
Sine Series Approximation of the Mod Function for

Bootstrapping of Approximate HE

Charanjit S. Jutla
IBM T. J. Watson Research Center

Nathan Manohar
UCLA

Abstract

While it is well known that the sawtooth function has a point-wise convergent Fourier
series, the rate of convergence is not the best possible for the application of approximating
the mod function in small intervals around multiples of the modulus. We show a different
sine series, such that the sine series of order n has error O(ε2n+1) for approximating the
mod function in ε-sized intervals around multiples of the modulus. Moreover, the resulting
polynomial, after Taylor series approximation of the sine function, has small coefficients,
and the whole polynomial can be computed at a precision that is only slightly larger than
−(2n + 1) log ε, the precision of approximation being sought. This polynomial can then
be used to approximate the mod function to almost arbitrary precision, and hence allows
practical CKKS-HE bootstrapping with arbitrary precision. We validate our approach by
an implementation and obtain 100 bit precision bootstrapping as well as improvements
over prior work even at lower precision.

1 Introduction

The work of [CKKS17, CHK+18b] presented a new homomorphic encryption (HE) scheme
for approximate arithmetic (called the CKKS-HE scheme) over real/complex numbers. The
CKKS-HE scheme was considerably more efficient than other schemes for approximately eval-
uating arithmetic circuits and leveraged properties of approximate arithmetic to achieve these
efficiency gains. One of the key insights was to treat the homomorphic encryption error as
part of the approximate arithmetic error, and, thus, no additional mechanism was required
to round away the homomorphic encryption error after decryption. The CKKS-HE scheme
has found many applications, among them privacy-preserving machine learning and secure
genome analysis (see [KSK+18, MHS+20, BHHH19, KSW+18, SPTP+20, KHB+20] for some
examples).

1

However, the initial CKKS-HE scheme was only capable of evaluating low-depth circuits
since it lacked a bootstrapping procedure to “refresh” the ciphertext modulus to enable fur-
ther homomorphic computation. This was remedied when [CHK+18a] introduced the first
bootstrapping procedure for the CKKS-HE scheme. This involved viewing a ciphertext ct
with a small modulus q as a ciphertext with respect to the largest modulus qL and then ho-
momorphically computing coefficient rounding modulo q to obtain a new ciphertext ct′ that
encrypts approximately the same message as ct with respect to a larger modulus q`, enabling
further homomorphic computation. Thus, a challenge here is to compute the mod function
homomorphically, which is not easily representable via an arithmetic circuit. In fact, the mod
function modulo q on the interval [−Kq,Kq] for some integer K is not even a continuous
function. However, [CHK+18a] made the clever observation that in the CKKS-HE scheme, we
have an upper bound m on the size of the message, which can be made much smaller than q.
In this situation, we actually only need to be able to compute the mod function on points in
[−Kq,Kq] that are a distance at most m from a multiple of q. In this case, the mod function
is periodic with period q and is linear on each of the small intervals around a multiple of q.
Figure 1 shows the mod function along with the small intervals for approximation.

-20 -10 10 20

-4

-2

2

4

Figure 1: The mod function with modulus q = 10. The solid red lines represent the small
intervals on which we need to approximate.

The work of [CHK+18a] further observed that the mod function [t]q on these intervals can

be approximated via a scaled sine function S(t) = q
2π sin

(
2πt
q

)
. This approximation introduces

an inherent error that depends on the message upper bound m. Let ε denote the ratio m
q . Then,

2

it can be shown that

|[t]q − S(t)| ≤ 2π2

3
qε3.

If ε is small enough, then this error can be sufficiently small for use in bootstrapping pro-
vided that S(t) can be well-approximated by a low degree polynomial. The work of [CHK+18a]
along with several followup works [CCS19, HK20] proceeded to provide methods of approxi-
mating this scaled sine function (or scaled cosine function in the case of [HK20]) by a low-degree
polynomial, which can then be plugged into the bootstrapping procedure of [CHK+18a]. How-
ever, due to the inherent error between the mod function [t]q and the scaled sine function S(t),
this approach has a “fundamental error” that will occur regardless of how S(t) is approxi-
mated. One of the problems with this is that in order for the error to be O(1) (and, therefore,
not destroy the message), m must be O(q2/3). This means that we must begin bootstrapping
while the size of the encrypted message is considerably smaller than q, which is a source of
inefficiency in the bootstrapping procedure, particularly in applications that require high pre-
cision. An even greater problem is that when homomorphically computing the mod function,
we must treat qI +m for some integer I as the input, which we refer to as the bootstrapping
plaintext. The issue with this is that if q is significantly larger than m, then since the number of
modulus bits “consumed” by each homomorphic multiplication of the mod function is the size
of the bootstrapping plaintext, these homomorphic multiplications will consume significantly
more modulus bits than normal homomorphic operations. Thus, it is inefficient to obtain
high-precision bootstrapping by simply increasing q to decrease ε. Instead, in order to obtain
high-precision bootstrapping, it is beneficial to obtain good polynomial approximations to the
mod function for fixed ε. An additional challenge to obtaining high-precision bootstrapping
is that the approximation to the mod function must be representable by a low-degree polyno-
mial. If the degree of the polynomial is too high, evaluating it homomorphically may consume
almost all of the ciphertext modulus, leaving the ciphertext after bootstrapping incapable of
performing many homomorphic operations. Compounding this challenge is the fact that the
coefficients of the low-degree polynomial approximation to the mod function must additionally
be small. This is because if the coefficients are large, when evaluating the polynomial, the basis
polynomials must be computed to higher precision to ensure the stability of the computation,
since errors introduced by approximate arithmetic are amplified by large coefficients.

The reason obtaining high-precision bootstrapping for CKKS-HE is important is that one
of the main applications for CKKS-HE is privacy-preserving machine learning. However, many
ML algorithms require high precision computation in order to converge. This may be especially
true during the learning phase of neural networks, which involves back propagation and integer
division by private integers. Additional nonlinear steps involve pooling functions, threshold
functions, etc. Moreover, due to their high depth, computing these ML algorithms homomor-

3

phically without bootstrapping is infeasible. Thus, for privacy-preserving ML applications,
high-precision bootstrapping is required.

Recently, the works of [LLL+20] and [JM20] were able to bypass the “fundamental error”
in the approximation of the mod function by a scaled sine function to obtain higher-precision
bootstrapping. [LLL+20] attempts to avoid the scaled sine function by finding the optimal
minimax polynomial of a fixed degree that approximates the mod function via algorithmic
search. They use a variant of the Remez algorithm [Rem34] to obtain an approximation to
the optimal minimax polynomial of a given degree that approximates the modular reduction
function on the union of intervals containing points close to multiples of q. Unfortunately, as
observed by [LLL+20], the size of the coefficients of these polynomials are too large to enable
high-precision bootstrapping. They then show that by using a composition of sine/cosine and
the inverse sine function and using the Remez algorithm to algorithmically search for good
polynomial approximations to these functions, one can obtain higher-precision bootstrapping,
but their bootstrapping method has only been shown to obtain 40 bit message precision in
the latest version of their work. [JM20] avoids the “fundamental error” by finding direct poly-
nomial approximations of the mod function on small intervals around the modulus via a new
technique called modular Lagrange interpolation. The coefficients of these polynomials were
small enough to enable high-precision bootstrapping. However, the coefficients were still large
enough that in order to evaluate the polynomial approximations, one would need to operate
at a higher precision than the bootstrapping plaintext. Ultimately, this fact corresponded to
the bootstrapping procedure losing additional levels, since the computations during bootstrap-
ping were operating at a higher precision. The authors are able to obtain 67 bit precision
bootstrapping in the latest version of their work.

1.1 This Work

In this work, we show how to obtain arbitrary precision bootstrapping via a different method
from that of [JM20] and more in line with the original sine function approach of [CHK+18a].
Instead of approximating the mod function directly, we first approximate the mod function by
a sine series and then approximate the sine function by its Taylor series (more precisely, the
Taylor series of eix). This is then followed by a series of squarings to approximate the other
terms in the sine series. We show that the sine series converges to the mod function in small
intervals around the modulus. In particular, our sine series of order n has error O(ε2n+1) for
approximating the mod function in ε-sized intervals around multiples of the modulus.

Thus, we avoid the fundamental error of the scaled sine approach and are able to obtain an
approximation with arbitrarily small error in the desired intervals. Furthermore, the coefficients
of the sine series are small (in fact, they have norm < 2). This, combined with the fact that the

4

Taylor series expansion of sinx has small coefficients, leads to a polynomial approximation of
the mod function with small coefficients. Due to these small coefficients, the whole polynomial
can be computed at a precision only slightly larger than (−2n − 1) log ε, the precision of the
approximation being sought.

