
Forward-secure Multi-user Aggregate Signatures
with Constant Complexities using Recursive

zk-SNARKs

Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

1 Hanyang University, Seoul, Korea
2 Kookmin University, Seoul, Korea

ahoo791@hanyang.ac.kr jihyek@kookmin.ac.kr hoh@hanyang.ac.kr

Abstract. As a solution to mitigate the key exposure problems in the
digital signature, the forward security has been proposed. The forward
security guarantees the integrity of the messages generated in the past
despite leaks of a current time period secret key by evolving a secret
key on each time period. However, there is no forward secure signature
scheme whose all metrics have constant complexities. Furthermore, ex-
isting works do not support multi-user aggregation of signatures. In this
paper, we propose a forward secure aggregate signature scheme utilizing
recursive zk-SNARKs (zero knowledge Succinct Non-interactive ARgu-
ments of Knowledge), whose all metrics including size and time have
O(1). The proposed forward secure signature scheme can aggregate sig-
natures generated by not only a single user but also multiple users. The
security of the proposed scheme is formally proven under zero-knowledge
assumption and random oracle model.

Keywords: Digital signature · Forward security · aggregate signature ·
zero-knowledge proof · zk-SNARK · recursive proof composition

1 Introduction

The forward security which assigns a different signing key to each time period
alleviates a problem induced by the key exposure. After the security notion is
firstly proposed by Anderson [3], several forward secure signature schemes have
been devised [5, 2, 26, 32, 11, 37, 33] for decades. However, these works have a lim-
itation in that the maximum time period T should be fixed in setup for constant
public key size. It causes the necessity of remaking signing key and the public
key when the maximum time period T ends. To avoid the problem, the maxi-
mum time period T is set to a large value, however, it results in inefficiency of
the signature scheme of which complexities are total time period dependent [5, 2,
26]. For instance, Abdalla’s construction [2] has O(T) time complexity in setup,
signing, and the verification. Although recent optimization of Abdalla’s con-
struction [30] reduces signing cost to O(1) with some setup time trade-off, the
verification cost remains O(T). Several works attain a constant verification time

2 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

complexities [26, 11, 25, 27]. However, they have a total time period dependent
time complexity at least in one of other metrics.

In different view of the signature, an aggregation is a useful tool for alleviat-
ing a storage problem. Specifically, an aggregate signature is used in blockchain
applications to reduce the space required for the signature storage, and it can
mitigate the burden of blockchain network caused by the immense size of the
transactions [44, 40]. Although there exist many aggregate signature schemes to
merge the signatures [8, 12, 42, 22, 14], only a few researches support an aggre-
gation of forward secure signatures [36, 31, 35, 43, 18]. However, the aggregate
signature schemes are able to either aggregate signatures generated from a sin-
gle user [36, 31, 35, 43] or multi-user signatures at which period is equivalent [36,
31, 35, 43]. This requirement makes difficult to be deployed in a decentralized
environment where the time periods are often not synchronized. In this paper,
we propose a forward secure multi-user aggregate signature scheme where all
the complexities are totally independent of the time period T . The aggregation
supports different messages and different users flexibly applicable for the de-
centralized environment. In our construction, we use simulation extractable zk-
SNARK(zero-knowledge Succinct Non-interactive ARgument of Knowledge) [24,
9, 34, 28] as a building block of the signature scheme. zk-SNARK enables prov-
ing arbitrary statements, and the arbitrariness of the statements facilitates the
removal of restrictions in existing signature schemes. That is, it is able to con-
sider zk-SNARK proof as a signature if the proof proves the statements that
suit the requirement of the signature. Naively, we can have an idea to construct
a forward secure signature scheme by proving following statements.

– A public verification key and a secret signing key are well constructed.
– The secret signing key is connected with a message.
– The secret signing key is updated correctly.

Though all of the statements can be proven by simply including these statements
in a zk-SNARK circuit, it is not enough for the forward secure signature since
signing keys of all time periods are required as witnesses in the proof gener-
ation. Furthermore, it causes the inefficiency in that the circuit size increases
proportional to the number of key updates. We resolve the issue by adopting
PCD(Proof Carrying Data) [7] where a proof proves the verification result of
the other proof to prove the update process without the previous signing key.

In Fig.1, we describe the flow of our forward secure aggregate signature con-
struction. Sign, update, and aggregate algorithms are designed by subsuming
zk-SNARK proof construction that proves required statements respectively. All
the statements consist of verification of previous proof and additional computa-
tion. As described in 1) in Fig.1, when the initial signing key skA,0 and skB,0
are assumed to be composed of user secret value and the proof that proves a
relation of user secret value and the verification key, the secret signing key can be
updated recursively by proving statements for update. The statement stipulates
that the verification result of the previous signing key is passed and the signing
key of the next time period is generated correctly. By updating the signing key
recursively, we can keep the circuit size constant regardless of how many times

Title Suppressed Due to Excessive Length 3

Fig. 1: Basic structure of our proposal

4 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

the signing key is updated. When the updated signing key skA,j and the mes-
sage mA are given, the signature generation is conducted similar to the update.
For instance, when Alice proves that the secret signing key for j period skA,j is
verified and the message mA and the time period j is connected with the secret
signing key, the proof can be a forward secure signature itself. In aggregation
described in 3), the third party aggregator verifies σA,j and σB,k that are signa-
ture of Alice and Bob in j,k time period respectively. The third party aggregator
proves the verification results and the aggregation of two signatures. That is, if
two verification of signatures are converged into one zk-SNARK proof, it can
be an aggregate signature itself. Since the aggregation needs only the public
information required in the verification, it can be conducted publicly.

1.1 Our contributions

Generic construction of a forward secure signature using zk-SNARK
We propose a generic construction of the forward secure signature via zk-SNARKs.
In our construction, any kind of simulation extractable zk-SNARK from the pre-
processing SNARKs such as GM17,KLO20 [24, 29] to universal structured refer-
ence string based SNARK such as MBKM19,GWC19,BBB+18 [38, 20, 13] can
be utilized as a building block. Various zk-SNARK libraries such as libsnark [1],
snarkjs [4] can be used in the signature construction freely.

