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Abstract. Since the Meet-in-the-Middle preimage attack against 7-
round AES hashing was found by Sasaki in 2011, the development of
this research direction has never been stopped. In 2019, Bao et al. found
the degree of freedom from the message (or the key of the underlying
block cipher) were useful, before the Mixed-Integer-Linear-Programming
(MILP) modeling was introduced to find the optimal attack configura-
tions in 2020. In this paper, we move one step further in this research
direction by introducing more techniques such as guess-and-determine,
round independence, and symmetry etc. to the MILP search model. To
demonstrate the power of the enhanced model, we apply it to the popular
AES-like hash functions Whirlpool, Grøstl, and AES hashing modes, and
obtain general improvements over the existing best (pseudo-)preimage
attacks. In particular, the number of attacked rounds on Whirlpool and
AES-256 hashing modes is extended from 6 to 7 and 9 to 10, respectively.
Time complexity improvements are also obtained on variants of lesser
rounds, as well as the 6-round Grøstl-256 and the 8-round Grøstl-512.
Computer experiments on trial versions of the full attack procedure have
confirmed the correctness of our results.
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1 Introduction

Hash function is a function mapping a document of arbitrary length into a short
fixed-length digest. For a cryptographically secure hash function, it should fulfill
three basic security requirements: collision resistance, preimage resistance, and
second-preimage resistance. In this paper, we focus on the security notation
of preimage resistance, i.e., it should be computationally difficult to invert the
function. Specially, for an ideal hash function H with n-bit digest and a target T
given at random, it should cost no less than 2n compression function evaluations



to find an input x such that H(x) = T . Preimage attack refers to an algorithm
achieving this in lesser evaluations.

Traditionally, there are two common methods to construct cryptographic
hash functions. One is to convert from block ciphers through mode of operations,
and the other is to build from scratch. There are 12 secure PGV modes [20],
which enjoy the proof of security reduction of the hash function to the underlying
block cipher. This method is especially useful when a block cipher like AES [8]
has long-standing security against intensive cryptanalysis. When it is already
implemented for other purposes like encryption, the same implementation can
be re-used to construct a hash function by implementing the additional mode
only. In this way it also leads to performance merits. Particularly, hash function
constructed from AES through PGV modes are called AES hashing, and they have
been standardized by Zigbee [1] and also suggested by ISO [17]. Due to the well
understood security and software and hardware efficiencies, many dedicated block
ciphers and hash functions built from scratch follow similar design strategy by
using an AES-like round function, such as Whirlpool [6], Grøstl [11], PHOTON [13],
and LED [14] etc.

The MITM Preimage Attacks. The Meet-in-the-Middle attack in general has
a long history application to cryptanalysis of ciphers. It was then developed into
a MITM preimage attack against hash functions in 2008 by Sasaki et al. [3, 23].
This attack was found to be powerful against many hash functions, and broke
the full version of MD4 [12], MD5 [24], Tiger [12, 27], HAVAL [15, 23], as well as
lightweight block cipher KTANTAN [7,28]. The basic idea of the attack is to split
the cipher into two chunks, and find the so-called neutral bits from each side,
which are independent from the computation of (part of ) the state of the other
side. Hence, the two chunks can be computed independently, then the (partial)
preimage finding problem can be converted into a birthday-like problem.

In 2011, Sasaki [22] for the first time applied the MITM preimage attack to
AES hashing reduced to 7 rounds. To avoid dealing with the key schedule, the key
value of AES was pre-set to a constant, and hence the same number of rounds was
attacked for AES hashing based on all three versions of AES (AES-128, AES-192,
and AES-256). In 2019, Bao et al. [4] revisited the problem and found that the
degree of freedoms from the key values can be utilized for at least one side of
the computation. This observation led to the attack complexity improvements
over 7-round AES-128 hashing, and increased the number of attacked rounds
from 7 to 8 for the AES-hashing based on AES-192 and AES-256. In 2020, Bao et
al. [5] further extended the attack to 8-round AES-128 hashing by introducing
the Mixed-Integer-Linear-Programming (MILP) into the search of better attack
configurations. It was noted that the choices of neutral bits and the number of
possibilities of transition in each round through the linear layers such as XOR
and MixColumn are too many to carry out a bruteforce search by the traditional
search programs.