We validate our approach by an implementation and obtain 100 bit precision bootstrapping
as well as improvements over prior work even at lower precision.

1.2 Problem Overview

Here, we provide a brief overview of the challenges of approximating the mod function for use
in CKKS-HE bootstrapping. We provide a thorough overview of the bootstrapping procedure
in Section 3. The goal of CKKS-HE bootstrapping is to take a ciphertext ct at the lowest level
and bring it up to the highest level so that homomorphic computation can continue. In other
words, we wish to obtain a ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`,

where q is the lowest level modulus and q` represents a higher level modulus. Since errors
accumulated during homomorphic computation are not eliminated by decryption in CKKS-
HE, the goal is not to reduce the error in the ciphertext, but, rather, to increase the modulus so
that more computations can be performed. If one simply views the ciphertext ct as operating
at the highest level qL, then it follows that 〈ct, sk〉 mod qL = qI +m. The magnitude of I can
be upper bounded and m << q and, thus, the challenge then becomes to compute mod q on
small intervals near multiples of q (we defer additional complications such as computing on
slots vs. coefficients to Section 3). Since CKKS-HE can compute homomorphic additions and
multiplications, we need a polynomial approximation to the mod function. However, there are
three crucial criteria that are relevant to the bootstrapping application.

• Error: The error of the approximation contributes additional error to the message m,
which, if large, will cause a loss in plaintext precision.

• Degree: The degree of the polynomial approximation determines the multiplicative
depth required to evaluate it. A larger multiplicative depth corresponds to losing more
modulus levels and, thus, if too large, the polynomial will not be able to be evaluated
homomorphically.

• Coefficient Magnitude: The size of the coefficients of the polynomial approximation
determine the “evaluation precision” at which one must operate during bootstrapping.

5

Larger coefficients correspond to a larger “evaluation precision” in order to maintain
numerical stability, which, in turn, corresponds to losing more modulus bits per level.

Thus, it is critical that we obtain good low-degree polynomial approximations to the mod
function in small intervals around multiples of the modulus that additionally have small coef-
ficients. Moreover, as discussed previously, it is important the ratio m/q = ε is not too small,
since then the size of the bootstrapping plaintext qI + m will be significantly larger than m,
and homomorphically evaluating the approximation to the mod function will consume a large
number of modulus bits. Thus, one can think of ε as fixed to be, say 2−10.

1.3 Sine Series

As mentioned previously, several prior approaches to CKKS-HE bootstrapping approximated
the mod function via a scaled sine function. For simplicity, we will ignore the scaling for
the moment and try to obtain a good approximation to the mod 2π function. Thus, prior
works used sinx as an approximation of this function and noted that, for |x| < ε, the error
of approximation is O(ε3). It is well-known that the Fourier series of the mod function (or
sawtooth function) converges everywhere except the discontinuities. Unfortunately, the rate of
convergence is too slow, and the Fourier series does not give a good approximation when the
number of terms is small. Instead, we will approximate the mod function by a different sine
series such that it converges to the mod function near multiples of the modulus very quickly.
As a warmup, suppose we added a sin 2x term to our approximation of the mod function. If we
can determine coefficients β1 and β2 such that the Taylor series expansion of β1 sinx+β2 sin 2x
is x + x5p(x) for some polynomial p(x), then for |x| < ε, the error of approximation will be
O(ε5), an improvement on sinx. Thus, looking at the x and x3 terms in the Taylor series
expansions of sinx and sin 2x, we wish to determine β1, β2 such that β1 + 2β2 = 1 (so that the
coefficient of x is 1) and β1 + 23β2 = 0 (so that the coefficient of x3 is 0). This can be solved to
yield β1 = 4/3, β2 = −1/6. This intuition can then be extended to give an n-term sine series
with error O(ε2n+1). We will show that the βi’s are small and, thus, the resulting low-degree
polynomial approximation has small coefficients. Moreover, we will show that the constants
hiding in the big-O notation are reasonable, and the dependence on n is minor.

1.4 On Approximating Arcsine

An alternative way to view our result is that having computed the periodic function sinx, our
sine series allows us to compute arcsin (of sinx) using an angle-multiplication computation. In
other words, since we showed above that x = 4/3 sinx − 1/6 sin 2x + O(x5) (for small x, and
hence small sinx), then equivalently arcsin y = 4/3 y− 1/6 d(y) +O(y5), where d is a function

6

such that d(sinx) = sin 2x. However, d(sinx) is not a simple polynomial function of sinx (as
opposed to the easy double-angle formula for cosx), and this way of computing arcsin y cannot
use a simple polynomial of y. While good polynomial approximations of arcsin y might exist (for
small y), there seems no simple methodology to obtain this. Instead, [LLL+20] use the Remez
algorithm to obtain a best fit low degree polynomial approximation of arcsin. This algorithmic
approach has the drawback that while the polynomial degree maybe small, the coefficients of
the polynomial output by Remez algorithm can be of arbitrary size. Fortunately, [LLL+20]
report that the coefficients are small enough to obtain 40-bit precision bootstrapping, although
it is not clear if this holds in general.

Our approach is different, as we utilize the potential of CKKS-HE to compute on complex
numbers. Thus, instead of first computing sinx and then its arcsin, we first compute the
periodic function eix (using its Taylor series approximation) and then compute its logarithm.
Thus, given that x = 4/3sinx−1/6sin 2x+O(x5), we also get that x = Im(4/3eix−1/6e2ix)+
O(x5) (for small x). Most importantly, it is a polynomial in its argument (i.e. eix) with small
coefficients. Thus, this allows for an easy homomorphic computation.

1.5 Organization

In Section 2, we formalize the above intuition and prove explicit error bounds for the sine series
approximation of the mod function. In Section 3, we overview the bootstrapping procedure
for CKKS-HE. In Section 4, we explain how to approximate the sine series by a low-degree
polynomial for bootstrapping. In Section 5, we implement bootstrapping using our sine series
approximation and give performance metrics and comparisons with prior approaches.

2 Sine Series Approximation

In this section, we will show the following theorem and corollaries, giving a sine series ap-
proximation to the mod function in small intervals around the modulus that can be used for
CKKS-HE bootstrapping.

Theorem 1 For every n ≥ 1, there exists a sequence of rational numbers β1, ...βn such that
for every ε, 0 < ε < 2/

√
n, for every |x| < ε,∣∣∣∣∣x−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n+ 1) ∗ (ε/2)2n+1

Using the periodicity of the sine function, we immediately arrive at the following corollary.

7

Corollary 2 For every n ≥ 1, there exists a sequence of rational numbers β1, ...βn such that
for every ε, 0 < ε < 2/

√
n, for every integer m, for every x such that |x− 2mπ| < ε,∣∣∣∣∣(xmod 2π)−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n+ 1) ∗ (ε/2)2n+1

A further simple manipulation leads to the following scaled version of the corollary.

Corollary 3 For every n ≥ 1, there exists a sequence of rational numbers β1, ...βn such that
for every ε, 0 < ε < 1

π
√
n

, for every integer q ≥ 1, for every integer m, for every x such that

|x−m ∗ q| < ε ∗ q,∣∣∣∣∣(xmod q)− q

2π
∗

n∑
k=1

βk sin(2πk ∗ x/q)

∣∣∣∣∣ < e2 ∗ q
2π

∗ (n+ 1) ∗ (επ)2n+1

Determining the βi’s: To prove Theorem 1, for each n, we will determine the rational
numbers {βi}i∈[n]. In particular, these are not the same as the Fourier coefficients of the
sawtooth function, as we are focused on x that is potentially much smaller than the period
of the sawtooth function. Recall that we wish to determine {βi}i∈[n] such that the resulting
sine series has a Taylor series expansion of the form x+ x2n+1p(x) for some polynomial p(x).
In particular, there are no terms of degree < 2n + 1 (except for x). These constraints give a
system of equations that can be solved to determine the βi’s.

We begin by formalizing this intuition. For every n > 0, for every sequence of n distinct
integers a = (a1, ..., an), let V (n)(a) denote the Vandermonde matrix of a, i.e. it is the n × n
matrix with the (i, j)-th element aj−1i (for i, j ∈ [1..n]). Define S(n)(a) to be the n× n matrix

with the (i, j)-th element a2j−1i , i.e. each row is the odd powers of the elements of a. Note that

the first column of this matrix is just a. Also, define a related matrix Ŝ(n)(a) to be the n× n
matrix which is same as S(n)(a) except that the first column (i.e. a) is replaced by (2n+ 1)-th

powers of a. In other words, the (i, 1)-th element of this matrix is a
(2n+1)
i .

