
A fusion algorithm for solving the hidden shift
problem in finite abelian groups

Wouter Castryck1,3, Ann Dooms2, Carlo Emerencia2, Alexander Lemmens1

1 imec-COSIC, Department of Electrical Engineering, KU Leuven, Belgium
2 DIMA, Department of Mathematics and Data Science, VUB, Belgium

3 Department of Mathematics: Algebra and Geometry, Ghent University, Belgium

Abstract. It follows from a result by Friedl, Ivanyos, Magniez, Santha
and Sen from 2014 that, for any fixed integer m > 0 (thought of as being
small), there exists a quantum algorithm for solving the hidden shift
problem in an arbitrary finite abelian group (G,+) with time complexity

poly(log |G|) · 2O(
√

log |mG|).

As discussed in the current paper, this can be viewed as a modest
statement of Pohlig–Hellman type for hard homogeneous spaces. Our
main contribution is a simpler algorithm achieving the same runtime for
m = 2tp, with t any non-negative integer and p any prime number, where
additionally the memory requirements are mostly in terms of quantum
random access classical memory; indeed, the amount of qubits that need
to be stored is poly(log |G|). Our central tool is an extension of Peikert’s
adaptation of Kuperberg’s collimation sieve to arbitrary finite abelian
groups. This allows for a reduction, in said time, to the hidden shift
problem in the quotient G/2tpG, which can then be tackled in polyno-
mial time, by combining methods by Friedl et al. for p-torsion groups
and by Bonnetain and Naya-Plasencia for 2t-torsion groups.

Keywords: hidden shift, collimation sieve, hard homogeneous space

1 Introduction

In 1994 Simon’s algorithm [24] laid the basis for Shor’s celebrated polynomial-
time quantum algorithm [23] for factoring integers and computing discrete log-
arithms. It is now a standard fact that Shor’s algorithm is essentially equivalent
to solving the hidden subgroup problem in finite abelian groups, which led to
investigating this problem for non-abelian groups as well.

One of the most famous results in that direction is that of Kuperberg [16]
from 2003, who showed that for any finite abelian group G, the hidden subgroup
problem in the associated dihedral group Dih(G) can be tackled in quantum
sub-exponential time, namely using

2O(
√

log |G|) (1)

operations, i.e., queries and gates. In fact, a more natural description of Kuper-
berg’s algorithm is that it solves the hidden shift problem in G (also called the



hidden translation problem), which can be seen to be equivalent1 to the hidden
subgroup problem in Dih(G). Formally, this problem is defined as follows.

Definition 1.1 (Abelian hidden shift problem). Given a finite abelian group
(G,+), a set X, and oracle access to injective functions f1, f2 : G→ X for which
there exists an s ∈ G such that f1(g) = f2(g + s) for all g ∈ G, find s.

The literature contains versions with non-injective f1, f2, see e.g. [12], but these
will not be considered here.

Kuperberg’s result increased the interest in the hidden shift problem as
a stand-alone problem. It gained relevance for public-key cryptography when
Childs, Jao and Soukharev [8] tied it to the vectorization problem in hard ho-
mogeneous spaces such as CRS [10,22] and CSIDH [4], which is a candidate
post-quantum replacement for the discrete logarithm problem. Note that the
hidden shift problem also naturally appears as the security primitive of certain
symmetric cryptosystems, see e.g. [1].

Unfortunately, Kuperberg’s algorithm requires storage of a similar amount of
qubits as (1). This was mitigated by Regev [21], who showed how to obtain poly-
nomial space complexity at the expense of a small increase of the runtime; while
Regev restricted his attention to cyclic 2-groups, the details for arbitary finite
abelian groups were elaborated by Childs et al. [8, App. A]. In a 2011 follow-up
paper [17], Kuperberg described the collimation sieve, which reachieves a time
and space complexity of (1), but with an important bonus: the space require-
ments are in terms of quantum random access classical memory (QRACM),
indeed the amount of qubits that need to be stored remains polynomial. Kuper-
berg provided details for cyclic 2-groups only; an adaptation that works for all
finite cyclic groups was described by Peikert [19].

There exist, however, special families of groups in which the hidden shift
problem becomes much easier. The basic example is where G ∼= Zr2 for some
r ≥ 1. Indeed, for such groups the associated dihedral group is abelian, allowing
Shor’s algorithm, which boils down to Simon’s method in this case, to recover
s in polynomial time. This example can be generalized. For instance, a version
of Simon that works for G ∼= Zrp for any fixed prime p can be found in a pa-
per by Friedl, Ivanyos, Magniez, Santha and Sen [14]. In a different direction,
this was generalized to G ∼= Zr2t for any fixed integer t ≥ 1 by Bonnetain and
Naya-Plasencia [2], who did so by incorporating ingredients from Kuperberg’s
first algorithm.

Contributions. The contributions of this paper are threefold:

(i) We extend the method of Bonnetain–Naya-Plasencia from groups of the
form Zr2t to arbitrary 2t-torsion groups, i.e., to groups of the form

⊕r
i=1 Z2ti

1 To see one implication explicitly, we can write Dih(G) = {(a, b) | a ∈ G, b ∈ {±1}}
with composition law (a1, b1)·(a2, b2) = (a1+b1a2, b1b2). Then the function mapping
(a, 1) to f1(a) and (a,−1) to f2(a) is constant precisely on left cosets of the subgroup
{(0, 1), (s,−1)}, and recovering this subgroup clearly recovers the hidden shift s. For
the other implication, see [13].

2



with ti ≤ t for all i. Moreover, we show how to combine this with the method
of Friedl et al., in order to obtain a polynomial-time quantum algorithm
for tackling the hidden shift problem in finite abelian 2tp-torsion groups
(for fixed p, t).

(ii) We further extend Peikert’s adaptation of the collimation sieve, so that it
works for any finite abelian group, rather than just cyclic groups.

(iii) We merge the algorithms from (i) and (ii). When solving the hidden shift
problem in an arbitary finite abelian group G, one can use collimation
to produce phase vectors that only involve 2tp-torsion characters. At that
point, one can switch to the polynomial-time algorithm from (i) for finding
s mod 2tpG. Then a run of algorithm (ii) on 2tpG allows one to conclude.

Altogether, this leads to the following theorem:

Theorem 1.2. For any fixed prime number p and non-negative integer t, there
exists a quantum algorithm for solving the hidden shift problem in any finite
abelian group (G,+), with time, query and QRACM complexity

poly(log |G|) · 2O(
√

log |2tpG|)

and requiring storage of poly(log |G|) qubits.