Based on Bao et al.’s work in [5], in this paper we work further towards
improving upon the previous results by enhancing the MILP search model and
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find more applications. This is achieved by enlarging the search space the MILP
program covers, and in the meanwhile optimizing the model so that the more
complicated MILP program outputs better attack configuration in practical time.

1.1 Enlarging the Search Space

Since Bao et al.’s search was complete, it is not possible to find better results
without introducing new techniques into the model. In order to enlarge the attack
configuration search space, we introduce three different techniques: guess-and-
determine, a further relaxed model, and independent handling of neutral bits in
linear layers.

Guess-and-Determine. GAD has been a popular technique and has countless
applications in cryptanalysis against symmetric-key primitives such as stream
ciphers [9, 16, 30] and block ciphers [10, 21] etc. The basic idea is that, in the
process of some attack, the gain of guessing some state or key bits is higher than
the price, i.e., the guess itself comes with a probability p and the attack needs to
repeat at least 1/p times in order to have a correct guess. This technique has
also been used in the MITM preimage attacks [2, 12, 25, 29], where the guess
allows further computation of some more state/message bits which help either
extend the attack to more rounds or lower the time complexities. It is noted that
this powerful technique has not been incorporated into the MILP models for the
MITM preimage attacks by Bao et al. [5].

Relaxed Model. We also notice that in the MILP model by Bao et al., although
the idea of cancellation of some neutral bits to constants has already appeared,
this was only used in one of the two chunks for the connivence of modeling. While
it is obvious that more possibilities will be reached by allowing cancellation in
both directions, the immediate drawback is that this also contributes to further
complicating the MILP model.

Independent Linear Layer. In previous models, once the neutral bits from
two directions reach into the same byte position, this byte is considered being
white as influenced by both directions, and no longer usable in either chunk
computation. Note this white byte does not only affect the current round, but
also the following rounds propagated through round functions. Trying to rescue
these white bytes from being wasted, we note the subset of white bytes, which can
be expressed as the linear combination of the neutral bits from both directions,
can be useful in the final matching phase. Hence, in our enhanced model we pick
out and keep track of these linear white bytes.

1.2 Model Optimizations

With the above new techniques introduced into the MILP model, the search
space can be significantly enlarged. However, the side effect is, the entire model
can become too complicated and as a result the program will not be able output
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anything in practical time in some applications. Unlike other problems which
allow complexity projections, we must wait for the MILP program to output in
order to obtain the corresponding new attack configuration. To overcome this
issue, we propose the following model optimizations.

Round-Dependent Modeling. We note some techniques are not always nec-
essary in all rounds of the attack. For example, from the analysis of MITM
preimage attacks in the literature as well as those found by our enhanced model,
we notice the guess-and-determine technique becomes more useful in rounds
away from the splitting point. Hence, we manually set this technique to be used
in some selected rounds according to our experience, and this elegant human
intervene turns out to be surprisingly powerful in shortening the run time of the
MILP programs.

Symmetry and Similarity. Thanks to the design nature of AES hashing
and many AES-like hash functions, the truncated state and/or message can be
viewed as repetitions of a smaller unit. Taking AES hashing for example, the
4x4 state can be viewed as 4 repetitions of a 2x2 state, which is similar to the
design rationale behind Mini-AES [19]. Under this assumption, although we lose
the configurations not fulfilling this symmetry, the MILP model size is reduced
significantly, and our experiments show that such a reduction can also generate
attack configurations very close to the optimal ones in practical time for some
cases. The same reduction is possible when the round function and message
expansion function are similar to each other, e.g., in Whirlpool both follow a
AES-like round for a 8x8 state. In such cases, assumption that the state and
round message take the same truncated view in every round will have the same
effect in reducing the model size as the symmetry property above.

1.3 Applications to Whirlpool and Grøstl

To demonstrate the usefulness of our enhanced model, we apply it to the popular
AES-like hashing Whirlpool and Grøstl, and obtain broad improvements upon
the previous best results. For Whirlpool, out of the total 10 rounds, the number
of attacked rounds is improved from 6 to 7, and in the meanwhile complexities
for 5- and 6-round attacks are also reduced. For Grøstl, there are two main
instances Grøstl-256 and Grøstl-512 named after the size of the digest in bits. We
improved the attack complexities for 6-round Grøstl-256 and 8-round Grøstl-512
— the longest attacked variant. Besides, time complexity improvements are also
obtained on variants of lesser rounds. Our results together with a comparison
against the literature are summarized in Table 1.