Let ~β = (β1, β2, . . . , βn) be an n-vector of rational numbers. For the sine series approxima-
tion, we would like to determine ~β so that the transpose of the matrix S(n)(a) multiplied by ~β
is a vector with all entries zero except the first, which is one. Since βi refers to the coefficient
of the sin(aix) term in the sine series, the above requirement ensures that when we Taylor
expand each sine term in the sine series about the origin (or a multiple of 2π) and sum the
terms, the resulting polynomial will be x + x2n+1p(x) for some polynomial p(x). Thus, the
x3, x5, . . . , x2n−1 terms in the Taylor series expansions of the sin(ix)’s cancel out. We note

8

that since our sine series will include sinx, sin 2x, sin 3x, . . . terms, we will later instantiate a
with (1, 2, . . . , n). The required condition is drawn below.

a1 a2 ... an
a31 a32 ... a3n

...

a2n−11 a2n−12 ... a2n−1n

 ·

β1
β2
...
βn

 =

1
0
...
0

 (1)

Let di denote the (i, 1)-th minor of S(n)(a). In other words, the list {di}i is the list of
minors of the first column of S(n)(a).

Lemma 4

βi = (−1)i+1 ∗ di

det(S(n)(a))
.

Proof: From the above equation, ~β is just the first column of the inverse of (S(n)(a))T . Note
that the (i, 1)-th element of the inverse of the transpose of S(n)(a) is (−1)i+1 ∗ di divided by
the determinant of S(n)(a). �

We now give an explicit formula for the determinant of S(n)(a). We will also give an explicit
formula for the determinant of Ŝ(n)(a), which will be of use later. We will use the well-known
fact that the determinant of the Vandermonde matrix is given by the following formula.

det(V (n)(a)) =
n∏
i=1

∏
1≤j<i

(ai − aj).

Lemma 5 The determinant of the matrix S(n)(a) is(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j).

The determinant of the matrix Ŝ(n)(a) is

(−1)n−1 ∗ det(S(n)(a)) ∗
n∏
i=1

a2i .

Proof: We will first focus on the matrix S(n)(a). For computing the determinant, for each
row i, we get a contribution of a factor ai towards the determinant, and the remaining matrix

9

is then just a Vandermonde matrix with all powers of a2i . Thus,

det(S(n)(a)) =

(
n∏
i=1

ai

)
∗ det(V (n)(a′)),

where a′ = (a21, . . . , a
2
n). The result then follows from the well-known determinant of Vander-

monde matrices.

As for the claim for the matrix Ŝ(n)(a), first consider a modified matrix that is obtained
by moving the first column to the last. Since this can be accomplished by (n − 1) column
exchanges, the determinant of the modified matrix is (−1)n−1 times the determinant of Ŝ(n)(a).
Furthermore, the determinant of the modified matrix is easily related to determinant of S(n)(a)
by noting that i-th row in the modified matrix is a2i times the i-th row in S(n)(a). �

We observe from the formula for the determinant of S(n)(a) that if the sequence of integers
a are in increasing order and lower bounded by one, then the determinant of S(n)(a) is positive.
We now show the following lemma, characterizing the βi’s.

Lemma 6 For the matrix S(n)(a) with a set to the sequence of integers from one to n,

β1 =
2n

n+ 1
< 2

and, for i ≥ 2
|βi| < 1.

Moreover, the βi’s alternate in sign and decrease in magnitude as i increases. That is,

|βi+1| < |βi|

for all i ∈ [n], β2j+1 > 0, and β2j < 0.

Proof: We will show this using the formula for βi from Lemma 4. By definition,

di = det

a31 a51 ... a2n−11

a32 a52 ... a2n−12
...

a3i−1 a5i−1 ... a2n−1i−1
a3i+1 a5i+1 ... a2n−1i+1

...
a3n a5n ... a2n−1n

10

Thus,

di =

 n∏
j=1,j 6=i

a2j

 ∗ det(S(n−1)(a′)),

where a′ is a with ai removed. Thus,

βi = (−1)i+1 ∗

(∏n
j=1,j 6=i a

2
j

)
ai ∗

(∏i−1
j=1(a

2
i − a2j)

)
∗
(∏n

j=i+1(a
2
j − a2i)

) .
We observe that every term in the above expression is positive except for (−1)i+1 and, thus,
the βi’s alternate sign with β2j+1 > 0 and β2j < 0. It follows that

β1 =
2(n!)2

(n+ 1)!(n− 1)!
=

2n

n+ 1
< 2.

Moreover, for i ≥ 2,

|βi| =
1

i
∗ 2(n!)2

(2n)!
∗
(

2n

n+ i

)
Observe that |βi+1| < |βi|. Moreover, since

(
2n
n+i

)
<
(
2n
n

)
for i ≥ 2, it follows that

|βi| <
2

i
≤ 1

for i ≥ 2. �

Bounding the Error: A First Attempt Having characterized the βi’s, we now turn our
focus to bounding the error between f(x) =

∑n
k=1 βk sin(kx) and x for |x| < ε. We note that

f(x) is an analytic function since it is the sum of analytic functions and, therefore, its Taylor
series converges to f(x). Thus, taking the Taylor series expansion of f(x) around 0,

f(x) = x+

∞∑
m=2n+1

f (m)(0)

m!
xm.

We can bound |x − f(x)| for |x| < ε using the Lagrange remainder term of the 2n-th Taylor
polynomial of f(x). Thus,

|x− f(x)| =

∣∣∣∣∣f (2n+1)(ξ)

(2n+ 1)!
x2n+1

∣∣∣∣∣
11

for some real number ξ between 0 and x. We have that

f (2n+1)(x) = ±
n∑
k=1

βkk
2n+1 cos(kx).

Upper bounding f (2n+1)(ξ) gives

|x− f(x)| <
n∑
k=1

|βk|k2n+1 |x2n+1|
(2n+ 1)!

.

By Lemma 6, βk < 2/k, which gives

|x− f(x)| < |x2n+1| ∗ 2

(2n+ 1)!
∗

n∑
k=1

k2n.

This then gives an upper bound of ε2n+1 ∗ 2∗n∗n2n

(2n+1)! , and no better than ε2n+1 ∗ 2∗n2n

(2n+1)! ≈
(ε/2)2n+1 ∗ e2n/(

√
π(n+ 1) ∗n) However, we will now show that a more sophisticated, yet ele-

mentary, approach that improves upon this bound by approximately a factor of e2n, essentially
giving us an upper bound of (ε/2)2n+1.

A Better Bound via the Alternating Series Test To obtain a better error bound, we
will show that the Taylor series expansion of our sine series satisfies Leibniz’s alternating series
test. This will enable us to bound the error of the sine series f(x) from the mod function by
the (2n+ 1)−th term in the Taylor series expansion (the first nonzero term after x). We can
write the Taylor series expansion of f(x) as x−

∑∞
m=n+1(−1)m ∗ bm, where

bm =

n∑
j=1

βj ∗
(jx)2m−1

(2m− 1)!
. (2)

To bound the error, we will show, for any x in the domain of approximation, that the series∑∞
m=n+1(−1)m ∗ bm satisfies the alternating series test. The alternating series test requires

that the bm satisfy the following three conditions.

1. limm→∞ bm = 0

2. All bm are positive (or all bm are negative)

3. |bm| ≥ |bm+1| for all natural numbers m ≥ n+ 1.

12

Theorem 7 Alternating Series Test [Leibniz]. If the series above satisfies the alternating
series test then

∑∞
m=n+1(−1)m ∗ bm converges. Moreover, for all k ≥ 0,∣∣∣∣∣

∞∑
m=n+1

(−1)m ∗ bm −
n+1+k−1∑
m=n+1

(−1)m ∗ bm

∣∣∣∣∣ ≤ |bn+1+k|.

We will show the following lemma.

Lemma 8 (Main Lemma) For every |x| < 2/
√
n, the above series given by bm satisfies the

Leibniz alternating series test.

A Naive Proof Attempt We briefly explain why the following naive approach to proving this
lemma fails. For simplicity, assume that n is odd, so that βn is positive and βn−1 is negative
by Lemma 6. Then, the naive approach would be to prove that

βn ∗
(n ∗ x)2m−1

(2m− 1)!
+ βn−1 ∗

((n− 1) ∗ x)2m−1

(2m− 1)!

