
Sine Series Approximation of the Mod Function for

Bootstrapping for Approximate HE

Charanjit S. Jutla
IBM T. J. Watson Research Center

Nathan Manohar
UCLA

Abstract

While it is well known that the sawtooth function has a point-wise convergent Fourier
series, the rate of convergence is not the best possible for the application of approximating
the mod function in small intervals around multiples of the modulus. We show a different
sine series, such that the sine series of order n has error O(ε2n+1) for approximating the
mod function in ε-sized intervals around multiples of the modulus. Moreover, the resulting
polynomial, after Taylor series approximation of the sine series, has small coefficients, and
the whole polynomial can be computed at a precision that is only slightly larger than
−(2n + 1) log ε, the precision of approximation being sought. This polynomial can then
be used to approximate the mod function to almost arbitrary precision, and hence allows
practical CKKS-HE bootstrapping with arbitrary precision.

1 Introduction

The work of [5, 4] presented a new homomorphic encryption (HE) scheme for approximate
arithmetic (called the CKKS HE scheme) over real/complex numbers. The CKKS HE scheme
was considerably more efficient than other schemes for evaluating arithmetic circuits and lever-
aged properties of approximate arithmetic to achieve these efficiency gains. It has found many
applications, among them privacy-preserving machine learning and secure genome analysis
(see [10, 15, 1, 12, 17, 11] for some examples). However, the initial CKKS HE scheme lacked a
bootstrapping procedure, and, thus, it was not a fully homomorphic encryption (FHE) scheme.
This was remedied when [3] introduced the first bootstrapping procedure for the CKKS HE
scheme, which followed the general template introduced by Gentry [6] of evaluating the de-
cryption circuit homomorphically. The challenge here is that the decryption procedure for
CKKS requires computing the mod function, which is not easily representable via an arith-
metic circuit. In fact, the mod function modulo q on the interval [−Kq,Kq] for some integer
K is not even a continuous function. However, [3] made the clever observation that in the

1

CKKS HE scheme, we have an upper bound m on the size of the message, which can be made
much smaller than q. In this situation, we actually only need to be able to compute the mod
function on points in [−Kq,Kq] that are a distance at most m from a multiple of q. In this
case, the mod function is periodic with period q and is linear on each of the small intervals
around a multiple of q. Figure 1 shows the mod function along with the small intervals for
approximation.

-20 -10 10 20

-4

-2

2

4

Figure 1: The mod function with modulus q = 10. The solid red lines represent the small
intervals on which we need to approximate.

The work of [3] observed that the mod function [t]q on these intervals can be approximated

via a scaled sine function S(t) = q
2π sin

(
2πt
q

)
. This approximation introduces an inherent error

that depends on the message upper bound m. Let ε denote the ratio m
q . Then, it can be shown

that

|[t]q − S(t)| ≤ 2π2

3
qε3.

If ε is small enough, then this error can be sufficiently small for use in bootstrapping
provided that S(t) can be well-approximated by a low degree polynomial. The work of [3]
along with several followup works [2, 8, 13] proceeded to provide methods of approximating
this scaled sine function (or scaled cosine function in the case of [8] and scaled sine/cosine and
inverse sine in the case of [13]) by a low-degree polynomial, which can then be plugged into the
bootstrapping procedure of [3]. However, due to the inherent error between the mod function
[t]q and the scaled sine function S(t), this approach has a “fundamental error” that will occur
regardless of how S(t) is approximated. One of the problems with this is that in order for the

2

error to be O(1) (and, therefore, not destroy the message), m must be O(q2/3). This means
that we must begin bootstrapping while the size of the encrypted message is considerably
smaller than q, which is a source of inefficiency in the bootstrapping procedure, particularly
in applications that require high precision. Compounding this problem is the fact that for
large q, the size of the coefficients of the approximation of S(t) grow. This requires the basis
polynomials to be computed to higher precision and affects the stability of the computation,
where the errors introduced by the approximate arithmetic are amplified due to the large
coefficients.

The reason obtaining high-precision bootstrapping for CKKS is important is that one of
the main applications for CKKS is privacy-preserving machine learning. However, many ML
algorithms require high precision computation in order to converge. This may be especially
true during the learning phase of neural networks, which involves back propagation and integer
division by private integers. Additional nonlinear steps involve pooling functions, threshold
functions, etc. Moreover, due to their high depth, computing these ML algorithms homomor-
phically without bootstrapping is infeasible. Thus, for privacy-preserving ML applications,
high-precision bootstrapping is required.

