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Abstract. Masking has been recognized as a sound and secure countermeasure for
cryptographic implementations, protecting against physical side-channel attacks.
Even though many different masking schemes have been presented over time, design
and implementation of protected cryptographic Integrated Circuits (ICs) remains
a challenging task. More specifically, correct and efficient implementation usually
requires manual interactions accompanied by longstanding experience in hardware
design and physical security. To this end, design and implementation of masked
hardware often proves to be an error-prone task for engineers and practitioners.
As a result, our novel tool for automated generation of masked hardware (AGEMA)
allows even inexperienced engineers and hardware designers to create secure and
efficient masked cryptograhic circuits originating from an unprotected design. More
precisely, exploiting the concepts of Probe-Isolating Non-Interference (PINI) for
secure composition of masked circuits, our tool provides various processing techniques
to transform an unprotected design into a secure one, eventually accelerating and
safeguarding the process of masking cryptographic hardware. Ultimately, we evaluate
our tool in several case studies, emphasizing different trade-offs for the transformation
techniques with respect to common performance metrics, such as latency, area, and
randomness.
Keywords: Side-Channel Analysis · Masking · Hardware · Composable Gadget

1 Introduction
Side-Channel Analysis (SCA) has not lost any of its topicality and remains a major threat
to security-critical implementations, even after more than two decades of intensive research
since its seminal description. In the wake of this lasting discovery [Koc96, KJJ99], it has
been admittedly recognized that secure implementation of cryptographic algorithms is a
challenging task, given that an adversary can observe and measure physical effects in order
to infer sensitive information during execution. Examples include timing [Koc96], power
consumption [Koc96, KJJ99], electromagnetic (EM) radiations [GMO01], or temperature
and heat dissipation [HS13]. However, in the course of time, different classes of counteractive
measures have emerged amongst which masking [CJRR99], based on concepts of secret
sharing, prevails due to its formal and sound security foundation.

Over the last years, many different hardware masking variants and schemes have been
proposed [ISW03, NRR06, RBN+15, GMK17, GM18], constantly improving efficiency
and security. Unfortunately, experience has shown that new schemes often have a short
retention time, mostly due to inaccuracies and design flaws [MMSS19]. However, even
for schemes that stand the test of time, correct and secure implementation remains an
enormous engineering challenge. As a matter of fact, even with longstanding experience
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and expertise in hardware security and design of masked hardware, correct physical
instantiation of masking schemes is a delicate and error-prone task. Evidently, unconsidered
and unintentional physical effects, e.g., glitches [MPG05], transitions [CGP+12, BGG+14],
or coupling [CBG+17], and implementation defects due to architectural conditions, e.g.,
parallelism [BDF+17] or pipelining [CGD18], can render a theoretically secure scheme
practically insecure.

As a consequence, a new line of research emerged, investigating the masking of atomic
and reusable components, often considered as gadgets in literature, to limit the engineering
complexity and error susceptibility [RBN+15, GMK16, GM18, GIB18, BBD+15, BBD+16,
CS20]. In this regard, a great deal of attention has been devoted to the construction of
secure gadgets for basic non-linear operations (e.g., AND), allowing to efficiently mask any
digital logic circuit given its AND-XOR representation. However, the continuous progress
in this domain is inevitably associated with fundamental research and advancements in the
realm of formal security definitions and adversary models. More specifically, the formal
and abstract Ishai-Sahai-Wagner (ISW) d-probing model [ISW03] is consulted prevalently
to reason about security of masked circuits in the presence of side-channel adversaries.

Unfortunately, research has shown that security in this simple model does not imply
secure composition of gadgets [CPRR13]. More precisely, composition of standalone-secure
sub-circuits does not necessarily lead to a secure circuit. As a consequence, advanced
security notions and properties are essential to reason about the composability of masked
gadgets. In a first attempt, Barthe et al. [BBD+15] introduced the notion of Non-
Interference (NI), allowing to verify the composability of gadgets based on the concept of
perfect simulation of joint probability distributions. However, due to disregarded effects
which later became known as probe propagation [CS20], the notion of NI is deficient
and has been complemented by the notion of Strong Non-Interference (SNI) shortly
afterwards [BBD+16]. Most recently, Cassiers and Standaert [CS20] introduced the notion
of Probe-Isolating Non-Interference (PINI) enabling more efficient compositions with
respect to multi-input, multi-output gadgets and trivially secure linear operations.

Now, provided with such sound and formal security and composability notions, hardware
designers are able to construct secure circuits more easily. However, transforming an entirely
unprotected design into a secure circuits remains a complicated and mostly manual process,
even when endowed with an adequate set of secure and composable gadgets.

Contributions. In this work, we present our novel, and open-source, software tool for
automated generation of masked hardware (AGEMA), enabling engineers and hardware
designers of any level of expertise to easily generate masked hardware circuits starting
from a simple but unprotected design. Utilizing different methods for processing the
given netlist1 of a design and supporting arbitrary masked gadgets, AGEMA offers high
flexibility with respect to the security level (i.e., order of the underlying masking scheme),
required fresh randomness, latency, and area overhead and consequently gives designers
the ability to configure AGEMA to their particular needs. Exploiting the essential security
notions for secure composability, the final designs are provably secure (under PINI notion)
and hence are formally verified. They are further free of heuristics, and can mitigate
implementation defects and design mistakes. As a consequence, our tool facilitates and
accelerates the process of masking digital logic circuits while in the same vein, the quality
and security of the resulting designs are increased.

We should highlight that, up to now, various tools have been developed to help
generating masked software implementations. The examples include [BRB+11, BRN+15]
and the recently-introduced ones Tornado [BDM+20] and Rosita [SSB+21]. Further,
fullVerif [CGLS21] is a tool to analyze security of masked circuits at the composition level.

1In digital circuit design, a netlist is a description of the connectivity of a circuit. In its simplest form,
a netlist consists of a list of the cells in a circuit and a list of the nodes they are connected to.
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It receives a masked implementation which is built by annotated e.g., PINI gadgets, and
examines whether the connection between PINI gadgets is in compliance with the PINI
definitions and requirements, i.e., checking if designers made any mistakes. In short, it
does not build any secure circuit. To the best of our knowledge, AGEMA is the only tool
which is dedicated to generation of masked hardware implementations, and security of its
generated circuits are based on the PINI security notion which guarantees to maintain the
security through composition.

Outline. We start by summarizing our notations and all necessary theoretical concepts
in Section 2, before elaborating the fundamental methodology of AGEMA in Section 3.
This includes a brief summary of existing types of Hardware Private Circuit (HPC) and
a detailed explanation for the supported processing and transformation methods of the
original netlist. In Section 4, we examine AGEMA with an extensive list of case studies on
a broad variety of hardware implementations of different block ciphers and compare the
generated masked designs with respect to common performance metrics such as required
fresh randomness, latency degradation, and area overhead. Before we conclude our work, we
provide reasoning behind the security of HPC circuits constructed by AGEMA in Section 5,
and give result of experimental analyses, i.e., Test Vector Leakage Assessment (TVLA),
on some exemplary designs as the outcome of application of AGEMA.

2 Basics
2.1 Notations
We denote functions using sans-serif fonts, e.g., f for Boolean functions and F for vectorial
Boolean functions. Next, we denote single-bit random variables in F2 by lower case letters
like x, and vectors by uppercase letters X while sets of random variables are given in bold
X. Further, we use subscripts like xi to indicate elements within a vector or a set while
superscripts are used to denote (randomized) shares of random variables, e.g., Xj . As a
special case, the set of all shares of each random variable in X is denoted as Sh(X).

2.2 Boolean Masking
Masking is based on secret sharing and has proven to be well suited for hardware implemen-
tations as a countermeasure against side-channel attacks. In Boolean masking, a sensitive
variable X ∈ Fn is split into s ≥ 2 randomized shares (X0, X1, . . . , Xs−1) ∈ Fsn, such that
X =

⊕s−1
i=0 X

i. Usually this sharing is initially achieved by sampling Xi $← Fn for all
0 ≤ i < s− 1 and calculating Xs−1 =

(⊕s−2
i=0 X

i
)
⊕X. Eventually, instead of performing

logic operations on the sensitive value X, they will be performed on the (randomized)
shared representation of X, i.e., X0, X1, . . . , and Xs−1.

2.3 Probing Security
In order to abstract and formalize the behavior of a masked circuit and the adversarial
capabilities to extract information from the underlying circuit, several models have been
introduced over time, aiming to achieve different trade-offs between simplicity and accuracy.
In the d-probing model, firstly introduced by Ishai et al. in [ISW03], the adversary is
granted the ability to observe the distribution over up to d wires of a given circuit. To
achieve d-probing security for a masked circuit, any adversary in conformity with this
model should not be able to learn anything about the processed sensitive value X.

Definition 1. A masked circuit C is said to achieve d-probing security iff every (joint)
distribution over up to d wires is statistically independent of any sensitive value X.
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Definition 1 directly implies that splitting any sensitive variable into at least d + 1
shares is necessary to achieve d-probing security. In the context of masking, d is also
referred to as the security order of a given masked circuit.

Robust Probing Model and Glitch-Extended Probes. Since the traditional probing
model is limited to software implementations due to its inability to capture physical
defaults occurring in hardware implementations, e.g., transitions (memory recombinations),
glitches (combinational recombinations), or coupling (routing recombinations), the robust
probing model was introduced in [FGP+18], aiming to consider and model these defaults
accurately while being sufficiently simple in order to enable efficient verification of masked
designs. In contrast to the traditional probing model, where the value of a wire is always
assumed stable during evaluation and where no dedicated synchronization elements, i.e.,
registers, exist, the robust probing model loosens this assumption by introducing registers
and so-called extended probes. Here, a single probe can be extended to additionally
capture leakage caused by physical defaults like data transitions at registers, glitches in
combinational logic, and coupling of adjacent wires.

In particular, glitches are switching activities of wires caused by different delays of
signals contributing to their intended values. These glitches enable a probe on a single
wire to observe not only the field element of its driving gate, but possibly a recombination
of signals contributing to its combinatorial value. Hence, in order to capture these effects,
glitch-extended probes were introduced. Here, a single probe on a wire is assumed to
capture the leakage of the joint distribution over every stable signal contributing to the
calculation of the probed wire. As a result, given the glitch-extended probing model, every
probe on a wire is replaced by the set of probes placed on the register outputs and primary
inputs that contribute to the observed wire, i.e., there exists a path from a stable source
to the current probe position.

2.4 Composable Masking Schemes
Especially for higher security orders d and more complex functions, it is hard to find
efficient masked representations for circuits to become provably d-probing secure, as the
number of possible probe combinations increases with the security order and the complexity
of a circuit. Following a divide-and-conquer approach, composable gadgets were introduced
as a remedy to directly derive masked representations of large functions. Composable
gadgets are masked circuits realizing small and atomic logic functions, like a simple AND
or OR gate. Fundamentally, these gadgets fulfill certain properties that imply probing
security when composed to construct a larger circuit. This way, the problem of finding
secure masked realizations of large functions is reduced to the task of finding composable
gadgets realizing small functions with certain properties. In other words, in contrary to
what has been observed in [MMSS19], the gadgets should be designed in such a way that
their composition does not lead to any security degradation.