O(1) efficiency We construct a forward secure signature of which complexities
are independent on the time period. In fact, our scheme does not require any
maximum time period in the scheme setup. Our forward secure signature makes
all of the metrics in setup, update, sign, and verify algorithms have O(1) time
complexities. The verification key size, secret key size and the signature size have
O(1) space complexities. Table 1 compares performance and space requirement of

Table 1: Performance and size comparison in forward secure signature schemes:
T and l denote the maximum period and the message length.

Ours BM [5] AR [2] IR [26] Boyen et al. [11] KO17 [30]

Key generation time O(1) O(lT) O(lT) O(lT) O(log T) O(lT)
Update time O(1) O(l) O(l) O(lT) O(1) O(l)
Signing time O(1) O(T + l) O(lT) O(l) O(log T + l) O(1)
Verification time O(1) O(T + l) O(lT) O(l) O(1) O(lT)
Secret key size O(1) O(l) O(1) O(1) O(log2T) O(1)
Verification key size O(1) O(l) O(1) O(1) O(log T + l) O(1)
Signature size O(1) O(1) O(1) O(1) O(1) O(1)

forward secure signature schemes [5, 2, 26, 11, 30]. While all metrics are constant
in our signature scheme, the other schemes have at least one metric that is
dependent on the maximum period T . Except Boyen et al. [11] and our scheme,
at least one metric is O(T) while the secret key size is not constant in [11].

Title Suppressed Due to Excessive Length 5

Table 2: Comparison of forward secure aggregate signature schemes where n
indicates the number of aggregated signatures.

Ours MT07 [36] YNR12 [43] KO19 [31]

Aggregation period Any Any Sequential Sequential
Aggregation user Multiple Single Single Single
Public aggregation Yes Yes No Yes
Key generation time O(1) O(T) O(T) O(lT)
Update time O(1) O(1) O(1) O(l)
Signing time O(1) O(1) O(1) O(lT)
Aggregation time O(n) O(n) O(n) O(n)
Verification time O(n) O(n) O(n) O(ln+ lT)
Verification key size O(1) O(T) O(T) O(l)
Signature size O(1) O(1) O(1) O(1)

Multi-user signature aggregation for any time period We propose a
generic aggregate construction that aggregates multi-user signatures removing
all restrictions on the time period and the message. While the time period and
the message should be fixed [18] or the time periods should be sequential in ex-
isting schemes [43, 31], our scheme can aggregate signatures of different messages
generated by multi-user in unsequential time periods. In summary, our public
aggregation technique not only allows the aggregation of multi-user signatures
without any constraint of the time period, and the message but maintains O(1)
complexity in the signature size and the key size. Table 2 shows the aggrega-
tion possibility, the performance, and the size requirement in various forward
secure aggregate signature schemes. While our scheme and MT07 can aggregate
signatures in arbitrary periods, YNR12 and KO19 can aggregate signatures in
consecutive periods. In addition, our scheme can aggregate signatures generated
by multiple users while the other forward secure schemes can only aggregate
signatures generated by a single user. YNR12 scheme can aggregate signatures
by only a signer while the other schemes allow anyone to aggregate signatures.

In summary, we present a new forward secure signature methodology whose
complexities are fully independent of the time period and its aggregation has
high flexibility. Our new forward secure signature scheme can be utilized use-
fully in a decentralized environment where entities have their own time periods
independently. However, we should bear zk-SNARK computation that is rela-
tively heavier than those of other schemes to obtain a time period independent
efficiency and the flexibility in the aggregation. Though the computation is in-
dependent of the time period and message length, it is reliant on zk-SNARK
circuit size. Thus, we measure the actual performance of our signature scheme
via the implementation.

We describe related works in section 2. In section 3, we explain preliminaries
of our design and define the security notion. We demonstrate specific construc-
tion of our signature scheme in section 4. Section 5 presents an extension of
our forward secure signature scheme to the forward secure multi-user aggregate

6 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

signature. Section 6 presents the security proofs of all constructions. Section 7
analyzes the experiment results of our scheme. We draw a conclusion in section
8.

2 Related work

The forward security notion is firstly introduced by Anderson [3] aiming to alle-
viate the damage from the key exposure problem. The forward security divides
overall time periods into separate time period and utilizes a different secret key
in each period. A subsequent secret key is derived from the one in the previ-
ous time period, and extracting the previous one from the current secret key
is computationally hard. Because of the hardness of the extraction, a past sig-
nature cannot be fabricated even if the secret key in the current time period
is exposed. Bellare and Miner [5] formalize the security notion and present the
first practical forward secure signature scheme. After the formalization, many
pieces of research try to improve the efficiency of forward secure signature since
it is ideal that all the operations have O(1) time complexity, O(1) signature size
and O(1) key size respectively. Abdalla [2] reduces the secret key size from O(l)
to O(1) where l is message length while maintaining all the time complexity of
operations. While Kozlov et al. [32] design a forward secure signature scheme
updating a key in O(1) time complexity, it has a limitation in that its signing
time complexity and verification time complexity are linear with overall time
period T . Itkis and Reyzin [26] present a forward secure signature scheme whose
signing and verification have the time complexity irrelevant to overall time pe-
riod T while taking a trade-off in the update time. Malkin et.al [37] construct
a generic forward secure signature scheme that has almost unbounded time pe-
riod. Boyen et al. [11] propose the forward secure signature methodology whose
signing key can be updated as an encrypted form. Kim and Oh [30] make AR [2]
have the O(1) signing time complexity with adding some computations in the
setup time. Despite the results of many pieces of research, any research could
not reach a methodology where all operations can be conducted in O(1) time
while maintaining O(1) space.

Meanwhile, Several researches introduce aggregation technique to existing
forward secure signature schemes to reduce a space required to store multiple
signatures [35, 31]. Ma and Tsudik [36] firstly construct a forward secure ag-
gregate signature, however, the methodology has O(T) verification key space
complexity. Although Ma [35] evolves BM [5] and AR [2] into a forward se-
cure aggregate signature scheme that has a constant size of verification key, the
scheme is ascertained insecure by Kim and Oh [31]. Yavuz et al. [43] propose the
aggregation technique that can be conducted by only a single addition. How-
ever, the technique has a drawback in that the verification key size is linear
with T . Kim and Oh [31] devise the aggregation technique where the verification
key size is irrelevant to overall time period T . However, these techniques [43,
31] only allow the aggregation of single-user signatures whose time periods are
consecutive.