Recently, the work of [9] was able to obtain high-precision bootstrapping by finding direct
polynomial approximations of the mod function on small intervals around the modulus via
a new technique called modular Lagrange interpolation. This avoided the fundamental error
inherent in prior works that occurred due to first approximating the mod function by a scaled
sine function. The coefficients of these polynomials were small enough to enable high-precision
bootstrapping. However, the coefficients were still large enough that in order to evaluate the
polynomial approximations in a stable manner, one would need to operate at a higher precision
than the input ciphertext. Ultimately, this fact corresponded to the bootstrapping procedure
losing additional levels, since the computations during bootstrapping were operating at a higher
precision.

1.1 This Work

In this work, we show how to obtain arbitrary precision bootstrapping via a different method
from that of [9]. Instead of approximating the mod function directly, we first approximate the
mod function by a sine series and then approximate each term in the sine series using a Taylor
series. We show that the sine series converges to the mod function in small intervals around
the modulus. In particular, our sine series of order n has error O(ε2n+1) for approximating the
mod function in ε-sized intervals around multiples of the modulus.

Thus, we avoid the fundamental error of the scaled sine approach and are able to obtain an
approximation with arbitrarily small error in the desired intervals. Furthermore, the coefficients

3

of the sine series are small (in fact, they have norm < 1). This, combined with the fact that the
Taylor series expansion of sinx has small coefficients, leads to a polynomial approximation of
the mod function with small coefficients. Due to these small coefficients, the whole polynomial
can be computed at a precision only slightly larger than (−2n + 1) log ε, the precision of the
approximation being sought. This means that during bootstrapping, we can operate at a
precision level that is approximately the same as that of the input ciphertext and do not lose
additional levels due to having to operate at a higher precision during bootstrapping.

2 Sine Series Approximation

In this section, we will show the following theorem and corollary, giving a sine series approxi-
mation to the mod function in small intervals around the modulus.

Theorem 1 For every n ≥ 1, there exist a sequence of rational numbers β1, ...βn such that for
every ε, 0 < ε < 1/

√
n, for every |x| < ε,∣∣∣∣∣x−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2

2
∗ (n+ 1) ∗ (ε/2)2n+1

Corollary 2 For every n ≥ 1, there exist a sequence of rational numbers β1, ...βn such that
for every ε, 0 < ε < 1/

√
n, for every integer m, for every x such that |x− 2mπ| < ε,∣∣∣∣∣(xmod 2π)−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2

2
∗ (n+ 1) ∗ (ε/2)2n+1

To prove Theorem 1, for each n, we will determine the rational numbers {βi}i∈[n]. In
particular, they are not the same as the Fourier coefficients of the sawtooth function, as we
are focused on x that is potentially much smaller than the period of the sawtooth function.

We start by giving explicit formulas for the determinant of some Vandermonde-like ma-
trices. For every n > 0, for every sequence of n distinct integers a = (a1, ..., an), let V (n)(a)
denote the Vandermonde matrix of a, i.e. it is the n × n matrix with the (i, j)-th element
aj−1i (for i, j ∈ [n]). Define S(n)(a) to be the n×n matrix with the (i, j)-th element a2j−1i , i.e.
each row is the odd powers of the elements of a. Note that the first column of this matrix is
just a. Also, define a related matrix Ŝ(n)(a) to be the n× n matrix which is same as S(n)(a)
except that the first column (i.e. a) is replaced by (2n + 1)-th powers of a. In other words,

the (i, 1)-th element of this matrix is a
(2n+1)
i .

4

Lemma 3 The determinant of the matrix S(n)(a) defined above is(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j).

The determinant of the matrix Ŝ(n)(a) defined above is

(−1)n−1 ∗ det(S(n)(a)) ∗
n∏
i=1

a2i .

Proof: We will first focus on the matrix S(n)(a). For computing the determinant, for each
row i, we get a contribution of a factor ai towards the determinant, and the remaining matrix
is then just a Vandermonde matrix with all powers of a2i . Thus,

det(S(n)(a)) =

(
n∏
i=1

ai

)
∗ det(V (n)(a′)),

where a′ = (a21, . . . , a
2
n). The result then follows from the well-known determinant of Vander-

monde matrices.

As for the claim for the matrix Ŝ(n)(a), first consider a modified matrix that is obtained
by moving the first column to the last. Since this can be accomplished by (n − 1) column
exchanges, the determinant of the modified matrix is (−1)n−1 times the determinant of Ŝ(n)(a).
Furthermore, the determinant of the modified matrix is easily related to determinant of S(n)(a)
by noting that i-th row in the modified matrix is a2i times the i-th row in S(n)(a). �

If the sequence of integers a are in increasing order and lower bounded by one, then the
determinant of S(n)(a) is positive. Let ~β be an n-vector of rational numbers. For the sine
series approximation, we would like to determine ~β so that the transpose of the matrix S(n)(a)
multiplied by ~β is a vector with all entries zero except the first, which is one. Since βj refers
to the coefficient of the sin(ajx) term in the sine series, the above requirement ensures that
when we Taylor expand each sine term in the sine series about the origin (or a multiple of
2π) and sum the terms, the resulting polynomial will be x + x2n+1p(x) for some polynomial
p(x). Thus, the x3, x5, . . . , x2n−1 terms in the Taylor series expansions of the sin(jx)’s cancel
out. We note that since our sine series will include sinx, sin 2x, sin 3x, . . . terms, we will later
instantiate a with (1, 2, . . . , n). The required condition is drawn below.