We note that the runtime part of this statement is not new, although this is
somewhat hidden in the quantum physics literature and does not seem well-
known among cryptographers. Indeed, an application of [14, Prop. 4.13] to the
chain G ≥ 2G ≥ · · · ≥ 2tG ≥ 2tpG ≥ {0}, in combination with [14, Prop. 2.2],
leads to an algorithm with the same time complexity. In fact, by modifying the
chain, one obtains the same result for any positive integer m, rather than just
m’s of the form 2tp. However, our method is somewhat simpler and keeps the key
advantage of the collimation sieve, namely that the main memory requirements
are in terms of QRACM; only a polynomial number of qubits is needed.

As a consequence, if our finite abelian group G has a large 2tp-torsion sub-
group for certain small p and t, or more generally a large m-torsion subgroup for
a certain small m, then one can essentially discard this subgroup when assessing
the hardness of the hidden shift problem. As discussed more extensively in Sec-
tion 2, this observation can be viewed as a modest result of Pohlig–Hellman [20]
type for the vectorization problem in arbitrary hard homogeneous spaces. In the
specific case of CRS and CSIDH, it was already shown in [5, §5.1] how to get rid
of part of the 2-torsion, using very different (classical) methods.

Paper organization. The implications of Theorem 1.2 and alike for the vec-
torization problem are discussed more elaborately in Section 2. In Section 3 we
describe our polynomial-time quantum algorithm for solving the hidden shift
problem in 2tp-torsion groups. Section 4 presents a version of the collimation
sieve that works for arbitrary abelian groups. Then in Section 5 we show how
to incorporate the first algorithm in this extended collimation sieve, leading to
Theorem 1.2. Finally, in Section 6 we give some concluding remarks.

3



Prerequisites. All algorithms below rely on the standard approach for hidden
shift finding which, at the cost of calls to f1, f2 and a quantum Fourier transform,
produces length-two phase vectors, i.e. qubits of the form

Ψ(χ) =
1√
2
|0〉+

1√
2
χ(s)|1〉, (2)

with χ a known uniformly random element of G∨ = { homomorphisms G →
C∗ }; see e.g. [21, §2.2] for more details. We will treat the standard approach as
an oracle in its own right. Beyond this, our discussion is more or less stand-alone,
but concise, so some familiarity with prior hidden-shift algorithms is convenient.
We refer the reader to [3,7,19] for recent accounts.

Acknowledgments. This work was supported by the Research Council KU
Leuven grant C14/18/067, by CyberSecurity Research Flanders with reference
number VR20192203, and by the Research Foundation Flanders (FWO) through
the WOG Coding Theory and Cryptography.

2 Consequences for the vectorization problem

The vectorization problem is a generalization of the discrete logarithm problem
that was formally introduced by Couveignes [10]. Here, we assume that our finite
abelian group G acts freely and transitively on the set X, which means that we
are given a map

G×X → X : (s, x) 7→ s ? x

such that 0 ? x = x, (s1 + s2) ? x = s1 ? (s2 ? x) and G → X : s 7→ s ? x is
a bijection for all s1, s2 ∈ G, x ∈ X. Then the vectorization problem is about
extracting s from any given pair x, s ? x. By considering the maps

f1 : G→ X : a 7→ a ? (s ? x), f2 : G→ X : a 7→ a ? x

one sees that this indeed concerns an instance of the hidden shift problem. If
the vectorization problem is hard, then X is called a hard homogeneous G-space.
In view of Kuperberg’s algorithm and its successors, we know that quantum
computers can solve the vectorization problem in time (1). Therefore, the best
one can hope is that quantum adversaries cannot do better than this.

An efficient solution to the vectorization problem clearly breaks the Diffie–
Hellman style key exchange protocol depicted in Figure 1. Note, however, that
key recovery amounts to finding (s1 + s2) ? x when given a triple x, s1 ? x, s2 ? x.
This is called the parallellization problem which, a priori, could be easier than
vectorization, but in the presence of quantum computers, both problems are in
fact equivalent [15].

Example 2.1. Textbook Diffie–Hellman, based on exponentiation in a finite cyclic
group H, arises by letting

G = Z∗|H|, X = { generators of H }.

4



Alice Bob
agree on x ∈ X

secret s1
$← G

computes
s1 ? x

s1 ? x

secret s2
$← G

computes
s2 ? x

s2 ? x

secret key:

s2 ? (s1 ? x)

secret key:

s1 ? (s2 ? x) = (s1 + s2) ? x =

Fig. 1. Diffie–Hellman key exchange in a hard homogeneous G-space X

In this context, the vectorization problem, resp. the parallellization problem, be-
comes the discrete logarithm problem, resp. the computational Diffie–Hellman
problem. Quantum computers break these problems using Shor’s algorithm,
therefore we focus on classical adversaries, to which both problems are still
believed to be equivalent [18]. Then by the well-known Pohlig–Hellman reduc-
tion [20], the discrete logarithm problem in H is essentially as hard as that in its
largest prime order subgroup. In particular, the discrete logarithm problem is
weakened by the presence of many small prime factors in |H|. However, assuming
that |H| is a large prime, we are unaware of classical exploits of the structure of
the acting group G = Z∗|H|.

Example 2.2. The only known instantiation believed to be secure against quan-
tum adversaries is due to Couveignes [10] and Rostovtsev–Stolbunov [22,25], the
fastest version of their construction being CSIDH [4]. Here G = Cl(O) is the
ideal-class group of an order O in an imaginary quadratic number field and

X = È `Fq (O, t) :=

{ elliptic curves E/Fq with trace of Frobenius t and EndFq (E) ∼= O} / ∼=Fq ,

with Fq a finite field and t an integer such that X is non-empty. The action is
isogeny-wise; see the cited references for details. Using the Tate pairing on elliptic
curves it is possible, in classical polynomial time, to recover the hidden shift s
modulo a certain subgroup H satisfying 2G ≤ H ≤ G; concretely H arises is
the joint kernel of the quadratic characters of G that have a polynomially small
modulus [5, §5.1]. This can be used to reduce the hidden shift problem in G
to that in H, which can be viewed as a modest statement of Pohlig–Hellman
type, in the sense that the vectorization problem is typically weakened by the
presence of a large 2-torsion subgroup. Note the following difference with the
standard Pohlig–Hellman reduction: here we are concerned with an exploit of

5



the structure of the acting group, rather than of a group that is acted upon
(and, of course, the full Pohlig–Hellman reduction is a much stronger exploit).