Probe Propagation and Composability Notions. To understand favorable properties
for gadgets in order to achieve secure composability, we explain the concept of probe
propagation, which was firstly introduced in [CS20] and defines the information a probe
can access and how this access to information is propagated throughout the circuit.
Generally, a (glitch-extended) probe is said to propagate into a wire if this wire is needed to
perfectly simulate each observation of the probe, i.e., in order to compute the underlying
probability distribution. Now, to achieve composability of a gadget, propagation of internal
probes and output probes needs to be restricted to a subset of the input wires of the
gadgets. These constraints on gadget level have to guarantee that all possible probes in a
composed circuit only propagate in a subset of the initial sharing of an input value and
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not into all of them. After Non-Interference (NI) [BBD+15] was proven to be insufficient
to offer composability, Strong Non-Interference (SNI) [BBD+16] was proposed which
further restricts probe propagation and was originally restricted to single-output gadgets.
In [CS20], Cassiers and Standaert showed that the scope of the original definition of
SNI can be extended to cover multiple-output gadgets as well, but at the same time
unveiled issues of SNI with respect to the extent of required entropy and circuit area.
Eventually, Probe-Isolating Non-Interference (PINI) was introduced in the same work
as an elegant way to guarantee composability at any security order. Similar to Domain
Oriented Masking (DOM) [GMK16], share domains were introduced and any probe was
restricted to only propagate within its own share domain, enabling trivial implementation
of linear functions on the one hand and direct composition of gadgets on the other.

2.5 Formal Verification
Several tools have been published for the purpose of formally verifying the security and
composability characteristics of masked hardware circuits [BGI+18a, BGI+18b, CGLS21,
BBC+19, KSM20]. They all support different varieties of security and composability
notions while working on different abstraction levels. We choose SILVER [KSM20] for
performing all verification in this work, due to its unique support of checking composability
under the PINI notion in the glitch-extended probing model.

2.6 Combinational and Sequential Circuits
Combinational circuits are digital circuits where the output is a pure function of the
primary inputs and where no synchronization elements and clock signal exist. In contrast,
in a sequential circuit, a sequence of data, synchronized by a clock signal, is processed. A
sequential circuit may contain a feedback loop through registers, such that the output at
any given time is not only a function of the primary input but of previous outputs as well.

In this work, we model a sequential circuit by the schematic depicted in Figure 1.
Note that this structure offers a unique representation of any given logical circuit without
combinational loops that possibly contains multiple register stages. More precisely, every
given circuit (without a combinational loop) can be represented as a sequential circuit that
follows the structure shown in Figure 1, where all synchronization elements are packed
into the main register stage, the combinational circuit receives the primary input and the
outputs of the main register while the primary output is taken from the combinational
circuit. As a side note, this illustrates a Mealy machine, which covers Moore machines as
well [Mea55].

As it is explained in detail later in Section 3, we model the given unprotected circuit
by the structure shown in Figure 1, hence extracting and processing the combinational
part and the register stage individually to build the masked counterparts.

3 Technique
In this section, we gradually present the technical details of the procedure which AGEMA
follows to generate a secure masked implementation from the given unprotected implemen-
tation. To this end, we first review the masking schemes which are currently supported by
AGEMA.

3.1 PINI Hardware Gadgets
As PINI offers trivial composition of hardware gadgets in the robust probing model, we
restrict our examples to known gadgets fulfilling this security notion. However, we would
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Figure 1: General schematic of a sequential circuit.

like to stress that AGEMA offers a generic framework to dynamically substitute circuit
parts with masked gadgets and is not restricted to any specific type of gadgets. Recently,
several gadgets have been proposed that fullfill the PINI notion in the robust probing
model. As they differ with respect to the logic function they realize, the fresh randomness
they require and their latency, we describe and compare them in the following, where the
number of required fresh randomness is denoted by r and the number of added register
stages (i.e., the latency) by l.

3.1.1 HPC1

HPCs – proposed by Cassiers et al. in [CGLS21] – realize 2-input AND gadgets composable
under the PINI notion in the robust probing model and are generic for arbitrary security
orders. The authors introduced HPC1, which simply consists of a DOM-AND where the
sharing of one input is refreshed. Hence, the added number of register stages is l = 2. The
DOM-AND needs d(d+ 1)/2 bits of fresh masks for any given security order d. However,
since the mask refreshing is expected to be SNI, the required number of additional fresh
masks is identified through the table [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for security order d ≤ 10.

3.1.2 HPC2

Cassiers et al. further proposed another construction for an AND gadget, HPC2, requiring
r = d(d+ 1)/2 fresh randomness and l = 2 added register stages for any security order d.

3.1.3 GHPC

Generic Hardware Private Circuits (GHPCs), introduced in [KSM22], allow the construction
of gadgets realizing any (vectorial) Boolean function but are limited to first-order security.
Here, l = 2 is the number of added register stages, and the required number of fresh masks
is r = 1 per output bit, regardless of the Boolean function the gadget realizes.

The concept of GHPC is depicted in Figure 2. Every input is split into two shares while
the result of the gadget is simply the coordinate function fi blinded by fresh randomness
ri for every 0 ≤ i < m, with m being the function’s output bit size.

3.1.4 GHPCLL

In [KSM22], the authors further introduced GHPCLL, a low-latency variant of GHPC, which
requires only one register stage (l = 1) to compute any vectorial Boolean function but
needs 2n fresh random bits per output bit for a Boolean function with n inputs, i.e., in
total m× 2n bits.
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Figure 2: The GHPC concept of transforming any vectorial Boolean function into a first-
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Figure 3: First-order GHPCLL-AND realizing o = ab. Dashed registers are optional but
necessary to make a pipelined design.

A simple 2-input AND gadget realized as a GHPCLL is shown in Figure 3. This is the
only known composable AND gadget with a latency of a single clock cycle.

3.1.5 HPC-MUX

Having an HPC-AND gadget, other 2-input non-linear gates can be easily constructed. By
inverting one output share, the HPC-NAND is built, and by additionally inverting one
share of both inputs the HPC-OR is constructed as a ∧ b = a ∨ b. HPC-NOR can also
be made this way. Note that XOR is trivial under PINI notion. In other words, if all
non-linear sub-circuits fulfill the PINI requirements, XOR can be realized with no fresh
randomness and no additional register stage by XORing the corresponding shares of the
given inputs. XNOR can also be made by XOR while inverting one output share.

2-input multiplexers (MUXes) are commonly used in digital circuits as a building block
(available in almost every standard logic library). Designing an efficient shared version
of a 2-input MUX offering security under the PINI notion is straightforward as it can be
directly derived using a single HPC-AND gadget. The Boolean function f, describing a
MUX, where one of two inputs a ∈ F2, b ∈ F2 is selected by s ∈ F2 can be rewritten as
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f = sa⊕sb = s(a⊕b)⊕b. Realizing a composable, shared multiplexer for arbitrary security
orders is hence possible by means of two trivial XOR operations and a single HPC-AND
gadget. As a result, the randomness requirements and the latency is inherited from the
instantiated HPC-AND gadget, i.e., whether an HPC1-, HPC2-, GHPC-, or GHPCLL-AND
is employed, where the two latter cases are restricted to constructing first-order secure
designs only.

3.2 Procedure
Since the main goal is the conversion of an unprotected implementation to a masked one,
we first have to analyze the netlist of the unprotected implementation. In other words,
the unprotected (behavioral) implementation should be first synthesized by a synthesizer,
e.g., Design Compiler [Inc] or Yosys [Wol]. The resulting Verilog netlist2 is then given to
AGEMA. Note that AGEMA has a custom library file, where the designer should specify
the details of each cell, e.g., their input and output ports. Therefore, the synthesizer should
also be set to just use a restricted list of cells to generate the Verilog netlist, typically only
NOT, 2-input AND, NAND, OR, NOR, XOR, XNOR, MUX, and D flip-flops.

Then, as a first step, AGEMA builds a graph based on the given Verilog netlist, and
represents the circuit following the concept given in Section 2.6 ans shown in Figure 1, i.e.,
a combinational circuit and a single main register stage. Naturally, not necessarily all parts
of the given design should be masked, e.g., the control logic. Further, the designer may
desire to not mask the key, for example if protection against profiling attacks targeting the
key schedule is excluded (for such cases, see [MS16, PMK+11, UHA17, SM20], where no
key masking is applied). In tweakable block ciphers, e.g., CRAFT [BLMR19], the tweak
is supposed to be public knowledge. Hence, in a corresponding encryption/decryption
implementation, there is no need to mask the tweak. In AGEMA, this is supported by
setting the attribute of the primary input signals. If a signal is annotated as secure, it will
be converted to a masked form with d+ 1 shares in the resulting masked circuit, while d
(the order of masking) is also defined by the designer.

Hence, the next step of the process is to identify which parts of the given circuit should
be masked based on the attribute of the primary inputs defined by the designer. If any
input of a cell is marked secure, its output should also be marked secure. Therefore, we
propagate the secure signals through all cells of the circuit until no new signal is marked
as secure. Note that this includes the main registers and their role as the input to the
combinational circuit.

In order to formalize this process, we model the given logic circuit as a Directed Acyclic
Graph (DAG) G = (V, E ,X ,Y) with nodes in V and edges in E . More precisely, any Boolean
function Fn2 7→ Fm2 , over inputs X = {xi|1 ≤ i ≤ n} and outputs Y = {yi|1 ≤ i ≤ m}, can
be modeled as DAG which is defined as follows.

Definition 2 (Syntax of DAG). Given a finite DAG G = (V, E ,X ,Y) with vertices V,
edges E , primary inputs X , and primary outputs Y , an m-rooted DAG is defined as follows:

(1) Each vertex v ∈ V represents a single combinational or sequential gate in the netlist.
(2) Each edge e ∈ E represents a single wire carrying an element from the finite field F2.
(3) There are exactly n terminal nodes v, each labeled with a unique xi ∈ X .
(4) There are exactly m root nodes v, each labeled with a unique yi ∈ Y.

Based on this, Algorithm 1 shows the procedure to propagate the secure signals into
the circuit and how we split the circuit into two parts: the secure zone and the normal
zone.

2This can be set in a script executed by the synthesizer to generate a Verilog netlist as the result of the
synthesis.
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Algorithm 1 Propagation of secure signals
Input: G : {V, E ,X ,Y} . given circuit
Input: Xs : {x ∈ X | attribute(x) = secure} . secure primary inputs
Output: {Vs, Es,Xs,Ys} . secure zone
Output: {Vn, En,Xn,Yn} . normal zone

1: Vs ← ∅, Es ← ∅
2: for ∀x ∈ Xs do
3: Es ← Es ∪ output(x)
4: end for

5: repeat
6: V ′s ← ∅
7: for ∀v ∈ V\Vs do
8: if ∃ input(v) ∈ Es then
9: V ′s ← V ′s ∪ v

10: Es ← Es ∪ output(v)
11: end if
12: end for
13: Vs ← Vs ∪ V ′s
14: until V ′s 6= ∅
15: Ys ← Y ∩ Vs
16: Vn ← V\Vs, En ← E\Es, Xn ← X\Xs, Yn ← Y\Ys

Figure 4 shows a simple example after the application of this algorithm, where the
signals and cells which should be masked are highlighted in red. In this example, i1 is the
only primary input which is marked as secure by the designer, i.e., this primary input
should be masked (Xs = {i1}). Then, the algorithm adds cell #1 and its output t1 to
the secure zone. Next, cell #2 and its output o are added, and then the register cell #3
and its output x. In the next round, cell #0 and its output t0 are marked as secure, and
the algorithm terminates since no other cells can be added to the secure zone. At the
end, as shown in Figure 4, by selecting just i1 as the secure primary input, cells #0 to
#3 and signals ti, t0, t1, o, and x are identified to be masked. Note that other cells and
intermediate signals including y and the primary input i0 (which are inputs to the secure
zone) are not masked. We deal with such a combination in Section 3.3.1. It is noteworthy
that we re-use this exemplary circuit in the next sections to illustrate different processing
methods.