a1 a2 ... an
a31 a32 ... a3n

...

a2n−11 a2n−12 ... a2n−1n

 ·

β1
β2
...
βn

 =

1
0
...
0

5

Let di denote the (i, 1)-th minor of S(n)(a). In other words, the list {di}i is the list of
minors of the first column of S(n)(a).

Lemma 4

βi = (−1)i+1 ∗ di

det(S(n)(a))
.

Proof: From the above equation, ~β is just the first column of the inverse of (S(n)(a))T . Note
that the (i, 1)-th element of inverse of transpose of S(n)(a) is (−1)i+1 ∗ di divided by the
determinant of S(n)(a). �

We will show below that for any x in the domain of approximation, the absolute value of
the error due to the sine series approximation of order n is upper bounded by the absolute
value of

n∑
i=1

βi ∗ i2n+1 ∗ x2n+1

(2n+ 1)!
.

Thus, the value of
∑n

i=1 βi ∗ i2n+1 is of interest to us.

Lemma 5 For the matrix S(n)(a) with a set to the sequence of integers from one to n,

n∑
i=1

βi ∗ i2n+1 = (−1)n−1 ∗ (n!)2.

Proof:
∑n

i=1 βi ∗ i2n+1 is the inner product of the first column of Ŝ(n)(a) and ~β. By Lemma 4,
we have

~β > · (Ŝ(n)(a))1 = ((S(n)(a))−>)1)
> · (Ŝ(n)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n)(a))i,1

=
det(Ŝ(n)(a))

det(S(n)(a))

= (−1)n−1 ∗
n∏
i=1

a2i

= (−1)n−1 ∗ (n!)2,

where we have used Lemma 8 in the second-to-last equality. �

6

We now show that the partial sums of the sine series satisfy Leibniz’s alternating series
test. For any x in the domain of approximation, consider the series

∑∞
m=n+1(−1)m ∗bm, where

bm = (−1)n−1 ∗
n∑
i=1

βi ∗
(ix)2m−1

(2m− 1)!
(1)

The alternating series test requires that the bm satisfy the following three conditions

1. limm→∞ bm = 0

2. All bm are positive (or all bm are negative)

3. |bm| ≥ |bm+1| for all natural numbers m ≥ n+ 1.

Theorem 6 Alternating Series Test [Leibniz]. If the series above satisfies the alternating
series test then

∑∞
m=n+1(−1)m ∗ bm converges. Moreover, for all k ≥ 0,

|
∞∑

m=n+1

(−1)m ∗ bm −
n+1+k−1∑
m=n+1

(−1)m ∗ bm| ≤ |bn+1+k|.

Lemma 7 For every |x| < n−1/2, the above series given by bm satisfies the Leibniz alternating
series test.

We prove this lemma in the next subsection, but before that we need formulas for deter-
minant of some matrices related to S(n)(a). Define V (n,k)(a) to be a n × n matrix, which is
same as the Vandermonde matrix V (n)(a) except the last column is replaced by (n− 1 + k)-th
powers (instead of (n− 1)-th powers).

Lemma 8 For k ≥ 1, the determinant of the matrix V (n,k)(a) is

det V (n)(a) ∗ sk(a),

where sk(a) is a (symmetric) polynomial in a given by

sk(a) =
∑

1≤i1≤...≤ik≤n
ai1 ∗ · · · ∗ aik

Remark: The polynomials sk(a) differ from the well-known elementary symmetric polynomials
ek(a) in that the latter has summation over 1 ≤ i1 < ... < ik ≤ n.

7

Proof:

Fix any k ≥ 1. Consider an n × n matrix M which is same as V (n,k)(a) except that the
last row is powers of an indeterminate x. Let a′ stand for a (n − 1) length truncation of a.
Treating the elements of a′ as scalars, the determinant of this matrix M is a polynomial in x,
of degree n − 1 + k. Call this polynomial f(x). Since the determinant of a matrix with two
equal (or even scaled by a constant) rows is zero, the polynomial f(x) has roots a′. Thus,

f(x) = g(x) ∗
n−1∏
i=1

(x− ai), (2)

where g(x) is a polynomial (to be determined) of degree k . However, f(x), the degree n−1+k
polynomial, has zero coefficients for all monomials xj with j in [n−1..n−1 +k−1]. Introduce
a new formal variable t = 1/x, and then the above equation (2) can be written as

f̃(t) = g̃(t) ∗
n−1∏
i=1

(1− tai). (3)

where f̃ is the polynomial f with coefficients reversed, and similarly for g̃. Note, all the zero
coefficients of f(x) described above implies that f̃(t) = fn−1+k mod tk+1. Thus,

fn−1+k ∗
n−1∏
i=1

(1− tai)−1 = g̃(t) mod tk+1. (4)