(and similarly paired other terms) decreases as m increases, starting from m = n + 1. Since
powers of n ∗ x are larger than powers of (n − 1) ∗ x, this would eventually be true for some
m > n + 1. However, since |βn| < |βn−1| and βn−1 is negative (see Lemma 6), this is not
necessarily true at m = n+ 1. In fact, calculations show that this indeed fails for a few terms
beyond m = n+ 1. Thus, a more advanced approach is required to prove that the Leibniz test
holds starting at m = n+ 1. We will show that the test holds for |x| < 2/

√
n.

Preparing for the Proof We prove Lemma 8 in the next subsection, but first we show several
additional lemmas which will assist us in the proof of Lemma 8.

Define V (n,k)(a) to be an n×n matrix, which is same as the Vandermonde matrix V (n)(a)
except the last column is replaced by the (n − 1 + k)-th powers (instead of the (n − 1)-th
powers).

Let hk(a) be the complete homogeneous symmetric polynomial of degree k in a given by

hk(a) =
∑

1≤i1≤...≤ik≤n
ai1 ∗ · · · ∗ aik .

The base polynomial h0(a) is taken to be one. Note that the polynomials hk(a) differ from
the elementary symmetric polynomials ek(a), since in the latter the summation is taken over
1 ≤ i1 < ... < ik ≤ n. The following lemma is a consequence of the well known generating
series of the complete homogeneous symmetric polynomials, but we give a simple proof for
completeness in Supplementary Material A.

13

Lemma 9 For any k ≥ 0, any a of length n > 0, and an independent formal variable t,

k∑
j=0

hj(a)tj =
n∏
i=1

k∑
j=0

(tai)
j mod tk+1.

Lemma 10 For k ≥ 1, the determinant of the matrix V (n,k)(a) is

det(V (n)(a)) ∗ hk(a)

Proof:

Fix any k ≥ 1. Consider an n×n matrix M which is same as V (n,k)(a) except that the last
row is powers of an indeterminate x. In other words the last row is (x0, x1, ..., xn−2, xn−1+k).
Let a′ stand for the (n− 1) length truncation of a. Treating the elements of a′ as scalars, the
determinant of the matrix M is a polynomial in x of degree n − 1 + k. Call this polynomial
f(x). Since the determinant of a matrix with two equal (or even scaled by a constant) rows is
zero, the polynomial f(x) has roots a′. Thus,

f(x) = g(x) ∗
n−1∏
i=1

(x− ai), (3)

where g(x) is a polynomial (to be determined) of degree k . However, f(x), the degree n−1+k
polynomial, has zero coefficients for all monomials xj with j in [n − 1..n − 1 + k − 1]. If we
introduce a new formal variable t = 1/x, then the above equation (3) can be written as

f̃(t) = g̃(t) ∗
n−1∏
i=1

(1− tai). (4)

where f̃ (resp. g̃) is the polynomial f (resp. g) with coefficients reversed. Note, all the zero
coefficients of f(x) described above imply that coefficient of monomial tj in f̃(t) is zero for
every j in [1..k], and the constant term in f̃(t) is fn−1+k, where fn−1+k denotes the coefficient
of xn−1+k in f(x). Thus, f̃(t) = fn−1+k mod tk+1. Considering equation (4) modulo tk+1, we
get

fn−1+k ∗
n−1∏
i=1

(1− tai)−1 = g̃(t) mod tk+1. (5)

The above equation is well-formed as inverse of (1− tai) modulo tk+1 is well-defined. Indeed,
it is easy to check that (1− tai) ∗

∑k
j=0(tai)

j is 1 mod tk+1. Hence, we also get,

fn−1+k ∗
n−1∏
i=1

k∑
j=0

(tai)
j = g̃(t) mod tk+1. (6)

14

Since g(x) is of degree k, g̃(t) has degree at most k as well. Denote by g̃j the coefficient of tj

in g̃j , which is same as gk−j . Then, by comparing coefficients of tj on both sides, by Lemma 9
we get that for each j ∈ [0..k],

gk−j = g̃j = fn−1+k ∗ hj(a′).

Thus, having determined g(x), we also have f(x) by (3). Letting x = an, then we get

det (V (n,k)(a)) = f(an)

=

n−1∏
i=1

(an − ai) ∗ g(an)

=
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗
k∑
j=0

ak−jn hj(a
′)

=

n−1∏
i=1

(an − ai) ∗ fn−1+k ∗ hk(a)

= det(V (n)(a)) ∗ hk(a),

where the last equality follows by noting that the top coefficient of f(x), i.e. fn−1+k is the
(n, n)-minor of V (n,k)(a), which is same as the (n, n)-minor of Vandermonde matrix V (n)(a),
which, in turn, is (−1)n+n ∗ det V (n−1)(a′). �

Lemma 11 For a = (12, 22, 32, . . . , n2), for all k ≥ 0,

hk+1(a)

hk(a)
≤ n3.

Proof: First note that hk+1(a) =
∑n

i=1 ai ∗hk(a(i)), where a(i) is a restricted to first i entries.
Since ai are monotonically increasing, it follows that hk+1(a) ≤ n ∗ an ∗ hk(a), from which the
claim follows. �

Lemma 12 For the matrix S(n)(a) with a set to the sequence of integers from one to n, let βi
be given by the formula in Lemma 4. Then,

n∑
i=1

βi ∗ i2n+1 = (−1)n−1 ∗ (n!)2.

15

Proof: With a set to the sequence of integers from one to n,
∑n

i=1 βi ∗ i2n+1 is the inner

product of the first column of Ŝ(n)(a) and ~β. In the following, the i-th column of a matrix
M will be denoted by Mi, and the (i, j)-th entry of M will be denoted by Mi,j . Thus, using
Lemma 4, we have

n∑
i=1

βi ∗ i2n+1 = ~β > · (Ŝ(n)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n)(a))i,1

=
det(Ŝ(n)(a))

det(S(n)(a))

= (−1)n−1 ∗
n∏
i=1

a2i

= (−1)n−1 ∗ (n!)2,

where we have used Lemma 5 in the second-to-last equality. �

2.1 Alternating Series Test (Proof of Main Lemma)

Having shown Lemmas 10, 11, and 12, we are now ready to prove the main lemma (Lemma 8).

Proof: (of Lemma 8) In this proof, we will fix a to be the sequence of integers from 1 to n.

Note, each bm can be written as bm = cm ∗ x2m−1

(2m−1)! , where cm =
∑n

j=1 βj ∗ j2m−1. We now

prove the three properties required of bm so that the series
∑∞

m=n+1(−1)m ∗ bm satisfies the
alternating series test.

1. We show that bm goes to zero, as m goes to infinity. Since n is fixed and all βi are bounded
by Lemma 6, we just need to show that for every x in the domain of approximation,

for every j ∈ [n], (jx)2m−1

(2m−1)! goes to zero as m goes to infinity. Since the domain of

approximation is bounded, |x| itself is bounded. Since, k! ≥ e(k/e)k, the above is upper
bounded by e−1 ∗ (jx ∗ e/(2m− 1))2m−1, which goes to zero as m goes to infinity.

2. To show that all bm are positive (or all are negative), it suffices to show that all cm are
positive (or all cm are negative). As a warmup, we first focus on cn+1 (i.e. m set to
n+ 1). By Lemma 12, this quantity is simply (−1)(n−1) ∗ (n!)2 and hence is positive if n
is odd, and negative when n is even.

16

Let Ŝ(n,k)(a) be the matrix that is the same as Ŝ(n)(a) except that the first column is
replaced by the (2n− 1 + 2k) powers of a. Thus, Ŝ(n,1)(a) is same as Ŝ(n)(a). As in the
proof of Lemma 12,

cn+k =
n∑
i=1

βi ∗ i2n−1+2k

= ~β > · (Ŝ(n,k)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n,k)(a))i,1

=
det(Ŝ(n,k)(a))

det(S(n)(a))

To give an expression for det(Ŝ(n,k)(a)), we will use Lemma 10. To use this lemma, we
first relate Ŝ(n,k)(a) to V n,k(a). Recall, the first column of Ŝ(n,k)(a) is (2n − 1 + 2k)
powers of a. Also, for other columns, the (i, j)-th entry is a2j−1i (2 ≤ j ≤ n). Since
k ≥ 1, each entry in the i-th row has at least one power of ai, and hence the determinant
of Ŝ(n,k)(a) is

∏n
i=1 ai times the determinant of a new matrix M , which has as its first

column (2n + 2(k − 1)) powers of a, and all other columns as 2(j − 1)-th powers of a
(2 ≤ j ≤ n). Let a(2) be the sequence a, but with each entry squared. Then this matrix
M is same as the matrix V n,k−1(a(2)) but with the first and last column exchanged.
Thus, using Lemma 10, it follows that det(Ŝ(n,k)(a)) is

(−1)n−1 ∗ hk−1(a(2)) ∗
n∏
i=1

∏
1≤j<i

(a2i − a2j) ∗
n∏
i=1

a3i ,

From Lemma 5, we also have that the determinant of S(n)(a) is(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j).