3.3 Processing Methods
The next step is to construct the masked variant of the secure zone. Apart from the fact
that different masking schemes are supported (see Section 3.1), we can process the secure
zone and build a more optimized netlist in favor of the selected masking scheme. To this
end, AGEMA supports four different processing methods explained below with an example
for each method in Figure 5 which is based on the secure zone identified in Figure 4. Such
different processing methods – explained in the following – do not necessary require the
Verilog netlist of the given unprotected circuit. However, in order to keep a constant form
for the input of AGEMA, we developed the processing algorithms to just deal with such a
representation of the given circuit. As a side note, we like to mention that all processing
methods can be freely combined with all supported masking schemes, except ANF which is
dedicated to GHPC and GHPCLL. An overview of the possible combinations is given in
Table 1.
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Figure 4: Exemplary circuit after the propagation of secure signals. i1 is the only primary
input marked as secure. The red signals and cells indicate the extracted parts which should
be masked.

Table 1: Supported masking schemes and processing methods.

Processing Method
Masking Scheme

HPC1/HPC2 GHPC GHPCLL
(d ≥ 1) (d = 1) (d = 1)

Naive 3 3 3

BDDSYLVAN 3 3 3

BDDCUDD 3 3 3

ANF 3 3

3.3.1 Naive

Every cell in the netlist of the secure zone can be naturally exchanged with its masked
variant depending on the selected masking scheme. This also necessitates to replace every
signal of the secure zone with its masked form with d + 1 shares. Since this is just a
translation of one netlist into another while keeping the original structure (i.e., the number
of cells and how they are connected), the efficiency of the resulting masked circuit depends
on how the original circuit has been synthesized. For example, the non-linear gadgets need
fresh randomness and introduce register stages into the gates (see Section 3.1). Therefore,
the number of non-linear gates and how they are composed (i.e., the logical depth of the
circuit) has a direct effect on the number of required fresh masks and latency overhead of
the resulting masked circuit.

We should also highlight that every signal which is not marked as secure but is involved
in the secure zone is padded with 0 to form d+ 1 shares. Examples include the primary
input i0 and the internal signal y in the example shown in Figure 4. Note that it should
be carefully evaluated whether this may pose any security issue in the used gadgets. For
example, cell #1 (NAND gate) in Figure 4 receives the masked i1 and umasked y (i.e., y
padded with 0). Depending on the used gadget, this does not necessarily lead to a secure
design. However, we have examined this in all our employed gadgets HPC1, HPC2, GHPC,
and GHPCLL, and verified that this does not degrade their security.
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(d) ANF with at most 3 inputs per gadget
o = 1⊕ i1y ⊕ i0i1y ⊕ xi1y

1⊕ i1y ⊕ xi1y ⊕ i0i1y

x

i0

i1
y

o

(e) ANF with 4 inputs per gadget

Figure 5: Different processing methods for the combinational port of the secure zone of
the exemplary circuit in Figure 4.

3.3.2 BDD

In discrete mathematics and computer science, Binary Decision Diagrams (BDDs) are often
used as basic data structures to represent and manipulate Boolean functions. The seminal
concept of BDDs has been introduced by Akers [Ake78] and refined by Bryant [Bry86],
improving efficiency and conciseness through variable ordering. Nowadays, many appli-
cations in logic synthesis and formal verification of digital Integrated Circuits (ICs) rely
on (reduced and ordered) BDDs3. This also holds for SILVER [KSM20] introduced in
Section 2.5.

Representation. Multi-root BDDs provide a unique, concise, and canonical representation
of Boolean functions Fn2 7→ Fm2 . In particular, any multi-root BDD can be represented as
a DAG with m root nodes and two terminal nodes {0,1}. More precisely, BDDs can be
defined syntactically and semantically as follows.

Definition 3 (Syntax of BDDs). Given a pair (π,G), where π denotes a variable ordering
3For the sake of simplicity, we refer to Reduced Ordered Binary Decision Diagrams as BDDs.
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and G = (V, E) is a finite DAG with vertices V and edges E , the syntax of an m-rooted
Reduced Ordered Binary Decision Diagram is defined as follows:

(1) There are exactly m root nodes and each node v ∈ V is either a non-terminal or one
of the two terminal nodes {0,1}.

(2) Each non-terminal node v ∈ V is labeled with a variable, denoted as var(v) and has
exactly two distinct child nodes in V , which are denoted as then(v) and else(v). More
precisely, there is no non-terminal node v such that then(v) = else(v).

(3) There are no duplicate nodes, i.e., for each pair of nodes {v, v′} ∈ V2 at least one of
the following conditions holds:

(i) The variable label is different, i.e., var(v) 6= var(v′).
(ii) The child nodes are different, i.e., then(v) 6= then(v′) or else(v) 6= else(v′).

(4) For each path from root nodes to terminal nodes, the variable labels are encountered
at most once and in the same order, defined by the variable ordering π.

Using the principle of Shannon decompositions, each multi-rooted BDD recursively
defines a Boolean function Fn2 7→ Fm2 and arbitrary Boolean operations.

Definition 4 (Semantic of BDDs). The representation of a Boolean function f : Fn2 7→ Fm2 ,
defined over the input variables X = {xi|1 ≤ i ≤ n}, is defined recursively according to
the following specification:

(1) Given a terminal node v, then fv|x = 0 if v is the terminal node 0, and fv|x = 1
otherwise.

(2) Given a non-terminal node v and var(v) = xi, then fv is defined recursively by the
Shannon decomposition: fv = xi · fthen(v)|xi=1 + xi · felse(v)|xi=0.

(3) Given two root nodes v1 and v2 and any binary Boolean operation ◦, such that
f = fv1 ◦ fv2 , then f can be derived recursively as:

f = xi · f|xi=1 + xi · f|xi=0

= xi · (fv1 ◦ fv2)|xi=1 + xi · (fv1 ◦ fv2)|xi=0

= xi · (fv1 |xi=1 ◦ fv2 |xi=1) + xi · (fv1 |xi=0 ◦ fv2 |xi=0)

Transformation. The purpose of the BDD processing method is to create a BDD for
the secure zone netlist. More precisely, the Boolean function of the secure zone netlist
is transformed into a multi-root BDD, whereas each node in the BDD corresponds to a
MUX. Note, however, that in the context of BDDs, each select signal is connected to a
primary input, while the data signals are connected to the constants 0 or 1 or any other
MUX corresponding to a BDD node. Therefore, AGEMA extracts an equivalent netlist
of the secure zone, purely based on 2-input MUXes, which afterwards are exchanged and
replaced by their masked counterpart (see an example in Figure 5(b) and Figure 5(c)).

AGEMA employs two different C/C++ libraries for the construction and manipulation
of BDDs, explained as follows.

SYLVAN4 is a state-of-the-art BDD high-performance, multi-core decision diagram pack-
age implemented in C/C++. In particular, manipulation and processing of BDDs
and binary operations has been extensively optimized and implemented for multi-core
support, outperforming existing, but single-core BDD packages.

4https://github.com/utwente-fmt/sylvan.git

https://github.com/utwente-fmt/sylvan.git
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CUDD5 (Colorado University Decision Diagram) is a package for manipulation and
processing of BDDs, Algebraic Decision Diagrams (ADDs), and Zero-suppressed
Binary Decision Diagrams (ZDDs) implemented in C. In contrast to SYLVAN, CUDD
provides an extensive set of features and operations that can be performed on BDDs,
including automatic and dynamic reordering of the variables. Hence, although CUDD
has been mostly designed for single-core processors, it can outperfom SYLVAN in
certain applications, mostly due to reduced memory requirements and BDD sizes
(due to more optimal variable orderings).

Limitations. In contrast to the Naive processing method, the BDD transformation results
in a unique representation (under a given variable ordering). As a result, the BDD
representation is independent of the original netlist representation but solely depends on
the underlying Boolean function, hence reducing the effort of optimizing the original and
unprotected design. Further, since each BDD can be represented as a multiplexer cascade
in digital logic, creation and optimization of a single masked MUX-gadget is sufficient
to convert unprotected designs into protected designs (see Section 3.1.5). However, in
contrast to common approaches, the primary inputs of the secure zone serve as selection
signals of the multiplexers (instead of being connected to the multiplexer data inputs).
As a consequence, the logical depth of the multiplexer cascade is solely limited by the
number of primary inputs of the secure zone, hence, determining the resulting latency of
the masked circuit.

Besides, since BDDs are only canonical under a given variable ordering, we employ
two different state-of-the-art BDD libraries. While SYLVAN is a high-performance library
captivating through multi-core algorithms and operations, in particular with respect to
BDD generation and recombination, CUDD also supports automated and dynamic variable
re-ordering. In fact, using some pre-defined and global thresholds, the library automatically
performs variable re-orderings once the thresholds are exceeded, in order to find better
(i.e., smaller) BDD representations through changing the ordering of the variables (i.e.,
primary inputs). As a smaller BDD directly translates to smaller masked circuits using
fewer multiplexers, we decided to support and evaluate both BDD libraries for their various
benefits and limitations.

3.3.3 ANF

As stated in Section 3.1, GHPC and its low-latency variant GHPCLL allow to construct
first-order secure composable gadgets from arbitrary functions. In other words, in addition
to GHPC and GHPCLL gadgets for 2-input non-linear gates (AND, NAND, OR, NOR) which
can be used in other processing methods, GHPC and GHPCLL gadgets can directly be made
for larger Boolean functions with arbitrary number of variables. However, with increasing
variable dependencies, area overhead of the gadgets gradually becomes more obstructive.
To this end, the ANF processing method tries to find trade-offs between single gadget size
and overall circuit size.

Representation. In general, any Boolean function can be expressed canonically using
several normal forms, such as Conjunctive Normal Form (CNF), Disjunctive Normal
Form (DNF), or Algebraic Normal Form (ANF). In particular, the ANF representation is
often considered for masking purposes due to the trivial masking of XOR operations.
Definition 5 (Algebraic Normal Form). For any Boolean function f : Fn2 7→ F2 there
exists a unique AND-XOR representation, called the ANF of f:

f(x) =
⊕
u∈Fn

2

au
∏
ui=1

xi with au ∈ F2,

5https://github.com/ivmai/cudd.git

https://github.com/ivmai/cudd.git
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where the summands of f are called monomials. Each monomial forms a conjunction of
a unique subset of x defined by its corresponding index u. The degree of a monomial is
defined as the size of its input set. Furthermore, the algebraic degree of f is defined as the
highest degree of all function’s monomials.