Hence,

fn−1+k ∗
n−1∏
i=1

k∑
j=0

(1 + (tai)
j) = g̃(t) mod tk+1. (5)

Since g(x) is of degree k, g̃(t) has degree at most k as well. Denote by g̃z the coefficient of tz

in g̃z, which is same as gk−z. Then, by comparing coefficients of tz on both sides we get, that
for each z ∈ [0..k],

gk−z = g̃z = fn−1+k ∗ sz(a′),

where s0(a
′) is defined to be 1.

8

Thus, having determined g(x), we also have f(x) by (2). Letting x = an, then we get

det V (n,k)(a) = f(an)

=
n−1∏
i=1

(an − ai) ∗ g(an)

= ∗
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗
k∑
z=0

ak−zn sz(a
′)

=
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗ sk(a)

= det V (n)(a) ∗ sk(a),

where the last equality follows by noting that the top coefficient of f(x), i.e. fn−1+k is the
(n, n)-minor of V (n,k)(a), which is same as the (n, n)-minor of Vandermonde matrix V (n)(a),
which in turn is (−1)n+n ∗ det V (n−1)(a′). �

Lemma 9 For a that is the sequence of squares of numbers from 1 to n, for all k ≥ 0,

sk+1(a)

sk(a)
≤ n3

Proof: First note that sk+1(a) =
∑n

i=1 ai ∗ sk(a(i)), where a(i) is a restricted to first i entries.
Since ai are monotonically increasing, it follows that sk+1(a) ≤ n ∗ an ∗ sk(a), from which the
claim follows. �

2.1 Alternating Series Test

Proof: (of Lemma 7) In this proof we will fix a to be the sequence of integers from one to n.

Note, each bm can be written as bm = cm ∗ (x)2m−1

(2m−1)! , where cm = (−1)n−1 ∗
∑n

i=1 βi ∗ i2m−1.

1. Since n is fixed and all βi are bounded by lemma 8, we just need to show that for every

x in the domain of approximation, for every i ∈ [n], (ix)2m−1

(2m−1)! goes to zero as m goes

to infinity. Since the domain of approximation is bounded, |x| itself is bounded. Since,
k! ≥ e(k/e)k, the above is upper bounded by e−1 ∗ (iex/(2m − 1))2m−1, which goes to
zero as m goes to infinity.

9

2. To show that all bm are positive (or all are negative), it suffices to show that all cm are
positive (or all cm are negative resp.). We first show that cn+1 is positive (i.e. m set to
n+ 1). By lemma 5, this quantity is just (−1)2(n−1) ∗ (n!)2, and hence is positive.

Let Ŝ(n,k)(a) be the matrix that is the same as Ŝ(n)(a) except that the first column is
replaced by (2n−1+2k) powers of a. Thus, Ŝ(n,1)(a) is same as Ŝ(n)(a). As in the proof
of lemma 5,

(−1)n−1 ∗ cn+k =
n∑
i=1

βi ∗ i2n−1+2k

= ~β > · (Ŝ(n,k)(a))1

= ((S(n)(a))−>)1)
> · (Ŝ(n,k)(a))1

=
1

det S(n)(a)
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n,k)(a))i,1

=
det Ŝ(n,k)(a)

det S(n)(a)

Note that det Ŝ(n,k)(a) is what is called a Schur polynomial in a. It is an alternant
polynomial, i.e. its sign changes if any two entries of a are exchanged. All alternant
polynomials are divisible by the Vandermonde polynomial, i.e. det S(n)(a); this is clear
by noting that every (ai− aj) is also a factor of det Ŝ(n,k)(a), as this determinant is zero
if ai = aj . Regardless, we will not pursue this approach here, and directly use lemma 8.
From that lemma it follows (after some maneuvering) that det Ŝ(n,k)(a) is

(−1)n−1 ∗ sk−1(a(2)) ∗
n∏
i=1

∏
1≤j<i

(a2i − a2j) ∗
n∏
i=1

a3i ,

where a(2) is the sequence a, but with each entry squared. Thus, all cn,k are positive, for
k ≥ 1.

3. We now show that |bm| ≥ |bm+1|, for all m ≥ n+ 1. In the following a is the sequence of

10

numbers from 1 to n. We have,

|bm+1|
|bm|

=
(−1)n−1 ∗ sm+1−(n+1)(a

(2)) ∗
∏n
i=1

∏
1≤j<i(a

2
i − a2j) ∗

∏n
i=1 a

3
i ∗

(x)2m+1

(2m+1)!

