can be very efficient, both with respect to com-
putational time and size of the decryption shares. Even though the decryption
is run many times, the result will still be efficient compared to the alternatives.

Note that in an interactive setting, it may make sense to use a very small
security parameter, making the protocol extremely cheap. For instance, in any
system where detected cheating will have a significant penalty, rational actors
will be deterred by even a small chance of detection. However, when the protocol
is made non-interactive, this clearly does not work.

We prove in the interactive theorem prover Coq [BCHPM04] a simplified
variant of our transform and the ElGamal toy example. Regrettable we are
unable to prove the full transform and the lattice example due to limitations in
the interactive theorem prover. Indeed, to our knowledge, no interactive theorem
prover exists which provides adequate support. Nevertheless, the proof of the
simplified variant increases confidence in the result.

As part of our construction, we also design a suitable instantiation of a 2-
party passively secure distributed decryption scheme for a standard lattice-based
encryption scheme. As discussed above, there are several obstacles that need to
be solved, some of which are fairly simple. For the remaining we use existing
lattice-based arguments and commitments.

3

Even though we use existing lattice-based arguments (which, in principle,
could also be used to do a decryption proof directly), we only use these arguments
once per run of the 2-party distributed decryption protocol, which means that
the number of arguments is linear in the security parameter, not linear in the
number of ciphertexts. We use an amortized proof here, for even greater speedup.

Combined with the main contribution, this gives us a verifiable decryption
scheme for a lattice-based public key encryption scheme that is very fast when
the number of ciphertexts is much larger than the security parameter. The proof
size is also quite reasonable, in particular for an interactive proof with lower
security parameter.

1.2 Related Work

Verifiable decryption for ElGamal can be done by proving the equality of two
discrete logarithms [CP92], which is well understood, fairly cheap on its own,
and can also be batched for significantly improved performance when decrypting
many ciphertexts [Gor98,PBD07].

The ”dual” Regev system, see e.g. [GPV08, Section 7.1] or [LPR13, Section
8.1], can be used for verifiable decryption by making the randomness public.
However, this is not zero-knowledge and opens for so-called ”tagging-attacks” to
de-anonymize users in privacy-preserving applications (e.g., e-voting). Boschini
et al. [BCOS20] provide a verifiable decryption scheme which offers good com-
munication complexity, but the running time of the protocol would take several
minutes per ciphertexts, and would thus be impractical for all but very small
sets of ciphertexts. In a recent preprint, Lyubashevsky et al. [LNS20] provides a
very efficient protocol for small message spaces, while the proof is comparable to
ours for larger parameters. Furthermore, there is a line of new results for prov-
ing shortness of lattice-based vectors in zero-knowledge. These protocols offer
practical sizes and timings. We discuss them in more details in Section 8.

Threshold encryption schemes [DF90] and distributed decryption schemes are
now well-understood, and many constructions exist [BD10], in particular those
related to SPDZ [BCS19, DKL+13, DPSZ12, KPR18]. When only passive secu-
rity is required, these schemes can be quite efficient. Threshold decryption with
active security implies verifiable decryption when the verification of decryption
shares is a public operation. The problem is that it is often costly to provide a
threshold decryption scheme with active security. Since our approach gives away
a decryption key share and any randomness involved, it is trivial to verify that
the key share has been used correctly, allowing us to avoid this issue.

1.3 Paper Overview

We define the variant of distributed decryption schemes that we need in Sec-
tion 2, along with the required security notions. The main difference from the
usual definition is that the key generation algorithm outputs a single decryption
key, not a list of decryption key shares. Instead, we have a dealer algorithm that
outputs decryption key shares and some axillary data that allows a verification

4

algorithm to check that a given decryption key share is correct. Also, there is
no algorithm to verify that a decryption share is correct, since we verify this by
revealing the decryption key share and any randomness used.

We describe our main contribution in Section 3: a verifiable decryption scheme
based on our variant of distributed decryption. For ease of understanding, we
have included a toy example based on ElGamal. We note that this toy example
does not make practical sense since there are much faster solutions available for
ElGamal, but the example is included as an aid to the reader.

Section 4 provides background on machine checked proofs and details our the
results of machine checked proofs.

Section 5 covers the needed background on lattice-based cryptography, in-
cluding the underlying encryption scheme, a commitment scheme and some
proofs that we need. Section 6 then covers the construction of our threshold
public key encryption scheme and the resulting verifiable decryption scheme.

We suggest parameters and carefully analyze the performance of the verifiable
decryption scheme in Section 7. We also compare our construction to a verifiable
decryption scheme derived from an hypothetical variant of a threshold decryption
scheme [BD10,DKL+13,DPSZ12] and some other protocols in Section 8.

2 Passively Secure 2-party Distributed Decryption

A distributed decryption scheme enables a set of players to distribute the de-
cryption of ciphertexts, in such a way that only allowed subsets of players can
do the decryption. Usually, the decryption key shares are created once during
key generation. As discussed in the introduction, we shall need to generate in-
dependent decryption key sharings repeatedly, so we need to define the syntax
of our variant of distributed decryption schemes precisely.

Consider a public key cryptosystem with a key generation algorithm KeyGen,
an encryption algorithm Enc and a decryption algorithm Dec. We extend the
notation with a predicate KeyMatch which takes as input a public and secret key.
We require that for all matching public and secret keys pk, sk and all messages
m, we have Dec(sk,Enc(pk,m)) = m (at least with overwhelming probability).

A distributed decryption protocol for this public key cryptosystem consists of
four algorithms, a dealer algorithm, a verify algorithm, a player algorithm, and
a reconstruction algorithm. For the purpose of this work, we consider only two
parties where both are required to decrypt.

The dealer algorithm (Deal) takes as input a public key and corresponding
secret key and outputs two private key shares and some auxiliary data.

The verify algorithm (Verify) takes as input a public key, auxiliary data, an
index and a secret key share and outputs yes (1) or no (0).

The player algorithm (Play) takes as input a secret key share and a cipher-
text and outputs a decryption share.

The reconstruction algorithm (Reconstruct) takes as input a ciphertext and
two decryption shares and outputs either ⊥ or a message.

5

Intuitively, the protocol is correct if Play and Reconstruct collectively recover
the encrypted message and verification accepts when the dealer is honest.

Definition 1 (Correctness). A distributed decryption protocol is correct if for
all ciphertexts c, any key pair (pk, sk) s.t. KeyMatch(pk, sk) = 1, any (sk0, sk1, aux)
output by Deal(pk, sk), then Verify(pk, aux, i, ski) = 1, for i = 0, 1, and

Pr [m← Dec(sk, c);Reconstruct(c,Play(sk0, c),Play(sk1, c)) = m] ≥ 1− negl.

For a distributed decryption protocol, we must trust the dealer for privacy,
but not for integrity. The integrity property below says that if both secret shares
given by the dealer are valid (according to the Verify algorithm), then the Play
and Reconstruct will collectively recover the encrypted message.

Definition 2 (Integrity). A distributed decryption protocol has integrity if
there exists an efficient algorithm (named FindKey which takes as input the pub-
lic key, the two secret key shares and the auxiliary information, and returns
a secret key) such that for all ciphertexts c, public keys pk, secret key shares
(sk1, sk2), and auxiliary data aux and sk output by FindKey(pk, sk0, sk1, aux) sat-
isfying Verify(pk, aux, i, ski) = 1, for i = 0, 1, we have that

Pr [KeyMatch(pk, sk) ∧ Reconstruct(c,Play(sk0, c),Play(sk1, c)) = Dec(sk, c)]

≥ 1− negl.

For threshold cryptosystems and distributed decryption, security is typically
defined through the usual security games for public key cryptosystem, allowing
the adversary access to the decryption key shares through decryption share ora-
cles. This security notion is not very convenient for us, so we shall instead rely on
a variant of simulatability, namely we must be able to simulate both decryption
key shares and decryption shares in a consistent fashion.

Expddp−sim−0A (pk, sk)

(i, (c0, ..., cτ), (m0, ...,mτ))← A(pk)

(sk0, sk1, aux)← Deal(pk, sk)

∀j : dsj ← Play(sk1−i, cj)

b = A(aux, ski, (ds0, ..., dsτ))

return b

Expddp−sim−1A (pk)

(i, (c0, ..., cτ), (m0, ...,mτ))← A(pk)

(ski, aux)← DealSim(pk, i)

∀j : dsj ← PlaySim(pk, ski, cj ,mj)

b = A(aux, ski, (ds0, ..., dsτ))

return b

Fig. 1. The passively secure experiment for distributed decryption protocols.