Up to our knowledge, so far, it was left unnoticed that this Pohlig–Hellman
type statement allows for a vast generalization in the presence of quantum com-
puters: indeed, from Friedl et al. [14, Prop. 2.2, Prop. 4.13] we learn that the
vectorization problem in any hard homogeneous space can be solved in time

poly(log |G|) · 2O(
√

log |mG|),

for any fixed m ∈ Z>0, which one should think of as being small.2 Thus, quan-
tumly, the vectorization problem is weakened by the presence of a large m-torsion
subgroup. We stress that, in contrast with [5], neither the algorithm by Friedl et
al. nor our qubit-friendly special case from Theorem 1.2 recovers the hidden shift
s modulo mG in polynomial time, which would be needed to break decisional
versions of the parallellization problem.

Example 2.3 (continuation of Example 2.2). For m = 2 we do not learn much
new. Note that in the specific case of CSIDH one always has H = 2G; for
CRS it may happen that H > 2G, and then the remaining gap can be bridged
by our algorithm from Theorem 1.2. On the other hand, beyond m = 2, class
groups of imaginary quadratic orders seem well-protected against these types
of reductions. Indeed, Gerth’s extension [11] of the Cohen–Lenstra heuristic [9,
§9] predicts that 2G has a strong tendency to be cyclic, i.e., it is likely that
for all primes p the p-torsion part of 2G has rank 0 or 1. More precisely, the
“probability” that the rank equals r is

≈ p−r
2

·
r∏

k=1

(1− p−k)−2 ·
∞∏
k=1

(1− p−k),

which decays very quickly with r. E.g., the probability that 2G contains a 3-
torsion subgroup of rank at least 10 is about 5.2 · 10−31. Nevertheless, some
extra care may be desirable when setting up CRS or CSIDH using a class group
whose structure is unknown.

3 Polynomial-time hidden shifts in 2tp-torsion groups

Fix a prime number p and a positive integer t. In this section, we describe a
polynomial-time quantum algorithm for solving the hidden shift problem in a
finite abelian group (G,+) where every element g satisfies 2tpg = 0. This part is
heavily inspired by Bonnetain–Naya-Plasencia [2], Csáji [6] and Friedl et al. [14].
We remark that [14] contains results for more general abelian groups of low

2 The choice of m strongly affects the hidden constant in the O-notation which, ac-
cording to [14, Prop. 4.13], is Ω(rp) with p the largest prime factor of m and r the
number of prime factors.

6



exponent, but these do not use the standard approach to hidden shift finding,
which seems to make them incompatible with the collimation sieve. Without loss
of generality we can assume that p > 2 and that G = Zmp ×Z2t1 × · · · ×Z2tn for
certain integers m,n ≥ 0 and t = t1 ≥ t2 ≥ . . . ≥ tn ≥ 1.

Step 3.1. We describe a routine for producing length-two phase vectors Ψ(χ)
such that χp = 1. Following Kuperberg [16, §3], two phase vectors Ψ(χ1) and
Ψ(χ2) can be combined to yield Ψ(χ1χ2) or Ψ(χ1χ

−1
2 ), each with probability

1/2. More generally, one can merge any k ≥ 2 phase vectors Ψ(χ1), . . . , Ψ(χk)
to obtain a phase vector of the form

Ψ(χ±11 · · ·χ
±1
k ). (3)

We call a phase vector Ψ(χ) `-divisible if χ2t−`p = 1. Our routine merges fresh,
0-divisible phase vectors into 1-divisible ones, 1-divisible phase vectors into 2-
divisible ones, and so on, until we find t-divisible phase vectors as requested.

For each `, we let r` denote the largest integer such that t1, . . . , tr` ≥ t − `.
Consider r` + 1 phase vectors Ψ(χi) that are `-divisible. Each χi is of the form

χi : (g1, . . . , gm, h1, . . . , hn) 7→ e
2πi

(
ai,1g1+...+ai,mgm

p +
bi,1h1

2t1
+...+

bi,nhn

2tn

)

for certain ai,j ∈ Zp and bi,j ∈ Z2tj . For all j ≤ r` it holds that 2`+tj−t|bi,j , in
view of the `-divisibility. By defining ci,j = bi,j/2

`+tj−t mod 2, we obtain r` + 1
vectors (ci,1, . . . , ci,r`) that are necessarily Z2-linearly dependent. So we can find
integers d1, . . . , dr`+1 ∈ {0, 1} such that d1c1,j + . . .+dr`+1cr`+1,j ≡ 0 mod 2 for
j = 1, . . . , r`. We then merge those Ψ(χi)’s for which di = 1, in order to end up
with a qubit Ψ(χ) which, when writing

χ : (g1, . . . , gm, h1, . . . , hn) 7→ e
2πi

(
aχ,1g1+...+aχ,mgm

p +
bχ,1h1

2t1
+...+

bχ,nhn

2tn

)
,

has the property that all ratios bχ,j/2
`+tj−t are even. Note that the unpredictable

signs in (3) have no influence on this. We conclude that Ψ(χ) is (`+ 1)-divisible.
By pipelining this for ` = 0, . . . , t − 1, we obtain our desired routine. Each

output requires at most (r0 + 1) · · · (rt−1 + 1) fresh phase vectors as input. Note,
by the way, that the phase vectors Ψ(χi) for which di = 0 can be recycled.

Step 3.2. Next, we describe how to use phase vectors Ψ(χ) with χp = 1 for
computing the firstm components of the hidden shift s = (s1, . . . , sm, s

′
1, . . . , s

′
n).

We apply the Hadamard transform, yielding (1 + χ(s))/2 |0〉+ (1− χ(s))/2 |1〉,
and we measure. Each time we measure 1, we learn that the coefficient 1− χ(s)
cannot be zero, hence χ(s) 6= 1. Since χp = 1 we can write

χ : (g1, . . . , gm, h1, . . . , hn) 7→ e
2πi
p (aχ,1g1+...+aχ,mgm)

and thus we see that aχ,1s1 + . . . + aχ,msm 6= 0 in Zp. This implies (aχ,1s1 +
. . . + aχ,msm)p−1 = 1, which gives a linear equation in the monomial expres-
sions of degree p − 1 in s1, . . . , sm. If we never measure 1, then we know that

7



(s1, . . . , sm) = (0, . . . , 0). In the other case, from [14] we learn that the expected
number of tries needed to end up with a full-rank system of linear equations is
bounded by

p

(
m+ p− 2

p− 1

)
= O(mp−1).