Recalling that ai is just i, we thus have that for k ≥ 1, all cn+k are positive if n is odd,
and all cn+k are negative if n is even.

17

3. We now show that |bm| ≥ |bm+1| for all m ≥ n+ 1. We have,

|bm+1|
|bm|

=
(−1)n−1 ∗ hm+1−(n+1)(a

(2)) ∗
∏n
i=1

∏
1≤j<i(a

2
i − a2j) ∗

∏n
i=1 a

3
i ∗ x2m+1

(2m+1)!

(−1)n−1 ∗ hm−(n+1)(a(2)) ∗
∏n
i=1

∏
1≤j<i(a

2
i − a2j) ∗

∏n
i=1 a

3
i ∗

x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2)) ∗ x2m+1

(2m+1)!

hm−(n+1)(a(2)) ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2))

hm−(n+1)(a(2))
∗ x2

2m(2m+ 1)

≤ n3 ∗ x2

2m(2m+ 1)
(by Lemma 11)

≤ 1 (for |x| < 2/
√
n).

�

We are now ready to prove Theorem 1.

Proof: (of Theorem 1) Let βk, for k ∈ [1..n], be defined as in equation (1) with a set to the
sequence of numbers from 1 to n. From the Taylor series expansion of the sine series, which
converges since the sine series is analytic, it follows that

n∑
k=1

βk sin(kx) = x−
∞∑

m=n+1

(−1)m ∗ bm,

where bm are defined in equation (2), i.e. bm =
∑n

k=1 βk ∗
(kx)2m−1

(2m−1)! . Thus, by Lemma 8 and

Leibniz’s alternating series test (Theorem 7), we have for |x| < 2/
√
n,∣∣∣∣∣x−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ ≤ |bn+1|

=

∣∣∣∣∣
n∑
k=1

βk ∗
(kx)2n+1

(2n+ 1)!

∣∣∣∣∣
=
|x2n+1|

(2n+ 1)!
∗

∣∣∣∣∣
n∑
k=1

βk ∗ k2n+1

∣∣∣∣∣
=

(n!)2

(2n+ 1)!
∗ |x2n+1|,

18

where we used Lemma 12 in the last equality.

Restricting |x| < ε, Theorem 1 follows from the fact that

(n!)2

(2n+ 1)!
ε2n+1 <

((n+ 1)/e)2n+2e2

((2n+ 1)/e)2n+1
ε2n+1

= e ∗ (n+ 1) ∗
(
n+ 1

2n+ 1

)2n+1

∗ ε2n+1

= e ∗ (n+ 1) ∗
(

2n+ 2

2n+ 1

)2n+1

∗
(ε

2

)2n+1

< e2 ∗ (n+ 1) ∗
(ε

2

)2n+1
,

where we have used the fact that(n
e

)n
< n! <

(
n+ 1

e

)n+1

e

for all n ≥ 1 and that (1 + 1/n)n < e for all n ≥ 1. �

3 Application to Bootstrapping for Approximate HE

In Section 1, we explained that approximating the mod function on small intervals around
the modulus is a necessary step in bootstrapping for approximate homomorphic encryption
(CKKS). In this section, we will briefly overview the bootstrapping procedure for the CKKS-
HE scheme introduced in [CHK+18a].

Notation and Necessary Preliminaries: Let M be a power of 2 and ΦM (X) = XN + 1
be the Mth cyclotomic polynomial of degree N = M/2. Let R = Z[X]/ΦM (X). For an
integer q, let Rq = Zq[X]/ΦM (X). Using the canonical embedding σ, it is possible to map an
element m(X) ∈ R into CN by evaluating m(X) at the Mth primitive roots of unity. Using the
same canonical embedding, it is also possible to define an isometric ring isomorphism between
S = R[X]/ΦM (X) and CN/2, where for an element m(X) ∈ S, it has the canonical embedding
norm ||m||can∞ = ||σ(m)||∞.

Overview of the CKKS-HE Scheme: The CKKS-HE scheme [CKKS17] is an HE scheme
for approximate arithmetic over real/complex numbers. Its security is based on the ring-
LWE (RLWE) assumption. The message space of the scheme is polynomials m(X) in R with

19

||m||can∞ < q/2 for a prime q. Using the canonical embedding and appropriate scaling, one can
map a vector in CN/2 of fixed precision into R. The fact that canonical embedding induces
an isometric ring isomorphism between S and CN/2 implies that operations on the message
space R map to the same operations performed coordinate-wise on CN/2. Thus, the CKKS-HE
scheme supports packing N/2 complex numbers into a single plaintext and operating on them
in single instruction multiple data (SIMD) manner. Please refer to [CKKS17] for more details
on this encoding procedure. We will refer to m(X) ∈ R as the plaintext/message and the
corresponding vector in CN/2 as the plaintext “slots.”

A ciphertext ct encrypting a message m ∈ R is an element of R2
q`

for some ` ∈ {0, . . . , L}.
` refers to the “level” of the ciphertext. In [CKKS17], q` = p` ∗ q for primes p and q. However,
q` can be set in other ways (such as via an RNS basis [CHK+18b]). The decryption structure
is 〈ct, sk〉 mod q` = m+ e for some small error e ∈ R. Observe that there is no way to remove
e and some of the least significant bits of m are unrecoverable. A fresh ciphertext is generated
at the highest level L. Homomorphic operations increase the magnitude of the error and the
message and one must apply a rescaling procedure or modular reduction to bring a ciphertext
to a lower level to continue homomorphic computation. Eventually, a ciphertext is at the
lowest level (an element of R2

q), and no further operations can be performed.

Bootstrapping Procedure for CKKS-HE: [CHK+18a] introduced the first bootstrap-
ping procedure for the CKKS-HE scheme. Subsequent works [CCS19, HHC19, HK20, BMTPH21]
improved various aspects of bootstrapping, but the overall procedure remains the same. The
goal is to take a ciphertext at the lowest level and bring it up to a higher level so that homo-
morphic computation can continue. Thus, given a ciphertext ct at the lowest level, we want
to obtain another ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`

for some ` > 1. For simplicity in the following, we will include the starting decryption error in
the message m. That is, we will assume that 〈ct, sk〉 mod q = m.

Bootstrapping is done via the following sequence of steps:

1. Modulus Raising: By simply considering ct as a ciphertext at the highest level, it
follows that 〈ct, sk〉 mod qL = qI +m for some I ∈ R.

2. Coefficients to Slots: We need to perform the modular reduction on the polynomial
coefficients of t = qI + m. However, recall that homomorphic computations evaluate
coordinate-wise on the plaintext “slots,” not the polynomial coefficients. Thus, we need

20

to transform our ciphertext so that the polynomial coefficients are in the “slots.” This
can be done by evaluating a linear transformation homomorphically.

3. Compute the Mod Function: We need a procedure to compute/approximate the
mod function homomorphically. This is a significant challenge since we can only com-
pute arithmetic operations homomorphically.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots step. This can
be done by homomorphically evaluating the inverse of the previous linear transform.

Observe that if we can approximate the mod function, then the above procedure will give
us a ct′ at some higher level ` that decrypts to m + e for some small error e. Since we are
dealing with approximate arithmetic, this error from bootstrapping can be absorbed into the
other errors that occur during approximate arithmetic and homomorphic evaluation. We can
upper bound |I| < K for some integer K so that we only need to approximate the mod function
on the interval [−Kq −m,Kq +m], where we have overloaded notation to make m an upper
bound on the size of the message.

4 Evaluating the Sine Series Approximation of the Mod Func-
tion

In order to use the sine series approximation of the mod function given by Corollary 3 for
bootstrapping, we must approximate the sine series by a low-degree polynomial, since the
CKKS-HE scheme cannot compute sine directly. In this section, using our sine series approxi-
mation of the mod function and the well-known Taylor series expansion of the sine function, we
will give explicit low-degree polynomial approximations of the mod function on small intervals
around multiples of the modulus to (almost) arbitrary precision. The resulting polynomials
have small coefficients, as the Taylor series of the sine function has small coefficients, and the
sine series itself has small coefficients by Lemma 6. Recall that small coefficients are beneficial
in contrast to large coefficients, as in the latter case one is forced to compute the different
power monomials to much higher precision in order to obtain an accurate polynomial eval-
uation. This, in turn, causes the computational precision that we must operate at during
bootstrapping to be higher, which causes each “level” to consume more bits of the modulus.
We next explain how we evaluate the sine series and then determine the degree and evaluation
precision required for the Taylor series approximation of sine.