6

Definition 3 (Simulatability). Consider a pair of algorithms DealSim and
PlaySim and an adversary A playing the experiments from Fig. 1, where A always
outputs c = (c0, ..., cτ),m = (m0, ...,mτ) such that {mj = Dec(sk, cj)}τj=1. The
simulatability advantage of A is

Advddp−sim(A, pk, sk) =

|Pr[Expddp−sim−0A (pk, sk) = 1]− Pr[Expddp−sim−1A (pk) = 1]|,

where the probability is taken over the random tapes and (pk, sk) output by
KeyGen. We say that a distributed decryption protocol is (t, ε)-simulatable (or
just simulatable) if no t-time algorithm A has advantage greater than ε.

2.1 Toy Example: Distributed Decryption for ElGamal

We briefly recall ElGamal encryption for a given cyclic group G of prime order
p with generator g.

Key generation (KeyGen) samples x from Z∗p and return (gx, x)
Encryption (Enc) takes as input a public key pk ∈ G and message m ∈ G,

samples r from Z∗p, and return (gr, pkrm).
Decryption (Dec) takes as input a secret key x ∈ Z∗p and ciphertext (c1, c2),

and returns c2/c
x
1 .

Keymatch (KeyMatch) takes as input a public key pk ∈ G and a secret key
x ∈ Z∗p and returns gx = pk.

We will now give a distributed decryption protocol for ElGamal. This uses a
(2, 2)-secret sharing of the decryption key, and it works because of ElGamal’s
key-homomorphic property.

The dealer algorithm (Deal) takes as input a public key gx and corresponding
secret key x, samples x0 from Z∗p, sets x1 = x−x0 and returns (x0, x1, aux =
(gx0 , gx1)).

The verify algorithm (Verify) takes as input a public key pk, auxiliary data
aux = (aux0, aux1), an index i and a secret key share xi and outputs 1 iff
(gxi = auxi) ∧ (pk = aux0aux1).

The player algorithm (Play) takes as input a secret key share xi and a ci-
phertext (c1, c2) and outputs a decryption share cxi

1 .
The reconstruction algorithm (Reconstruct) takes as input a ciphertext (c1, c2)

and two decryption shares (t0, t1) and outputs c2/(t0t1).

Correctness. Substituting the ElGamal protocol into the definition of correct-
ness, for (gx, x) and (x0, x1, (g

x0 , gx1)) ← Deal(gx, x), we get trivially that the
verify algorithm accepts both secret key shares and for any ciphertext (gr, gxrm),
we get that

(gx)rm/((gr)x0(gr)x1 = (gr)xm(gr)−x0−x1 = m,

so correctness holds unconditionally.

7

Integrity. FindKey takes as input two key shares x0, x1 and outputs x = x0+x1.
Again, if the verify algorithm accepts both secret key shares, then we know that
gx = gx0gx1 and unconditional integrity follows by the same easy computations
as above.

Privacy. The simulators DealSim and PlaySim work as follows:

– DealSim takes the public key pk and a bit i, samples xi from Z∗p and returns
(wlog.) (xi, (g

xi , pk/gxi)). It is clear that the auxiliary data and secret key
from the simulator have the same distribution as the Deal.

– PlaySim takes as input public key pk, secret key xi, ciphertext (c1, c2), and
message m and returns a decryption share c2/(c

xi
1 m). Since m is the message

encrypted in the ciphertext this is a perfect simulation if m is the correct
decryption.

Note that these simulators are perfect due to ElGamal’s elegant homomorphic
structure, both with respect to keys and messages.

3 Verifiable Decryption from Distributed Decryption

We will now construct a (batch) zero-knowledge proof system of correct decryp-
tion from the distributed decryption protocol. The protocol is given in Figure 2.
More precisely, our proof system is a sigma protocol with completeness, special
soundness, and honest verifier-zero knowledge (see notes by Damg̊ard [Dam10]
or Krenn and Orrù [KO21] for a detailed introduction to sigma protocols).

For any public key cryptosystem, a public key output by the key generation
algorithm uniquely defines a decryption function that for all messages agrees
with the decryption algorithm for any ciphertext output by the encryption al-
gorithm, except those that lead to decryption failure. (Traditionally, decryption
failures were never allowed. Recent cryptosystems have a very small fraction of
decryption failures.)

Recall that for a batched verifiable decryption protocol the statement consists
of a public key, a vector of ciphertexts and a vector of messages, where the
ciphertexts have been output by the encryption algorithm. The statement is in
the language if and only if the messages correspond to the decryption function
applied to the ciphertexts. The secret key (witness) satisfies the relationship with
the statement if it corresponds to the public key and the message vector is the
result of decrypting the ciphertexts with the secret key.

The protocol works as follows: the prover creates λ sharings of the secret key
by calling the Deal algorithm λ times. For each sharing and each ciphertext, the
prover uses the Play algorithm to construct the decryption share. The prover
then sends the auxiliary information from Deal and all the decryption shares to
the verifier. After that, the verifier returns a challenge which is a binary vector of
length λ. The prover then reveals the corresponding parts of the shares, as well
as any randomness used in the Play algorithms with this key share. The prover

8

now checks that (1) all the revealed shares verify, (2) the decryption shares are
consistent with the revealed key shares, and (3) the messages correspond to the
decryption shares.

ΠZKPCD

Prover((pk, {cj}τj=1, {mj}τj=1), (sk)) Verifier(pk, {cj}τj=1, {mj}τj=1)

k = 1, ..., λ :

(sk0,k, sk1,k, auxk)← Deal(pk, sk)

i = 0, 1:

j = 1, ..., τ :

ti,j,k ← Play(ski,k, cj ; ρi,k,j)

w ← ({auxk, {ti,j,k}})

w

β←$ {0, 1}λ

β

z ← ({skβ[k],k}k, {ρβ[k],k,j}k,j)

z

k = 1, ..., λ :

Verify(pk, auxk,β[k], skβ[k],k)
?
= 1

j = 1, ..., τ :

Play(skβ[k],k, cj ; ρβ[k],k,j)
?
= tβ[k],j,k

Reconstruct(cj , t0,j,k, t1,j,k)
?
= mj

Fig. 2. Proof of correct decryption. Here, ρi,k,j denotes the random tape used by the
Play algorithm to create the ith share of the jth ciphertext in the kth run of the
distributed decryption scheme.

Including the random tapes used by the Play algorithm is necessary, because
this algorithm may be randomized. However, in our toy example (Sec. 2.1), the
Play algorithm was deterministic, so there was no randomness involved. For our
lattice-based algorithm, it turns out that we can verify the correctness of the
decryption share by other means, so again there is no need to transmit the
random tape.

9

Completeness. Up to the possible negligible error introduced by decryption
failures, completeness follows immediately by construction and the correctness
of the underlying distributed decryption protocol.

Soundness. By rewinding, any cheating prover with a significant success prob-
ability can be used to create two accepting conversations (w,β, z) and (w,β′, z′),
with β 6= β′. From this it follows that β[k] 6= β′[k] for at least one k, and the
verify algorithm has accepted both secret key shares and every decryption share
in this round has been correctly created using the Play algorithm. Then, since
the ciphertexts are encryptions of the first message vector, integrity implies that
FindKey will recover a witness which matches the public key and for which the
messages match the output of the decryption function.

Honest-Verifier Zero-Knowledge. Our simulator works as follows, given the
statement (pk, {cj}τj=1, {mj}τj=1) and the challenge β: First, for i = 1, ..., λ, we
let (auxi, skβ[i],i)← DealSim(pk,β[i]) and, for j = 1, ..., τ , we let dsβ[i],j,i ←
PlaySim(pk, skβ[i],i, ci,mi) and ds1−β[i],j,i ← Play(pk, skβ[i],i, ci). The proof tran-
scripts is then ((pk, {cj}τj=1, {mj}τj=1), (auxi, ds0,j,i, ds1,j,i),β, skβ[i],i). This is com-
putationally indistinguishable from the honest transcripts if the distributed de-
cryption protocol is simulatable.

4 Machine Checked Proofs

We adopt the definition of a sigma protocol from [HGT19] but do not require
that the simulator always produces accepting transcripts when the statement is
not in the language. This does not affect on our intended use cases but prevents
us from applying the standard transform to a disjunctive proof.

– We formally define an encryption scheme along the lines above in the paper
but with perfect correctness. This can be found in the attached source in the
Module Type EncryptionScheme.