(−1)n−1 ∗ sm−(n+1)(a(2)) ∗
∏n
i=1

∏
1≤j<i(a

2
i − a2j) ∗

∏n
i=1 a

3
i ∗

(x)2m−1

(2m−1)!

=
sm+1−(n+1)(a

(2)) ∗ (x)2m+1

(2m+1)!

sm−(n+1)(a(2)) ∗ (x)2m−1

(2m−1)!

=
sm+1−(n+1)(a

(2))

sm−(n+1)(a(2))
∗ x2

2m(2m+ 1)

≤ n3 ∗ x2

2m(2m+ 1)
(by lemma 9)

≤ 1 (for x < n−1/2)

�

Proof: (of Theorem 1) We have |x −
∑n

i=1 βi sin(nx)| ≤ (n!)2 ∗ x2n+1

(2n+1)! by Lemmas 5, 7 and
Leibniz’s alternating series test theorem . The claim follows by using the bounds(n

e

)n
< n! <

(
n+ 1

e

)n+1

e

�

3 Application to Bootstrapping for Approximate HE

In Section 1, we explained that approximating the mod function on small intervals around
the modulus is a necessary step in bootstrapping for approximate homomorphic encryption
(CKKS). In this section, we will briefly overview the bootstrapping procedure for the CKKS-
FHE scheme introduced in [3] and explain how our sine series approximation to the mod
function enables high-precision bootstrapping.

Notation and Necessary Preliminaries: Let M be a power of 2 and ΦM (X) = XN + 1
be the Mth cyclotomic polynomial of degree N = M/2. Let R = Z[X]/ΦM (X). For an
integer q, let Rq = Zq[X]/ΦM (X). Using the canonical embedding σ, it is possible to map an
element m(X) ∈ R into CN by evaluating m(X) at the Mth primitive roots of unity. Using the
same canonical embedding, it is also possible to define an isometric ring isomorphism between
S = R[X]/ΦM (X) and CN/2, where for an element m(X) ∈ S, it has the canonical embedding
norm ||m||can∞ = ||σ(m)||∞.

11

Overview of the CKKS-FHE Scheme: The CKKS-FHE scheme [5] is an FHE scheme
for approximate arithmetic over real/complex numbers. Its security is based on the ring-
LWE (RLWE) assumption. The message space of the scheme is polynomials m(X) in R with
||m||can∞ < q/2 for a prime q. Using the canonical embedding and appropriate scaling, one can
map a vector in CN/2 of fixed precision into R. The fact that canonical embedding induces
an isometric ring isomorphism between S and CN/2 implies that operations on the message
space R map to the same operations performed coordinate-wise on CN/2. Thus, the CKKS-
FHE scheme supports packing N/2 complex numbers into a single plaintext and operating on
them in single instruction multiple data (SIMD) manner. Please refer to [5] for more details
on this encoding procedure. We will refer to m(X) ∈ R as the plaintext/message and the
corresponding vector in CN/2 as the plaintext “slots.”

A ciphertext ct encrypting a message m ∈ R is an element of R2
q`

for some ` ∈ {0, . . . , L}.
` refers to the “level” of the ciphertext. In [5], q` = p` ∗ q for primes p and q. However,
q` can be set in other ways (such as via an RNS basis [4]). The decryption structure is
〈ct, sk〉 mod q` = m+ e for some small error e ∈ R. Observe that there is no way to remove e
and some of the least significant bits of m are unrecoverable. A fresh ciphertext is generated
at the highest level L. Homomorphic operations increase the magnitude of the error and the
message and one must apply a rescaling procedure or modular reduction to bring a ciphertext
to a lower level to continue homomorphic computation. Eventually, a ciphertext is at the
lowest level (an element of R2

q), and no further operations can be performed.

Bootstrapping Procedure for CKKS-FHE: [3] introduced the first bootstrapping pro-
cedure for the CKKS-FHE scheme. Subsequent works [2, 7, 8] improved various aspects of
bootstrapping, but the overall procedure remains the same. The goal is to take a ciphertext
at the lowest level and bring it up to a higher level so that homomorphic computation can
continue. Thus, given a ciphertext ct at the lowest level, we want to obtain another ciphertext
ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`

for some ` > 1. For simplicity in the following, we will include the starting decryption error in
the message m. That is, we will assume that 〈ct, sk〉 mod q = m.

Bootstrapping is done via the following sequence of steps:

1. Modulus Raising: By simply considering ct as a ciphertext at the highest level, it
follows that 〈ct, sk〉 mod qL = qI +m for some I ∈ R.