This allows us to find the exact values of the degree p−1 monomials in s1, . . . , sm,
from which it is easy to determine the vector (s1, . . . , sm) up to multiplication
by an unknown scalar. We are left with p − 1 options, which can be tested one
by one, for instance by transforming Ψ(χ) into

1√
2
|0〉+

1√
2
χ(s̃)−1χ(s)|1〉,

for some concrete guess s̃, before feeding it to the Hadamard transform (indeed,
if we then measure 1, we know that the Zmp -part of the guess is wrong), or simply
by proceeding with Step 3.3 by trial and error. An alternative option is to equip
G with a dummy Zp-factor, where the hidden shift has known component s0 = 1.

Step 3.3. Once we know s1, . . . , sm, we define

f ′1(h1, . . . , hn) = f1(0, . . . , 0, h1, . . . , hn),

f ′2(h1, . . . , hn) = f2(s1, . . . , sm, h1, . . . , hn).

For all h1, . . . , hn we have f ′1(h1, . . . , hn) = f ′2(h1 + s′1, . . . , hn + s′n). Thus we
face an instance of the hidden shift problem in Z2t1 × · · · × Z2tn . We again use
our routine from Step 3.1, but this time, instead of creating t-divisible phase
vectors, we make them (t− 1)-divisible, so that they are of the form Ψ(χ) where
χ2 = 1. We can use this to find the parity of s′1, . . . , s

′
n in the same way as above,

with the bonus that every measurement now produces an exact linear equation
in the s′i (in other words, we basically run Simon’s algorithm at this stage). This
can be used to reduce to the hidden shift problem in a 2t−1-torsion subgroup;
an iterative application eventually retrieves all of s.

Complexity. The procedure is summarized in Algorithm 1. Overall we need
O(mp−1r0 · · · rt−1) = poly(log |G|) phase vectors Ψ(χ) to find s; recall that we
view p and t as constants. The corresponding calls to the standard approach
dominate the runtime of our algorithm.

4 Collimation for products of cyclic groups

We now describe our version of the collimation sieve for arbitrary finite abelian
groups G, thereby extending Peikert’s method from [19]. We start from a chain
of strict inclusions {1} = G0 ≤ G1 ≤ . . . ≤ GM = G∨, where the groups Gi are
such that all quotients Gi/Gi−1 are cyclic, say isomorphic to Zki . Throughout,
we fix quotient homomorphisms qi : Gi → Zki with kernel Gi−1. We use these

8



Algorithm 1: Finding hidden shifts in finite abelian 2tp-torsion groups

Input : G = Zmp × Z2t1 × · · · × Z2tn , with p odd, t = t1 ≥ t2 ≥ · · · ≥ tn ≥ 1
Access to phase vectors 1√

2
(|0〉+ χ(s)|1〉) for known but uniformly

random χ ∈ G∨ and unknown but fixed s ∈ G
Output: s

1 for ` from 0 to t do
2 Determine r` maximal such that tr` ≥ t− `
3 end
4 if m > 0 then
5 Call for (r0 + 1)(r1 + 1) · · · (rt−1 + 1) phase vectors
6 for j from 0 to t− 1 do
7 Divide the phase vectors into groups of size rj + 1
8 Create a (j + 1)-divisible phase vector from every such group

9 end
10 Repeat Steps 5–10 until we can apply Friedl et al. to obtain s mod pG
11 Apply Algorithm 1 on pG ∼= Z2t1 × · · · × Z2tn

12 else
13 Call for (r0 + 1)(r1 + 1) · · · (rt−2 + 1) phase vectors
14 for j from 0 to t− 2 do
15 Divide the phase vectors into groups of size rj + 1
16 Create a (j + 1)-divisible phase vector from every such group

17 end
18 Apply Simon’s algorithm to obtain s mod 2G
19 Apply Algorithm 1 on 2G ∼= Z2t1−1 × · · · × Z2tn−1

20 end

to define a set of subsets of G∨, which play the role of the intervals in Peikert’s
algorithm:

A = {χ · q−1i (I) |χ ∈ G∨, i ∈ {1, . . . ,M}, I is an interval in Zki }.

Here, by an interval in Zki we mean the reduction mod ki of a set of the form
{a, a + 1, . . . , b} ⊆ Z. Sets of the form χ · q−1i (I) are said to be at level i. Note
that if I is a singleton, then such a set is also at level i − 1, since it can be
rewritten as χ′ · q−1i−1({0, . . . , ki−1 − 1}) for an appropriate χ′ ∈ G∨.

The algorithm revolves around handling phase vectors of arbitrary length L,
by which we mean quantum states of the form

Ψ =
1√
L

L−1∑
j=0

χj(s)|j〉.

To each such phase vector we attach a support set AΨ ∈ A that contains all
the χj appearing in it. The density of Ψ is then said to be δ(Ψ) = L/|AΨ |. For
example, considering fresh length-two phase vectors Ψ(χ) yielded by the stan-
dard approach, and taking AΨ(χ) = G∨, we find the tiny density 2/|G∨| = 2/|G|.

9



Collimation is a combination-and-measurement process with the goal of pro-
ducing phase vectors with an increased density. Concretely, two phase vectors

Ψ1 =
1√
L1

L1−1∑
j1=0

χj1(s)|j1〉 and Ψ2 =
1√
L2

L2−1∑
j2=0

χj2(s)|j2〉

with support sets AΨ1
, AΨ2

are tensored together, to get

1√
L1L2

L1−1∑
j1=0

L2−1∑
j2=0

(χj1χj2)(s)|j1〉|j2〉.

We then take a partition of AΨ1
+AΨ2

=
⊔r
`=1A` into many disjoint elements of

A. For any j1, j2 we define `j1,j2 to be the unique index ` such that χj1χj2 ∈ A`.
We then compute the `j1,j2 for all j1, j2 in our quantum state:

1√
L1L2

L1−1∑
j1=0

L2−1∑
j2=0

(χj1χj2)(s)|j1, j2〉|`j1,j2〉. (4)

Upon measurement of the last register we find a value `, collapsing the state to

1√
L3

∑
χj1χj2∈A`

(χj1χj2)(s)|j1, j2〉.

We then classically compute a list of all (j1, j2) satisfying χj1χj2 ∈ A` and
compute a bijection from this list to {0, . . . , L3 − 1}, to find a length L3 phase
vector with support set AΨ3 = A`.

3

In practice, we only combine support sets at the same level i. Thus, after
taking out some global phase if needed, we can assume AΨ1

= q−1i ({0, . . . , a1})
and AΨ2

= q−1i ({0, . . . , a2}), so that AΨ1
+AΨ2

= q−1i ({0, . . . , a1 +a2}). We then
use partitions of the form

AΨ1 +AΨ2 =

r⊔
`=1

q−1i ({b`, . . . , b`+1}) (b1 = 0, br+1 = a1 + a2).