– We formally define a distributed decryption schemes as a functor on encryp-
tions schemes as above in the paper. However, we require perfect correctness,
integrity and simulatability. (Module Type DistributedDecryption)

– We describe the transform for an arbitrary distributed decryption scheme
and prove that the result is a sigma protocol for correct decryption. (Module
ProofOfDecryption)

– We define the ElGamal cryptosystem and distributed decryption protocol
and prove they satisfy the respective definitions. (ElGamal, DDElGamal).

The source files can be found at www.dropbox.com/s/mn9gfmw3utkffyq.
We are unable to do better because no interactive theorem provides good

support for cryptographic arguments and support for lattice primitives. Never-
theless, our work is an important step in the direction of proving the full result
if and when interactive theorem provers are ready.

10

www.dropbox.com/s/mn9gfmw3utkffyq

5 Background: Lattice-Based Cryptography

We start by giving the preliminaries on cyclotomic rings, the discrete Gaussian
distribution and hardness assumptions based on knapsacks. We continue by pre-
senting the BGV encryption scheme [BGV12] and a commitment scheme, both
with security based on the hardness of the given knapsack-problems. Lastly we
describe the amortized zero-knowledge proof of knowledge protocol by Bootle et
al. [BLNS20] for proving knowledge of many short openings given a fixed public
commitment matrix.

5.1 The Cyclotomic Ring Rq

Let N be a power of 2 and q a prime such that q ≡ 1 mod 2N . Then we
define the rings R = Z[X]/〈XN + 1〉 and Rq = R/qR, that is, Rq is the ring of
polynomials modulo XN+1 with integer coefficients modulo q. This way, XN+1
splits completely into N irreducible factors modulo q, which allows for very
efficient computation in Rq due to the number theoretic transform (NTT) [LN16,
LMPR08].

We define the norms of elements

f(X) =
∑

αiX
i ∈ R

to be the norms of the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi|, ||f ||2 =

(∑
α2
i

)1/2
, ||f ||∞ = max{|αi|}.

For an element f̄ ∈ Rq we choose coefficients as the representatives in
[
− q−12 , q−12

]
,

and then compute the norms as if f̄ is an element in R. For vectors a =
(a1, . . . , ak) ∈ Rk we define the norms to be

‖a‖1 =
∑
‖ai‖1, ‖a‖2 =

(∑
‖ai‖22

)1/2
, ‖a‖∞ = max{‖ai‖∞}.

5.2 Discrete Gaussian Distribution

The continuous normal distribution ρ over Rk, k-dimensional vectors over the
real numbers, centered at v ∈ Rk with standard deviation σ ∈ R>0, is given by

ρ(x)kv,σ =

(
1√

2πσ2

)k
exp

(
−||x− v||22

2σ2

)
.

The discrete Gaussian distribution N over the ring R is achieved by normalizing
the continuous distribution over R, for x ∈ Rk represented as a kN -dimensional
vector, by letting

Nv,σ(x) =
ρkNv,σ(x)

ρkNσ (R)
,

11

where ρkNσ (R) =
∑
x∈R ρ

kN
σ (x). When σ = 1 or v = 0, they are omitted. When

x is sampled according to Nσ (see Section 2.1 in [BBC+18]), then, for γ ∈ R>0,

Pr[‖x‖∞ > γσ] ≤ 2e−γ
2/2 and Pr[‖x‖2 >

√
2γσ] < 2−γ/4.

5.3 Knapsack Problems

We first define the Search Knapsack problem in the `2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Ring-SIS problem in its Hermite Normal
Form, see [PR06,LM06,LPR10] for more details.

Definition 4. The SKS2N,q,β problem is to find a short vector y in R2
q satisfying

[a′ 1] · y = 0 for a given random a′ in Rq. An algorithm A has advantage ε
in solving the SKS2N,q,β problem if

Pr

 [a′ 1] · y = 0 a′←$Rq;

∧ ‖yi‖2 ≤ β 0 6= y ∈ R2
q ← A(A′)

 ≥ ε.
Additionally, we define the Decisional Knapsack problem in the `∞ norm

denoted as DKS∞. The DKS∞ problem is equivalent to the Ring-LWE problem
when the number of samples is limited.

Definition 5. The DKS∞N,q,β problem is to distinguish the distribution [a′ 1] ·
y, for a short y, from the uniform distribution when given random a′ in Rq. An
algorithm A has advantage ε in solving the DKS∞N,q,β problem if∣∣Pr[b = 1 | a′←$Rq;y←$R2

q s.t. ‖y‖∞ ≤ β; b← A(a′, [a′ 1] · y)]

− Pr[b = 1 | a′←$Rq;u←$Rq; b← A(a′, u)]| ≥ ε.

5.4 BGV Encryption

We present the BGV encryption scheme by Brakerski, Gentry and Vaikun-
tanathan [BGV12]. Let p � q be primes, let Rq and Rp be defined as above
for a fixed N , let Nσ be a Gaussian distribution over Rq with standard devia-
tion σ, let B∞ ∈ N be a bound and let κ be the security parameter. These are the
public parameters pp. The BGV encryption scheme consists of three algorithms:
key generation (KeyGen), encryption (Enc) and decryption (Dec), where

- KeyGen samples an element a←$Rq uniformly at random, samples a short
s←$Rq such that ‖s‖∞ ≤ B∞ and samples noise e ← Nσ. The algorithm
outputs public key pk = (a, b) = (a, as+ pe) and secret key sk = (s, e).

- Enc, on input the public key pk = (a, b) and an element m in Rp, samples a
short r←$Rq such that ‖r‖∞ ≤ B∞, samples noise e′, e′′ ← Nσ, and out-
puts the ciphertext c = (u, v) = (ar + pe′, br + pe′′ +m).

12

- Dec, on input the secret key sk = s and a ciphertext c = (u, v) in R2
q , outputs

the message m ≡ (v − su mod q) mod p.

The output of the decryption algorithm is correct as long as ‖v − su‖∞ = BDec <
bq/2c. It follows that the BGV encryption scheme is secure against chosen plain-
text attacks if the SKS2N,q,β problem is hard for some β = β(N, q,B∞, σ, p).

Furthermore, we present the passively secure distributed decryption tech-
nique used in the MPC-protocols by Damg̊ard et al. [BD10,DKL+13,DPSZ12].
When decrypting, we assume that each decryption server Dj , for 1 ≤ j ≤ ξ,
has a uniformly random share skj = sj of the secret key sk = s such that
s = s1 + s2 + ...+ sξ. Then they partially decrypt in the following way:

- DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v)
in R2

q , computes mj = sju, sample some large noise Ej ←$Rq such that
‖Ej‖∞ ≤ 2sec(BDec/pξ) for some statistical security parameter sec and up-
per error-bound max‖v − su‖∞ ≤ BDec, then outputs tj = mj + pEj .

We obtain the full decryption of the ciphertext (u, v) as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ...+ tξ. This will give the correct decryption as long
as the noise ‖v − t‖∞ ≤ (1 + 2sec)BDec < bq/2c (see [DKL+13, Appendix G]).
Here, t will be indistinguishable from random except with probability 2−sec.

5.5 Lattice-Based Commitments

We note that the public key in the BGV encryption scheme is essentially a
commitment to the secret key. In general, ignoring the constant p and the bound
on s, the value b = as+ e is a commitment to an arbitrary secret s with secret
randomness e – if e is short and a is a uniformly random public element.

More formally, q be a prime, let Rq be defined as above for a fixed N and
let B′∞ ∈ N be a bound. These are the public parameters pp. The commitment
scheme consists of three algorithms: key generation (KeyGen), commit (Com) and
open (Open), where

- KeyGen samples an element a′←$Rq uniformly at random and outputs the
public commitment key pk′ = a′.

- Com, on input the public key pk′ = a′ and a message m in Rq, samples a short
rm←$Rq such that ‖rm‖∞ ≤ B′∞, outputs cm = a′m+ rm, dm = (m, rm).

- Open, on input commitment cm and opening dm = (m, rm), checks if ‖rm‖∞ ≤
B′∞ and cm = a′m+ rm, and outputs 1 if both checks hold and otherwise 0.

It follows that the commitment scheme is hiding if the DKS∞N,q,B′∞ -problem is

hard and that it is binding if the SKS2
N,q,B′∞·

√
N

-problem is hard.