Transformation. We first construct the ANF of the secure zone. The construction
mechanism represents each gate (e.g., AND, OR, XOR) of the original netlist with its
corresponding ANF. More precisely, our tool computes the ANF of any gate based on the
primary inputs of the secure zone. To this end, the inputs of each gate are expressed in
terms of an ANF given in the primary inputs.

However, for the construction of gadgets, we are only interested in the ANF of the
outputs of the entire combinational part of the secure zone. Unfortunately, as stated
above, constructing an individual gadget per secure zone output may lead to a very large
circuit if the corresponding ANF depends on a very large number of primary inputs. As a
consequence, to reduce the circuit size, we apply two optimization techniques introduced
in the following. For the sake of simplicity and better understanding, we analyze an
exemplary Boolean function f : F4

2 7→ F2 represented by the following ANF.

f = x0x2 ⊕ x0x3 ⊕ x0x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3 (1)

Now, the trivial approach is to construct the entire function as a single gadget. As f
depends on four different input values, the corresponding gadget also requires four inputs.
Nevertheless, f can be rewritten in a way that the linear combination x0 ⊕ x1 is processed
instead of x0 and x1, i.e.,

f = (x0 ⊕ x1)(x2 ⊕ x3 ⊕ x2x3). (2)

Note that finding suited linear combinations is not trivial. We explain our methodology
in the following. Providing the linear combination (x0 ⊕ x1) to the gadget instead of x0
and x1 reduces the input size of the gadget by one. In practice, such linear combinations
occur in many modern block ciphers including a key addition operation. Hence, detection
of such operations and extraction of linear combinations often allows to typically halve
the number of inputs per gadget. However, the minimization of gadgets due to finding
linear combinations is not only restricted to the gadgets inputs. For instance, considering
h : F4

2 7→ F2 as
h = x0 ⊕ x1 ⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x2x3,

and computing the entire function in a single gadget is inefficient since the algebraic degree
of h is smaller than the number of inputs. In particular, only x0 and x1 as well as x2 and
x3 are combined non-linearly. In addition, only two different monomials of degree two
(x0x1 and x2x3) exist, i.e., not all inputs are combined in conjunctions. Hence, splitting h
into two functions h = h0 ⊕ h1 such that h0 = x0 ⊕ x1 ⊕ x0x1 and h1 = x2 ⊕ x3 ⊕ x2x3
results in two gadgets with only two inputs each. Compared to a single gadget with four
inputs, the area footprint can be reduced. We also refer to Figure 5(d) and Figure 5(e),
where two ANF gadgets for the exemplary circuit of Figure 4 are shown. As a result, linear
output combinations, as described here, exist in many modern block ciphers where linear
diffusion layers permute the outputs of multiple non-linear S-boxes which typically operate
on a small set of inputs (e.g., 4 or 8 bits).

Now, given an arbitrary Boolean function representing a secure zone output in ANF,
similar to the examples shown above, we can split the entire ANF into multiple sub-
functions of independent inputs. For instance, considering a full round of a block cipher,
this step is beneficial as different S-boxes are usually computed on non-colliding sets of
input variables. Therefore, we should be able to construct gadgets that operate only on a
small set of input values (depending on the S-box input size). More precisely, in order to
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find suitable sub-functions, we first extract all monomials with maximal algebraic degree
and place them into sub-functions. Specifically, all monomials that share no input are
placed in different sub-functions, while monomials sharing at least one input are placed in
the same sub-function. In the next step, we extract all smaller monomials of the ANF and
place them in one of the existing sub-functions such that each monomial is placed in a
sub-function if it shares inputs with the largest monomial of this sub-function. Eventually,
we repeat this procedure for every output ANF while adding new outputs to the gadgets.
Hence, each gadget may be used to compute sub-funtions of multiple output ANFs if they
depend on the same inputs. As a result, each output ANF can be computed as the sum of
different sub-functions while each sub-function receives a different set of inputs. At this
point, the gadgets are independent of each other and we can optimize them individually.

For some lightweight block ciphers, such as PRINCE [BCG+12], PRESENT [BKL+07],
Midori [BBI+15], Skinny [BJK+16], and CRAFT [BLMR19], the diffusion layer only
combines the output of different S-boxes. In other words, the diffusion layer never
combines different output bits of the same S-box. As the gadgets will be optimized at most
up to the S-box sizes, the sub-functions and the outputs of the S-boxes become equivalent.
Prominent exceptions of this rule are the AES [DR02] and LED [GPPR11], where the
MixColumns also linearly combines the outputs computed by the same S-box (through
Galois-field multiplication with constants in the MixColumns matrix). Note that since
we are analyzing the netlist of the secure zone, such a linear combination is not trivially
visible in the output ANFs. This translates to gadgets with a large number of outputs as
the gadgets compute all linear combined outputs separately and not the small set of S-box
outputs resulting in a high area and fresh-randomness overhead.

In order to detect such linear combinations and reduce the number of gadget outputs
(ideally) up to the number of S-box outputs, we search for a minimal set of different
functions whose linear combinations compute all required sub-functions. We perform
such a search with simulated annealing [KGV83], a discrete optimization technique that
searches for a minimal solution by evaluating solutions that are similar to the current
solution (so-called neighbors). The advantages of simulated annealing compared to other
optimization techniques such as constraint programming [Apt03] are the great performance
and the ability to escape local minima. This is achieved since the acceptance of a neighbor
is partially probabilistic. Hence, sometimes also bad neighbors are accepted to escape
local minima. We start with an input solution x (a set of functions) that computes all
sub-functions separately. Therefore, each sub-function is given as a single output and with
a single summand, what translates to a list with a single element. During the simulated
annealing, we split our initial solution into multiple summands that compute the outputs
with a minimal number of different summands. We show our method in Algorithm 2. For
the neighboring function neighbor(z), we randomly modify input solution z by selecting
one summand from a random sub-function (at the beginning, each function is given as a
single summand), XOR it to every occurrence of another randomly-chosen summand, and
insert it to every modified sub-function. Moreover, we define our objective costs cost(z) of
the solution z as the number of different summands required to compute all sub-functions.
It turns out that a very small number of iterations and a very low cooling factor are enough
to recover the minimal set of gadget outputs. In our experiments, we used a cooling factor
c of 0.9 and start with n = 100 iterations per cooling step which increases by 100 after
every cooling step. The initial temperature is t = 1 and cooled down until it reaches
t′ = 0.5. Note that the set of gadget outputs not necessarily encompasses the outputs of
the underlying S-boxes but linear combinations which also result in a minimal number of
gadget outputs.

After optimizing the gadgets outputs we investigate each gadgets inputs. As shown
above in Equation (2), a gadget can depend on a linear combination of its inputs. In order
to detect such cases for a given gadget, for each input (e.g., x0) we first make a set Lf,x0 of
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Algorithm 2 Search for optimal gadget outputs
Input: t, t′, c, n, x . Simulated annealing parameters: Temperature t, minimum

temperature t′, cooling factor c, iterations per cooling step n, initial solution x
Output: z . A local-optimum solution

1: z ← x
2: while t > t′ do
3: for i = 1, . . . , n do
4: y ← neighbor(z)
5: δ ← cost(y)− cost(z)
6: r

$←− [0, 1] ⊂ R . Random value in range [0,1]
7: if δ ≤ 0 or e−δ/t > r then
8: z ← y
9: end if

10: end for
11: t← t · c
12: end while

Algorithm 3 Search for linear input combinations
Input: LGi

, Lx . List of the gadgets output functions and inputs
Output: LGo

. List of the gadgets substituted output functions
1: LGo

← LGi

2: for ∀(x0, x1) ∈ Lx × Lx do
3: if x0 6= x1 then . Get two different inputs of the gadget
4: for ∀F ∈ LGo

do . By F we refer to all monomials of output function f
5: Lf,x0 ← ∅
6: Lf,x1 ← ∅
7: for ∀M ∈ F do . Get a monomial of the output function
8: if x0 ∈M then Lf,x0 ← Lf,x0 ∪M\{x0}
9: end if

10: if x1 ∈M then Lf,x1 ← Lf,x1 ∪M\{x1}
11: end if
12: end for
13: end for
14: if ∀F ∈ LGo , Lf,x0 = Lf,x1 then
15: N ← {x0, x1} . Create the new linear combination
16: Lx ← Lx\{{x0}, {x1}} ∪ N . Update the gadgets inputs
17: for ∀F ∈ LGo

do
18: for ∀M ∈ F do . Substitute the inputs with their linear combination
19: if x0 ∈M thenM←M\{x0} ∪ N
20: end if
21: if x1 ∈M then F ← F\M
22: end if
23: end for
24: end for
25: end if
26: end if
27: end for
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Figure 6: Generic structure of a masked circuit after applying the ANF processing method.
Dashed registers are optional but necessary to make a pipelined design.

all monomials that exist in output function f and include x0. As only monomials including
x0 are in Lf,x0 , we erase x0 from the monomial before storing it. Then, we search for
input combinations by iterating over all pairs of inputs, e.g., (x0, x1), and examining the
corresponding sets Lf,x0 and Lf,x1 . Since we erase x0 from all monomials in Lf,x0 and x1
from all monomials in Lf,x1 both sets are exactly equivalent iff they differ only in (x0, x1).
Hence, equivalence shows that we can replace (x0, x1) by its linear combination. Naturally,
two inputs xi and xj , such that i 6= j, can be replaced by their linear combination xi ⊕ xj
in an ANF, if both xi and xj are similarly combined with other inputs in all monomials.
This is given if both sets of monomials are equal and non-empty for every output function
of the gadget. If both conditions are met, xi and xj can be replaced with their linear
combination xi ⊕ xj in the entire gadget.

As a short example, we verify the linear combination in f given in Equation (1). For the
input pair (x0, x1) it holds that Lf,x0 = {x2, x3, x2x3} and Lf,x1 = {x2, x3, x2x3}. Since it
hold that Lf,x0 = Lf,x1 , the linear input combination (x0, x1) can be applied. This reduces
the number of inputs of the gadget and the complexity of the computed function. We
formalize our technique in Algorithm 3. Internally, we represent each monomial as a set of
its inputs and each function as a set of monomials. Hence, we can represent a gadget (LGi

and LGo
in the algorithm) as a set of its output functions.

Finally, the result of the ANF processing method is a combination of gadgets and linear
layers. A general structure is depicted in Figure 6. Initially, input layer Lin computes all
linear input combinations which are fed to the gadgets computing all non-linear components.
Different outputs of the i-th gadget are then linearly combined (through Li). Finally, the
output layer Lout linearly combines different gadgets outputs.
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Limitations. As already stated, although the other previously discussed processing
methods can be combined with different masking schemes, ANF is purely dedicated to
GHPC and GHPCLL. Hence, ANF can only generate first-order secure circuits. Similar to
BDD, ANF generates a unique ANF of the outputs independent of the optimization level
of the given netlist. Nevertheless, the result of ANF is not unique due to the probabilistic
characteristic of simulated annealing. Hence, improvements in terms of area are possible
by multiple executions of the tool while always selecting ANF as the processing method. In
particular, the algorithms generate inefficient gadgets if the complexity of the secure zone
grows. The given parameters for simulated annealing are suited for the optimization of
typical S-boxes (up to 8-bit input and output sizes). Adjusting the parameters of simulated
annealing could be helpful for more complex secure zones but can increase the runtime in
return. Up to now, all gadgets are instantiated in parallel, leading to a fixed latency of two
clock cycles for GHPC (resp. one cycle for GHPCLL). On the other hand, the largest gadget
cannot be smaller than dictated by the highest algebraic degree of the output functions.