When the intervals {b`, . . . , b`+1}’s become singletons, one can partition further
into sets at level i− 1 if wanted, and even beyond; in the end, we will want L1,
L2 and the size of the partition to be of a comparable size (denoted by L).

The quality of a collimation step combining Ψ1 and Ψ2 into Ψ3 is defined as

Q = δ(Ψ3)/
√
δ(Ψ1)δ(Ψ2).

The number of collimation steps required to obtain phase vectors of density
> 1 has a major influence on the time complexity and is determined largely

3 Note that a support set AΨ is not intrinsic to its phase vector Ψ : in principle, it
could be any set in A containing all the χj occurring in Ψ . It could therefore be
useful to shrink this set after a collimation step, making it as small as possible.

10



by the quality of the collimation steps. To be more precise, if Q is the average
quality of the collimation steps and F is the factor by which the density has to
increase, then the number of collimation steps is in 2O(logQ F ). We are interested
in the geometric average of the quality, which is exp(E logQ). In Appendix A
we prove a lower bound on the expected value of the logarithm of the quality of
a collimation step. When applied to Ψ1 and Ψ2 from above, it gives

exp(E logQ) ≥
√
L1L2

√
(a1 + 1)(a2 + 1)

min(a1 + a2 + 1, ki)
.

Since we want this number to be as large as possible, we want the phase vector
lengths L1, L2 to be as large as possible. The factor

√
(a1 + 1)(a2 + 1)/min(a1+

a2 + 1, ki) is seen to be upper-bounded by 1. If a1 and a2 are of similar sizes
then this factor is approximately a1+a2+2

2min(a1+a2+1,ki)
, which is larger than 1/2. If

a1 and a2 are of very different sizes then the factor can get close to zero, so we
typically want to collimate phase vectors with similar-sized support sets.

Our algorithm. To find our hidden shift s, we repeatedly call for length-two
phase vectors Ψ(χ) using the standard approach. These can be combined into
phase vectors of some power-of-2 length L, by taking tensor products. We then:

Step 4.1. Recursively collimate these low density phase vectors, forming higher
density phase vectors, until that density exceeds 1;

Step 4.2. Thin out and regularize the resulting states;
Step 4.3. Either directly apply a Fourier transform, or tensor some of the reg-

ular states together and then apply a Fourier transform, so as to
learn q(s) for some non-trivial quotient homomorphism q from G;

Step 4.4. Reduce to the hidden shift problem in the subgroup G′ = ker q,
by choosing s′ ∈ G such that q(s′) = q(s), and noticing that the
functions

f ′1 : G′ → X : g 7→ f1(g), f ′2 : G′ → X : g 7→ f2(g + s′)

hide the shift s′ − s ∈ G′.

We then repeat until all of s is found. We discuss Steps 4.2–4.3 in more detail:

Step 4.2. In view of the coupon collector’s problem, when the density of a
length L phase vector Ψ exceeds 1 by a big enough factor, it is likely that every
χ ∈ AΨ will occur in Ψ . Write A = AΨ . The idea will be to choose some function
f : {0, . . . , L − 1} → {1, . . . , `} ∪ {0} such that for each i = 1, . . . , ` and χ ∈ A
there is exactly one j ∈ {0, . . . , L − 1} such that χj = χ and f(j) = i; see
Figure 2 for an illustration. We then compute

1√
L

L−1∑
j=0

χj(s)|j〉|f(j)〉

11



different χ’s in A

χ0

χ3

χ16

χ23

χ1

χ8

χ25

χ2

χ5

χ9

χ20

χ30

χ4

χ13

χ21

χ26

χ6

χ19

χ24

χ7

χ11

χ15

χ29

χ10

χ14

χ28

χ12

χ17

χ18

χ22

χ27

χ31

bin 1

bin 2

bin 3

bin 0
(garbage)

Fig. 2. Example construction of the function f from Step 4.2, with |A| = 8 and L = 32
(with ` = 3), where f(j) = i is illustrated by χj being deposited in bin i.

and measure f(j). If we measure 0, the process fails and we have to somehow
recycle the phase vector and return to Step 4.1, or throw it away. Otherwise if
i = f(j) > 0, we know that each χ ∈ A occurs exactly once in the resulting
expression:

1√
|A|

∑
f(j)=i

χj(s)|j〉.

We then compute a bijection from { j | f(j) = i } to A and apply this using
QRACM to obtain (1/

√
|A|)

∑
χ∈A χ(s)|χ〉.4

Step 4.3. By multiplying Ψ with a global phase if needed, we can assume that
1 ∈ A. If A is a subgroup of G∨ then the inverse Fourier transform yields |q(s)〉,
where q is the quotient morphism G→ B := G/ kerA, with kerA denoting the
joint kernel of the χ’s in A.5 So upon measurement we know q(s). More generally,
if A contains a non-trivial subgroup H of G∨ such that H ∈ A, then A will be a
union of cosets of H. Through measurement we can collapse Ψ to a phase vector
Ψ ′ supported on one such coset. Again after taking out a global phase if needed,
we will have AΨ ′ = H and we can act as above.

4 Remark that, in practice, we can be more lax and allow for incomplete phase vectors,
choosing f so that for each i = 1, . . . , ` and χ ∈ A there is at most one j ∈ {0, . . . , L−
1} such that χj = χ. Then some χ ∈ A could be missing in the resulting state, but
this is tolerable to some extent. For simplicity, we stick to the complete case.

5 Note that A ∼= B∨ because each χ ∈ A is of the form χ′ ◦ q for some χ′ ∈ B∨.

12



Otherwise A is at level 1, i.e., it is an interval I = {0, . . . , a1−1} in G1
∼= Zk1 .

We can write our state Ψ as

1
√
a1

a1−1∑
j1=0

e
2πi
k1
q(s)j1 |j1〉,

where q : G → Zk1 is a surjective homomorphism with kernel kerG1. Our goal
is to find q(s). For this we follow Peikert, who aims at finding phase vectors

1
√
a2

a2−1∑
j2=0

e
2πi
k1
q(s)j2a1 |j2〉, (5)

leading to a tensor product

1
√
a1

a1−1∑
j1=0

e
2πi
k1
q(s)j1 |j1〉 ⊗

1
√
a2

a2−1∑
j2=0

e
2πi
k1
q(s)j2a1 |j2〉 =

1
√
a1a2

a1a2−1∑
j=0

e
2πi
k1
q(s)j |j〉.