Organization. The rest of the paper is organized as follows. Section 2 gives a
brief introduction to the AES-like hashing and MITM preimage attacks. Section 3
describes the details of our enhanced MILP model. The application to Whirlpool
and Grøstl is given in Section 4 and 5, respectively. Section 6 concludes the paper.
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Table 1: Updated results on (pseudo-) preimage attacks on Whirlpool, Grøstl-256,
Grøstl-512, and AES-256 hashing modes (with recomputed complexities for previous
works)
Cipher (Target) #R Time-1 Mem-1 Time-2 Mem-2 Ref.

5/10 2416 296 2448 296 [25]
5/10 2416 O(1) 2465 O(1) [25]
5/10 2352 2160 2433 2160 Fig. 13
6/10 2448 2256 2481 2256 [25]Whirlpool (Hash)
6/10 2448 O(1) 2504 O(1) [25]
6/10 2440 2192 2477 2192 Fig. 12
7/10 2480 2128 2497 2128 Fig. 10
5/10 2192 264 2234.67 2213.33 ∗ [18, 31]
5/10 2184 272 2232 2208 Fig. 15, 16

Grøstl-256 (CF+OT) 6/10 2240 264 2252 2252 ∗ [18, 31]
6/10 2224 2128 2245.33 2242.67 Fig. 5, 6
6/14 2320 2192 2448 2384 Fig. 19, 20
7/14 2416 2152 2480 2440 Fig. 17, 18
8/14 2496 216 2508 2508 † [29]Grøstl-512 (CF+OT)
8/14 2472 2120 2504 2504 † [31]
8/14 2472 2224 2500 2500 Fig. 7, 8
9/14 2120−min(t,24) 28 2123 28 [5]

AES-256 Hasing (Hash) 10/14 2120 28 2125 28 Fig. 21
CF: Compression Function; OT: Output Transformation;
Time-1 and Time-2 are complexities of pseudo-preimage and preimage attacks following
the notions in [4] when the target is a hash function, and complexities of inverting OT
and CF+OT (pseudo-preimage) following the notions in [29] for Grøstl, respectively.
† The presented complexities for the attacks in [29] and [31] are recomputed by
removing constant factors (e.g., the cost CT L for lookup table is replaced by 1) and
replacing C2(2n, b) that is lower bounded by b/2 in [29] with C2(2n, b) that can be 20

considering the amortized complexity. Thus, all complexities are computed follow the
same way.
∗ The 5- and 6-round attacks in [18] are on the OT of Grøstl-256. To convert to
pseudo-preimage, we used the results for the case with no truncation in [18] . However,
for the 6-round attack, in which guessing are required, it cannot be directly used. Thus,
we combined the attack on OT in [18] with the best previous attack on the CF in [31].

The attack on AES-256 hashing modes and Some extra details on other attacks
and figures are postponed to Appendix.

2 AES-like Hashing and MITM Preimage Attacks

In this section, we give a brief introduction to AES-like hash function in a
general way, and describe the Meet-in-the-Middle Preimage Attacks, before we
can introduce applications to Whirlpool and Grøstl in the next Sections.

5



Key schedule

Encryption

Match
−−→
End

←−−
End

←→
S ENC

T

←→
S KSA

Nrow

Ncolc-bit

SB

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR MC
AK

Fig. 1: Overview of AES-like hashing [5]

The AES-like hashing in our context refers to those using an AES-like round
function as depicted in Figure 1, where the state can be viewed as a Nrow ×Ncol

matrix of c-bit cells. There are 4 general operations in order:

– SB applies a non-linear substitution-box operation to each cell.
– SR cyclically shifts each row by a pre-defined number of positions.
– MC mixes every column, e.g., by multiplication of an (MDS) matrix.
– AK adds the round key (or round message).

For some designs, the SR and MC may work on the transpose of the matrix,
i.e., SR on columns and MC on rows. The main advantage of AES-like designs is
the ease to count the number of active sboxes in the security resistance against
differential and linear cryptanalysis.