As stated before, BDD and ANF can be constructed from various representations of
the given circuit. For the sake of having a unique form for the inputs to AGEMA, we only
process Verilog netlist of the synthesized circuit.

3.4 Optimization
Up to this point, we have explained how the secure zone is extracted from the netlist and
how it can be translated to a masked circuit. Depending on the chosen processing method
and the masking scheme and more importantly the initial netlist of the secure zone, the
resulting masked circuit introduces additional latency (more clock cycles) to the circuit
and demands for a high or low number of fresh masks. Further, the performance of the
resulting circuit is heavily affected by the multiplexers of the secure zone (if any). We
have already given an efficient way to realize an HPC-MUX in Section 3.1.5. However, it
is commonly seen that the secure zone contains multiplexers whose select signal is not
marked as secure, i.e., not masked. For example, a plaintext which is given as the primary
input is loaded under certain conditions, e.g., when the reset signal is high (or low). As
another example, different computations are performed in different clock cycles, e.g., last
round of the cipher is different to the other rounds (e.g., MixColumns is missing in the
last round of AES), or in a serialized architecture during some clock cycles the output
of the S-box is taken, and in some other clock cycles that of the diffusion layer. In such
cases, these is no need to mask and translate the multiplexer with an HPC-MUX. Similar
to the XOR, which is secure under PINI notion, an ordinary (unmasked) MUX can be
straightforwardly instantiated d+ 1 times (for security order d). Note that security under
the PINI notion requires every signal to have an independent sharing [CS20]. Hence,
connecting corresponding shares of two masked signal to an ordinary MUX controlled by
an insecure signal would not violate any security requirements. This would greatly improve
the efficiency of the resulting masked circuit. As a side note, the synthesizer should be
directed to make use of MUXes in such cases. If the functionality of a MUX is realized by
Boolean gates (AND, OR, XOR, etc.) and the netlist of the secure zone is optimized (e.g.,
for area, latency, or power through the synthesizer), it would not be straightforward to
detect the MUXes in the secure zone, and most likely the resulting circuit would suffer
from a high number of added register stages and a high demand for fresh randomness.

3.5 Synchronization
Since masked gadgets often have internal register stage(s), after applying the selected
masking scheme, the combinational part of the secure zone is not fully combinational
anymore. Therefore, the circuit would not necessarily work properly. Hence, the circuit
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should be adjusted to keep its correct functionality. We achieve this by two different
techniques explained below.

Pipelining. We can add extra registers to synchronize all inputs of every gadget as well
as all inputs of the main register stage. An example is shown in Figure 7(a), which is
based on the circuit depicted in Figure 4. Each HPC2 gadget introduces two register stages.
Hence, in order to synchronize the inputs of the HPC2-OR gate in Figure 7(a) we need to
place two cascaded registers at its first input (those which are marked by the gray color).
This procedure is done by synchronizing all inputs of each gadget processed in order of
their logic depth. At the end, all inputs of the main register stage are also synchronized.
For the example shown in Figure 7(a), four registers are placed in the normal zone to
synchronize it with the output of the secure zone. This way, the circuit keeps its correct
functionality while realizing a pipeline design with p + 1 stages if p register stages are
added to the circuit (in the shown example, p = 4 as two HPC2 gadgets are cascaded, each
with 2 register stages). Hence, the circuit can process p+ 1 consecutive and independent
inputs. We should highlight that the area overhead of the resulting circuit is relatively
high, but it constructs a circuit with a high throughput due to its underlying pipeline
architecture.

We should highlight that AGEMA is not able and does not try to detect control logic
of the given circuit. As explained above, it just synchronizes all inputs of every gadget
by instantiating register(s) at one of the inputs. The same is performed on the inputs
of the main register stage in both secure and normal zones. This is adequate to build a
fully-pipeline circuit with the same functionality as in the given unprotected circuit, but
with p times higher latency. In other words, if the unprotected circuit has a latency of l
clock cycles while processing a given input, the constructed pipeline masked counterpart
has a latency of (p + 1)l clock cycles while consecutively processes p + 1 given inputs.
Note that this is dedicated to neither a certain implementation architecture nor a special
handshaking fashion. This is a valid construction when the circuit is modeled in accordance
with Section 2.6.

Clock Gating. In order to mitigate the area overhead of the former technique, we can
make use of clock gating. More precisely, we need to make sure that the main register
stage keeps its value until the computation of the secure zone is terminated. The same
holds for the primary inputs. Hence, we do not add any extra registers to the circuit, but
change the clock of the main register stage. This way, all internal registers of the gadgets
are controlled by the main clock, whereas the main register stage is controlled by an added
gated clock enabled once per evaluation of the secure zone. A circuit which is equivalent
to the former example is shown in Figure 7(b). In order to keep the generality, a clock
gating module is added to the design which can be adjusted based on the latency of the
masked secure zone, i.e., p. To this end, the clock gating module instantiates a rotating
shift register with p+ 1 bits initialized by 1{0}p using an added control signal rst. Hence,
every p+ 1 cycles the main register stage is clocked to proceed with the next round of the
calculation of the secure zone. As a result, the latency of the clock-gated circuit is the
same as the pipeline one, but it has a lower throughput as well as lower area overhead.
More precisely, if the unprotected circuit has a latency of l clock cycles while processing a
given input, the constructed clock-gating masked counterpart needs (p+ 1)l clock cycles
to accomplish the processing of a single given input.

Similar to the pipelining, AGEMA does not analyze the circuit to detect any part
related to control logic. We have developed a generic HDL code for the clock gating module
with p as its input parameter. AGEMA just instantiates this module, adjusts p, and
changes the clock of the main register stage to be provided by the clock gating module.
This way, the circuit becomes equivalent to the given unprotected circuit, but with p times
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Figure 7: Different architectures: pipeline versus clock gating for the secure zone of the
exemplary circuit in Figure 4 processed by the Naive method using HPC2 masking scheme.

higher latency.

Note that since the primary inputs as well as the fresh masks (used by the gadgets)
are only allowed to change once per evaluation cycle right after the main register stage is
clocked, the clock gating module generates an additional output signal synch to let the
outer modules synchronize. More precisely, a positive edge is seen on the synch signal
which can be used to trigger the clock of random-number generator(s) to update the fresh
masks.
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Figure 8: General procedure of AGEMA to generate a masked circuit.

3.6 Finalize
Based on the explanations given above, the procedure that AGEMA follows to generate a
masked design can be summarized in Figure 8. At the end, based on the settings defined by
the designer (i.e., selected processing method, masking scheme, security order d, pipeline
or clock-gated design) AGEMA generates a new netlist for the masked design, where –
in addition to the unmasked cells of the unprotected design – gadgets are instantiated.
However, the RTL of the gadgets (which support different security orders and pipelining
feature as well) should be provided separately, which are indeed global and the same for
every design. We already provided the HPC1, HPC2, GHPC, and GHPCLL gadgets for the
NOT, 2-input gates (AND, NAND, OR, NOR, XOR, XNOR), MUX and D flip-flop (can be
found in the GitHub: https://github.com/Chair-for-Security-Engineering/AGEMA). If the
designer wants to use any other gadget realizing any other gate, its specification should be
defined in the AGEMA library (e.g., name and size of the ports, how many fresh masks
are required, and how many cycles latency it has) and the RTL of the new corresponding
gadget(s) should be provided. Hence, the generated netlist together with the RTL of the
gadgets need to be synthesized for the target platform, e.g., any ASIC library or an FPGA.

4 Case Studies
In order to examine the efficiency and performance of circuits constructed by AGEMA, we
evaluated several designs including different S-boxes and full cipher implementations under
different settings, i.e., different security orders (up to 4th), various processing methods
and different masking schemes.

4.1 S-boxes
We start with the 4-bit S-box of Skinny [BJK+16] and provide two different representations.
In the first one, we straightforwardly implemented the S-box by a lookup table. The
synthesizer translates such a behavior representation to a netlist, which is then given to
AGEMA for further processing. For the second one, we followed the optimized representa-
tion provided in [CGLS21]. The corresponding results are given in Table 3 and Table 4
respectively. As the results are extensive and many tables are presented, all performance
results are given in Appendix A. Note that all syntheses have been done using Synopsis
Design Compiler and a NanGate 45 nm standard cell library. For these analyses, we covered
all processing methods Naive, BDDSYLVAN, and BDDCUDD for masking scheme HPC2 at
different security orders. For the sake of comparison, we covered HPC1 only for Naive
method. ANF is also covered as a processing method where transformation into a secure
design is only possible in combination with GHPC or GHPCLL (see Table 1). The effect
of the given netlist on the performance of the masked circuit can be easily seen in the
results associated to Naive processing method. The (HPC2, Naive)-approach for the lookup
table based S-box adds 10 clock cycles to the latency compared to 4 clock cycles for the

https://github.com/Chair-for-Security-Engineering/AGEMA
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optimized S-box. ANF and BDD methods are actually not affected by the optimality of
the given netlist as they reconstruct the netlist. Further, it can be seen that HPC1 leads
to a lower area overhead while it certainly demands for more fresh randomness.

We repeated this procedure for the AES S-box. In addition to a lookup table based
representation, we took the Canright version [Can05] and the optimized design presented
in [BP12], which – in addition to the linear layers (isomorphisms) – has at most 4 cascaded
2-input AND gates, making it suitable for a masked design. Performance results are given
in Table 5, Table 6 and Table 7. The effect of the optimality of the given netlist on the
performance (area and latency) is even clearer compared to the former case study.

4.2 Full Ciphers
For the full cipher implementations, we cover the list given in Table 2. The performance
results are shown in Tables 10-14 in Appendix A. For all such case studies, we considered
the following facts.

• For all designs, we marked the plaintext/cipheretxt and the key as secure for AGEMA.
In other words, the resulting masked circuit receives all inputs (except the control
signals, e.g., clk and rst) in a masked form with d+ 1 shares and provides the output
also with d+ 1.

• If possible and available, we provided an optimized representation of the S-box.
Above, we have given the source of such optimized designs for the Skinny and
AES S-boxes. For PRESENT and LED, which share the same S-box, we took the
optimized S-box representation from [CGLS21]. However, for Midori and CRAFT,
which also share the same S-box, such representations are not available. Therefore,
we represented the S-box by a lookup table. It can be seen in the performance results
of CRAFT and Midori that the added latency (for Naive method) is higher compared
to the other ciphers with an optimized 4-bit S-box.

• We hard-coded the multiplexers (controlled by Finite State Machine (FSM) or
primary input control signals like rst) and directed the synthesizer to not optimize
them (see Section 3.4). The same holds for XORs. If the XORs are also merged
in other combinational circuits, the synthesizer may optimize in other directions,
leading to a netlist with more (cascaded) non-linear gates.

• As explained in Section 3.3.2, BDD processing methods are not necessarily efficient
for large combinational circuits when an optimized representation is available. This
can be seen for Midori and CRAFT, where the S-box is based on a look-up table
representation and BDD methods have the same latency overhead, while this does
not hold true for the other ciphers, where an optimized representation of the S-box is
given. Further, in AES round-based implementation, the round function, including
16 S-boxes followed by the MixColumns and 4 S-boxes of the KeySchedule, is too
large to be processed by BDD methods.