Title Suppressed Due to Excessive Length 7

We use simulation extractable zk-SNARK [24, 9, 34, 28] as a building block
of signature scheme where many zk-SNARK schemes work in pairing-based en-
vironment [39, 23, 24, 28]. Gennaro et al.[21] firstly propose Non-interactive ar-
gument system where a general function is supported. Groth [23] reduces the
number of verification equations from three to one and the number of elements
of proof from eight to three. Groth and Maller [24] propose a simulation ex-
tractable zk-SNARK firstly maintaining the proof size as three. However, Groth
and Maller construction should use SAP(Square Arithmetic Program) repre-
sentation that incurs double size of common reference string of QAP(Quadratic
Arithmetic Program) representation. Several pieces of research try to develop SE-
SNARK that can be represented as QAP representation. Bowe and Gabizon [9]
construct QAP based SE-SNARK that has five proof elements. Lipmaa [34] re-
duces the proof size required in QAP representation to four, and Kim et al. [28]
have three proofs in QAP representation and a single verification equation.

We use PCD(Proof Carrying Data) as a specific building block of our con-
struction. PCD is a special case of zk-SNARK, and the proof proves the result
of verification of other proofs recursively. Chiesa and Tromer firstly define the
notion firstly [16], and Bitansky et al. [7] devise the recursive proof composition
where any zk-SNARK can be used as a builiding block. Ben-Sasson et al. [6] en-
hance the practicality of the notion via using 2-cycles of pairing friendly elliptic
curves. In addition, Bowe et al. [10] propose the recursive proof composition that
does not require a trusted setup using Bulletproof [13] and Sonic [38] as building
blocks. Chiesa et al. [15] not only grant the transparency as Bowe’s construc-
tion [10] but enable the recursive proof composition to work in post-quantum
environments.

3 Background

3.1 Notation

We write y ← x for substitution x on y. We write y ← S for sampling y from S if
S is a set. We write y ← A(x) for a probabilistic algorithm on input x returning
output y. When a probabilistic algorithm A(x) has a private input r, we denote
A(x; r). We state f(λ) is negligible if f(λ) ≈ 0. We denote a concatenation as ||.
Given a scheme Π, its all operations are denoted by Π.name. Let R be a relation
generator that given a security parameter λ in unary returns a polynomial time
decidable relation R← R(1λ). We denote Rλ as the set of relations that R(1λ)
outputs. We call φ the instance and w the witness for (φ,w) ∈ R. We denote all
of A’s inputs and outputs for an algorithm A by transA.

3.2 Simulation extractable zk-SNARK

Definition 1. A zero-knowledge succinct non-interactive arguments of knowledge(zk-
SNARK) for R is a set of quadruple algorithms Π = (Setup,Prove,Verify,SimProve)
as follows.

8 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

– Setup is a PPT setup algorithm that takes as input a relation R ∈ Rλ and
returns a common reference string crs and a simulation trapdoor τ .

– Prove is a PPT algorithm that takes as input a common reference string crs,
an instance φ and a witness w for (φ,w) ∈ R, and returns a proof π.

– Verify is a deterministic polynomial time algorithm which takes as input a
common reference string crs, an instance φ and a proof π, and returns 0(re-
ject) or 1(accept).

– SimProve is a PPT algorithm which takes as input a common reference string
crs, a simulation trapdoor τ , and an instance φ. The algorithm returns a
simulated proof π.

zk-SNARK Π satisfies completeness, knowledge soundness, zero-knowledge,
and succinctness as described below.

Perfect completeness : Perfect completeness stipulates that a prover with a
witness who is given a true statement can convince a verifier.

For all λ ∈ N, for all R ∈ Rλ and for all (φ,w) ∈ R :

Pr[(crs, τ)← Setup(R);π ← Prove(crs, φ, w) : Verify(crs, φ, π) = 1] = 1 (1)

Computational soundness : Computational knowledge soundness states that
the prover must know a witness and the witness should be extracted efficiently
from a knowledge extractor. Proof of knowledge requests every adversarial prover
A to generate an accepting proof, there must be an extractor χA which outputs
a valid witness taking a same input of A. Formally, we define AdvsoundArg,A,χA(λ) =

Pr[GsoundArg,A,χA(λ)] where GsoundArg,A,χA is defined as follows.

Algorithm 1 Knowledge soundness game GsoundArg,A,χA

GsoundArg,A,χA(λ)

R←R(1λ)
(crs, τ)← Setup(R)
(φ, π)← A(crs)
w ← χA(transA)
A wins if Verify(crs, φ, π) = 1 and (φ,w) /∈ R and fails otherwise.

An argument system Arg is considered computationally sound if for any PPT
adversary adversaryA, there exists a PPT extractor χA where AdvsoundArg,A,χA(λ) ≈
0

Perfect zero-knowledge : Perfect zero-knowledge stipulates that a proof does
not disclose any information about the witness besides the truth of the instance.

Title Suppressed Due to Excessive Length 9

The statement is certified by a simulator which cannot access a witness but has
some trapdoor information that allows simulating proofs. Formally, we define
AdvzkArg,A(λ) = 2 Pr[GzkArg,A(λ)] − 1 such that the game GzkArg,A is defined as
follows.

Algorithm 2 Zero-knowledge game GzkArg,A
GzkArg,A(λ)

R←R(1λ)
(crs, τ)← Setup(R)
b← {0, 1}
if b = 0 then

P bcrs,τ (φi, wi) returns πi where πi ← Prove(crs, φ, w) and (φi, wi) ∈ R
else

P bcrs,τ (φi, wi) returns πi where πi ← SimProve(crs, φ, τ) and (φi, wi) ∈ R
end if
b′ ← AP

b
crs,τ (φi,wi)

A wins if b = b′ and fails otherwise.

The argument system is considered perfect zero-knowledge if AdvzkArg,A(λ) =
0 for all PPT adversaries A.

Definition 2. A simulation extractable zk-SNARK for R (Setup,Prove,Verify,SimProve)
satisfies simulation-extractability described below.

Simulation-Extractability : Simulation-Extractability stipulates that any ad-
versary A who can access a simulated proof for a false instance cannot forge the
proof to another proof for a false instance. Formally, we define Advproof−extArg,A,χA (λ) =

Pr[Gproof−extArg,A,χA (λ)] where the game Gproof−extArg,A,χA is defined as follows.