13

5.6 Exact Amortized Zero-Knowledge Proof of Short Openings

Bootle et al. [BLNS20] give an efficient amortized zero-knowledge protocol for
proving the knowledge of short vectors s′i and e′i over ZNq satisfying A′s′i +e′i =

u′i. Here, A′ is a fixed public matrix in ZN×Nq and u′i are public commitments

in ZNq . By “short” we mean that ‖s′i‖∞ and ‖e′i‖∞ are bounded by some bound
B′, and we present the protocol for B′ = 1, that is, all coefficients of s′i and e′i
are ternary. The protocol is described in detail in Figure 3.

We note that all polynomials in Rq can be represented as vectors in ZNq
and that multiplication by a polynomial a′ in Rq can be represented as matrix-
vector product with a negacyclic matrix A′ in ZN×Nq . It follows that we can
use this protocol to prove, in zero-knowledge, that a commitment cm is a valid
commitment to a ring element with short entries.

Let H be a hash function with 2κ bits output. We provide a short explanation
of the different parts of the protocol, and refer to [BLNS20] for more details:

- We prove that A′s′i + e′i = u′i for i = 1, ..., λ and that s′i and e′i are ternary.
- Vector s′0 is sampled to hide the secrets s′i>0 and to ensure zero-knowledge.
- Polynomials `i(X) are Lagrange interpolation polynomials so that `i(X) =
Πi6=j(X−ai)/(aj−ai) for fixed a1, ..., aλ distinct interpolation points in Zq.

- We let ◦ denote coordinate-wise multiplication of elements of two vectors.
- If s′i is ternary, then the products s′i,j(s

′
i,j − 1)(s′i,j + 1) are all equal to zero.

It follows that the constant term in the product involving f ′ will be zero.
- It also follows that the constant term in the product involving d′ is zero.
- Let RS be a Reed-Solomon code with encoding function Encode. The inputs

are vectors over Zq of length k = N+7η and the outputs are vectors over Zq
of length l, for k < l < q. The minimum distance of the code is d = l−k+ 1.

- Adding randomness r′i,j of dimension η information theoretically hides all
information about the input when revealing codewords in up to η positions.

- Let RowsToMatrix denote the the function taking as input an ordered list of
row-vectors and outputs a matrix consisting of the input rows in order.

- Let MerkleTree be a function that takes as input a matrix and outputs a
root of a Merkle tree with the columns of the matrix as leaf nodes.

- Let MerklePathsI be the set of hashes along the paths from leaf nodes with
index in I, proving that a given set of elements is in the tree.

- To compress the size of the paths in the Merkle trees we split it into h trees
with l/h leafs each.

- Let Verify be a function that takes as input a set of column vectors, a
Merkle root and a set of paths, and verifies that each column is a leaf node.

The verification equation is the following:

Encode
(
f̄
′
, f̄
′ ◦
[
f̄
′ − 1

]
◦
[
f̄
′
+ 1
]
, d̄
′ ◦
[
d̄
′ − 1

]
◦
[
d̄
′
+ 1
]
, r̄′
) ∣∣∣

I

?
=

λ∑
i=0

`i(x)Hi|I . (1)

14

ΠEAZKPoK

Prover((A′, {u′i}λi=1), ({s′i}λi=1, {e′i}λi=1)) Verifier(A′, {u′i}λi=1)

s′0 ←$ZNq , f ′(X) =

λ∑
i=0

s′i`i(X)

1

`0(X)
f ′(X) ◦ [f ′(X)− 1] ◦ [f ′(X) + 1]

=

2∑
j=0

λ∑
i=1

v′i,j`i(X)`0(X)j

d′(X) =

λ∑
i=1

u′i`i(X)−A′f ′(X)

1

`0(X)
d′i(X) ◦ [d′i(X)− 1] ◦ [d′i(X) + 1]

=

2∑
j=0

λ∑
i=1

w′i,j`i(X)`0(X)j

For each i = 0, ..., λ do the following:

sample r′i ←$Zηq
denote v′i := {v′i,0,v′i,1,v′i,2}
denote w′i := {w′i,0,w′i,1,w′i,2}
H ′i = Encode(s′i,v

′
i,w

′
i, r
′
i)

E = RowsToMatrix(H ′0, ...,H
′
λ)

M = MerkleTree(E))

M

x x←$Z∗q

f̄
′

= f ′(x)

r̄′ =

λ∑
i=0

r′i`i(x)

f̄
′
, r̄′

I I ←$ [l]η, |I| = η

E|I , MerklePathsI

Verify(EI ,M, MerklePathsI)

d̄
′

=

λ∑
i=1

u′i`i(x)−A′f̄ ′

Check that equation 1 holds.

Fig. 3. The exact amortized zero-knowledge proof of knowledge of short openings.

15

It is straightforward to see that the protocol is complete and zero-knowledge.
The following theorem describe the soundness of the protocol.

Lemma 1 ((Adapted) Theorem 4.3 in [BLNS20]). Let RS be the Reed-
Solomon code above of dimension k = N +7η and length l with k < l < q. Then,
the soundness of the protocol in Figure 3 is bounded by

max

{
2

(
k

l − η

)η
,

8λ

q

}
.

Furthermore, the size of the amortized zero-knowledge proof in Figure 3 is:

(N + (λ+ 2)η) log q + 2κ(h+ η log(l/h)) bits.

The protocol can be made non-interactive with the Fiat-Shamir transform [FS87],
and we denote by

πA ← ΠEAZKPoK((A′, {u′i}λi=1), ({s′i}λi=1, {e′i}λi=1)), and

0 ∨ 1← ΠEAZKPoKV(A′, {u′i}λi=1), πA),

the run of the prover and the verification protocols, respectively.

6 Zero-Knowledge Protocol of Correct Decryption

6.1 Lattice-Based Threshold Decryption Scheme

Setup. We will be working over the cyclotomic ring Rq = Zq[X]/〈XN + 1〉
as defined in Section 5.1, together with a modulus p � q, both prime. These
are the public parameters of the protocol, together with security parameter κ,
soundness parameter λ, statistical security parameter sec, standard deviation
σ, bound B∞ and maximal ciphertext error-bound BDec. Let E denote the set
{E ∈ Rq : ‖E‖∞ ≤ 2sec−1BDec/p}.

Scheme. We present a threshold decryption version of the BGV encryption
scheme [BGV12] , where KeyGen, Enc and Dec are defined in Section 5.4.

The dealer algorithm (Deal) takes as input a public key pk = (a, b) and
corresponding secret key sk = (s, e), samples uniform s0 and e0 from Rq,
and computes s1 = s − s0 and e1 = e − e0. Then it commits to the val-
ues as csi = Com(si), cei = Com(ei), and computes bi = asi + pei so that
b = b0 + b1. Finally, it computes a non-interactive zero-knowledge proof πS
proving that the sum e0 + e1 is short, as described below. It outputs key
shares sk0 = (s0, e0), sk1 = (s1, e1) and aux = (b0, b1, cs0 , cs1 , ce0 , ce1 , πS).

The verify algorithm (Verify) takes as input a public key pk = (a, b), an in-
dex i, a secret key share ski = (si, ei) and aux. It outputs 1 if and only if

(bi
?
= asi + pei) ∧ (b

?
= b0 + b1) ∧ (ΠVerify(ce0 , ce1 , πS)), and 0 otherwise.

16

The player algorithm (Play) takes as input a key share ski = (si, ei) and a
ciphertext c = (u, v), samples uniform Ei in E and outputs ti = siu+ pEi.

The reconstruction algorithm (Reconstruct) takes as input a ciphertext c =
(u, v), two decryption shares (t0, t1), and outputs m ≡ (v − t0 − t1 mod q)
mod p.

Optimized Zero-Knowledge Proof of Shortness. There are many options for πS ,
proving that the sum of the underlying values of the commitments ce0 and ce1
are short. We can use the Fiat-Shamir with Aborts framework [Lyu09, Lyu12],
but this would give us a large soundness slack, that is, we prove knowledge of
a vector that might be much larger than what we started with. We can achieve
smaller slack using 0/1-challenges in a commit-and-prove protocol, but we would
then have to run the protocol many times to achieve negligible soundness. Other
alternatives are the exact proofs by Beullens [Beu20] or Baum and Nof [BN20],
where proof sizes would be a several hundred kilobytes each, or the more effi-
cient range proofs by Attema et al. [ALS20]. However, assuming that we will
run the Deal-algorithm λ times, we will use the amortized proof by Bootle et
al. [BBC+18] described in Section 5.6 to prove that all λ executions are done
correctly at the same time.

6.2 Security of the Threshold Decryption Scheme

Theorem 1 (Correctness). The lattice-based threshold decryption scheme de-
fined in Section 6.1 is correct with respect to Definition 1.