• We reported two columns for the latency in Tables 10-14 in Appendix A. The “added
latency” indicates the number of cycles which are added to each clock cycle of the
unprotected implementation. The “full latency” is then calculated based on the
added latency and the latency of the unprotected implementation. For example, the
unprotected Skinny-64-64 round-based encryption needs 33 clock cycles to accomplish
the encryption, and based on Table 10, the HPC2 Naive implementation adds 4 cycles
latency. This results in the clock-gating implementation requiring 33× (1 + 4) = 165
clock cycles for an encryption. The pipeline implementation has the same latency,
but processes 4 + 1 plaintexts consecutively in those 165 clock cycles. Hence, its
throughput (ignoring the delay) stays the same as the unprotected implementation,
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Table 2: Full cipher implementation case studies.

Cipher Implementation Reference
AES-128 Byte-serial and round-based encryption [DR02]
Skinny64 Round-based encryption with 64-bit key [BJK+16]
CRAFT Round-based encryption without tweak [BLMR19]
PRESENT-80 Nibble-serial encryption [BKL+07]
LED-64 Round-based encryption [GPPR11]
Midori-64 Round-based encryption/decryption [BBI+15]

but has certainly a considerably-higher area overhead compared to the clock-gating
implementation.

4.3 Outcomes
Considering the shown case studies, the following conclusions can be made.

• It should be tried to provide an optimized unprotected implementation. Here,
the optimization reflects the number of 2-input non-linear gates and how they
are cascaded. A lower number of such gates would naturally reduce the number
of required fresh mask bits, and a lower number of cascaded ones would lead to
a lower number of added latency cycles. Note that area-optimized unprotected
implementations, would not necessarily make optimized masked implementations
(see Table 6).
For example, Canright’s design [Can05] has a lower area footprint compared to the
design of Boyar and Peralta [BP12]. Although both designs have at most 4 cascaded
2-input non-linear gates, the construction of Canright instantiates more such gates.
Hence, the masked implementations of both have the same number of added latency
cycles, but the Canright construction demands for a higher number of fresh mask
bits (Table 6 vs. Table 7).

• A suitable choice for the processing method depends on several factors mainly related
to the designer’s goal(s). For instance, if the lowest latency is desired, ANF combined
with GHPC and particularly GHPCLL are the right choices, having in mind that such
a low latency comes at the cost of a high area overhead and a high demand for fresh
randomness while being restricted to only first-order security.
The benefit of the BDD processing methods lies on their independence to the
optimality of the given unprotected implementation. Here, the amount of added
latency cycles is defined by the number of primary inputs. For example, in the Skinny
S-box, the primary input has 4 bits, hence 4 stages of MUXes are cascaded which
results in 8 cycles of added latency when HPC2 gadgets are used. It can be seen
that the number of added latency cycles shown in Tables 3-7 does not depend on the
level of optimality of the unprotected implementation. There is still some differences
between their required number of fresh mask bits which originates from the fact that
by variable reordering in BDDs slightly different circuits are constructed.
When the number of required fresh masks is the key factor, our Naive method seems
to be the best choice, given that the unprotected implementation is optimized with
respect to the number of 2-input non-linear gates.

• With respect to the masking scheme, AGEMA currently supports HPC1, HPC2,
GHPC and GHPCLL

6. Apart from the fact that the last two options just cover
6Any other customized gadget can be easily added to the library of AGEMA.
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first-order security, HPC2 is preferred to HPC1 due to its lower number of required
fresh mask bits. However, looking at the results shown in Tables 3-7, employing
HPC1 in Naive method leads to lower area overhead, particularly for higher security
orders.

• The effect of the latency overhead gets more obvious by considering the full cipher
implementations since the number of added latency cycles are repeated at every
evaluation cycle of the circuit. For a better understanding of this fact, we refer to
Figure 1, where after application of AGEMA, the combinational part of the circuit
(which is part of the sequential loop) requires the added latency cycles. Comparing
the results of ANF (particularly when combined with GHPCLL) with other processing
methods in full cipher implementations highlights its extraordinary benefit with
respect to the full latency.

In short, we should say that apart from the above observations, the designers can try
different settings and examine which one fits the best to their needs. Having the netlist of
the unprotected implementation in hand, generation of the masked design by AGEMA for
each setting takes a couple of seconds. As explained in Section 3.6, the resulting design
together with the RTL of the gadgets should be synthesized to obtain the final performance
figures (area and delay). However, the number of added latency cycles and the amount of
required fresh masks (which are known right after the generation of the masked circuit by
AGEMA) already give an overview of the suitability of the constructed circuit.

The tool and all case studies are provided in the GitHub: https://github.com/Chair-
for-Security-Engineering/AGEMA.

4.3.1 Comparison with Hand-Crafted Designs

As given in Section 1, manual construction of masked hardware is a time-consuming and
error-prone process. Further, since such hand-crafted designs are usually not based on any
composable security notion, the security of the final designs cannot be easily proven or
even evaluated. It might be possible to examine the security of the constructed masked
S-box using SILVER, but it is out of the feasibility bounds of such tools to examine
the full cipher implementations. We can exemplary refer to 2-share first-order masked
AES S-box designs [GMK16, CRB+16], which can still be evaluated by SILVER, but not
higher-order ones or those which make use of more than 2 shares [MPL+11, BGN+14,
BGN+15, Sug19, GMK16, CRB+16]. Further, due to the aforementioned difficulty, to the
best of our knowledge, no secure manually-crafted masked hardware design at third (or
higher) order has been reported in literature. We are only aware of [GMK17] and [GSM17]
which are based on DOM multiplier [GMK16], while its security at higher orders has been
criticized in [MMSS19]. In contracts, the security of circuits constructed by AGEMA
utilizing PINI gadgets is formally provable. More details are given in the next section.

Apart from such shortcomings and difficulties, manually-crafted designs are usually
more efficient in terms of performance, i.e., area overhead, number of added latency cycles,
and amount of required fresh masks. For example, several works have been published
with the goal of minimizing the demand for fresh randomness in first-order masked
AES S-box [BGN+14, BGN+15, Sug19, GMK16, CRB+16, SM20]. We have listed the
performance figure of some manually-constructed full cipher implementations in the tables
given in Appendix A.

5 Analyses

https://github.com/Chair-for-Security-Engineering/AGEMA
https://github.com/Chair-for-Security-Engineering/AGEMA
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5.1 Theoretical
As explained in Section 2.4, the concept behind composable security implies that if
standalone secure sub-circuits fulfill certain requirements, their composition would maintain
the same level of security. Currently, PINI is known as the most efficient solution which
defines such requirements. In other words, if sub-circuits, i.e., gadgets, are PINI secure
under the (glitch-extended) probing model, and their interconnections do not intermix
share domains, the composed circuit is also PINI secure under (glitch-extended) probing
model. Note that not mixing the share domains predicates that output shares of a gadget
are connected to the input shares of another gadget in the same order. For example, having
(y0, y1, y2) as the output shares of a gadget with 3 shares and (x0, x1, x2) as the shares of
an input of another gadget, the only valid interconnection is (x0, x1, x2) = (y0, y1, y2).

Hence, as the first analysis step, we have examined our implementations of HPC1,
HPC2, GHPC and GHPCLL gadgets with SILVER [KSM20] and verified their PINI security
under glitch-extended probing model. The gadgets include NOT, 2-input AND, NAND,
OR, NOR, XOR, XNOR, and 2-to-1 MUX. We made VHDL/Verilog implementation of all
gadgets parametric, i.e., the security order and whether a pipeline design is desired are
easily set when instantiating such modules.

Further, since AGEMA makes use of deterministic algorithms to connect gadgets to-
gether, their accordance to PINI interconnections is guaranteed. Note that fullVerif [CGLS21]
has been developed to examine this. More precisely, it receives a design where the PINI
gadgets are annotated, and evaluates if their interconnections are valid, i.e., comply with
the aforementioned no-mixing of share domains. For the sake of completeness, we veri-
fied the designs generated by AGEMA with fullVerif, indicating the compliance of their
interconnections with that of PINI.

In addition to these analyses, by means of SILVER we confirmed the security of all
masked Skinny S-boxes and some of the masked AES S-boxes given in Section 4.1 and
listed in Tables 3-7 under the glitch-extended probing model. Note that since SILVER
makes BDD of the given design to evaluate, it is restricted to small-size circuits. Therefore,
we were not able to do the same for masked AES S-boxes at high security orders and
also for full cipher implementations. Note that, analyzing the security of the constructed
circuit using SILVER is a redundant step, since – as stated above – the security of such
composed circuits is inherited from the employed PINI gadgets.

5.2 Experimental
As a common evaluation technique in the state of the art and for the sake of completeness,
we additionally performed Field Programmable Gate Array (FPGA)-based experimental
analyses. Naturally, it is not possible to experimentally examine all designs reported as
case study, and we contented ourselves with two exemplary designs of our masked Skinny
round-based designs. As the first design, we selected the first-order GHPC ANF pipeline
design, and as the second one the second-order HPC2 Naive pipeline design.

We made use of SAKURA-G [SAK] and implemented the selected designs on the target
Spartan-6 FPGA to monitor the power consumption by a digital sampling oscilloscope at
a sampling frequency of 500MS/s. During the measurements the target design was driven
by a stable 6MHz clock. The fresh masks have also been generated internally (inside the
target FPGA). For each required fresh mask bit we instantiated a 31-bit Linear Feedback
Shift Register (LFSR) with the feedback polynomial x31 + x28 + 1 initialized randomly7.

As the analysis scheme, we conducted the common and well-known TVLA [GJJR11],
where the SCA leakages associated to a fixed input are compared to those associated to

7We have taken the FPGA-optimized LFSR design presented in [DMW18] which requires only three
instances of 6-to-1 LUTs on Xilinx FPGAs.
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Figure 9: FPGA-based fixed versus random t-test using 100 million traces, Skinny-64-64
round-based encryption, first-order GHPC ANF pipeline.
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Figure 10: FPGA-based fixed versus random t-test using 100 million traces, Skinny-64-64
round-based encryption, second-order HPC2 Naive pipeline.

random inputs. In all our experiments, we kept the key constant and performed fixed-
plaintext versus random-plaintext t-tests (at first, second, and third orders). Conducting
such analyses using 100 million traces (for each design) led to the results shown in Figure 9
and Figure 10 for two aforementioned designs, respectively. As the first design expected
to be only first-order secure (with 2 shares, d = 1), higher-order detected leakages are
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expected, as it can also be seen in the corresponding figures. The second design should
be secure up to the second order (with 3 shares, d = 2) and, as shown, no first- and no
second-order leakage is detected, confirming the expected level of security.

6 Conclusions
In this work we introduced a comprehensive framework which we have developed for
automated generation of masked hardware (AGEMA), allowing engineers and hardware
designers of all levels of experience to easily create securely masked cryptographic hardware
circuits. Based on the security and composability notion of PINI, our tool explores different
processing techniques to transform any unprotected cryptographic design into a securely
masked circuit using different masked gadgets as fundamental building blocks.