21

Evaluating the Sine Series: To evaluate the sine series, we first compute a Taylor series
approximation of eix (recall that CKKS-HE allows us to compute over complex numbers).
We can obtain an approximation to sinx by extracting the imaginary part. The other higher
order sin kx terms can be obtained conveniently by computing eikx from eix and extracting the
imaginary part. As for computing the Taylor series approximation of the sine function, note
that the domain of approximation is small intervals around `q, where ` ∈ [−K..K] and q is
the modulus. The bound K comes from the bound on the Hamming-weight of the secret key
and is typically 12 to 32. If our input is X = x+ `q for some small offset x and ` ∈ [−K..K],
our goal is to compute ei(2π(x+`q)/q). This then requires a Taylor series that has powers of
2π(x + `q)/q, which can be more than one. Earlier works noted that one can instead first
compute ei(2π(x+`q)/(q2

r)) using a Taylor series expansion (for some r > 0) and then compute
ei(2π(x+`q)/q) using r squarings.

Determining the Degree of the Taylor Series Approximation: Next, we must de-
termine the degree to which we compute the Taylor series expansion of e2πi(x+`q)/(q2

r). The
Taylor series expansion is

∞∑
m=0

(2πi(x+ `q)/(q2r))m/m!.

We now determine for which range of values of (x+ `q) the above restricted to the sine terms,
i.e. the imaginary terms or odd powers of x, satisfies the alternating series test (so that the
partial series error can be bound by the absolute value of the next missing term). Thus, we
need to determine the conditions under which

1 >
(2π|(x+ `q)|/(q2r))(2m+1)/(2m+ 1)!

(2π|(x+ `q)|/(q2r))(2m−1)/(2m− 1)!

=
(2π|(x+ `q)|/(q2r))2

(2m+ 1)(2m)

Assuming x << q and 2r ≈ K + 1, the above holds when m > π. Thus, if the Taylor series is
computed partially up to any degree 2m− 1, then the error in the approximation of sine is at
most

(2π)2m+1/(2m+ 1)! < (2πe/(2m+ 1))2m+1,

which is at most 2−(2m+1) if we require that m > 2πe.

Thus, having computed sin(2π(x+ `q)/(q2r)) partially up to m terms, we now investigate
the error for the higher order terms in the sine series, i.e. sin(2πk(x+ `q)/q) for k ≥ 1. If the
error in the approximation of the original term is small, say δ << 1, then the error for this

22

k-th term is approximately k2r ∗ δ (as it requires r+ log k squarings). Thus, the total error in
the sine series due to the Taylor series approximation of

∑n
k=1 βk sin(2πk(x+ `q)/q) is upper

bounded in absolute value by
∑n

k=1 |βk| ∗ k2rδ, which is approximately (K + 1)δ
∑n

k=1 |βk| ∗ k,
which is at most n2(K + 1)δ by Lemma 6, which, in turn, is at most n2(K + 1)2−(2m+1).

Finally, using Corollary 3, the total error in the mod function approximation, for an input
X = x+ `q with ` ∈ [−K..K] and |x| < ε ∗ q for any ε < 1/π

√
n is

(q/2π) ∗ n2(K + 1)2−(2m+1) +
e2 ∗ q

2π
∗ (n+ 1) ∗ (ε ∗ π)2n+1.

Thus, it makes sense to have m about −n log2 (ε ∗ π) (which is typically greater than 2πe for
n > 1; if this value is less than 2πe, then the above analysis must be redone for potentially a
larger r).

Determining the Evaluation Precision: We must also determine the precision to which
to evaluate the polynomials. Setting Y = 2π(x + `q)/(q2r), we observe that the degree m
Taylor expansion of e2πi(x+`q)/(q2

r) is simply the polynomial

m∑
j=0

(iY)j/j!.

Recall that we have chosen r so that |Y | < 1. Moreover, setting cj = ij/j!, the polynomial
becomes

∑m
j=0 cjY

j , where |cj | ≤ 1. We need to determine the precision to which we evaluate

the powers Y j (we will first evaluate the Y 2j ’s by repeated squaring and then use these powers
to evaluate all intermediate powers). Let Y j denote the exact values and let Ỹ j denote the
approximated values (to some precision to be determined). Suppose we evaluate the powers Y j

up to w bits (and simply chop off the additional bits). Then, |Ỹ −Y | < 2−w. Computing Ỹ 2 by
squaring Ỹ and rounding, we have that Ỹ 2 differs from Y 2 by at most ≈ 2 ∗ 2−w. To see this,
note that Ỹ = Y ±δ, where δ < 2−w. Then, Ỹ 2 = Y 2±2Y δ+δ2 < Y 2±2δ+δ2 ≈ Y 2±2∗2−w.
By an analogous argument, it follows that Ỹ j differs from Y j by at most approximately j∗2−w.
Thus, the error of

∑m
j=0 cj Ỹ

j is bounded by

m∑
j=0

j ∗ 2−w ∗ 1

j!
=

m∑
j=1

2−w

(j − 1)!
< e ∗ 2−w.

Thus, to obtain error 2−d, it suffices to compute the powers Ỹ j to precision w for w > d+log2 e,
only slightly higher than the minimum precision d required to obtain this approximation.

23

In the above, we saw that having small coefficients cj (and coefficients that decrease in
magnitude as j increases) enabled the approximation of the polynomial

∑m
j=0 cjY

j by evaluat-
ing the powers of Y to precision only a couple bits larger than the minimum precision required
for the desired error. This is crucial during bootstrapping as a higher evaluation precision
directly corresponds to losing more bits of the modulus during the polynomial evaluation. In
contrast, suppose that the cj ’s were large and bounded in magnitude |cj | < 2k for some k.
Then, if the powers of Y are evaluated to precision w, the error of the polynomial evaluation
is bounded by

m∑
j=0

j ∗ 2−w ∗ 2k <
m(m+ 1)

2
∗ 2k−w.

Thus, to obtain error 2−d, the powers of Y would need to be evaluated to precision w >
d+ k + 2 logm− 1. Note the additional dependence on both k and the number of terms m.

5 Implementation

To demonstrate the applicability of our polynomial approximation to high precision bootstrap-
ping for approximate homomorphic encryption, we updated the bootstrapping procedure of
the HEAAN library [HEA] to utilize our sine series during the “Compute the Mod Function”
step (see Section 3). Additionally, we updated HEAAN to use the quadmath library, since we
wanted to achieve bootstrapping error smaller than the precision of a double. We ran our
implementation using a PC with an AMD Ryzen 5 3600 3.6 GHz 6-Core CPU.

Table 1 gives our bootstrapping results for sine series of various orders. As before, ε
represents the ratio p/q, where p is an upper bound on the size of the message (including any
errors associated from the approximate arithmetic and prior homomorphic operations) and q
is the size of the modulus prior to bootstrapping. In Table 1, ε is set to 2−10. The key-sparsity
is set to h = 256, so that on average K is about

√
h = 16. However, our implementation can

handle K as large as 31. qL denotes the modulus of the largest level, which is the modulus
of a fresh ciphertext prior to any homomorphic operations. N denotes the ring dimension,
which we increase as qL increases to maintain 128-bit security [CP19, Alb17, APS15]. Results
in this table were obtained using 8 slots, and the dependence on a larger number of slots is
reported below. q`′ denotes the modulus of the ciphertext after bootstrapping. The reported
error is the decryption error after performing bootstrapping. In other words, if the decryption
before bootstrapping would have resulted in message slot value M , then the decryption after
bootstrapping would result in a message slot value M ′ such that |M ′ −M | ≤ βbs|M |. As can
be seen from Table 1, for log2 p = 80 and log2 p = 100, the bootstrapping error is essentially
zero. This is because the bootstrapping procedure is performed at a precision that is ten bits

24

Table 1: High-Precision Bootstrapping Results for ε = 2−10. The secret-key
sparsity is set to h = 256. The errors reported are for K up to 31.

Input Sine Modulus Ring Boot. Modulus Error Runtime††

Precision† Series (Fresh) Dim. prec. (After) (Boot.) (secs)
log2 p Order log2 qL N log2 q`′ βbs = err/p

30 2 1200 216 55 344 2−25 22

50 3 1600 216 75 531 2−45 32

60 4 2400 217 85 1008 2−54 119

80 5 2400 217 105 583 < 2−80 129

100 6 3000 217 125 843 < 2−100 167
† The modulus q` of the ciphertext prior to bootstrapping is p/ε. The number of bits of q`

is p− log ε = p+ 10, and bootstrapping (computational) precision is set to
(p− log ε+ log2K) + 10.