2. Coefficients to Slots: We need to perform the modular reduction on the polynomial
coefficients of t = qI + m. However, recall that homomorphic computations evaluate

12

coordinate-wise on the plaintext “slots,” not the polynomial coefficients. Thus, we need
to transform our ciphertext so that the polynomial coefficients are in the “slots.” This
can be done by evaluating a linear transformation homomorphically.

3. Compute the Mod Function: We need a procedure to compute/approximate the
mod function homomorphically. This is a significant challenge since we can only com-
pute arithmetic operations homomorphically.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots step. This can
be done by homomorphically evaluating the inverse of the previous linear transform.

Observe that if we can approximate the mod function, then the above procedure will give
us a ct′ at some higher level ` that decrypts to m + e for some small error e. Since we are
dealing with approximate arithmetic, this error from bootstrapping can be absorbed into the
other errors that occur during approximate arithmetic and homomorphic evaluation.

Prior Approaches to Approximating the Mod Function: We can upper bound |I| < K
for some integer K (a typical value is K = 12) so that we only need to approximate the mod
function on the interval [−Kq−m,Kq+m], where we have overloaded notation to make m an
upper bound on the size of the message for consistency of notation with prior works. However,
finding a good polynomial approximation for the mod function on this interval is difficult since
it is not even a continuous function.

As described in the introduction, [3] observed that if m is sufficiently small, then the

mod function [t]q can be approximated by the scaled sine function S(t) = q
2π sin

(
2πt
q

)
. This

approximation introduces a “fundamental error” of 2π2

3 qε3, where ε = m/q. Thus, to obtain

O(1) error, we require m = O(q2/3), meaning that we must begin bootstrapping prior to m
becoming too large.

The work [3] then proceeded by approximating S(t) using a Taylor expansion to degree
O(Kq) so that the error of approximation with S(t) is about the same as the error between S(t)
and [t]q. Since they are approximating a scaled sine function, they are able to use double-angle
formulas for sine to reduce the computational cost of evaluating the approximation polynomial

by first approximating a scaled-down version sin
(

2πt
2r∗q

)
to a degree d0 = O(1) and then using

this approximation to approximate S(t). The required setting of r is O(logKq) and so the
multiplicative depth (alternatively, the ciphertext levels consumed) remains the same.

13

The work [2] improved upon this method by instead using Chebyshev interpolation to
approximate S(t), which lowered the error of approximation and the required degree. In
Chebyshev interpolation, instead of working with the polynomial basis {1, x, x2, . . .}, one works
with the Chebyshev basis {T0(x), T1(x),
T2(x), . . .} and uses the Chebyshev nodes as points for interpolation. Approximating S(t) via
Chebyshev interpolation pn(t) of degree ≤ n gives an error of

|S(t)− pn(t)| ≤ qKn+1 πn

(n+ 1)!
.

Observe that the above error does not depend on ε (that is, it is a good approximation on
the entire space [−Kq,Kq] and does not utilize the fact that we only need a good approximation
close to multiples of q). However, for a typical parameter setting K = 12, this error bound
only improves on the trivial bound of q for degree n ≥ 98.

The work [8] improved on the approximation of the scaled sine function by leveraging
the fact that we only care that our approximation is good near multiples of q. To do this,
[8] uses Chebyshev interpolation on the union of these small intervals instead of the entire
space [−Kq,Kq]. Implicit in this, they consider the ratio between the maximum size of a
message and q. This procedure allows them to reduce the degree of the polynomial required
for approximation and allows the error of approximation to depend on the ratio ε = m/q.
For approximating the scaled sine function on 2K + 1 intervals near multiples of q (near
−Kq, . . . ,Kq), the error of approximation in any particular interval is O

(
εd
)
, where d is the

number of points chosen for Chebyshev interpolation in that interval. However, due to the
constants hidden in the big-O notation (which can depend exponentially on K), choosing the
same number of points for Chebyshev interpolation in all intervals does not give the best
approximation, and the authors choose d for each interval via a greedy algorithm.

The above approaches all require first approximating [t]q via a scaled sine function, and,

therefore, will always at least have error 2π2

3 qε3. If we want to have a smaller error, it is
necessary to use a different method that avoids the scaled sine function. A pair of recent works
by the same authors [14, 13] attempt to avoid the scaled sine function by instead trying to
find the optimal minimax polynomial of a fixed degree that approximates the mod function
via algorithmic search. [14] uses L2-norm minimization and [13] uses a variant of the Remez
algorithm [16] to obtain an approximation to the optimal minimax polynomial of a given degree
that approximates the modular reduction function on the union of intervals containing points
close to multiples of q. However, in both of these works, the polynomial is found via algorithmic
search. Moreover, the degree of the polynomial is fixed a priori before any approximation is
computed. Without any bounds showing trade-offs between the polynomial degree, size of the
coefficients, and the error of approximation, it is hard to develop strategies for picking the

14

degree. Unfortunately, as observed by [13], the size of the coefficients of these polynomials
are too large to enable high-precision bootstrapping. By using a composition of sine/cosine
and the inverse sine function, [13] are able to improve on [8], but their bootstrapping is only
capable of up to 28 bit message precision.