Demonstrating the benefits and limitations of our developed tool, we provide several
case studies for well-established symmetric block ciphers, showing different performance
trade-offs in terms of area overhead, latency increase, and fresh randomness demands based
on our proposed transformation methodologies. Eventually, verifying the viability of our
tool and the security of the resulting masked circuits, we perform practical experiments
and evaluations that confirm our claims. For this, AGEMA is an important building block
towards security-aware Electronic Design Automation (EDA), assisting in the automation
process of creating secure ICs.

Apart from unique benefits and facilities that AGEMA offers, the intensive case studies,
which we have provided in this article, highlight the importance of the employed gadgets
with respect to their performance. The demands for fresh randomness and the latency
of the constructed masked circuits heavily depend on the employed gadgets and their
requirements. In terms of latency, GHPCLL gadgets are the only known constructions with
only a single additional register stage, but they are limited to only first-order security. In
contrast, HPC2 gadgets, which can arbitrarily be adjusted to any security order, add two
register stages to the circuit. This might be seen as just one more clock cycle, but as shown
by our case studies, the latency of the resulting masked circuit is doubled compared to
that with GHPCLL. This difference is seen more clearly in implementation of ciphers which
employ S-boxes with a high algebraic degree (i.e., a high number of cascaded non-linear
gadgets). Naturally, more research in this area is required to fill the gap. More precisely,
having HPC gadgets at arbitrary security orders with only one register stage even only
for 2-input non-linear gates would greatly decrease the latency of the masked circuits and
their area overheads.
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A Performance Results

Table 3: Synthesis results, Skinny S-box lookup-table representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 42 0.20 0 0
GHPCLL ANF 1 962 0.39 64 1
GHPCLL ANF 3 1 1093 0.39 64 1
GHPCLL Naive 1 809 0.42 52 5
GHPCLL Naive 3 1 1172 0.41 52 5
GHPC ANF 1 1270 0.53 4 2
GHPC ANF 3 1 1305 0.53 4 2
GHPC Naive 1 1137 0.30 13 10
GHPC Naive 3 1 1870 0.29 13 10
HPC1 Naive 1 898 0.30 26 10
HPC1 Naive 2 1854 0.34 65 10
HPC1 Naive 3 3065 0.34 130 10
HPC1 Naive 4 4501 0.39 195 10
HPC1 Naive 3 1 1488 0.29 26 10
HPC1 Naive 3 2 2778 0.33 65 10
HPC1 Naive 3 3 4323 0.33 130 10
HPC1 Naive 3 4 6094 0.38 195 10
HPC2 BDDCUDD 1 1083 0.34 17 8
HPC2 BDDCUDD 2 2879 0.43 51 8
HPC2 BDDCUDD 3 5535 0.52 102 8
HPC2 BDDCUDD 4 9009 0.57 170 8
HPC2 BDDCUDD 3 1 2306 0.34 17 8
HPC2 BDDCUDD 3 2 5025 0.42 51 8
HPC2 BDDCUDD 3 3 8792 0.51 102 8
HPC2 BDDCUDD 3 4 13567 0.57 170 8
HPC2 BDDSYLVAN 1 1307 0.36 21 8
HPC2 BDDSYLVAN 2 3517 0.44 63 8
HPC2 BDDSYLVAN 3 6789 0.52 126 8
HPC2 BDDSYLVAN 4 11069 0.61 210 8
HPC2 BDDSYLVAN 3 1 2748 0.35 21 8
HPC2 BDDSYLVAN 3 2 6047 0.44 63 8
HPC2 BDDSYLVAN 3 3 10650 0.51 126 8
HPC2 BDDSYLVAN 3 4 16493 0.60 210 8
HPC2 Naive 1 847 0.35 13 10
HPC2 Naive 2 2236 0.42 39 10
HPC2 Naive 3 4287 0.47 78 10
HPC2 Naive 4 6968 0.56 130 10
HPC2 Naive 3 1 1890 0.34 13 10
HPC2 Naive 3 2 4055 0.41 39 10
HPC2 Naive 3 3 7034 0.47 78 10
HPC2 Naive 3 4 10790 0.55 130 10



D. Knichel, A. Moradi, N. Müller, P. Sasdrich 29

Table 4: Synthesis results, Skinny S-box optimized representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 40 0.20 0 0
GHPCLL ANF 1 962 0.39 64 1
GHPCLL ANF 3 1 1093 0.39 64 1
GHPCLL Naive 1 335 0.40 16 2
GHPCLL Naive 3 1 480 0.39 16 2
GHPC ANF 1 1270 0.53 4 2
GHPC ANF 3 1 1305 0.53 4 2
GHPC Naive 1 438 0.30 4 4
GHPC Naive 3 1 739 0.29 4 4
HPC1 Naive 1 365 0.26 8 4
HPC1 Naive 2 698 0.31 20 4
HPC1 Naive 3 1110 0.30 40 4
HPC1 Naive 4 1591 0.35 60 4
HPC1 Naive 3 1 621 0.26 8 4
HPC1 Naive 3 2 1101 0.30 20 4
HPC1 Naive 3 3 1661 0.29 40 4
HPC1 Naive 3 4 2289 0.34 60 4
HPC2 BDDCUDD 1 1072 0.36 17 8
HPC2 BDDCUDD 2 2862 0.43 51 8
HPC2 BDDCUDD 3 5515 0.51 102 8
HPC2 BDDCUDD 4 8979 0.59 170 8
HPC2 BDDCUDD 3 1 2225 0.35 17 8
HPC2 BDDCUDD 3 2 4906 0.42 51 8
HPC2 BDDCUDD 3 3 8633 0.50 102 8
HPC2 BDDCUDD 3 4 13366 0.59 170 8
HPC2 BDDSYLVAN 1 1072 0.36 17 8
HPC2 BDDSYLVAN 2 2862 0.42 51 8
HPC2 BDDSYLVAN 3 5515 0.51 102 8
HPC2 BDDSYLVAN 4 8979 0.60 170 8
HPC2 BDDSYLVAN 3 1 2225 0.35 17 8
HPC2 BDDSYLVAN 3 2 4906 0.42 51 8
HPC2 BDDSYLVAN 3 3 8633 0.50 102 8
HPC2 BDDSYLVAN 3 4 13366 0.59 170 8
HPC2 Naive 1 353 0.32 4 4
HPC2 Naive 2 818 0.39 12 4
HPC2 Naive 3 1489 0.44 24 4
HPC2 Naive 4 2351 0.52 40 4
HPC2 Naive 3 1 747 0.31 4 4
HPC2 Naive 3 2 1497 0.38 12 4
HPC2 Naive 3 3 2498 0.43 24 4
HPC2 Naive 3 4 3736 0.52 40 4
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Table 5: Synthesis results, AES S-box lookup-table representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 664 0.35 0 0
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 46476 0.50 3472 17
GHPCLL Naive 3 1 65708 0.49 3472 17
GHPC ANF 1 135228 0.82 8 2
GHPC ANF 3 1 157808 0.92 8 2
GHPC Naive 1 66226 0.40 868 34
GHPC Naive 3 1 104448 0.39 868 34
HPC1 Naive 1 50267 0.33 1736 34
HPC1 Naive 2 111763 0.37 4340 34
HPC1 Naive 3 190377 0.38 8680 34
HPC1 Naive 4 284043 0.42 13020 34
HPC1 Naive 3 1 79087 0.32 1736 34
HPC1 Naive 3 2 155064 0.36 4340 34
HPC1 Naive 3 3 248114 0.36 8680 34
HPC1 Naive 3 4 356210 0.41 13020 34
HPC2 BDDCUDD 1 24841 0.55 406 16
HPC2 BDDCUDD 2 68416 0.56 1218 16
HPC2 BDDCUDD 3 132834 2.72 2436 16
HPC2 BDDCUDD 4 216733 3.23 4060 16
HPC2 BDDCUDD 3 1 53471 0.54 406 16
HPC2 BDDCUDD 3 2 118318 0.55 1218 16
HPC2 BDDCUDD 3 3 208765 0.69 2436 16
HPC2 BDDCUDD 3 4 323122 0.78 4060 16
HPC2 BDDSYLVAN 1 25077 0.52 410 16
HPC2 BDDSYLVAN 2 69065 0.57 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53753 0.51 410 16
HPC2 BDDSYLVAN 3 2 119134 0.55 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 46854 0.48 868 34
HPC2 Naive 2 137437 0.60 2604 34
HPC2 Naive 3 272327 0.82 5208 34
HPC2 Naive 4 449461 4.33 8680 34
HPC2 Naive 3 1 105908 0.44 868 34
HPC2 Naive 3 2 240470 0.58 2604 34
HPC2 Naive 3 3 429483 0.67 5208 34
HPC2 Naive 3 4 670365 0.76 8680 34
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Table 6: Synthesis results, AES S-box Canright representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 246 0.39 0 0
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 2606 0.58 160 4
GHPCLL Naive 3 1 3664 0.57 160 4
GHPC ANF 1 135228 0.82 8 2
GHPC ANF 3 1 157808 0.92 8 2
GHPC Naive 1 3514 0.51 40 8
GHPC Naive 3 1 5691 0.50 40 8
HPC1 Naive 1 2779 0.47 80 8
HPC1 Naive 2 5815 0.52 200 8
HPC1 Naive 3 9640 0.53 400 8
HPC1 Naive 4 14193 0.56 600 8
HPC1 Naive 3 1 4527 0.46 80 8
HPC1 Naive 3 2 8469 0.51 200 8
HPC1 Naive 3 3 13199 0.51 400 8
HPC1 Naive 3 4 18621 0.55 600 8
HPC2 BDDCUDD 1 25157 0.53 707 16
HPC2 BDDCUDD 2 69250 0.61 2121 16
HPC2 BDDCUDD 3 134438 0.69 4242 16
HPC2 BDDCUDD 4 219369 0.74 7070 16
HPC2 BDDCUDD 3 1 54066 0.52 707 16
HPC2 BDDCUDD 3 2 119631 0.60 2121 16
HPC2 BDDCUDD 3 3 211082 0.69 4242 16
HPC2 BDDCUDD 3 4 326842 0.78 7070 16
HPC2 BDDSYLVAN 1 43210 0.73 714 16
HPC2 BDDSYLVAN 2 119554 0.75 2142 16
HPC2 BDDSYLVAN 3 232505 2.55 4284 16
HPC2 BDDSYLVAN 4 379760 3.09 7140 16
HPC2 BDDSYLVAN 3 1 91512 0.72 714 16
HPC2 BDDSYLVAN 3 2 204100 0.73 2142 16
HPC2 BDDSYLVAN 3 3 361667 0.71 4284 16
HPC2 BDDSYLVAN 3 4 561181 0.77 7140 16
HPC2 Naive 1 2629 0.52 40 8
HPC2 Naive 2 7035 0.61 120 8
HPC2 Naive 3 13521 0.66 240 8
HPC2 Naive 4 21896 0.77 400 8
HPC2 Naive 3 1 5765 0.51 40 8
HPC2 Naive 3 2 12401 0.60 120 8
HPC2 Naive 3 3 21577 0.66 240 8
HPC2 Naive 3 4 33159 0.75 400 8
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Table 7: Synthesis results, AES S-box optimized representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