Algorithm 3 Simulation extractable knowledge soundness game Gproof−extArg,A,χA

GsoundArg,A,χA(λ)

R←R(1λ) , Q← 0
(crs, τ)← Setup(R)
repeat

πi ← SimProve(crs, τ, φi)
Q← Q ∪ {φi, πi}

until (φ, π)← ASimProvecrs,τ (crs)
w ← χA(transA)
A wins if Verify(crs, φ, π) = 1, (φ,w) /∈ R and (φ, π) /∈ Q and fails otherwise.

10 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

zk-SNARK is considered simulation extractable if there exists an extractor
χA, for any PPT adversary A, where Advproof−extArg,χA,A (λ) ≈ 0.

Proof-carrying data : Proof-carrying data(PCD) [16, 17] is a cryptographic
primitive that guarantees the validity of all previous proofs via the recursive
proof composition. It is a special case of zk-SNARK where the relation R is
composed of some functions that are required for the verification of other proofs.
To guarantee the verification result of the other proof in the proof circuit, the
instance φ includes a proof set ~π and inputs needed for the verification of the
proof additionally. It has a proof size independent of the number the recursion,
and it has O(1) verification time regardless of the number of recursion. PCD
inherits all the properties of zk-SNARK such as the completeness, the knowl-
edge soundness and zero-knowledge. The concrete proofs of these properties are
described in Ben-Sasson et al.’s work [6].

3.3 Forward secure signatures

Definition 3. A forward secure signature is a set of four algorithms FSS =
(Keygen,Update,Sign,Verify) where

– Keygen takes as input a security parameter λ and returns a key pair sk0, vk
the initial signing key and the verification key and the time period j.

– Update takes as input a secret key skj, the time period j and returns the
secret key skj+1 and the next time period j + 1.

– Sign takes as input a message m, the secret key skj, the time period j, the
verification key vk and returns σj that is a signature for time period j.

– Verify takes as input a message m, the time period j, the verification key vk,
the signature σ and returns 1 if the σ is valid signature or 0, otherwise.

We define the security of FSS similarly to the existing works do [5, 2, 26,
11].The only difference is that we do not assume the maximal period anymore.
Informally, an adversary who wants to succeed a valid signature forgery executes
chosen message attack cma until a secret signing key of the current time period
is leaked. The adversary succeeds a valid forgery if the adversary generates a
signature of the previous time period on a new message.

Formally, we define AdvfwsecFSS,F (λ) = Pr[GfwsecFSS,F (λ)] where the game GfwsecFSS,F is
defined in Algorithm 4.

The adversary F works in three phases : the chosen message attack cma
phase, the break-in phase, breakin, the forgery phase forge. FSS is considered
forward secure if AdvfwsecFSS,F (λ) ≈ 0 for any PPT adversary F where the execu-
tion time is at most t and the number of signing queries is at most qsig.

Definition 4. A hash function H is extractable for a ppt adversary A when
there exists an extractor ε such that, for large enough security parameter λ and

Title Suppressed Due to Excessive Length 11

Algorithm 4 Forward security game GfwsecFSS,F (λ)

GfwsecFSS,F (λ)

(sk0, 0, vk)← Keygen(λ)
j ← 0
repeat

j ← j + 1; skj ← Update(skj−1, j − 1, vk); d← FSign(·,j)(cma, vk)
until d = breakin
(m∗, b, σ)← F(forge, skj)
if Verify(m∗, b, vk, σ) = 1 and m∗ was not queried of Sign(·, b) and 0 ≤ b < j then

return 1 else return 0
end if

auxiliary input aux ∈ {0, 1}poly(λ), the adversary A wins the game below with
negligible probability.

We define AdvHash−extH,ε,A (λ) = Pr[GHash−extH,ε,A (λ)] where the game GHash−extH,ε,A is
defined in Algorithm 5.

Algorithm 5 Hash extraction game GHash−extH,ε,A

GHash−ext(λ)H,ε,A

pp← Setup(1λ)
(σ;xe)← (A||E)(pp, aux)
A wins if ∃x such that H(pp, x) = σ ∧ σ 6= H(pp, xe) and there is a PPT algorithm
Check(pp, σ) that returns 1 if ∃x such that H(pp, x) = σ and 0 otherwise.

The hash extraction game needs the function Check which allows the verifier
to check the well-formedness of hashes received from the adversary [19].

3.4 Forward secure multi aggregate signatures

Definition 5. A forward secure multi aggregate signature FSMAS is a set of six
algorithms that adds additional algorithms to algorithms of FSS. The additional
algorithms are defined as follows.

– Agg takes as input a multi-user signature set ((m1, j1, vk1, σ1), ..., (mn, jn, vkn, σn))
and returns an aggregate signature σagg.

– AggVerify takes as input a set ((m1, j1, vk1), ..., (mn, jn, vkn)), the aggregate
signature σagg and returns 1 if σagg is a valid signature or 0, otherwise.

We define the security of forward secure multi aggregate signature simi-
lar to Algorithm 4. An adversary F can freely choose all of the user verifi-
cation keys ~vk = (vk1, ..., vkn) except the verification key of one honest user

12 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

Algorithm 6 Forward security game of FMSAS GfwsecFSMAS,F (λ)

GfwsecFMSAS,F (λ)

(sk∗0 , 0, vk
∗)← Keygen(λ)

j ← 0
repeat

j ← j + 1; sk∗j ← Update(sk∗j−1, j − 1, vk∗); d← FSign(·,j)(cma, vk∗)
until d = breakin
((m1, j1, vk1,), ..., (m

∗, b, vk∗), ..., (mn, jn, vkn)), σ∗agg)← F(forge, sk∗j)
if AggVerify((m1, j1, vk1), ..., (mn, jn, vkn), σ∗agg) = 1 and vk∗ ∈ {vk1, ..., vkn} and
m∗ was not queried of Sign(·, b) and 0 ≤ b < j then

return 1 else return 0
end if

vk∗. When the adversary F is given the verification key of the honest user
vk∗, the adversary tries to forge an aggregate signature that involves the sig-
nature of the honest user. An adversary F can access a sign oracle and an
update oracle freely, and can request break-in query also. Since the aggrega-
tion is allowed to everyone, the adversary does not need to request an ora-
cle of aggregation. If the adversary outputs an aggregate signature σ∗agg where
AggVerify((m1, j1, vk1), ..., (mn, jn, vkn), σ∗agg) = 1 and the aggregate signature
includes the signature of m∗ that was not queried of Sign(·, b) and 0 ≤ b < j and

vk∗ ∈ ~vk, then the adversary wins the forgery game. A formal security notion is
described in Algorithm 6. Formally, we define AdvfwsecFSMAS,F (λ) = Pr[GfwsecFSMAS,F (λ)]

where the game GfwsecFSMAS,F is defined in Algorithm 6.