†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. Number of
slots fixed to be 8 so that the “Compute the Mod Function” step dominates runtime.
Results reported are from an AMD Ryzen 5 3600 3.6 GHz 6-Core CPU using quadmath,
NTL and GMP software libraries.

more than the number of bits required to represent M +Kq (i.e. the value which needs to be
reduced mod q).

Recall that the sine series approach begins by approximating eix using a Taylor series ap-
proximation, since CKKS-HE allows computation on complex numbers. In this particular im-
plementation, we approximated eix/K to degree 63 using the Paterson-Stockmeyer polynomial
evaluation optimization [PS73] and then performed logK squarings to obtain an approximation
of eix. Below, we report results for other variants for approximating eix.

We see that our methodology is capable of achieving high precision bootstrapping, with
the resulting message precision as large as 100 bits. Prior to our work, the highest precision
bootstrapping of CKKS was the recent work of [JM20] which could achieve a resulting message
precision of up to 67 bits. However, that result was only for K = 12 and key sparsity h = 64,
whereas our 100 bit precision bootstrapping is for h = 256 and can handle K up to 31. Observe
that using a sparser key (in addition to weakening security) reduces the number of intervals
required for approximation, making the approximation easier. Thus, we view our result as a
substantial improvement for bootstrapping in settings where high precision is required, such
as the inference step of a convolution neural network or even the learning stage of the neural
network. As mentioned earlier, since CKKS is for approximate arithmetic, it is only possible
to have unlimited computation for stable computations that do not lose precision. However,
even such stable computations lose precision in early stages prior to convergence. Thus, it is

25

Table 2: Timing and Error Dependence on Number of Slots. In this table ε = 2−10,
log2 p = 80, and the sine series order is fixed to n = 5.

Num Input Sine Modulus Ring Boot. Modulus Error Runtime††

Slots Precision Series (Fresh) Dim. prec. (After) (Boot.) (secs)
log2 p Order log2 qL N log2 q`′ βbs = err/p

8 80 5 2400 217 105 583 < 2−80 129

16 80 5 2400 217 105 583 < 2−80 151

32 80 5 2400 217 105 583 2−72 178

64 80 5 2400 217 105 583 2−71 208

128 80 5 2400 217 105 583 2−69 269
†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. For all rows, the

mod function evaluation time is almost the same at 82 secs.

important to begin such computations with high precision and, later, one can switch to smaller
precision during the stable regime.

5.1 Time and Error Dependence on the Number of Slots

As the number of slots is increased, the time of the mod function evaluation step during boot-
strapping remains the same (assuming we use at most N/4 slots, so that all the polynomial
coefficients can be packed into a single ciphertext during the “Coefficients To Slots” step).
However, the linear transforms that send the coefficients to slots and vice versa take a sub-
stantial hit since their runtime scales with the number of slots. Since the linear transforms
also involve more rotations, key-switchings, multiplications by constants, and additions, for
every doubling of the number of slots, the bootstrapping error also increases proportionately.
However, since our error is so low, the error for a high number of slots still remains low enough
to be termed high-precision. This dependence of runtime and bootstrapping error is reported
in Table 2 for one particular parameter, where the sine series is of order five. Observe that
for 8 and 16 slots, our bootstrapping method gives essentially no error. However, for a larger
number of slots, the error is about 2−69. This is because once the number of slots becomes
larger, the error is dominated by the error introduced during the linear transform steps.

5.2 Comparison with Basic Sine and Other Variants

While the implementation results reported in Table 1 used a Taylor series approximation
of degree 63 of eix/K , the implementation in [HEA] instead used a degree 7 approximation

26

Table 3: Comparison with [LLL+20]. Note, [LLL+20] cites results for K = 25,
whereas our results are for K up to 31.

[LLL+20] This Work

Key Ciphertext Bootstrapping Key Ciphertext Bootstrapping
Sparsity (h) Bits Lost Precision (bits) Sparsity (h) Bits Lost Precision (bits)

192 1080 40.5 256 1069 44

N/A N/A N/A 256 1392 53

N/A N/A N/A 256 1817 80

N/A N/A N/A 256 2157 100

of eix/K∗2
4

followed by 4 additional squarings. We investigated if we could use a similar
approach for the sine series, as the different order sine terms are obtained by squarings of eix

anyways. We found that for small precision, i.e. log2 p ≤ 40, this approach can lead to a
faster implementation while yielding effectively the same error. However, for log2 p ≥ 50, this
approach led to substantially worse error. For example, at log2 p = 50, the error increased
from 2−45 to 2−30. But, as mentioned, for smaller log2 p we get the following improvements.
First of all, the basic sine approach (i.e. n = 1) with r = 4 and degree 7 Taylor series yields
an error of 2−19 for log2 p = 30. If the fresh modulus used is 1600 bits, then the modulus
after bootstrapping has 795 bits. The time taken is 10.5 secs. Interestingly, with sine series
of order two, i.e. n = 2, using the same approach we get an error of 2−26, with modulus
after bootstrapping having 685 bits. Moreover, the time taken is 10.7 secs. Yet another
implementation, with a degree 31 Taylor series approximation, and r = 0, also yields error
2−25, but takes time 16.5 secs. However, the modulus after bootstrapping has more bits at 744
bits. Regardless, it seems that the sine series of order two with a degree 7 Taylor series and
r = 4 seems to be beneficial at low precision.

We also experimented with different values of ε, in particular ε set to 2−5, 2−10, 2−15, 2−20.
The errors at each input precision were not much different, and, in fact, ε = 2−10 seems to be
the best option.

5.3 Comparison with Other Prior Works

The work [CCS19] followed an interesting approach of obtaining Chebyshev interpolants of the
scaled sine function. In particular, using the Taylor series of sin(2πK cosx), they obtained
approximations of sin(2πKx) in terms of Chebyshev polynomials. Furthermore, this approach
also leads to an almost optimal minmax polynomial approximation, as well as yielding small
coefficients. Since the scaling K is already incorporated in the function, it removes the logK

27

Table 4: Comparison with Modular Lagrange Interpolation [JM20]. Note, [JM20]
cites results for K = 12, whereas our results are for K up to 31.

[JM20] This Work

Input Key Ciphertext Error Key Ciphertext Error
Precision Sparsity (h) Bits Lost (Boot.) Sparsity (h) Bits Lost (Boot.)

30 64 935 2−24 256 856 2−25

50 64 1725 2−46 256 1069 2−45

60 64 1800 2−54 256 1392 2−54

80 64 2150 2−63 256 1817 < 2−80

100 N/A N/A N/A 256 2157 < 2−100

squarings required in [CHK+18a] and in this work. However, Chebyshev interpolants do not
readily submit to the Paterson-Stockmeyer evaluation optimization and while [CCS19] did
show a variant of this method, it leads to coefficients increasing in size. Thus, as explained
in Section 3, this then requires a larger computational precision that leads to loss of many
more (ciphertext modulus) bits per multiplication depth in the bootstrapping circuit. For a
direct comparison of our approach to [CCS19], we take data from Tables 2-4 from that work,
as their implementation is unfortunately not public, and note that the best approximation
they obtain has error 2−21 for data set IV∗. A look at our Table 1 shows that the worst
error we obtain is 2−25 for log2 p = 30. The number of ciphertext (modulus) bits lost for that
error is 1200 − 344 = 856, whereas [CCS19] loses 1240 − 43 ∗ 6 = 982 bits. Moreover, our
implementation can handle K up to 31 since we set the key sparsity h = 256, whereas [CCS19]
gives results for K = 12 and use key sparsity h = 64. Thus, our approach is clearly better at
even this low precision.

In [HK20], the authors obtain better approximation error than [CCS19] by leveraging the
fact the approximation is only needed in small intervals around multiples of the modulus. How-
ever, their approach also uses a baby-step giant-step, or alternately the Paterson-Stockmeyer
variant applied to Chebyshev polynomials that can lead to a blowup in the size of coeffi-
cients. The authors do not give details on the number of ciphertext (modulus) bits lost in the
bootstrapping procedure, nor is their implementation public. The maximum bootstrapping
precision they achieve is 18.5 bits.