Recently, the work of [9] was able to obtain high-precision bootstrapping by finding direct
polynomial approximations of the mod function on small intervals around the modulus via
a new technique called modular Lagrange interpolation. This avoided the fundamental error
inherent in prior works that occurred due to first approximating the mod function by a scaled
sine function. The coefficients of these polynomials were small enough to enable high-precision
bootstrapping. However, the coefficients were still large enough that in order to evaluate the
polynomial approximations in a stable manner, one would need to operate at a higher precision
than the input ciphertext. Ultimately, this fact corresponded to the bootstrapping procedure
losing additional levels, since the computations during bootstrapping were operating at a higher
precision.

Our Approach to Approximating the Mod Function: Instead of giving a direct poly-
nomial approximation of the mod function, we first approximate the mod function via a sine
series and then approximate each sine term in the sine series using a Taylor series. We avoid the
fundamental error associated with previous approaches since our sine series of order n has error
O(ε2n+1), and, thus, we can set n to obtain the desired error. Moreover, the coefficients of our
sine series and the Taylor series expansion of sin jx are small, which allows us to evaluate these
polynomials at almost the same precision as the desired approximation. This improves over
the modular Lagrange approach by saving levels during bootstrapping, since we can operate
at a lower precision when evaluating the polynomial approximation of the mod function.

4 Polynomial Approximation of the Mod Function

Using the sine series approximation of the mod function given by Corollary 2 and the well-
known Taylor series expansion of the sine function, we now give explicit low-degree polynomial
approximations of the mod function on small intervals around multiples of the modulus to
(almost) arbitrary precision. The resulting polynomials have small coefficients, as the Taylor
series of the sine function has small coefficients, and the sine series itself has all coefficients
less than one. Small coefficients are beneficial in contrast to large coefficients, as in the latter
case one is forced to compute the different power monomials to much higher precision, wasting
critical ciphertext space. To evaluate the sine series, we first compute a Taylor series approxi-
mation of sinx. From this, the other higher order sin kx terms are computed conveniently using

15

the double angle formula, or, more precisely, by squaring eix and taking the real component
(recall that CKKS-FHE allows us to compute over complex numbers).

As for computing the Taylor series approximation of the sine function, note that the domain
of approximation is small intervals around `q, where ` ∈ [−L..L] and q is the modulus. The
bound L comes from the bound on the Hamming-weight of the secret key and is typically 8
to 24. If our input is X = x + `q for some small offset x and ` ∈ [−L..L], our goal is to
compute sin(2π(x+ `q)/q). This then requires a Taylor series that has powers of 2π(x+ `q)/q,
which can be more than one. Earlier works noted that one can instead first compute sin(2π(x+
`q)/(q2r)) using a Taylor series expansion (for some r > 0) and then compute sin(2π(x+`q)/q)
using multiple applications of double angle formula (or, more precisely, one can first compute
e2πi(x+`q)/(q2

r), and then use r squarings). For instance, by setting r = dlog((L + 1)2π)e, we
assure that 2πi(x + `q)/(q2r)) has norm less than one, and the higher powers in the Taylor
series rapidly approach zero. However, the Taylor series of sine also has m! in the denominator
of the coefficient of xm terms. More precisely, the Taylor series gives

e2πi(x+`q)/(q2
r) =

∞∑
m=0

(2πi(x+ `q)/(q2r))m/m!.

We now determine for which range of values of (x+ `q) the above restricted to the sine terms,
i.e. the imaginary terms or odd powers of x, satisfies the alternating series test (so that the
partial series error can be bound by the absolute value of the next missing term). Thus, we
need to determine the conditions under which

1 >
(2π|(x+ `q)|/(q2r))(2m+1)/(2m+ 1)!

(2π|(x+ `q)|/(q2r))(2m−1)/(2m− 1)!

=
(2π|(x+ `q)|/(q2r))2

(2m+ 1)2m

Assuming x << q and 2r ≥ (L + 1), the above reduces to (2m + 1)2m > 2π, or m >
√
π/2.

Thus, if the Taylor series is computed partially up to any degree 2m− 1, m >
√
π/2, then the

error in the approximation of sine is at most

(2π)2m+1/(2m+ 1)! < (2πe/(2m+ 1))2m+1

which is at most 2−2m+1, if we further require that m > 2πe (>
√
π/2). Note, this calculation

was based on 2r being no larger than L+ 1.