4 Construction

4.1 Main idea

In this section, we describe a formal construction of the proposed scheme. We
present intuition of our construction first then specify details of the construction.

Verification of forward secure signature [5, 2, 26] checks whether the signature
satisfies the following properties.

– A verification key is generated from a secret signing key which is implied in
the signature.

– The signing key is updated correctly corresponding to a time period.
– The signing key is connected to a correct message with the time period.

While it is not easy to construct a signature scheme which satisfies the above
properties simultaneously, it is more straightforward to devise a circuit to satisfy
the above properties by stating them. Even if more properties are required, it is
not difficult to include them in a circuit. Hence, we devise a relation circuit to
efficiently represent each property in zk-SNARKs.

Title Suppressed Due to Excessive Length 13

In key generation, a signing and verification key pair is generated with a
proof which proves a connectivity between the signing key and the verification
key. When the secret signing key is updated, the existing key is checked and it is
updated through one-way hash function. In a sign relation, the secret key should
be checked against the verification key, and a signature is a hash output of the
message, the time period, and the verification key.

When aggregation of signatures is required, a circuit checks two signatures
to be aggregated and generates a single hash output from two input data.

4.2 Forward secure signature construction

Algorithm 7 Relation

update relation(sj′ , j
′, vk;πj , sj , j)

if t = 0 then
vk = H(sj ||r)

else
j′ = j + 1
Π.verify(πj , sj , j, vk, crs) = 1
sj′ = H(sj)

end if

sign relation(φsig;πj , sj , j, vk)

Π.verify(πj , sj , vk, crs) = 1
φsig = H(m||j||vk)

We provide a formal construction of the proposed forward secure signature
scheme. Note that we use simulation-extractable zk-SNARK Π as a building
block in our signature scheme. We assume that a common reference string crs is
hard-coded as an integer value in algorithm. Algorithm 7 describes zk-SNARK
relation of update and sign process. In key generation (a time period j is set
to 0), a proof that proves a correlation of the signing key and the verification
key is generated. updaterelation describes a key generation relation and update
relation. If the time period j′ is 0, the proof proves that the verification key vk
is a hash output of signing key sj . When the signer updates the signing key(the
time period j′ > 0), the signer proves that a verification output of πj which
proves correctness of sj is 1 and an updated signing key sj′ is hash output of
sj . As described in signrelation, the signer should prove verification of the proof
πj . Then the signer proves that the committed value φsig is a hash output of a
message m, the time period j and the verification key vk.

Algorithm 8 shows an overall construction of our proposed forward secure
signature. Let H be a collision-resistant hash function H : {0, 1}∗ → {0, 1}l
where l is a bit length of hash function output. In Setup, this algorithm takes
as input a relation for update Rupdate, and relation for sign Rsig. The algorithm

14 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

Algorithm 8 Forward secure signature (FSS) scheme

Setup(Rupdate, Rsig)

crsupdate ← Π.setup(Rupdate)
crssig ← Π.setup(Rsig)
return crsupdate, crssig

Keygen(λ)

s0
$←− Z∗p

r
$←− Z∗p

vk ← H(s0||r)
j ← 0
πinit ← Π.prove(sj , j, vk, crsupdate)
skj ← (sj , πinit)
return skj , j, vk

Update(skj , j, vk)

if Π.verify(πj , sj , j, vk, crsupdate) = 1 then
j′ ← j + 1
sj′ ← H(sj)

else
abort

end if
πj′ ← Π.prove(sj′ , j

′, vk, crsupdate;πj , sj , j)
delete skj
skj′ ← (sj′ , πj′)
return skj′ , j

′

Sign(m, skj , j, vk)

if verify(πj , sj , j, vk, crsupdate) = 1 then
φsig ← H(m||j||vk)
πsig ← Π.prove(φsig, crssig;πj , sj , j, vk)

else
abort

end if
type← 0
σ ← (πsig, φsig, type)
return σ

Verify(m, j, vk, σ)

Check φsig = H(m||j||vk)
b← Π.verify(πsig, φsig, crssig)
return b

Title Suppressed Due to Excessive Length 15

generates all common reference strings for relations and hardcodes crsupdate,
crssig into the algorithms respectively.

Keygen takes a security parameter λ as input. The algorithm sets an initial
secret signing key s0 from Zp randomly and yields a verification key vk which
is a hash output of concatenation of s0 and the random value r. An initial time
period j is set to 0. The algorithm computes a proof πinit which proves the
correctness of verification key vk based on update relation. Keygen sets (sj ,πj)
to skj and outputs skj ,j,vk.

Update takes as input a previous signing key skj , time period j, and verifica-
tion key vk. The algorithm verifies the proof πj that implies the correctness of
signing keys in all previous periods first. If it is verified, it updates the signing
key by computing a new signing key sj+1 that is a hash output of sj . Update
generates a proof πj+1 for update relation taking sj+1, j + 1, vk as input and
πj , sj , j as witness then deletes the previous signing key skj . The algorithm out-
puts the updated signing key skj+1 and the new time period j + 1. Sign takes
as input a message m, a signing key skj , a time period j, and a verification
key vk. If the proof πj which proves validity of sj on update relation is verified,
φsig that is a hash output of m||j||vk is generated. The algorithm makes a proof
πsig taking φsig as input based on sign relation. And then type that reveals the
type of signatures is 0. The algorithm finally outputs σ = (φsig,πsig, type). Since
the normal signature verification and the aggregate signature verification have
different relations, the type of signature should be available to a verifier (and an
aggregator) for efficient aggregation. Though a secret signing key is connected
with a message directly in the normal signature scheme, our scheme connects
a message m with the verification key vk to support aggregation of multi-user
signatures.

Verify first check the correctness of φsig by computing H(m||j||vk). Verify
calls Π.verify and returns b which is a verification result of πsig taking input
φsig.