Proof. It follows directly that the Verify-algorithm is correct from the correctness
of the encryption scheme, commitment scheme and the zero-knowledge proto-
coldefined in Section 5. It also follows that the Reconstruct-algorithm is correct
from the correctness of the distributed decryption algorithmdefined in Subsec-
tion 5.4, except with negligible probability over the randomness used to generate
the ciphertexts. ut

Theorem 2 (Integrity). The lattice-based threshold decryption scheme defined
in Section 6.1 has integrity with respect to Definition 2.

Proof. For Verify to accept for both i = 0 and i = 1, we need that b = b0 + b1,
b0 = as0 + pe0, b1 = as1 + pe1 and that the zero-knowledge proof of shortness
πS of the sum e0 + e1 is accepted. If either of the key shares are incorrect
then Verify accept with probability 0, and if the key shares are correct, then
Reconstruct outputs m except with negligible probability.

An attacker can choose s0, s1, e0 and e1 such that all equations are correct,
but the sum e0 + e1 is not short. The soundness of Verify then reduces to the
soundness of the zero-knowledge protocol, which has negligible soundness error.

An attacker can also try to find ŝ 6= s and short ê 6= e such that b = as+pe =
aŝ+ pê, that is, he finds a short solution to a knapsack problem, and hence, he
breaks SKS2-assumption. We conclude that if the SKS2-problem is hard and the

17

zero-knowledge protocol is secure, then the lattice-based threshold decryption
scheme has integrity. ut

Theorem 3 (Privacy). The lattice-based threshold decryption scheme defined
in Section 6.1 is, using a simulator SimShort for proof of shortness πS, simulatable
with respect to Definition 3. We present simulator DealSim in Figure 4 and
simulator PlaySim in Figure 5.

Proof. We present first a simulator DealSim for the Deal-algorithm and then a
simulator PlaySim for the Play-algorithm. We replace all parts of the transcript
with uniformly random elements from the same sets and ignore unopened values.

DealSim(pk = (a, b), i)

(b∗0, b
∗
1)← 〈b〉

s∗i
$← Rq, e∗i ≡q (b∗l − as∗i)/p

c∗si ← Com(s∗i), c
∗
s1−i

← Com(0)

c∗ei ← Com(e∗i), c
∗
e1−i

← Com(0)

π∗S ← SimShort(c
∗
ei , c

∗
e1−i

)

aux∗ ← (b∗0, b
∗
1, c
∗
s0 , c

∗
s1 , c

∗
e0 , c

∗
e1 , π

∗
S)

return (sk∗i = (s∗i , e
∗
i), aux

∗)

Fig. 4. Simulator DealSim.

DealSim: we first note that because we can simulate πS , we can use SimShort

to simulate a proof π∗S . This allows us to commit to any uniformly random key-
shares s∗i and e∗i that give correctness, that is, the public key-shares b∗0 and b∗1
sum to b, but s∗0 and s∗1 does not need to sum to a short key s∗ and e∗0 and e∗1
does not need to sum to short noise e∗. This ensures that Verify outputs 1.

PlaySim: we start by computing ti = usi. Then we find a t1−i such that
(v − ti − t1−i mod q) mod p = m. This ensures that Reconstruct outputs the
message m when reconstructing the shares.

ut

6.3 Zero-Knowledge Proof of Verifiable Decryption

We will now present the different phases of our sigma protocol for proving correct
decryption. The full protocol is given in Figure 6. The security of the construction
follows from the results in Section 3 in combination with Theorem 1, 2 and 3.

18

PlaySim(pk = (a, b), ski = (si, ei), c = (u, v),m)

E∗
$← E, ti = usi

x∗1−i = v −mj − ti

t∗1−i = x∗1−i + pE∗

return (ds = t∗1−i)

Fig. 5. Simulator PlaySim.

The reader should note that there are some differences with the abstract
construction in Section 3. First, we do not transmit the randomness used. In-
stead, the verifier reconstructs the randomness and verifies that it is sufficiently
short. However, to optimize the size of the protocol, this will change in the next
section, using classical commit-and-prove techniques. Second, we do not prove
the decryption key shares correct using individual proofs. Instead, we use an
amortized proof. This is an optimization, and does not affect the security proof.

Setup. We are given a honestly generated public key pk = (a, b = as+pe), where
||s||∞ ≤ B∞ and e ← Nσ. The secret key sk = (s, e) is given to the prover.
Additionally, we are given a set of properly generated ciphertexts {(uj , vj) =
(arj + pe′j , brj + pe′′j +mj)}τj=1, where ||rj ||∞ ≤ B∞ and e′j , e

′′
j ← Nσ, together

with a set of messages {mj}τj=1 for mj ∈ Rp. The goal of the prover is to convince
the verifier that it knows the secret key and that the set of messages are proper
decryptions of the ciphertexts with respect to the given public key.

Commit phase. For a given soundness parameter λ, the prover will do the fol-
lowing for k = 1, ..., λ. First, it runs the Deal algorithm on sk and pk to produce
sk0,k, sk1,k and auxk. Then, for i = 0, 1 and each j = 1, ..., τ , it runs the Play
algorithm on each key-share ski,k and ciphertext cj to produce t0,j,k and t1,j,k.

Finally, it sends w ← ({auxk, {ti,j,k}
1,τ
i=0,j=1}λk=1) to end the commitment phase.

Note that we can prove that all sharings of e are short because the commitment
scheme is slightly additive homomorphic, allowing us to prove shortness of sums
of commitments with the same index k.

Challenge phase. The verifier samples a random binary challenge vector β of
length λ, where each entry is sampled independently. It sends β to the prover.

Respond phase. The prover sends the openings ({dsβ[k],k
, deβ[k],k

}λk=1), for each
of the corresponding commitments to each index k of β, to the verifier.

Verification phase. For each k = 1, ..., λ, the verifier runs the Verify algorithm
to make sure that the openings of sβ[k],k and eβ[k],k are valid, check that all

19

shares of the public key are computed correctly as bβ[k],k = asβ[k],k + peβ[k],k,
verify the public key b = b0,k + b1,k and ensure that πA is valid. Further, for
each j = 1, ..., τ , the verifier runs the Reconstruct algorithm to make sure that
all decryption shares are correct and that all messages are decrypted correctly.
Finally, it outputs 1 if all checks hold, and 0 otherwise.

Fiat-Shamir. To make the scheme non-interactive we can use the Fiat-Shamir
transform [FS87] by hashing the output of the commit phase and use the hash as
challenge, before outputting the response. We note that this can be done similarly
to the optimizations described for estimating the size in the next section. We
also note that the soundness parameter λ initially can be very small in the
interactive case, while it should be (almost) as large at the security parameter
κ in the non-interactive setting, increasing the size of the proof of decryption.

7 Performance

In this section, we shall carefully analyze the performance of our decryption
proof. Along the way, we make several easy optimizations with respect to the
protocol in Fig. 6. In particular, we use a commitment in the first message,
and then send only the values that the verifier cannot recompute himself in the
second message. Also, we use pseudo-randomness to compress the randomness
used by the Play algorithm, and point out some further improvements.

7.1 Proof Size

Each element in Rq is of size N log q bits, which might be large. We will replace
some of them with hashes or seeds, and let the verifier re-construct the ring
elements whenever possible. We model the hash-function as a random oracle
with output length 2κ and denote it by H. Note that the soundness parameter
λ of the sigma-protocol may be chosen independently of the long-term security
parameter κ.

Commit phase. To reduce the number of ring elements being sent, we commit to
the output of the commit phase using a hash-function, and send the hash instead.
More concretely, let w = H({b0,k, b1,k, cs0,k , cs1,k , ce0,k , ce1,k , {ti,j,k}

1,τ
i=0,j=1}λk=1).

Challenge phase. The verifier sends β consisting of λ bits to the prover.