In [LLL+20], the authors report high-precision bootstrapping using a composition of sine/cosine
and arcsine. The polynomials to approximate these functions are found via algorithmic search
using the Remez algorithm (which gives no guarantee on the size of the coefficients), and the
authors do not provide any details on the size of these coefficients apart from noting that they

28

“are small enough not to distort the messages.” Moreover, their implementation is not public.
The authors report a practical implementation of up to 40-bits precision bootstrapping. In
Table 3, we compare our results with theirs using the relevant available information in their
paper. We note that [LLL+20] gives an implementation of RNS-CKKS [CHK+18b], which
improves performance over the original CKKS implementation by utilizing an RNS basis. This
introduces an additional challenge of having to ensure that rescaling errors are small, but
this can be done without significantly increasing error, and, in fact, the recent work [KPP20]
shows a method of managing the scaling factor so that homomorphic multiplication error in
RNS-CKKS is about the same as that of the original CKKS scheme.

The work [JM20] gives a direct approximation of the mod function, i.e. without going
through the sine function, and hence bypasses the fundamental error of the sine function
approach. Thus, they can get arbitrarily high precision, and they also show that the coefficients
of their polynomial approximation are not too large. Nevertheless, the coefficients are large
enough that our approach beats [JM20]. Moreover, they only give implementation numbers
for K = 12, and for K = 31, the number of ciphertext modulus bits lost during bootstrapping
would be higher. In Table 4, we compare their results with ours for ε = 2−10 and various
plaintext precisions.

The recent work [BMTPH21] optimized the performance of bootstrapping for RNS-CKKS.
They introduce a scale-invariant polynomial evaluation method as well as a “double hoisting”
technique for evaluating the homomorphic linear transforms. These techniques improve the
performance of bootstrapping considerably and are compatible with our sine series approxima-
tion of the mod function. Moreover, to the best of our knowledge, [BMTPH21] gives the first
public implementation of full RNS-CKKS with bootstrapping. We note that they do not focus
on obtaining better approximations to the mod function and utilize previous techniques and
variants thereof to perform the “Compute the Mod Function” step in bootstrapping. Their
maximum bootstrapping precision achieved is 32.6 bits, but we stress that this was not the
focus of their work. An interesting direction would be to combine both their bootstrapping
optimizations with our sine series approximation of the mod function.

References

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret lwe and param-
eter choices in helib and seal. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, pages 103–129, Cham,
2017. Springer International Publishing. 5

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of

29

learning with errors. J. Math. Cryptol., 9(3):169–203, 2015. 5

[BHHH19] Flavio Bergamaschi, Shai Halevi, Tzipora T. Halevi, and Hamish Hunt. Homo-
morphic training of 30,000 logistic regression models. In Robert H. Deng, Valérie
Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, Applied Cryptography
and Network Security, pages 592–611, Cham, 2019. Springer International Pub-
lishing. 1

[BMTPH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-
Pierre Hubaux. Efficient bootstrapping for approximate homomorphic encryp-
tion with non-sparse keys. In Anne Canteaut and François-Xavier Standaert,
editors, Advances in Cryptology – EUROCRYPT 2021, pages 587–617, Cham,
2021. Springer International Publishing. 3, 5.3

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for ap-
proximate homomorphic encryption. In EUROCRYPT, pages 34–54, 2019. 1, 3,
5.3

[CHK+18a] Jung Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In EUROCRYPT,
pages 360–384, 01 2018. 1, 1, 1.1, 3, 3, 5.3

[CHK+18b] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
A full rns variant of approximate homomorphic encryption. In Selected Areas in
Cryptography – SAC 2018, 2018. 1, 3, 5.3

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In ASIACRYPT, 2017. 1, 3

[CP19] Benjamin R. Curtis and Rachel Player. On the feasibility and impact of standard-
ising sparse-secret LWE parameter sets for homomorphic encryption. In Michael
Brenner, Tancrède Lepoint, and Kurt Rohloff, editors, Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy, WAHC@CCS 2019, London, UK, November 11-15, 2019, pages 1–10. ACM,
2019. 5

[HEA] Heaan. 5, 5.2

[HHC19] K. Han, M. Hhan, and J. H. Cheon. Improved homomorphic discrete fourier
transforms and fhe bootstrapping. IEEE Access, 7:57361–57370, 2019. 3

30

[HK20] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate homo-
morphic encryption. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA
2020, pages 364–390, Cham, 2020. Springer International Publishing. 1, 3, 5.3

[JM20] Charanjit S. Jutla and Nathan Manohar. Modular lagrange interpolation of the
mod function for bootstrapping of approximate he. Cryptology ePrint Archive,
Report 2020/1355, 2020. https://eprint.iacr.org/2020/1355. 1, 1.1, 5, 4,
5.2, 5.3

[KHB+20] Miran Kim, Arif Harmanci, Jean-Philippe Bossuat, Sergiu Carpov, Jung Cheon,
Ilaria Chilotti, Wonhee Cho, David Froelicher, Nicolas Gama, Mariya Georgieva,
Seungwan Hong, Jean-Pierre Hubaux, Duhyeong Kim, Kristin Lauter, Yiping
Ma, Lucila Ohno-Machado, Heidi Sofia, Yongha Son, Yongsoo Song, and Xiaoqian
Jiang. Ultra-fast homomorphic encryption models enable secure outsourcing of
genotype imputation. bioRxiv, 2020. 1

[KPP20] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate homo-
morphic encryption with reduced approximation error. IACR Cryptol. ePrint
Arch., page 1118, 2020. 5.3

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon.
Logistic regression model training based on the approximate homomorphic en-
cryption. BMC Medical Genomics, 11(4):83, 2018. 1

[KSW+18] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. Secure
logistic regression based on homomorphic encryption: Design and evaluation.
JMIR Med Inform, 6(2):e19, Apr 2018. 1

[LLL+20] J. Lee, Eunsang Lee, Y. Lee, Y. Kim, and J. No. High-precision bootstrapping
of rns-ckks homomorphic encryption using optimal minimax polynomial approx-
imation and inverse sine function. IACR Cryptol. ePrint Arch., 2020:552, 2020.
1, 1.4, 3, 5.2, 5.3

[MHS+20] Oliver Masters, Hamish Hunt, Enrico Steffinlongo, Jack Crawford, Flavio Berga-
maschi, Maria E. Dela Rosa, Caio C. Quini, Camila T. Alves, Feranda de Souza,
and Deise G. Ferreira. Towards a homomorphic machine learning big data pipeline
for the financial services sector. In RWC, 2020. 1

[PS73] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput., 2:pp. 60–66, 1973. 5

31

https://eprint.iacr.org/2020/1355

[Rem34] Gilbert Remez, E. Sur la determination des polynomes d’approximation de degre’
donnee’. Comm. of the Kharkov Math. Soc., 10(196):41–63, 1934. 1

[SPTP+20] Sinem Sav, Apostolos Pyrgelis, Juan R. Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. Poseidon:
Privacy-preserving federated neural network learning, 2020. 1

A Proof of Lemma 9

Lemma 9 (restated) For any k ≥ 0, any a of length n > 0, and an independent formal variable
t,

k∑
j=0

hj(a)tj =

n∏
i=1

k∑
j=0

(tai)
j mod tk+1.

Proof: We prove this lemma by induction over n. The base case for n = 1 follows as hj(a) = aj

for every j in [0..k]. Suppose the lemma holds for n− 1. Then, let a′ be truncation of a to its

32

first n− 1 components. We have, modulo tk+1,

n∏
i=1

k∑
j=0

(tai)
j =

k∑
z=0

(tan)z ∗
n−1∏
i=1

k∑
j=0

(tai)
j

=
k∑
z=0

tzazn ∗
k∑
j=0

hj(a
′)tj

=
k∑
j=0

k∑
z=0

azn ∗ hj(a′)tj+z

=
k∑
z=0

k∑
j=0

azn ∗ hj(a′)tj+z

=
k∑
z=0

k−z∑
j=0

azn ∗ hj(a′)tj+z

=
k∑
z=0

k∑
j′=z

azn ∗ hj′−z(a′)tj
′

=

k∑
z=0

∑
k≥j′; j′≥z

azn ∗ hj′−z(a′)tj
′

=
∑

z≤k; j′≤k; z≥0; z≤j′
azn ∗ hj′−z(a′)tj

′

=
k∑

j′=0

j′∑
z=0

azn ∗ hj′−z(a′)tj
′

=

k∑
j′=0

hj′(a)tj
′

�

33

	Introduction
	This Work
	Problem Overview
	Sine Series
	On Approximating Arcsine
	Organization

	Sine Series Approximation
	Alternating Series Test (Proof of Main Lemma)

	Application to Bootstrapping for Approximate HE
	Evaluating the Sine Series Approximation of the Mod Function
	Implementation
	Time and Error Dependence on the Number of Slots
	Comparison with Basic Sine and Other Variants
	Comparison with Other Prior Works

	Proof of Lemma 9