Thus, having computed sin(2π(x+ `q)/(q2r)) partially up to m terms, we now investigate
the error for the higher order terms in the sine series, i.e. sin(2πk(x + `q)/q) for k ≥ 1. If

16

the error in the approximation of the original term is small, say ε << 1, then the error for
this k-th term is approximately k2r ∗ ε. Thus, the total error in the sine series due to the
Taylor series approximation of

∑n
k=1 βk sin(2πk(x+ `q)/q) is upper bounded in absolute value

by
∑n

k=1 |βk| ∗ k2r|ε|, which is at most n2(L+ 1)ε, which, in turn, is at most n2(L+ 1)2−2m+1.

Finally, using Corrollary 2, the total error in the mod function approximation, for an input
X = x+ `q with ` ∈ [−L..L] and |x| < q/(2π) ∗ ε for any ε < 1/

√
n is

n2(L+ 1)2−2m+1 +
e2

2
∗ (n+ 1) ∗ (ε/2)2n+1 ∗ q/(2π).

Thus, it makes sense to have m about − log2 (ε/2) ∗ n (which is typically greater than 2πe
for n > 1; if this value is less than 2πe, then one must use an r such that 2r/(L + 1) is
correspondingly larger than one).

References

[1] Bergamaschi, F., Halevi, S., Halevi, T.T., Hunt, H.: Homomorphic training of 30,000
logistic regression models. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) Applied Cryptography and Network Security. pp. 592–611. Springer International
Publishing, Cham (2019) 1

[2] Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homomorphic
encryption. In: EUROCRYPT. pp. 34–54 (2019) 1, 3, 3

[3] Cheon, J., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homo-
morphic encryption. In: EUROCRYPT. pp. 360–384 (01 2018) 1, 1, 3, 3, 3

[4] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approximate
homomorphic encryption. In: Selected Areas in Cryptography – SAC 2018 (2018) 1, 3

[5] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: ASIACRYPT (2017) 1, 3

[6] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–178
(2009) 1

[7] Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete fourier transforms and
fhe bootstrapping. IEEE Access 7, 57361–57370 (2019) 3

17

[8] Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In:
Jarecki, S. (ed.) Topics in Cryptology – CT-RSA 2020. pp. 364–390. Springer International
Publishing, Cham (2020) 1, 3, 3

[9] Jutla, C.S., Manohar, N.: Modular lagrange interpolation of the mod function for boot-
strapping for approximate he. Cryptology ePrint Archive, Report 2020/1355 (2020),
https://eprint.iacr.org/2020/1355 1, 1.1, 3

[10] Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training
based on the approximate homomorphic encryption. BMC Medical Genomics 11(4), 83
(2018), https://doi.org/10.1186/s12920-018-0401-7 1

[11] Kim, M., Harmanci, A., Bossuat, J.P., Carpov, S., Cheon, J., Chilotti, I., Cho, W.,
Froelicher, D., Gama, N., Georgieva, M., Hong, S., Hubaux, J.P., Kim, D., Lauter, K., Ma,
Y., Ohno-Machado, L., Sofia, H., Son, Y., Song, Y., Jiang, X.: Ultra-fast homomorphic
encryption models enable secure outsourcing of genotype imputation. bioRxiv (2020) 1

[12] Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on
homomorphic encryption: Design and evaluation. JMIR Med Inform 6(2), e19 (Apr 2018),
http://www.ncbi.nlm.nih.gov/pubmed/29666041 1

[13] Lee, J., Lee, E., Lee, Y., Kim, Y., No, J.: High-precision bootstrapping of rns-ckks
homomorphic encryption using optimal minimax polynomial approximation and inverse
sine function. IACR Cryptol. ePrint Arch. 2020, 552 (2020) 1, 3

[14] Lee, Y., Lee, J., Kim, Y., No, J.: Near-optimal polynomial for modulus reduction using
l2-norm for approximate homomorphic encryption. IEEE Access 8, 144321–144330 (2020)
3

[15] Masters, O., Hunt, H., Steffinlongo, E., Crawford, J., Bergamaschi, F., Rosa, M.E.D.,
Quini, C.C., Alves, C.T., de Souza, F., Ferreira, D.G.: Towards a homomorphic machine
learning big data pipeline for the financial services sector. In: RWC (2020) 1

[16] Remez, E., G.: Sur la determination des polynomes d’approximation de degre’ donnee’.
Comm. of the Kharkov Math. Soc. 10(196), 41–63 (1934) 3

[17] Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J.R., Froelicher, D., Bossuat, J.P., Sousa, J.S.,
Hubaux, J.P.: Poseidon: Privacy-preserving federated neural network learning (2020) 1

18

https://eprint.iacr.org/2020/1355
https://doi.org/10.1186/s12920-018-0401-7
http://www.ncbi.nlm.nih.gov/pubmed/29666041

	Introduction
	This Work

	Sine Series Approximation
	Alternating Series Test

	Application to Bootstrapping for Approximate HE
	Polynomial Approximation of the Mod Function