The MITM Preimage Attacks generally cut the entire encryption process
into two chunks and there are few neutral bits from each side, so that the
computation (of partial state values) of each chunk can be done independently.
The splice-and-cut technique [3] views the input and output of the compression
function connected through the feedforward operation. There may or may not
be any neutral bits from the message of the compression function (or key of the
underlying block cipher). The number of attacked round depends on how many
rounds the neutral bits can be maintained independent from each other in the
computation of the state values, and hence the important part of the attack are:
the places where the function is cut and where they meet again, the choices of
the neutral bits, and how the neutral bits are propagated through the functions.
All these parameters together form an attack configuration, and our work here is
to find a (sub-)optimal attack configuration which result in longest number of
attacked rounds or lowest possible complexities, through a better way of modeling
the parameters and the behavior of the each components of the round function
by the language of MILP.
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3 MILP Model for the Configuration Search

3.1 Basic Model for MITM

The way how states are encoded and the rule how propagation is formalized
corresponds to how to define variables and constraints to generate MILP models
for searching attack configurations. We follow those in [5] for the description of
the basic model, based on which our enhanced model will be introduced.

Notations and Encoding. Firstly, the attributes of state cells are encoded
according to whether they are determined by the neutral bits from one or two
directions or none, with two bit variables (x, y).
• Gray ( ): the value is predefined constant, thus is known and fixed in both
forward and backward chunks; Indicating variables: (x, y) = (1, 1)

• Blue ( ): the values are determined by forward neutral bytes and predefined
constants, thus is known and active in the forward chunk but unknown in the
backward; Indicating variables: (x, y) = (1, 0)

• Red ( ): the values are determined by backward neutral bytes and predefined
constants, thus is known and active in the backward chunk but unknown in
the forward; Indicating variables: (x, y) = (0, 1)

• White ( ): the values are determined by both forward and backward neutral
bytes, thus cannot be computed independently in either forward or backward
chunks; Indicating variables: (x, y) = (0, 0)

For convenience, Black ( ) is used to represent any of the 4 cells ( , , , ). x
and y are defined with the following implications.

– x =
{

1 can be computed in the forward chunk; is Blue or Gray
0 cannot be computed in the forward chunk; is Red or White

– y =
{

1 can be computed in the backward chunk; is Red or Gray
0 cannot be computed in the backward chunk; is Blue or White

Additionally, β and ω are defined as follows.

– β =
{

1 is inactive, do not contain degree of freedom; is Gray
0 is active, is Blue, Red or White

– ω =
{

1 cannot be computed in both forward and backward chunks; is White
0 can be computed in at least one direction; is Blue, Red, or Gray

Directly, β = AND(x, y), and ω = 1−OR(x, y).

Searching Framework. After the MITM preimage attack is modeled, the
search of valid (optimal) attack configurations corresponds to the search of
(optimal) solutions fulfilling all the constraints in the MILP models. The whole
search includes many independent search models. Each search model includes
four constant parameters, i.e., the total number of rounds (totalr), the round
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index of an initial state in the encryption data-path (initE
r ), the round index

of an initial state in the key-schedule data-path (initK
r ), and the round index

of two ending states for matching (matchr). For the complete search of totalr-
round attack, all possible combinations of values of initE

r , initK
r , and matchr

should be tried; each combination corresponds to an independent model; The
following description of the modeling method is for an individual model with a
fixed (totalr, initE

r , initK
r , matchr).

Although the solving of MILP models does not necessarily start from solving
constraints in a starting round, the constraints can be viewed as being imposed
starting from some initial states (i.e.,←→S ENC and←→S KSA in round initE

r and initK
r )

and terminating at some ending states (i.e.,
−−→
End and

←−−
End in round matchr).

In the initial state of the encryption data-path (←→S ENC) and the initial state in
the key-schedule data-path (←→S KSA), the attribute of each cell is constrained to be
one of Blue ( ), Red ( ), and Gray ( ). Thus, the attribute of each cell in ←→S ENC

and ←→S KSA has three possible assignments, i.e., (xi, yi) ∈ {(1, 0), (0, 1), (1, 1)} for
∀ i ∈ N , where N = {0, 1, · · · ,Nrow · Ncol − 1}. Thus, the set of cells in state
←→
S ENC is a union of a set of Blue cells (denoted by set of index BLENC), a set of
Red cells (RDENC), and a set of Gray cells (GYENC). Similarly, the set of cells in
state←→S KSA is a union of a set of Blue cells (BLKSA), a set of Red cells (RDKSA),
and a set of Gray cells (GYKSA). Basic relations are that BLENC ∩ RDENC = ∅,
BLKSA ∩RDKSA = ∅, GYENC = N − BLENC ∪RDENC, GYKSA = N − BLKSA ∪RDKSA;
and |BLENC ∪ BLKSA| 6= ∅, |RDENC ∪RDKSA| 6= ∅. The states in the starting round
are called initial because initial degree of freedoms are all contained in these
states. Denote the initial degree of freedom for the forward by −→ι , and that for
backward by ←−ι . Accordingly, one has the equations for −→ι and ←−ι as in Eq. (1).