[GE] [ns] [bit] [cycle]
unprotected – – 0 299 150 0 0
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 2311 1.41 136 4
GHPCLL Naive 3 1 3382 0.64 136 4
GHPC ANF 1 135228 0.82 8 2
GHPC ANF 3 1 157808 0.92 8 2
GHPC Naive 1 3074 1.09 34 8
GHPC Naive 3 1 5271 0.52 34 8
HPC1 Naive 1 2448 0.92 68 8
HPC1 Naive 2 5084 1.02 170 8
HPC1 Naive 3 8388 1.07 340 8
HPC1 Naive 4 12307 1.17 510 8
HPC1 Naive 3 1 4263 0.40 68 8
HPC1 Naive 3 2 7839 0.44 170 8
HPC1 Naive 3 3 12085 0.44 340 8
HPC1 Naive 3 4 16919 0.51 510 8
HPC2 BDDCUDD 1 25161 2.08 411 16
HPC2 BDDCUDD 2 69291 2.48 1233 16
HPC2 BDDCUDD 3 134490 2.70 2466 16
HPC2 BDDCUDD 4 219462 3.24 4110 16
HPC2 BDDCUDD 3 1 54076 0.57 411 16
HPC2 BDDCUDD 3 2 119704 0.63 1233 16
HPC2 BDDCUDD 3 3 211169 0.69 2466 16
HPC2 BDDCUDD 3 4 326936 0.77 4110 16
HPC2 BDDSYLVAN 1 25072 2.08 410 16
HPC2 BDDSYLVAN 2 69081 2.55 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53764 0.54 410 16
HPC2 BDDSYLVAN 3 2 119135 0.63 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 2346 1.32 34 8
HPC2 Naive 2 6126 1.61 102 8
HPC2 Naive 3 11716 1.68 204 8
HPC2 Naive 4 18894 1.99 340 8
HPC2 Naive 3 1 5339 0.51 34 8
HPC2 Naive 3 2 11205 0.61 102 8
HPC2 Naive 3 3 19217 0.68 204 8
HPC2 Naive 3 4 29267 0.74 340 8
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Table 8: Synthesis results, AES byte-serial encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 3263 0.83 0 0 227
GHPCLL ANF 1 143778 2.67 2048 1 454
GHPCLL ANF 3 1 161922 2.67 2048 1 454
GHPCLL Naive 1 10056 2.34 136 4 1135
GHPCLL Naive 3 1 25656 0.91 136 4 1135
GHPC ANF 1 146894 2.67 8 2 681
GHPC ANF 3 1 176509 2.83 8 2 681
GHPC Naive 1 10818 1.73 34 8 2043
GHPC Naive 3 1 42078 0.91 34 8 2043
HPC2 BDDCUDD 1 33124 2.56 414 16 3859
HPC2 BDDCUDD 3 1 120293 1.16 414 16 3859
HPC2 BDDSYLVAN 1 34173 2.64 431 16 3859
HPC2 BDDSYLVAN 3 1 122566 0.97 431 16 3859
HPC2 Naive 1 10090 2.11 34 8 2043
HPC2 Naive 2 17649 2.66 102 8 2043
HPC2 Naive 3 27026 2.71 204 8 2043
HPC2 Naive 3 1 42146 0.98 34 8 2043
HPC2 Naive 3 2 65583 1.41 102 8 2043
HPC2 Naive 3 3 91149 1.01 204 8 2043
[MPL+11] – 1 11114 48 266
[BGN+14] – 1 9102 44 246
[BGN+15] – 1 11221 44 246
[BGN+15] – 1 8119 32 246
[Sug19] – 1 17100 0 266
[GMK16] – 1 7600 28 216
[GMK16] – 1 7100 18 246
[CRB+16] – 1 6681 54 276
[SM20] – 1 7136 6.25 1 246
[SM20] – 1 7707 6.25 0 246
[CBR+15] – 2 18600 126 276
[CRB+16] – 2 10449 162 276
[GMK17] – 2 10000 54 246

Table 9: Synthesis results, AES round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 9906 1.85 0 0 11
GHPCLL Naive 1 52450 2.28 2720 4 55
GHPCLL Naive 3 1 98448 0.84 2720 4 55
GHPC Naive 1 67193 1.48 680 8 99
GHPC Naive 3 1 160080 0.83 680 8 99
HPC2 Naive 1 52597 2.04 680 8 99
HPC2 Naive 2 131631 2.39 2040 8 99
HPC2 Naive 3 246924 2.53 4080 8 99
HPC2 Naive 3 1 161440 0.82 680 8 99
HPC2 Naive 3 2 305274 0.89 2040 8 99
HPC2 Naive 3 3 492077 0.93 4080 8 99
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Table 10: Synthesis results, Skinny-64-64 round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 1494 0.52 0 0 33
GHPCLL ANF 1 18705 0.85 1024 1 66
GHPCLL ANF 3 1 18789 0.85 1024 1 66
GHPCLL Naive 1 6817 0.48 256 2 99
GHPCLL Naive 3 1 12725 0.46 256 2 99
GHPC ANF 1 22850 0.80 64 2 99
GHPC ANF 3 1 28850 0.80 64 2 99
GHPC Naive 1 8260 0.46 64 4 165
GHPC Naive 3 1 20082 0.45 64 4 165
HPC2 BDDCUDD 1 18832 1.95 280 16 561
HPC2 BDDCUDD 3 1 68410 0.52 280 16 561
HPC2 BDDSYLVAN 1 17969 1.96 262 16 561
HPC2 BDDSYLVAN 3 1 66933 0.52 262 16 561
HPC2 Naive 1 6895 0.55 64 4 165
HPC2 Naive 2 15193 0.61 192 4 165
HPC2 Naive 3 26777 0.65 384 4 165
HPC2 Naive 3 1 20210 0.53 64 4 165
HPC2 Naive 3 2 36147 0.59 192 4 165
HPC2 Naive 3 3 56096 0.63 384 4 165
[BJK+16] – 3 1 4200 0.95 0 66
[SM21] – 3 2 10600 1.22 128 128

Table 11: Synthesis results, CRAFT round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 1066 0.58 0 0 32
GHPCLL ANF 1 15748 0.81 1024 1 64
GHPCLL ANF 3 1 17605 0.63 1024 1 64
GHPCLL Naive 1 15568 1.01 1024 4 160
GHPCLL Naive 3 1 25852 0.54 1024 4 160
GHPC ANF 1 22106 0.75 64 2 96
GHPC ANF 3 1 27214 0.66 64 2 96
GHPC Naive 1 21365 0.63 256 8 288
GHPC Naive 3 1 41951 0.54 256 8 288
HPC2 BDDCUDD 1 14927 1.13 229 8 288
HPC2 BDDCUDD 3 1 42451 0.55 229 8 288
HPC2 BDDSYLVAN 1 17509 1.16 272 8 288
HPC2 BDDSYLVAN 3 1 47785 0.55 272 8 288
HPC2 Naive 1 15680 0.94 256 8 288
HPC2 Naive 2 43172 1.03 768 8 288
HPC2 Naive 3 84024 1.12 1536 8 288
HPC2 Naive 3 1 42367 0.55 256 8 288
HPC2 Naive 3 2 87291 0.57 768 8 288
HPC2 Naive 3 3 148316 0.50 1536 8 288
[BLMR19] – 3 1 5106 4.05 0 64
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Table 12: Synthesis results, PRESENT nibble-serial encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 1613 0.59 0 0 543
GHPCLL ANF 1 4727 0.89 64 1 1086
GHPCLL ANF 3 1 6734 0.68 64 1 1086
GHPCLL Naive 1 4143 1.03 16 2 1629
GHPCLL Naive 3 1 8061 0.59 16 2 1629
GHPC ANF 1 5177 1.04 4 2 1629
GHPC ANF 3 1 8945 0.70 4 2 1629
GHPC Naive 1 4245 0.68 4 4 2715
GHPC Naive 3 1 12095 0.59 4 4 2715
HPC2 BDDCUDD 1 5180 1.26 22 8 4887
HPC2 BDDCUDD 3 1 21966 0.59 22 8 4887
HPC2 BDDSYLVAN 1 5245 1.30 23 8 4887
HPC2 BDDSYLVAN 3 1 22064 0.59 23 8 4887
HPC2 Naive 1 4160 0.99 4 4 2715
HPC2 Naive 2 6478 1.13 12 4 2715
HPC2 Naive 3 8977 1.18 24 4 2715
HPC2 Naive 3 1 12103 0.59 4 4 2715
HPC2 Naive 3 2 18270 0.55 12 4 2715
HPC2 Naive 3 3 24692 0.67 24 4 2715
[PMK+11] – 1 2282 4.61 0 565
[SM20] – 1 1819 4.59 0 565
[SM21] – 2 3800 2.04 8 666

Table 13: Synthesis results, LED-64 round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 2056 1.22 0 0 33
GHPCLL ANF 1 17382 1.84 1024 1 66
GHPCLL ANF 3 1 19893 1.38 1024 1 66
GHPCLL Naive 1 7611 2.03 256 2 99
GHPCLL Naive 3 1 13383 1.09 256 2 99
GHPC ANF 1 22904 1.58 64 2 99
GHPC ANF 3 1 27309 1.23 64 2 99
GHPC Naive 1 9056 1.60 64 4 165
GHPC Naive 3 1 20615 1.08 64 4 165
HPC2 BDDCUDD 1 31416 2.97 469 16 561
HPC2 BDDCUDD 3 1 96238 0.89 469 16 561
HPC2 BDDSYLVAN 1 38243 3.02 598 16 561
HPC2 BDDSYLVAN 3 1 110725 0.89 598 16 561
HPC2 Naive 1 7691 1.98 64 4 165
HPC2 Naive 2 16375 2.07 192 4 165
HPC2 Naive 3 28322 2.33 384 4 165
HPC2 Naive 3 1 20743 1.07 64 4 165
HPC2 Naive 3 2 36890 1.14 192 4 165
HPC2 Naive 3 3 57021 1.18 384 4 165
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Table 14: Synthesis results, Midori-64 round-based encryption/decryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Rand. Latency

added full
[GE] [ns] [bit] [cycle]

unprotected – – 0 2035 0.97 0 0 17
GHPCLL ANF 1 19493 1.08 1024 1 34
GHPCLL ANF 3 1 21986 0.94 1024 1 34
GHPCLL Naive 1 17679 1.10 1024 4 85
GHPCLL Naive 3 1 32898 0.95 1024 4 85
GHPC ANF 1 23901 1.05 64 2 51
GHPC ANF 3 1 30539 0.85 64 2 51
GHPC Naive 1 23508 0.96 256 8 153
GHPC Naive 3 1 53893 0.95 256 8 153
HPC2 BDDCUDD 1 17162 1.29 231 8 153
HPC2 BDDCUDD 3 1 53478 0.95 231 8 153
HPC2 BDDSYLVAN 1 21123 1.27 304 8 153
HPC2 BDDSYLVAN 3 1 61576 0.95 304 8 153
HPC2 Naive 1 17801 1.10 256 8 153
HPC2 Naive 2 46371 1.21 768 8 153
HPC2 Naive 3 88246 1.27 1536 8 153
HPC2 Naive 3 1 54309 0.95 256 8 153
HPC2 Naive 3 2 105198 0.67 768 8 153
HPC2 Naive 3 3 172179 0.69 1536 8 153
[MS16] – 3 1 7297 4.00 0 32
[SM20] – 3 1 7560 4.99 0 32
[SM21] – 3 2 15500 2.86 128 64
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