5 Extended construction

5.1 Forward secure aggregate signature construction

Algorithm 9 represents a relation for the signature aggregation. We assume that
the aggregation proceeds one by one repeatedly regardless of the signature’s time
period, message, verification key. The intuitive idea of the aggregation is that a
proof can be an aggregate signature if the proof proves multiple verifications of
the signatures. For instance, when Alice wants to aggregate Bob’s two signatures
which have different time periods and messages, she can aggregate two signa-
tures by verifying signatures respectively and proving the verification process.
As described in Algorithm 9, an aggregator verifies two signatures then gener-
ates a hash value that implies all the components of signatures(the message, the
time period, the verification key).

Algorithm 10 shows a whole construction of aggregation. AggSetup takes as
input a relation Ragg that is described in Algorithm 9, and generates a common

16 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

Algorithm 9 Agg relation

agg relation(φagg;σi, σj)

Parse σi as (φi,πi,typei)
Parse σj as (φj ,πj ,typej)
if typei = 0 then

crs← crssig
else

crs← crsagg
end if
Π.verify(πi, φi, crs) = 1
Π.verify(πj , φj , crssig) = 1
φagg = H(φi||φj)

reference string for aggregation crsagg and it is hardcoded in the algorithm. The
aggregate algorithm Agg takes as input n signature sets (m1, j1, vk1, σ1), ..., (mn, jn, vkn, σn)
where mi,ji,vki are the message, the time period, the verification key respec-
tively. The algorithm first checks the validity of φsigi value of all σi by com-
puting H(mi||ji||vki) then verifies first two signatures by running Π.verify with
crssig. After they are verified, the algorithm generates a new signature value φagg
which is a hash output of (φsig1 ||φsig2). The algorithm proves the aggregation
result according to algorithm 9. If the number of the signature set is over three,
the aggregator verifies the previous aggregate signature with crsagg and input
signature σi with crssig. Similarly to the above aggregation, the aggregator gen-
erates a hash output value φagg and proves the verification results repeatedly.
The algorithm returns aggregate signature (φagg, πagg, type) lastly.

A verification algorithm AggVerify takes nmessages, time periods, verification
keys and the aggregate signature σagg. A verifier first checks the validity of φagg
in σagg using the hash-chain computation, and verifies the aggregate signature
using Π.verify.

6 Security proof

Theorem 1. Let FSS be our key evolving signature scheme. Then for parame-
ters modulus size λ, the execution time t, the common reference generation time
tcrs,the number of sign queries qsig,

AdvfwsecFSS,F (λ) ≤ AdvHash−extH,ε,A (λ) (2)

where t′ = t+ tcrs

Theorem 2. Let FSMAS be our forward secure multi aggregate signature scheme.
Then for parameters modulus size λ, the execution time t, the common reference
generation time tcrs,the number of sign queries qsig,

AdvfwsecFSMAS,F (λ) ≤ AdvHash−extH,ε,A (λ) (3)

where t′ = t+ tcrs

Title Suppressed Due to Excessive Length 17

Algorithm 10 Aggregation construction

AggSetup(Ragg)

crsagg ← Π.setup(Ragg)
return crsagg

Agg((m1, j1, vk1, σ1), ..., (mn, jn, vkn, σn))

parse σi as (φsigi , πsigi , typei)
Check all φsigi = H(mi||ji||vki)
b1 ← Π.verify(πsig1 , φsig1 , crssig)
b2 ← Π.verify(πsig2 , φsig2 , crssig)
if b1&&b2 = 1 then

φagg ← H(φsig1 ||φsig2)
πagg ← Π.prove(φagg, crsagg;σ1, σ2)
type← 1

end if
if n < 3 then σagg ← (φagg, πagg, type)

return σagg
else

for i← 3 to n do
σold ← (φagg, πagg)
b1 ← Π.verify(πagg, φagg, crsagg)
b2 ← Π.verify(πi, φi, crssig)
if b1&b2 6= 1 then abort
else

φagg ← H(φagg||φi)
πagg ← Π.prove(φagg, crsagg;σold, σi)
type← 1
σagg ← (φagg, πagg, type)

end if
end for

end if
return σagg

AggVerify((m1, j1, vk1), ..., (mn, jn, vkn), σagg)

parse σagg as (φagg, πagg)
φsig1 ← H(m1||j1||vk1)
φsigold ← φsig1
for i← 2 to n do

φsigi ← H(mi||ji||vki)
φsigold ← H(φsigold ||φsigi)

end for
if φsigold = φagg then

b← Π.verify(φagg, crsagg)
end if
return b

18 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

6.1 Proof of Theorem 1

We construct an adversary A that conducts a hash extraction game described in
Algorithm 5. The adversary A utilizes the adversary F which executes GfwsecFSS,F (λ)
experiment described in Algorithm 4 as a subroutine. We suppose the adversary
F succeeds with AdvfwsecFSS,F (λ) in execution time t.

Initial key generation. The adversary A gets a hash value σ from the chal-
lenger, and then set σ to vk. The adversary runs Setup and acquires common
reference strings crsupdate, and crssig. Note that since the adversary has a trap-
door of the common reference string, the adversary can generate simulated proof
using Π.SimProve. Unusually, the adversary does not need to choose an initial
secret signing key s0, since the correctness of vk is guaranteed by a simulated
proof which deceives a relation between vk and the blank input. The adversary
runs subroutine F taking as input vk, crsupdate, and crssig.

Interactive query phase

– Update query : When F requests to update the signing key, A runs
Π.SimProve and acquires a simulated proof on any arbitrary signing key
at the queried time period. Since the simulated proof can prove any relation
of false input, A can update the signing key fraudulently.

– Sign query : A generates a signature dishonestly without the secret signing
key when A receives a sign query (a message m, time period j). A sets
H(m||j||vk) as φsig and generates a simulated proof πsig. Finally A outputs
a signature where σ=(πsig,φsig,type) to F .

– Break-in query : A randomly chooses a secret signing key sb that is un-
related to the previous signing key and the vk. Likewise the above, relation
between sb and vk is proven by simulated proof πb. A outputs current time
period signing key sb and πb to F .

Final forgery When F acquires a signing key sb and πb where b is the time
period at break− in, F outputs forged signature (πsig∗ , φsig∗ , type) on a new
message m∗ where m∗ was not queried of Sign(·, j) and 0 ≤ j < b. After receiving
the forged signature set, A runs extractor E and extracts a secret signing key
sj which is a witness of πsig∗ . The adversary A can compute a pre-image of sb
through hashing sj repeatedly.