In the ending states (
−−→
End and

←−−
End) in the round of matching, for each pair

of input/output columns of the states before and after the MixColumns operation,
the variable →←m i that indicates the degree of matching in column i can be
constrained by the numbers of Blue, Red, and Gray cells ( , , ). The total
degree of matching of the attack, denoted as →←m , is the sum of the degrees of
matching from all columns, as shown in Eq. (3).

In states of all rounds in both encryption and key-schedule data-path, con-
straints are imposed on attribute-indicating variables of states cells. The con-
straints indicate the relations of cell-attributes between consecutive states intra-
round and inter-round. The change of cell-attributes from state to state is the
attribute propagation.

For the attribute of Blue and Red propagating to the ending states and
remaining to be able to make a match, special constraints for indicating whether
to consume degree of freedom are imposed from the starting round to the matching
round. Concrete ways of attribute propagation and how to preserve possible
attribute propagations by consuming degree of freedom will be introduced shortly.
Denote the accumulated consumed degree of freedom of forward by −→σ and that
of backward by ←−σ . After the propagation, the essential degree of freedom of
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forward (denoted by
−→
db) and that of backward (denoted by

←−
dr) in the attack are

constrained as that in Eq. (2).
The search of a valid attack configuration corresponds to the search of a

valid attribute propagation with min{
−→
db ,
←−
dr ,
→←
m } ≥ 1. The search of the optimal

attack configuration corresponds to the search of a valid attribute propagation
with maximized min{

−→
db ,
←−
dr ,
→←
m }. Thus, the objective of the search model is to

maximize a variable τObj, which is constrained by Eq. (4).

{−→ι = |BLENC|+ |BLKSA|,
←−ι = |RDENC|+ |RDKSA|.

{−→
db = −→ι −−→σ ,
←−
dr =←−ι −←−σ .

→←
m =

Ncol−1∑
i=0

→←
m i .


τObj ≤

−→
db ,

τObj ≤
←−
dr ,

τObj ≤
→←
m .

(1) (2) (3) (4)

Basic Rules of Propagation and Matching. The attribute propagation and
the matching are governed by two types of constraints. The first type is due to
the specification of the hash function. The second type is due to the principle of
the attack.

Technique improvements are reflected in improving the second type of con-
straints. For example, the essence of the initial structure [24] is reflected in adding
constrained propagation through MixColumns for the purpose of reducing im-
pacts. Importing freedom in key [4] is reflected by firstly allowing more attributes
rather than only Gray for the key state cells, then combining AddRoundKey with
MixColumns operations to build initial structures covering more rounds.

Remark 1. Previously, in [5], for the forward computation, the propagation of
Red-attribute is designed to concede to the propagation of Blue, but Blue never
gives in to Red, and vice versa for backward computation. Unlike in [5], the
propagation of one attribute (Blue or Red) concedes to the propagation of the
opposite attribute in both directions is considered in this work. In other words,
the consuming degrees of freedom of one attribute is included in the constraints
of both forward and backward computations. The considerations are as follows.
Since the involving of freedom from key states, a concession of Blue to Red by
consuming degrees of freedom of Blue and reserving a local Red may enable to
cancel a remote Red in the key state in forward. Similarly, a concession of Red
to a local Blue in backward may enable to cancel a remote Blue. Besides, a
concession of Blue to reserve a local Red (or Gray) cell may enable this local
Red (or Gray) cell to propagate and combine with other Red cells at a remote
point to be mutually canceled through MixColumns and preserve remote Blue
cells. In addition, an attribute of Blue or Red propagating to the ending states
provides source of degree of matching no matter on which side. (e.g., attack
configurations in Fig. 3, Fig. 7, Fig. 5, Fig. 13). By allowing such self-cancellation
constraints, the search will cover a larger space. The problem caused by this
generalization is the efficiency of the search. When feasible, we allow attribute
consuming its freedom in both directions for better solutions. When efficiency
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becomes a problem for large-version ciphers, we fall back to that one attribute
only concedes in one direction to get a solution.