Similarly, if we can tensor with a phase vector

1
√
a3

a3−1∑
j3=0

e
2πi
k1
q(s)j3a1a2 |j3〉 to obtain

1
√
a1a2a3

a1a2a3−1∑
j=0

e
2πi
k1
q(s)j |j〉,

and so on, we eventually find a phase vector

1
√
a1 · · · ar

a1···ar−1∑
j=0

e
2πi
k1
q(s)j |j〉

with a1 · · · ar ≥ k1. Then one measures bj/k1c so as to obtain either

1√
k1

k1−1∑
j=0

e
2πi
k1
q(s)j |j〉 or

1√
t

t−1∑
j=0

e
2πi
k1
q(s)j |j〉,

for some t < k1. We end up with the first superposition if we measure bj/k1c
to be smaller than ba1 · · · ar/k1c and with the second if bj/k1c is measured to
equal ba1 · · · ar/k1c.6 In the first case we take the inverse Fourier transform to
retrieve q(s). In the second case we recycle the resulting state, tensoring it with
a new vector, and once it is longer than k1 try again.

We now explain how to produce a vector of the form (5); all subsequent
steps are analogous. If a1 happens to be coprime to k1 then every phase vector
supported on G1 can be written as

1√
L

L−1∑
j=0

e
2πi
k1
q(s)bja1 |j〉. (6)

6 Unless k1 | a1 · · · ar in which case we always get the first superposition.

13



Algorithm 2: Finding hidden shifts in finite abelian groups

Input : Finite abelian group G, length parameter L, density parameter δ
Access to phase vectors 1√

2
(|0〉+ χ(s)|1〉) for known but uniformly

random χ ∈ G∨ and unknown but fixed s ∈ G
Output: s

1 Create chain of subgroups {1} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ GM = G∨ such that
the groups Gi/Gi−1 are cyclic; this gives rise to a type A of support sets

2 recursively (depth-first):
3 Create phase vectors Ψ of length ≈ L by tensoring dlog2(L)e fresh

length-two phase vectors; endow with support set AΨ := G∨

4 Increase density by collimating phase vectors Ψ1, Ψ2 with support sets

AΨ1 , AΨ2 of size ≈ |G∨|/(L/2)i

into a length ≈ L phase vector Ψ3 with support set

AΨ3 of size ≈ |G∨|/(L/2)i+1

5 until we obtain a phase vector Ψ with density ≥ 1 + δ;
6 Thin out and regularize Ψ
7 If needed, remove global phase so that 1 ∈ AΨ
8 if AΨ contains a non-trivial subgroup H ≤ G∨ contained in A then
9 Recover s modulo G′ = kerH by applying a quantum Fourier transform

10 Run Algorithm 2 on G′

11 else
12 Repeat Steps 2–7 to obtain phase vectors with “dilated” support sets

inside G1 (Peikert’s method)
13 Take tensor products and shorten if needed, to find complete phase vector

with support set G1

14 Recover s modulo G′ = kerG1 by applying a quantum Fourier transform
15 Run Algorithm 2 on G′

16 end

The reason is that every χj ∈ G1 is of the form g 7→ exp( 2πi
k1
q(g)cj) for some

integer cj . By adding an appropriate multiple of k1 to cj , we can always assume
that cj is a multiple of a1; this uses that gcd(a1, k1) = 1. Then, in complete
analogy with standard collimation, through a process of combination and mea-
surement one can turn phase vectors of the form (6) into phase vectors of the
desired form (5). When a1 is not coprime to k1, then we slightly shorten Ψ ,
replacing a1 with the greatest integer smaller than a1 that is coprime to k1.

Special case. If G = Z2n and we start from the chain 1 = G0 ≤ G1 ≤ · · · ≤
Gn = G∨ where each quotient Gi/Gi−1 has order 2, then our algorithm can
be seen to collimate the “least-significant bits” of the phase multipliers; as such
we recover Kuperberg’s original version of the collimation sieve. On the other
hand, if we start from the trivial chain 1 = G0 ≤ G1 = G∨, then collimation
happens on the “most-significant bits” and we recover Peikert’s method. See the

14



preamble of [19, §3] for a related discussion.

Complexity. Summarizing pseudocode can be found in Algorithm 2. The asymp-
totic complexity of our algorithm, as well as its analysis, is very similar to that of
Peikert’s, leading to the statement of Theorem 1.2 in which |2tpG| is replaced by
|G|. We omit the details, instead referring to [19], as well as to the next section,
which contains a related analysis.

5 Merging both algorithms

We now describe our fusion algorithm, resulting in Theorem 1.2. The idea is
to apply collimation, as outlined in the previous section, but in our chain of
inclusions {1} = G0 ≤ G1 ≤ . . . ≤ GM = G∨ we now let

G1 = G∨[2tp] = {χ ∈ G∨ |χ2tp = 1 }

be the 2tp-torsion subgroup of G∨, rather than a cyclic group. The goal is to
produce length-two phase vectors Ψ(χ) with χ ∈ G1, which can then be used as
input to our algorithm from Section 3, ran on the 2tp-torsion group

G/ kerG1 = G/2tpG

(of which G1 can be viewed as the dual), which will allow us to find s mod 2tpG.
Concretely, we stop collimating as soon as the density exceeds some small

multiple of 2/|G1|. Consider a resulting phase vector Ψ . By measuring to which
coset of G1 the χ’s in AΨ belong, it collapses to a phase vector

1√
L

L−1∑
j=0

χj(s)|j〉

where all χj ’s belong to the same coset of G1. By taking out a global phase if
needed we can assume that this coset is G1 itself. We expect L ≥ 2, because the
measurement decreases the numerator and the denominator of δ(Ψ) by a similar
factor. If L = 2 then we succeeded, while if L = 1 then we failed. If L > 2 then
measuring bj/2c typically yields a state with only two terms, as wanted. This
procedure is summarized in Algorithm 3

Our algorithm then proceeds using t+ 2 collimation rounds:

Round 1. In a first collimation round, we produce length-two phase vectors
Ψ(χ) with χ ∈ G1 and feed them as input to Step 3.1, in order to obtain phase
vectors Ψ(χ) with χp = 1. These can then be used as input to Step 3.2, allowing
us to find s mod pG.