Success probability We analyze a probability of above execution. Note that
we do not need to guess the time period of break-in since all the signing keys
are irrelevant to the signing key at the time period of break-in via the simu-
lated proof. Likewise, there is no probability to fail responding the sign query
because all the queries can be responded through the simulated proof. Therefore,
a success probability of A converges on the success probability of extractor E
completely.

Title Suppressed Due to Excessive Length 19

6.2 Proof of Theorem 2

A proof of Theorem 2 is almost identical to the proof of Theorem 1. The ad-
versary F forges an aggregate signature on behalf of forging the normal forward
secure signature. Thus, all the proof procedure proceeds as subsection 6.1 except
for the final forgery. When A is given a forged aggregate signature, A should
run the extractor E recursively until the extractor outputs the skj of signature
on message m∗ where 0 ≤ j < b. Since the aggregate signature proves only the
aggregation result, an inner proof which is a witness of the forged aggregate
signature should be extracted n times in worst case (n is the number of aggrega-
tions). Thus the success probability of A converges on εn where ε is the success
probability of extractor E . Note that if the aggregation is performed balanced
then n becomes O(log(N)) where N denotes the total number of signatures in
an aggregate signature and the success probability is Nε.

7 Experiment

In this section, we measure the performance of our forward secure signature. Ba-
sically, our forward secure signature scheme supports the aggregation of multi-
user signatures regardless of their time periods, and all the efficiencies are not
dependent on the time period. In particular, only zk-SNARK circuit size affects
the time efficiencies of our construction, and the performance of the construc-
tion can differ depending on the zk-SNARK proof scheme. We implement the
forward secure signature scheme using the plonk [20] implemented by aztec as
the zero-knowledge proof scheme [41]. We compare the performance of our sig-
nature scheme with the performances of BM [5], AR [2], IR [26] and KO17 [30],
KO19 [31] via an experiment. The experiment is performed on Intel i7 4.2GHz
laptop with 64GB RAM under Ubuntu 18.04.

Table 3: Performance experiment results in forward secure signature schemes
Ours BM [5] AR [2] IR [26] KO17 [30]

Key generation time 19.407s 642.4375s 398.9233s 1970.0101s 4.4893s

Update time 12.874s 0.6ms 0.4ms 43ms 0.4ms

Signing time 12.555s 2.5412s 398.3939s 1ms 0.4ms

Verification time 1ms 2.5118s 389.2896s 0.2ms 389.3412s

Signing key size
Secret key 1.6KB 65KB 0.2KB 0.5KB 0.2KB

Public parameter 654MB

Verification key size
Verification key 32B 65KB 0.5KB 0.5KB 1KB

Public parameter 1KB

Signature size 1.6KB 0.5KB 0.2KB 0.3KB 0.5KB

Figure 2 represents the key setup time, the signing time, the update time,
and the verification time of all comparative signatures by varying the total time

20 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

216 217 218 219 220

0

1,000

2,000

The total time period

ti
m

e[
s]

BM

AR

IROpt

KO17

Ours

(a) Setup time

216 217 218 219 220

0

200

400

The total time period

ti
m

e[
s]

BM

AR

IROpt

KO17

Ours

(b) Signing time

216 217 218 219 220

0

5

10

The total time period

ti
m

e[
s]

BM

AR

IROpt

KO17

Ours

(c) Update time

216 217 218 219 220

0

200

400

The total time period

ti
m

e[
s]

BM

AR

IROpt

KO17

Ours

(d) Verification time

Fig. 2: Comparison of time performances with other forward secure signatures

periods T . The security parameter is fixed to 2048 bits in cases of RSA-based
signature schemes [5, 2, 26, 30, 31] and 256 bits in our case since the construction
utilizes a pairing function. The message length is fixed to 160 bits in all cases.

As shown in Figure 2(a), the setup time is proportional to the total time pe-
riods T in BM, AR, IR(optimized version). Specifically, the setup time of IROpt
reaches about 2000 seconds when the total time period is 220. In case of KO17,
the time complexity is O(lT) originally, however, the setup time can be opti-
mized by using the RSA group order in the implementation. Our scheme has
19 seconds in all time periods cases. Figure 2(b) illustrates the signing time of
the signature schemes. IROpt, KO17, and our signature scheme have a constant
signing time on the total time period T . However, since the zk-proof circuit size
affects the signing time of our signature scheme, it takes 12 seconds approx-
imately. Meanwhile, BM and AR have a signing time that is proportional to
total time periods T in the same manner, the signing time of AR takes more
than those of BM since the computation in AR is composed of exponentiation.
In case of the update time, as shown in Figure 2(c), all the signature schemes

Title Suppressed Due to Excessive Length 21

have a constant update time. Like in the case of the signing time, our update
time is affected by the zk-SNARK circuit size and it takes 12 seconds identical
to the signing time. Figure 2(d) illustrates the verification time of all signature
schemes. Only IROpt and our signature scheme have a constant verification time,
on the other hand, other signature schemes have a total time period dependent
verification time. Table 3 shows detailed data of the performance when T = 220,
the message bits l = 160.

Table 4: Performance experiment results on aggregation
Ours BM-FAS [31] AR-FAS [31]

Setup time 38.54s 1701.22s 1159.04s
Signing time 12.55s 2242.76s 3477.03s
Aggregation time 25.23s 0.004ms 0.004ms
Aggregate signature verification time 1ms 1680.63s 1739.39s

Table 4 represents the experiment results on the forward secure aggregate
schemes. We implement forward secure aggregate schemes via applying KO19 [31]
technique to BM and AR respectively. The total time period, the message bits,
and the security parameter are set to those of Table 3 equally and the number of
signatures are two. As shown in Table 4, the aggregation time in our signature
scheme has a relatively heavy computation than other forward secure signatures.
It is caused by the zk-proof circuit size that are composed of approximately
1,600,000 gates. However, the verification time of the aggregate signature has an
equal time with the single signature verification. In addition, the heavy zk-proof
circuit size can be reduced by using the Halo technique [10] that extracts the
proof verification circuit to outside the proof circuit via the proof aggregation.