For convenience, in the following, basic rules of propagation are directly
described in the framework that one attribute (of Blue or Red) may concede to
the propagation of the opposite attribute by consuming its degree of freedom in
both directions (thus, different from the models in [5]). The difference and how
to get the modeling of the other framework will be indicated.

Modeling of the Attribute Propagation through SubBytes and ShiftRows. The
SubBytes operation does not change the attribute of the cells, thus is not involved
when building the model. The ShiftRows operation permutes the state cells, thus
is modeled by a set of equations on attributes of corresponding cell permutation.

Modeling of the Attribute Propagation through AddRoundKey (XOR-RULE). The
AddRoundKey operation is involved in the model when the cipher has KeySchedule
(message schedule), and the attack exploits freedom from the key state. Basically,
the attribute propagation through AddRoundKey is governed by a set of cell-
wise constraints under the name XOR-RULE. The principle is that White is the
dominant attribute, Gray is the recessive attribute, Blue and Red are mutually
exclusive attributes. Meaning that

– a White cell XORed with a cell of any attribute results in a White cell, i.e.,
( ⊕ ) −→ ;

– a Gray cell XORed with a cell of any attribute results in the cell of the same
attribute, i.e.,
( ⊕ ) −→ ;

– a couple of Blue and Red cells results in a cell deteriorated to White, i.e.,
( ⊕ ) −→ ;

– a couple of Blue cells can keep the attributes without consuming or evolve
to Gray by consuming a degree of freedom of Blue, i.e.,
( ⊕ ) −→ or ( ⊕ ) −1×−−−−→ ;

– a couple of Red cells can keep the attributes without consuming or evolve to
Gray by consuming a degree of freedom of Red, i.e.,
( ⊕ ) −→ or ( ⊕ ) −1×−−−−→ ;

As for concrete formulas describing these propagation rules, the involved variables
are small (six for the input and output, and two for indicating the consumption
of degree of freedom for each direction), such that one can generate the set of
inequalities using the convex hull computation method [26]. As for the solving
efficiency related to XOR-RULE, the branches in the search are caused by allowing
to consume degree of freedom to evolve to Gray.

Modeling of the Attribute Propagation through MixColumns (MC-RULE). The
MixColumns operation is involved in models of all targeted ciphers in this work.
Basically, the attribute propagation through MixColumns is governed by a set of
column-wise constraints under the name MC-RULE. The constraints are mostly
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governed by the branch number (Brn) of the MixColumns. Again, the principle is
that White is the constrainedant attribute, Gray is the recessive attribute, Blue
and Red are mutually exclusive attributes. Concretely,

– any White cell in an input column results in all cells in the output column
deteriorated to White, i.e.,
(i× , j × ) −→ (Nrow × ), where i ≥ 1, i+ j = Nrow;

– the Gray attribute inherits to the output without consuming degrees of
freedom only if all cells in the input column are Gray, i.e.,
(Nrow × ) −→ (Nrow × );

– existing no White cell, a column of i Blue, j Red, and k Gray cells propagate
to a column of i′ Blue, j′ Red, k′ Gray, and `′ White cells by consuming
j′ + k′ degree of freedom from Blue, and i′ + k′ from Red, i.e.,
(i× , j × , k × ) −(j′+k′)× − (i′+k′)×−−−−−−−−−−−−−−−−−→ (i′ × , j′ × , k′ × , `′ × ),

where i+j+k = i′+j′+k′+`′ = Nrow and
{
j′ + k′ < i ≤ Nrow if i 6= 0
j′ + k′ = Nrow otherwise

,{
i′ + k′ < j ≤ Nrow if j 6= 0
i′ + k′ = Nrow otherwise

.

Note that when i 6= 0 , j′+k′ < i⇔ Nrow−i′− l′ < i⇔ i+i′+ l′ >= Nrow +1,
which is due to the branch number; similarly, i′ + k′ < j when j 6= 0 is due
to the branch number.

To formalize the concrete propagation rules into a system of inequalities, the
involved number of variables is not small. Concretely, the involved variables
include the binary variables that indicate the attribute of each cell in the input
and output columns, i.e., (xI

i , y
I
i ), (xO

i , y
O
i ), and ωI

i for i ∈ {0, 1, · · · ,Nrow − 1}.
The general variables cx and cy for the consumed degree of freedom from Blue
and Red, respectively. Apart from those variables, three auxiliary binary variables
are introduced to indicating the following attributes of the input column:

ω =
{

1 exists White cell,
0 otherwise.

x =
{

1 all are Blue/Gray,
0 exists Red/White.

y =
{

1 all are Red/Gray,
0 exists Blue/White.