Rounds 2 to t+ 1. Knowing s mod pG, we can reduce to a hidden shift prob-
lem in the subgroup pG. We then proceed as in Step 3.3. That is, we again

15



Algorithm 3: Producing length-two phase vectors supported on the
2tp-torsion characters of a finite abelian group

Input : Finite abelian group G, length parameter L, density parameter δ
Access to phase vectors 1√

2
(|0〉+ χ(s)|1〉) for known but uniformly

random χ ∈ G∨ and unknown but fixed s ∈ G
Output: Phase vector 1√

2
(|0〉+ χ′(s)|1〉) for known random χ′ ∈ G∨[2tp]

1 Create chain of subgroups {1} = G0 ≤ G1 = G∨[2tp] ≤ G2 ≤ · · · ≤ GM = G∨

such that Gi/Gi−1 is cyclic for i ≥ 2; this invokes a type A of support sets
2 repeat
3 Produce length ≈ L phase vector Ψ of density ≈ 2/|G1| using collimation;

this is done in full analogy with Steps 2–5 of Algorithm 2
4 Restrict the support of Ψ to a single coset of G1 through measurement
5 Shorten Ψ if needed, so that it has length ≤ 2

6 until length of Ψ equals 2;
7 Take out global phase to rewrite Ψ as Ψ(χ′) for some χ′ ∈ G1

Algorithm 4: Finding hidden shifts in finite abelian groups containing
a large 2tp-torsion subgroup

Input : Finite abelian group G, length parameter L, density parameter δ
Access to phase vectors 1√

2
(|0〉+ χ(s)|1〉) for known but uniformly

random χ ∈ G∨ and unknown but fixed s ∈ G
Output: s

1 Run Algorithm 1 on G/2tpG, where access to length-two phase vectors is
now provided by Algorithm 3 ran on G, rather than the standard approach

2 Run Algorithm 2 on 2tpG

use collimation to produce input for Step 3.1, but as explained in Step 3.3, we
now construct (t − 1)-divisible phase vectors, which can be used to determine
s mod 2pG by means of Simon’s algorithm. We then reiterate, until we find
s mod 2tpG.

Round t+2. We are left with solving a hidden shift problem in 2tpG, for which
we do a complete run of the collimation algorithm from Section 4. Note: only
at this stage, we perform Steps 4.2 (thin out and regularize) and 4.3 (Fourier
transform).

Complexity. Our fusion algorithm is summarized in Algorithm 4. As for the
complexity, let us focus on the renewed trade-off between the number of calls
to the standard approach and the amount of QRACM needed, when compared
to [19]. From Section 3 we know that, for rounds 1 to t+ 1, the required amount
of length-two phase vectors Ψ(χ) with χ ∈ G1 is poly(log |G|). This means that
for the collimation part, the number of fresh length-two phase vectors we need

16



to call for using the standard approach is

poly(log |G|) · logL · 2O(logQ(δend/δstart)).

Here δstart = L/|G∨| = L/|G| is the density of the phase vectors we feed to the
collimation phase and δend = 2/|G1| is the targeted density. The factor logL
comes from the number of length-two phase vectors we need to tensor together
to make a phase vector of length L, and Q denotes the average quality of a
collimation step, which in view of our discussion from Section 4 we estimate as
L/2. This gives

poly(log |G|) · logL · 2O(logL/2(|G|/|G1|)) (7)

oracle queries. One sees: the larger the initial phase vector length L, the smaller
the number of oracle queries and collimation steps.

However, larger values of L lead to an increase of the resources needed for
every collimation step. The dominating cost is in terms of QRACM, which is
about importing classical information into a quantum state, or uncomputing it
away. Concretely, this is used in all transitions of the form

r−1∑
j=0

|j〉 →
r−1∑
j=0

|j, cj〉

and vice versa, for some set of classically stored values c0, . . . , cr−1. Following [7,
App. A.1] we estimate the corresponding gate cost as O(rw), with w the number
of bits of each cj . The main such cost lies in handling (4), leading to the estimate

O(L2 logL). (8)

The optimal balance between (7) and (8) is found by taking logL on the order
of
√

log(|G|/|G1|) =
√

log |2tpG|. Together with the fact that round t+ 2 is ran
on the group 2tpG, this gives the estimates in Theorem 1.2.

6 Conclusion

The hidden shift problem plays a central role in the quantum cryptanalysis of
several candidate symmetric and public-key cryptosystems. For general finite
abelian groups, the best result we have is an algorithm with sub-exponential
runtime due to Kuperberg. For special families we have polynomial-time solu-
tions, e.g., for groups of type Znp for any fixed prime p due to Friedl et al., and for
groups of type Zn2t for a fixed integer t ≥ 1 due to Bonnetain and Naya-Plasencia.

In this paper, we merge the two latter solutions into one polynomial-time
quantum algorithm for arbitrary finite abelian 2tp-torsion groups (for any fixed p
and t). We also adapt Kuperberg’s most recent sub-exponential time algorithm,
called the collimation sieve, to work for any finite abelian group (G,+); this
extends work of Peikert. Finally, we fuse both results into a single quantum
algorithm for solving the hidden shift problem in G in time

poly(log |G|) · 2O(
√

log |2tpG|),

17



while keeping the key advantage of the collimation sieve, namely that the main
memory requirements are in terms of quantum random access classical memory;
only a polynomial number of qubits is needed. This can be seen as a memory-
friendly special case of a result due to Friedl et al. Such results entail a security
issue for hard homogeneous spaces when a large torsion subgroup is present;
this can be viewed as a modest Pohlig–Hellman type result for the vectorization
problem.

Possible tracks for future research include:

1. Making a more detailed complexity analysis, where the goal is to
acquire a better understanding of the hidden constants, including
how they depend on p and t; this should allow for a better assessment
of the impact on the security of concrete hard homogeneous spaces;

2. Further reducing the time and memory requirements of our algo-
rithm, e.g., by devising an optimal strategy in choosing our sub-
groups Gi, or by decreasing the QRACM requirements by storing
the characters χ in an extra register as in [7, p. 10-11];

3. Generalizing our results to other kinds of torsion, where the ultimate
target is to replace 2tp by any fixed integerm; for this, it would suffice
to find a way of incorporating the collimation sieve into the work of
Friedl et al.