Respond phase. First, note that we do not need to send the partial decryptions
tβ[k],j,k, because they can be computed uniquely from uj , sβ[k],k and Eβ[k],j,k.
Next, we also note that bβ[k],k can be computed directly from sβ[k],k and eβ[k],k,
and b1−β[k],k from b and bβ[k],k. Instead of sending both sβ[k],k and eβ[k],k, we
can let sβ[k],k and e1−β[k],k be generated from a seed if β[k] is zero (and compute
s1−β[k],k from s and e1−β[k],k from e), and opposite when β[k] is one. This saves
one ring element per round. Lastly, we assume that a uniformly random seed

20

ΠZKPCD

Prover(((a, b), {(uj , vj)}τj=1, {mj}τj=1), (s, e)) Verifier((a, b), {(uj , vj)}τj=1, {mj}τj=1)

k = 1, ..., λ :

Deal :

(s0,k, s1,k)←$ 〈s〉
(e0,k, e1,k)←$ 〈e〉
i = 0, 1:

(csi,k , dsi,k)← Com(si,k)

(cei,k , dei,k)← Com(ei,k)

bi,k ← asi,k + pei,k

j = 1, ..., τ :

Play :

Ei,j,k ←$E
ti,j,k = siuj + pEi,j,k

πA ← ΠEAZKPoK({(cei,k , dei,k)}i,k)

w ← ({bi,k, csi,k , cei,k , {ti,j,k}j}i,k, πA)

w

β
$←− {0, 1}λ

β

z ← ({dsβ[k],k
, deβ[k],k

}k)

z Parse each entry x as x̃.

k = 1, ..., λ :

Verify :

Open(c̃sβ[k],k
, d̃sβ[k],k

)
?
= 1

Open(c̃eβ[k],k
, d̃eβ[k],k

)
?
= 1

b̃β[k],k
?
= as̃β[k],k + pẽβ[k],k

b
?
= b̃0,k + b̃1,k

j = 1, ..., τ :

Reconstruct :

pẼβ[k],j,k = t̃β[k],j,k − uj s̃β[k],k

‖pẼβ[k],j,k‖∞
?

≤ 2sec−1B

vj − t̃0,j,k − t̃1,j,k
?≡p mj

1
?← ΠAZKPoKV({cei,k}i,k, πA)

Fig. 6. Zero-knowledge proof of correct decryption.

21

ρβ[k],k of length 2κ bits can be used to deterministically generate the randomness
used in csβ[k],k

and ceβ[k],k
, and to generate noise Eβ[k],j,k, for all j = 1, ..., τ .

It follows that, for each k = 1, ..., λ, the prover sends either sβ[k],k or eβ[k],k
and ρβ[k],k, together with the commitments cs1−β[k],k

and ce1−β[k],k
, and the par-

tial decryptions {t1−β[k],j,k}τj=1. Because we only need a commitment without
any special properties to commit to si,k, we let csi,k = H(si,k, rsi,k). However,
since ce1−β[k],k

is used in the amortized proof of shortness, this commitment is
computed using the lattice-based commitment scheme in Section 5.5. We ob-
serve that ce = ce1−β[k],k

+ a′eβ[k],k is a commitment to eβ[k],k + e1−β[k],k, which
is supposed to be short. We set σ so that all noise values e are ternary, and use
the amortized zero-knowledge protocol directly as described in Section 5.6.

Total communication. The total amount of communication by the prover is

2κ+ 4λκ+ λ(τ + 2)N log q + |πA| bits.

The amortized proof is of size (N + (λ + 2)η) log q + 2κ(h + η log(l/h)) bits,
however, we might have to run the proof several times to get negligible sound-
nessaccording to Lemma 1. For a concrete instantiation, we use the example
parameters in Table 1, estimated to κ = 100 bits of security using the LWE-
estimator [APS15]. Assuming λ = 100 we can run the amortized proof two times
to get soundness smaller than 2−λ with the given values for k, l, η, giving a proof
size |πA| of less than 86 KB. It follows that for a large number of ciphertexts τ
we can ignore the other terms and get a proof size of ≈ 15.87λτ KB.

7.2 Timings

We have not implemented our protocol, but give an estimate for the time it takes
to compute our proof of correct decryption based on the elementary operations.
The most expensive computations in lattice-based cryptography are sampling
elements due to some distribution, and compute multiplications in the ring.
We use the NTT to increase the efficiency of the latter. Then we need a fully
splitting ring Rq of dimension N = 211, where q is a 62-bit prime of the form
q ≡ 1 mod 2N , for example q = 262 − 216 + 1. Because q is two bits smaller
than the word size commonly used on modern computers, modular reductions
modulo q are 30 % more efficient than for primes of size 64 bits.

The prover does the following computation in the protocol:

– Sample 2λ uniform elements s0,k and e0,k in Rq. Convert 4λ values to NTT.

– Sample 2λ short vectors r such that ‖r‖∞ = 1. Convert them to NTT.

– Compute 2λ commitments at the cost of 1 multiplication each in NTT.

– Compute 2λ key-shares bi at the cost of 1 multiplications each in NTT.

– Convert τ ciphertext-values uj in Rq to NTT.

– Sample 2λτ uniform but bounded ring elements Ei,j,k in Rq.

– Compute 2λτ products siuj in NTT. Convert back from NTT.

22

Parameter Explanation Constraints Value

N Dimension Power of two 2048

q Ciphertext modulus 2(1 + 2sec)BDec < q ≡ 1 mod 2N ≈ 262

p Plaintext modulus 3

κ Security parameter Long-term privacy 100 bits

λ Soundness parameter 10, ..., 100

sec Statistical security See [DKL+13, Appendix G] 40

σ Standard deviation (ternary error-polynomials)
√

2/3

B∞, B
′
∞ Bounds on secrets 1

BDec Decryption bound ‖v − su‖∞ ≤ BDec 220

η Size of challenge set I Soundness Lemma 1 50

k Input size to code Equal to N + 7η 2398

l Length of code Must be larger than k 5000

h # Merkle trees E.g. equal to 2η 100

Table 1. Notation, explanation, constraints and example parameters for the protocol.

23

Adding everything together, we get total timing:

(2λ+ 2λτ)U + (4λ+ 2λτ)M + (6λ+ (2λ+ 1)τ)NTT.

We use the numbers from NFLlib [ABG+16] to estimate the timings in
our protocol for NTT, multiplication and sampling. Note that the estimates
in NFLlib are for N = 210, and the real timings would be slightly larger. The
NTT is a bijection and takes NTT ≈ 14 µs to compute each way, while it takes
M ≈ 3 µs to multiply two polynomials on NTT-form. It takes U ≈ 10 µs to
sample a uniform polynomial in Rq. We assume that scalar multiplications by
p and additions comes for free. Sampling ring elements r such that ‖r‖∞ = 1
can be done by pure hashing, and we ignore this cost as well. To compensate
for the larger N , we assume that the real timings are within a factor 2 of these
estimates.

If we ignore the τ -terms, set λ = 100 and insert the values in Table 1, we
get that the overhead of the protocol is less than 25 ms. The prover time for the
amortized proof is estimated to be around 2 seconds (see [BLNS20, Table 1]).
Hence, the real cost of the protocol is ≈ 2λ(U + M + NTT)τ ≈ 100λτ µs. We note
that verification of this proof requires computation of a similar order.

We also note that several parts of our protocol are independent of the ci-
phertexts being decrypted. A commonly used technique is to move computation
to a pre-processing, or offline, phase, where we perform the computations that
are independent of the instance we are proving. The Deal-algorithm is indepen-
dent of the ciphertexts, which means that sampling, key-splitting and computing
commitments and zero-knowledge proofs can be done offline.

Assume that τmax is an upper bound on the number of ciphertexts. Then we
can sample 2λτmax values Ei,j,k from E in advance of running the Play-algorithm.
The ciphertexts are input to the decryption protocol, and we can require that
the uj ’s are given on NTT form, as this computation is independent of secret
information and can be done by e.g. the encryption algorithm. The size of the
proof is still the same, but online computation is reduced to ≈ 70λτ µs.

8 Comparison to Other Protocols

8.1 Comparison to ΠDistDec

We will now sketch an extension of the passively secure distributed decryption
protocol ΠDistDec given in Section 5.4, which is used in SPDZ [DKL+13,DPSZ12].
The main difference compared to our protocol is that this protocol requires zero-
knowledge proofs to ensure correct computation at each step of the protocol to
achieve active security instead of repeating the decryption procedure several
times. The ΠDistDec-protocol runs as follows:

1. Each party Di samples Ei,j from E and computes the partial decryptions
ti,j = siuj + pEi,j for each ciphertext cj = (uj , vj).

24

2. Each party Di publish a zero-knowledge proof πLi,j
of the linear relation for

ti,j , using the lattice-based commitments together with their zero-knowledge
proof of linear relations by Baum et al. [BDL+18].

3. Each party Di use the amortized ZKP by Baum et al. [BBC+18] to prove
that each Ei,j is bounded by 2secB/ξp, given commitments cEi,j

.
4. The verifier checks the relations (vj − t0,j − t1,j mod q) ≡ mj mod p and

that all the zero-knowledge proofs are valid.