8 Conclusion

In this paper, we propose a new forward secure multi-user aggregate signature
using zk-SNARK. Our new forward secure signature scheme supports all con-
stant complexities and a flexible aggregation where all restrictions that exist in
previous works are eliminated. In the proposed scheme, forward secure signature
properties are stated and a corresponding circuit is constructed. Finally, an ag-
gregation circuit is built to merge two signatures, in which the circuit implies
the verification results of signatures. Since the circuit size remains constant, the
key/signature size and the performance remain constant irrelevant to the time
period. The proposed scheme can remove any restriction existing in the previ-
ous work and show the best complexity. The security of the proposed scheme
is formally proven. In future, our methodology that uses zk-SNARK as a build-
ing block can be generalized to more properties such as group signature, blind
signature, etc. We additionally minimize the cost from zk-SNARK computation.

22 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

References

1. libsnark (2014). https://github.com/scipr-lab/libsnark (2020)
2. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Inter-

national Conference on the Theory and Application of Cryptology and Information
Security. pp. 116–129. Springer (2000)

3. Anderson, R.: In fourth annual conference on computer and communications secu-
rity. ACM (1997)

4. Baylina, J.: iden3/snarkjs. https://github.com/iden3/snarkjs (2020)
5. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Annual

International Cryptology Conference. pp. 431–448. Springer (1999)
6. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via

cycles of elliptic curves. Algorithmica 79(4), 1102–1160 (2017)
7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-

strapping for snarks and proof-carrying data. In: Proceedings of the forty-fifth
annual ACM symposium on Theory of computing. pp. 111–120 (2013)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 416–432. Springer (2003)

9. Bowe, S., Gabizon, A.: Making groth’s zk-snark simulation extractable in the ran-
dom oracle model. IACR Cryptol. ePrint Arch. 2018, 187 (2018)

10. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. IACR Cryptol. ePrint Arch. 2019, 1021 (2019)

11. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with
untrusted update. In: Proceedings of the 13th ACM conference on Computer and
communications security. pp. 191–200 (2006)

12. Brown, D.R., Vanstone, S.A.: Aggregate signature schemes (May 22 2012), uS
Patent 8,185,744

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). pp. 315–334. IEEE (2018)

14. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Designs, Codes and Cryptography 55(2-3),
141–167 (2010)

15. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 769–793. Springer (2020)

16. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS. vol. 10, pp. 310–331 (2010)

17. Chiesa, A., Tromer, E.: Proof-carrying data: Secure computation on untrusted
platforms (high-level description). The Next Wave: The National Security Agency’s
review of emerging technologies 19(2), 40–46 (2012)

18. Drijvers, M., Neven, G.: Forward-secure multi-signatures. IACR Cryptol. ePrint
Arch. 2019, 261 (2019)

19. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: Adaptive verifiable computations on outsourced data. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1304–1316 (2016)

20. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol.
ePrint Arch. 2019, 953 (2019)

Title Suppressed Due to Excessive Length 23

21. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 626–645. Springer (2013)

22. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: International
workshop on public key cryptography. pp. 257–273. Springer (2006)

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual in-
ternational conference on the theory and applications of cryptographic techniques.
pp. 305–326. Springer (2016)

24. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowl-
edge from simulation-extractable snarks. In: Katz, J., Shacham, H. (eds.)
Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10402,
pp. 581–612. Springer (2017). https://doi.org/10.1007/978-3-319-63715-0 20,
https://doi.org/10.1007/978-3-319-63715-0 20

25. Hohenberger, S., Waters, B.: New methods and abstractions for rsa-based forward
secure signatures. In: International Conference on Applied Cryptography and Net-
work Security. pp. 292–312. Springer (2020)

26. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying.
In: Annual International Cryptology Conference. pp. 332–354. Springer (2001)

27. Jurkiewicz, M.: Binary tree based forward secure signature scheme in the random
oracle model

28. Kim, J., Lee, J., Oh, H.: Qap-based simulation-extractable snark with a sin-
gle verification. Tech. rep., Cryptology ePrint Archive, Report 2019/586, 2019.
https://eprint. iacr. org . . . (2019)

29. Kim, J., Lee, J., Oh, H.: Simulation-extractable zk-snark with a single verification.
IEEE Access 8, 156569–156581 (2020)

30. Kim, J., Oh, H.: Forward-secure digital signature schemes with optimal compu-
tation and storage of signers. In: IFIP International Conference on ICT Systems
Security and Privacy Protection. pp. 523–537. Springer (2017)

31. Kim, J., Oh, H.: Fas: Forward secure sequential aggregate signatures for secure
logging. Information Sciences 471, 115–131 (2019)

32. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Interna-
tional Conference on Security in Communication Networks. pp. 241–256. Springer
(2002)

33. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
Proceedings of the 7th ACM conference on Computer and communications security.
pp. 108–115 (2000)

34. Lipmaa, H.: Simulation-extractable snarks revisited. Tech. rep., Cryptology ePrint
Archive, Report 2019/612, 2019. http://eprint. iacr. org . . . (2019)

35. Ma, D.: Practical forward secure sequential aggregate signatures. In: Proceedings of
the 2008 ACM symposium on Information, computer and communications security.
pp. 341–352 (2008)

36. Ma, D., Tsudik, G.: Forward-secure sequential aggregate authentication. In: 2007
IEEE Symposium on Security and Privacy (SP’07). pp. 86–91. IEEE (2007)

37. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 400–417. Springer
(2002)

24 Jeonghyuk Lee, Jihye Kim, and Hyunok Oh

38. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2111–2128 (2019)

39. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE (2013)

40. Qiao, K., Tang, H., You, W., Zhao, Y.: Blockchain privacy protection scheme
based on aggregate signature. In: 2019 IEEE 4th International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA). pp. 492–497. IEEE (2019)

41. zac williamson: Aztecprotocol/barretenberg. https://github.com/AztecProtocol/barretenberg.git
(2020)

42. Xiong, H., Guan, Z., Chen, Z., Li, F.: An efficient certificateless aggregate signature
with constant pairing computations. Information Sciences 219, 225–235 (2013)

43. Yavuz, A.A., Ning, P., Reiter, M.K.: Baf and fi-baf: Efficient and publicly verifiable
cryptographic schemes for secure logging in resource-constrained systems. ACM
Transactions on Information and System Security (TISSEC) 15(2), 1–28 (2012)

44. Yuan, C., Xu, M.x., Si, X.m.: Research on a new signature scheme on blockchain.
Security and Communication Networks 2017 (2017)