References

1. T.P. Berger, J. Francq, M. Minier, G. Thomas, Extended generalized Feistel net-
works using matrix representation to propose a new lightweight block cipher: Lil-
liput, IEEE Transactions on Computers 65(7), pp. 2074-2089 (2016)

2. X. Bonnetain, M. Naya-Plasencia, Hidden shift quantum cryptanalysis and impli-
cations, Proceedings of Asiacrypt 2018 Part I, Lecture Notes in Computer Science
11272, pp. 560-592 (2018)

3. X. Bonnetain, A. Schrottenloher, Quantum security analysis of CSIDH, Proceed-
ings of Eurocrypt 2020 Part II, Lecture Notes in Computer Science 12106, pp.
493-522 (2020)

4. W. Castryck, T. Lange, C. Martindale, L. Panny, J. Renes, CSIDH: an efficient
post-quantum commutative group action, Proceedings of Asiacrypt 2018 Part III,
Lecture Notes in Computer Science 11274, pp. 395-427 (2018)

5. W. Castryck, J. Sotáková, F. Vercauteren, Breaking the decisional Diffie–Hellman
problem for class group actions using genus theory, Proceedings of Crypto 2020
Part II, Lecture Notes in Computer Science 12171, pp. 92-120 (2020)

6. G. Csáji, A new quantum algorithm for the hidden shift problem in Zn2t , preprint
available at https://arxiv.org/abs/2102.04171 (2021)

7. J. Chávez-Saab, J.-J. Chi-Domı́nguez, S. Jaques, F. Rodŕıguez-Henŕıquez, The
SQALE of CSIDH: Square-root Vélu quantum-resistant isogeny action with low
exponents, preprint available at https://eprint.iacr.org/2020/1520 (2020)

8. A. M. Childs, D. Jao, V. Soukharev, Constructing elliptic curve isogenies in quan-
tum subexponential time, Journal of Mathematical Cryptology 8(1), pp. 1-29 (2014)

9. H. Cohen, H.W. Lenstra, Heuristics on class groups of number fields, Proceedings
of Journées Arithmétiques 1983, Lecture Notes in Mathematics 1068, pp. 33-62
(1983)

18

https://arxiv.org/abs/2102.04171
https://eprint.iacr.org/2020/1520


10. J.-M. Couveignes, Hard homogeneous spaces, unpublished, available at https://

eprint.iacr.org/2006/291

11. F. Gerth III, The 4-class ranks of quadratic fields, Inventiones Mathematicae 77,
pp. 489-515 (1984)

12. W. van Dam, S. Hallgren, L. Ip, Quantum algorithms for some hidden shift prob-
lems, SIAM Journal on Computing 36(3), pp. 763-778 (2006)

13. M. Ettinger, P. Høyer, On quantum algorithms for noncommutative hidden sub-
groups, Advances in Applied Mathematics 25(3), pp. 239-251 (2000)

14. K. Friedl, G. Ivanyos, F. Magniez, M. Santha and P. Sen, Hidden translation and
translating coset in quantum computing, SIAM Journal on Computing 43(1), pp.
1-24 (2014)

15. S.D. Galbraith, L. Panny, B. Smith, F. Vercauteren, Quantum equivalence of the
DLP and CDHP for group actions, preprint available at https://eprint.iacr.

org/2018/1199 (2018)
16. G. Kuperberg, A subexponential time quantum algorithm for the dihedral hidden

subgroup problem, SIAM Journal on Computing 35(1), pp. 170-188 (2005)
17. G. Kuperberg, Another subexponential-time quantum algorithm for the dihedral

hidden subgroup problem, Proceedings of TQC 2013, Leibniz International Pro-
ceedings in Informatics 22, pp. 20-34 (2013)

18. U.M. Maurer, S. Wolf, The Diffie–Hellman protocol, Designs, Codes and Cryptog-
raphy 19, pp. 147-171 (2000)

19. C. Peikert, He gives C-sieves on the CSIDH, Proceedings of Eurocrypt 2020 Part
II, Lecture Notes in Computer Science 12106, pp. 463-492 (2020)

20. S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Transactions on Information The-
ory 24(1), pp. 106-110 (1978)

21. O. Regev, A subexponential time algorithm for the dihedral hidden subgroup prob-
lem with polynomial space, unpublished, available at https://arxiv.org/abs/

quant-ph/0406151

22. A. Rostovtsev, A. Stolbunov, Public-key cryptosystem based on isogenies, unpub-
lished, available at https://eprint.iacr.org/2006/145.pdf

23. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM Journal on Computing 26(5), pp. 1484-1509
(1997)

24. D. R. Simon, On the power of quantum computation, SIAM Journal on Comput-
ing 26(5), pp. 1474-1483 (1997). A preliminary version appeared in Proc. of the
35th Annual Symposium on Foundations of Computer Science, pp. 116-123 (1994)

25. A. Stolbunov, Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves, Advances in Mathematics of Commu-
nication 4(2), pp. 215-235 (2010)

Appendix A Expected quality of a collimation step

Proposition A.1. When Ψ1 and Ψ2 are given, the expected value of 1/δ(Ψ3)
has the upper bound

E
( 1

δ(Ψ3)

)
≤ |AΨ1 +AΨ2 |

L1L2
,

regardless of how AΨ1 +AΨ2 is subdivided, with equality holding as long as every
set Ai in the subdivision contains at least one character χj1χj2 occurring in

19

https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2018/1199
https://eprint.iacr.org/2018/1199
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
https://eprint.iacr.org/2006/145.pdf


Ψ1 ⊗ Ψ2. Using this the expected value of the logarithm of the density can be
bounded as

E log δ(Ψ3) ≥ log(L1L2/|AΨ1
+AΨ2

|).

If Q is the quality of the collimation step then the expected value of the logarithm
is bounded as

E logQ ≥ log
(√

L1L2

√
|AΨ1
||AΨ2

|
|AΨ1

+AΨ2
|

)
.

Proof. We have

E
( 1

δ(Ψ3)

)
= E

( |AΨ3
|

L3

)
=

p∑
i=1

P(AΨ3 = Ai)
|Ai|

|{(j1, j2)|χj1χj2 ∈ Ai}|
=

p∑
i=1

|{(j1, j2)|χj1χj2 ∈ Ai}|
L1L2

|Ai|
|{(j1, j2)|χj1χj2 ∈ Ai}|

=

p∑
i=1

|Ai|
L1L2

=
|AΨ1

+AΨ2
|

L1L2
.

Note that if P(AΨ3
= Ai) = 0 then we simply omit that term from the sum. In

this case we only have an upper bound on the expected value of one over the
density, rather than an equality. This proves the first statement.

To obtain the second statement we use the result from probability theory
that

E
(
− log

( 1

X

))
≥ − logE

1

X
,

for any random variable X that only assumes positive values. This follows from
Jensen’s inequality and the fact that − log x is a convex function on R>0. This
can be rewritten as

E logX ≥ − logE
1

X
.

The second statement follows from this result by applying it to X = δ(Ψ3). The
third statement follows from the second and the definition of the quality Q. �

20


	A fusion algorithm for solving the hidden shift problem in finite abelian groups