Ring elements tj and commitments cEi,j are of size N log q and 2N log q, re-
spectively. Each proof of linearity πLi,j

is of size ≈ 9N log 6σ̄ bits. The amortized
proof is of size 4n̂N log 6σ̂, where n̂ ≥ (κ + 2)/ log(2N + 1). The total size, for
each Di, is

≈ 4n̂N log(6σ̂) + (3N log q + 9N log(6σ̄))τ bits.

Then one party can split the key into ξ = 2 shares, run ΠDistDec on each key-
share locally, and return the outputs from both D1 and D2 together with an
additional proof that the key-splitting was correct. We based the estimate on
the parameters from Table 1, with σ̄ ≈ 216 and σ̂ ≈ 295

√
τ . However, the

amortized proof is not exact, which means that we must increase q to ensure
correct decryption. Assuming that τ ≤ 220, we need to increase q by 50 bits.
To achieve security κ = 100 we then need to increase N to 212. It follows that
the proof is of size ≈ 516τ + 3200 KB. We conclude that ΠZKPCD is smaller for
λ ≤ 33 and approximately ×3 times larger than ΠDistDec for λ = 100.

We do not have access to timings for this protocol. However, as the modulus is
much larger, the dimension is twice the size, the zero-knowledge proofs include
Gaussian sampling and rounds of aborts, we expect the protocol to be much
slower than ours despite the number of repetitions in our construction.

8.2 Comparison to Boschini et al. (PQCrypto 2020)

Boschini et al. [BCOS20] presents a zero-knowledge protocol for Ring-SIS and
Ring-LWE. Their protocol can be used to prove knowledge of secrets or plain-
texts, or prove correct decryption given a message and a BGV ciphertext. Con-
crete estimates for the latter are not given in the paper, but the number of
constraints is higher for decryption than for the former. For a slightly smaller
choice of parameters, a single proof of plaintext knowledge is of size 87 KB and
takes roughly 3 minutes to compute. We conclude that the proof system by Bos-
chini et al. will provide somewhat smaller decryption proofs, but that the time it
takes to produce such a proof are several orders of magnitude slower than ours,
making the system impossible to use in practice for moderate and large sets of
ciphertexts.

8.3 Comparison to Lyubashevsky et al. (ePrint 2021)

A resent preprint by Lyubashevsky, Nguyen and Seiler [LNS20] gives a verifiable
decryption protocol for the Kyber encapsulation scheme [SAB+20]. Here, the

25

encryption is over a rank 2 module over a ring of dimension N = 256 and
modulus q = 3329 with secret and noise values bounded by B∞ = 2. The proof
of correct decryption of binary messages of dimension 250 is of size 43.6 KB. We
note that the message space is smaller than in our protocol, mostly because we
are forced to choose larger parameters because of the noise-drowning technique
to hide the secret key in the partial decryption shares. We expect the proof for
ternary messages, N = 211 and q ≈ 232 will be comparable to our proof for
λ ≈ 60. They don’t provide timings.

8.4 Other Approaches

Recent developments in lattice-based zero-knowledge proofs can be used to prove
shortness of vectors as a building block to prove correct decryption. Examples are
Beullens [Beu20], Baum and Nof [BN20], Lyubashevsky et al. [BBC+18,BLS19,
ALS20], Yanget al. [YAZ+19] and Esgin et al. [ENS20]. However, proofs of de-
cryption requires both proofs of shortness, range proofs and linear relations, and
combining these proofs for comparable parameters as in our scheme will result
in proof sizes of several hundred KB or a few MB per ciphertext as in [LNS20].
Also, the running times of these protocols often require the prover to sample
Gaussian values and re-run the proof protocol several times for each statement,
which increase the timings of the final proof.

9 Conclusion and Future Work

9.1 Summary and Conclusion

We have defined a passively secure distributed decryption protocol, and show
how this can be used to construct an interactive zero-knowledge protocol for cor-
rect decryption. This is the first efficient single-party verifiable decryption proto-
col for lattice-based cryptography when instantiated with the BGV encryption
scheme. It can be made non-interactive using the Fiat-Shamir transform.

The size and efficiency of the protocol is a small factor times λτ , for arbitrary
soundness parameter λ and number of ciphertexts τ . The long-term privacy of
the protocol κ can be set independently of, and in particular larger than, λ. This
allows an interactive instantiation of the protocol to be very efficient, both in size
and computation. For κ = 100 we estimate the proof to be of size ≈ 16λτ KB
and the proof/verification time to be only 100λ µs per ciphertext. The prover
time can be decreased to only 70λ µs per ciphertext if we allow for preprocessing.

We note that the interaction in the protocol opens for a hybrid proof: if we
wish for a quick result to get confidence in the decrypted ciphertexts but at the
same time can wait longer to be completely certain, we can ask for two proofs.
First, we ask the prover for a proof where λI = 10 or λI = 20, and sample a
random challenge ourselves. If we accept the proof, we ask the prover to compute
a non-interactive proof for the same statement but with λN = 100. This proof
can be received, stored and verified later, knowing already that the messages

26

most likely are correctly decrypted. The interactive proof also allows the verifier
to arbitrarily increase λI by sending more challenges on the fly, where we tell
the prover when we are done, and he creates the amortized proof in the end.

Finally, we compare our solution with other protocols . First, we append
zero-knowledge proofs to ΠDistDec [DKL+13, DPSZ12] and use similar ideas as
above to create another one-party verifiable decryption protocol. We compare
their efficiency, and conclude that ΠZKPCD beats ΠDistDec w.r.t. computational
complexity and provides smaller proofs for λ ≤ 33. Secondly, we compare with
the protocol by Boschini et al. [BCOS20], and observe that even though they
provide slightly shorter proofs when λ is larger, the computational complexity
is so heavy that the protocol is impractical except for small sets of ciphertexts.
Lastly, we admit that the newly published protocol by Lyubashevsky, Nguyen
and Seiler [LNS20] provides much smaller proofs than we do for small message-
spaces (which we cannot achieve because of constraints inherent to our protocol),
while we provide smaller proofs for comparable parameters when λ ≤ 60.

9.2 Future Improvements and Extensions

We consider the following four extensions to our protocol future work.

Remove the ZK-proofs of shortness. The Deal-algorithm outputs a zero-knowledge
proof proving that the sum of the shares of the secret key and noise used to com-
pute the public key are short. This is to ensure the correctness and security of
the encryption scheme. However, ElGamal does not require such a proof, and it
might be infeasible to find key-shares that are correct, but not short, that de-
crypts consistently for all BGV-ciphertexts. We would need to conduct a more
careful analysis to ensure that our construction is secure also without the zero-
knowledge proofs.

More size-efficient decryption procedure. The main obstacle in our protocol is
the size of q. The modulus is required to be a factor 2sec larger than what is
necessary to just ensure correct decryption, to make sure that the decryption
protocol does not leak any information about the secret key. This is the only way
we know of today to perform verifiable decryption for lattice-based encryption
schemes, and any improvement in this area would, most likely, directly improve
the efficiency of our scheme as well.

Extension to distributed decryption. We can extend our protocol to more than
one party in the following way. We split the private key among n parties, and
each of the parties run the proof of correct decryption protocol locally to prove
correctness of their partial decryption share. Then we can publicly combine the
output to verify the correct decryption.

The size of the proof would increase by a factor n, but the timings would be
the same as all the computation would be performed in parallel by each party.
Now, the soundness is the same if all n parties are colluding, while the soundness
error would decrease if there is at least one honest party involved. This extension

27

requires a more careful analysis before it can be used in practice. In our dynamic
framework the security for the soundness could also be set differently for each
player if deemed useful.

Instantiations based on other primitives. Finally, a natural future step is to
apply our transformation to other encryption schemes, especially, also with other
underlying hardness assumptions. As an example, a threshold scheme has also
recently been constructed based on isogeny assumptions [DM20].

References

ABG+16. Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet,
Marc-Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast
lattice library. In Kazue Sako, editor, Topics in Cryptology – CT-
RSA 2016, volume 9610 of Lecture Notes in Computer Science, pages
341–356. Springer, Heidelberg, February / March 2016.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot,
editor, USENIX Security 2008: 17th USENIX Security Symposium, pages
335–348. USENIX Association, July / August 2008.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II, vol-
ume 12171 of Lecture Notes in Computer Science, pages 470–499. Springer,
Heidelberg, August 2020.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, vol-
ume 10992 of Lecture Notes in Computer Science, pages 669–699. Springer,
Heidelberg, August 2018.

BCHPM04. Yves Bertot, Pierre Castéran, Gérard Huet, and Christine Paulin-
Mohring. Interactive theorem proving and program development : Coq’Art
: the calculus of inductive constructions. Texts in theoretical computer
science. Springer, 2004.

BCOS20. Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum SNARKs for RSIS and RLWE and their applica-
tions to privacy. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pages 247–267. Springer, Heidelberg, 2020.

BCS19. Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using TopGear in
overdrive: A more efficient ZKPoK for SPDZ. In Kenneth G. Paterson
and Douglas Stebila, editors, SAC 2019: 26th Annual International Work-
shop on Selected Areas in Cryptography, volume 11959 of Lecture Notes in
Computer Science, pages 274–302. Springer, Heidelberg, August 2019.

28

BD10. Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of
Lecture Notes in Computer Science, pages 201–218. Springer, Heidelberg,
February 2010.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More efficient commitments from structured lattice
assumptions. In Dario Catalano and Roberto De Prisco, editors, SCN
18: 11th International Conference on Security in Communication Net-
works, volume 11035 of Lecture Notes in Computer Science, pages 368–
385. Springer, Heidelberg, September 2018.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy sig-
nature schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes
in Computer Science, pages 183–211. Springer, Heidelberg, May 2020.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 565–596.
Springer, Heidelberg, August 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309–325. Association for Computing Machinery, January 2012.

BKP13. Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE. In Michael J.
Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-
Naini, editors, ACNS 13: 11th International Conference on Applied Cryp-
tography and Network Security, volume 7954 of Lecture Notes in Computer
Science, pages 218–236. Springer, Heidelberg, June 2013.

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gre-
gor Seiler. More efficient amortization of exact zero-knowledge proofs
for LWE. Cryptology ePrint Archive, Report 2020/1449, 2020. https:

//eprint.iacr.org/2020/1449.
BLO18. Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical

lattice-based one-time linkable ring signatures. In David Naccache,
Shouhuai Xu, Sihan Qing, Pierangela Samarati, Gregory Blanc, Rongxing
Lu, Zonghua Zhang, and Ahmed Meddahi, editors, ICICS 18: 20th Inter-
national Conference on Information and Communication Security, volume
11149 of Lecture Notes in Computer Science, pages 303–322. Springer,
Heidelberg, October 2018.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer
Science, pages 176–202. Springer, Heidelberg, August 2019.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and

29

https://eprint.iacr.org/2020/1449
https://eprint.iacr.org/2020/1449

Vassilis Zikas, editors, PKC 2020: 23rd International Conference on The-
ory and Practice of Public Key Cryptography, Part I, volume 12110 of
Lecture Notes in Computer Science, pages 495–526. Springer, Heidelberg,
May 2020.

BS13. Slim Bettaieb and Julien Schrek. Improved lattice-based threshold ring
signature scheme. In Philippe Gaborit, editor, Post-Quantum Cryptogra-
phy - 5th International Workshop, PQCrypto 2013, pages 34–51. Springer,
Heidelberg, June 2013.

CP92. David Chaum and Torben P. Pedersen. Wallet databases with observers.
In CRYPTO, volume 740 of Lecture Notes in Computer Science, pages
89–105. Springer, 1992.

Dam10. Ivan Damg̊ard. On
∑

-protocols. Private note, 2010. https://www.cs.

au.dk/~ivan/Sigma.pdf.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 307–315. Springer, Heidelberg, August
1990.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishon-
est majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European Sym-
posium on Research in Computer Security, volume 8134 of Lecture Notes
in Computer Science, pages 1–18. Springer, Heidelberg, September 2013.

DM20. Luca De Feo and Michael Meyer. Threshold schemes from isogeny as-
sumptions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International Conference on The-
ory and Practice of Public Key Cryptography, Part II, volume 12111 of
Lecture Notes in Computer Science, pages 187–212. Springer, Heidelberg,
May 2020.

DOTT20. Ivan Damg̊ard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi.
Two-round n-out-of-n and multi-signatures and trapdoor commitment
from lattices. Cryptology ePrint Archive, Report 2020/1110, 2020. https:
//eprint.iacr.org/2020/1110.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, Heidelberg, August 2012.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in Computer
Science, pages 259–288. Springer, Heidelberg, December 2020.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, Heidelberg, August 1987.

Gor98. Daniel M. Gordon. A Survey of Fast Exponentiation Methods. J. Algo-
rithms, 27(1):129–146, 1998.

30

https://www.cs.au.dk/~ivan/Sigma.pdf
https://www.cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2020/1110

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of
Computing, pages 197–206. ACM Press, May 2008.

HGT19. Thomas Haines, Rajeev Goré, and Mukesh Tiwari. Verified verifiers for
verifying elections. In CCS, pages 685–702. ACM, 2019.

HM20. Thomas Haines and Johannes Müller. SoK: Techniques for verifiable mix
nets. In Limin Jia and Ralf Küsters, editors, CSF 2020: IEEE 33st Com-
puter Security Foundations Symposium, pages 49–64. IEEE Computer So-
ciety Press, 2020.

HW14. Sven Heiberg and Jan Willemson. Verifiable internet voting in Estonia.
In 6th International Conference on Electronic Voting: Verifying the Vote,
EVOTE 2014, pages 1–8, 2014.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th Annual ACM Symposium on Theory of Comput-
ing, pages 21–30. ACM Press, June 2007.

KO21. Stephan Krenn and Michele Orrù. Proposal:
∑

-protocols. 4th An-
nual ZKProof Workshop, 2021. https://docs.zkproof.org/pages/

standards/accepted-workshop4/proposal-sigma.pdf.
KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making

SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 158–189. Springer, Heidelberg,
April / May 2018.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knap-
sacks are collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd International Col-
loquium on Automata, Languages and Programming, Part II, volume 4052
of Lecture Notes in Computer Science, pages 144–155. Springer, Heidel-
berg, July 2006.

LMPR08. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A modest proposal for FFT hashing. In Kaisa Nyberg, editor,
Fast Software Encryption – FSE 2008, volume 5086 of Lecture Notes in
Computer Science, pages 54–72. Springer, Heidelberg, February 2008.

LN16. Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Sara Foresti and
Giuseppe Persiano, editors, CANS 16: 15th International Conference on
Cryptology and Network Security, volume 10052 of Lecture Notes in Com-
puter Science, pages 124–139. Springer, Heidelberg, November 2016.

LNS20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. Cryptol-
ogy ePrint Archive, Report 2020/1448, 2020. https://eprint.iacr.org/
2020/1448.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer, Heidelberg, May / June 2010.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,

31

https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-sigma.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-sigma.pdf
https://eprint.iacr.org/2020/1448
https://eprint.iacr.org/2020/1448

Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 35–54. Springer, Heidelberg, May 2013.

LW18. Fucai Luo and Kunpeng Wang. Verifiable decryption for fully homomor-
phic encryption. In Liqun Chen, Mark Manulis, and Steve Schneider,
editors, ISC 2018: 21st International Conference on Information Secu-
rity, volume 11060 of Lecture Notes in Computer Science, pages 347–365.
Springer, Heidelberg, September 2018.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Com-
puter Science, pages 598–616. Springer, Heidelberg, December 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738–755. Springer, Heidelberg, April 2012.

PBD07. Kun Peng, Colin Boyd, and Ed Dawson. Batch zero-knowledge proof and
verification and its applications. ACM Trans. Inf. Syst. Secur., 10(2):6,
2007.

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In Shai Halevi and Tal Rabin,
editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876
of Lecture Notes in Computer Science, pages 145–166. Springer, Heidel-
berg, March 2006.

SAB+20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-3-submissions.
Scy18. Scytl. Scytl sVote, complete verifiability security proof

report - software version 2.1 - document 1.0, 2018.
https://www.post.ch/-/media/post/evoting/dokumente/

complete-verifiability-security-proof-report.pdf.
SSA+18. Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar,

Michael Backes, and Claudia Diaz. A survey on routing in anonymous
communication protocols. ACM Comput. Surv., 51(3), June 2018.

YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu,
and William Whyte. Efficient lattice-based zero-knowledge arguments
with standard soundness: Construction and applications. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer
Science, pages 147–175. Springer, Heidelberg, August 2019.

32

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.post.ch/-/media/post/evoting/dokumente/complete-verifiability-security-proof-report.pdf
https://www.post.ch/-/media/post/evoting/dokumente/complete-verifiability-security-proof-report.pdf

	Verifiable Decryption in the Head