(5) (6) (7)

The constraints can then be formalized using inequalities listed in Eq. (11, 12, 13).

Remark 2. When only consider an attribute (Blue or Red) conceding to the
opposite attribute (Red or Blue) in one direction instead of both, like that in
previous work [5], the set of inequalities is similar but simpler. For example, for
the propagation of the Blue attribute to the forward, it only consumes degrees of
freedom from Red to preserve Blue. Thus, the last two inequalities in Eq. (12) can
be (

∑Nrow−1
i=0 yO

i )− Niosum · y = 0; In Eq. (13), inequalities on cx can be removed.

As for the solving efficiency related to MC-RULE, the branches in the search
are caused by allowing known active cells ( ’s or ’s) evolving to have a constant
impact on the opposite attribute-propagation by consuming some degree of
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freedom, and the various ways to select which cells in the output column being
evolved. This attribute propagation through MixColumns causes most search
branches.

Modeling of the Matching through MixColumns and AddRoundKey: MATCH-RULE
The modeling for matching also focuses on the MixColumns and AddRoundKey
operations. The matching through MixColumns and AddRoundKey is governed by
a set of column-wise constraints under the name MATCH-RULE.

The involved states are
−−→
End,

←−−
End, and the key state

−−→
EndKMC or

←−−
EndK in the

matching round. The
−−→
End and

←−−
End are the states in the encryption data-path

that have not been added with the key-state
−−→
EndKMC or

←−−
EndK. The influence of

the AddRoundKey for matching is that, because it is linear, only a White cell in
key state has a bad impact on the matchable cells in encryption states. The Blue
and Red cells in the key state may even provide degree of matching. Additionally,
one can use

−−→
End⊕

−−→
EndKMC as an equivalent key addition to

←−−
End⊕

←−−
EndK. The

color pattern (most importantly, the distribution of White cells) of
−−→
EndKMC and

←−−
EndK are likely different. Thus, adding

−−→
EndKMC or

←−−
EndK, these two ways may

have different effects on the degree of matching. To find the optimal solution, we
choose to use the key state, which has fewer White cells. Known the propagation
direction of the key-schedule (i.e., initK

r ), of the two states
−−→
EndKMC and

←−−
EndK,

the one that is near to the initial key state ←→S KSA must have fewer White cells.
The conditions for the i-th column to have →←m i degree of matching are:

– exists both Blue and Red cell ( and ) in input/output columns;
– denote the number of known cells (i.e., except White cells) by mki; when
mki > Nrow,

→←
m i= mki − Nrow. Denote the number of white cells by mwi;

Since mki = 2 ·Nrow −mwi, one have →←m i= Nrow −mwi.

Accordingly, the concrete system of inequalities modeling MATCH-RULE can be
obtained as listed in Eq. (14).

3.2 Enhanced Model with Guess-and-Determine

Guess-and-Determine Strategies. Because of the diffusion of MixColumns, espe-
cially the property of the MDS matrix, one unknown cell in the input column of
MC makes all cells in the output column unknown (refer to point 1 of MC-RULE).

Sasaki et al. in [25] found the following interesting conclusion. Guessing the
values of few unknown cells to continue the propagation of attribute to reach the
meeting point, and check the consistency of the few guessing cells after (partial)
matching, one can still achieve a better attack than a brute-force guessing. With
the guess-and-determine approach, for Whirlpool, Sasaki et al. in [25] successfully
increased one more attacked round than the 5-round attack in [29].

Concretely, denote 2c by ς (where c is the number of bits in each cell of the
state, in targeted ciphers of this work, it is 8), and let

– −→dgb
be the number of cells only guessed to be Blue (forward computation);
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– ←−dgr
be the number of cells only guessed to be Red (backward computation);

– ←→dgbr
be the number of cells guessed to be both Blue and Red.

The framework of the MITM attack with guess-and-determine is as follows:

1. Randomly assign compatible values to all cells except for those depending
on the neutral bytes (i.e., Gray in the attack configuration), and values of
impacts from one attribute to the opposite attribute;

2. Compute values {−→v i} of forward neutral bytes and values {←−v i} of backward
neutral bytes under the values of Gray cells and values of impacts that they
are supposed to fulfill.

3. For all ς
−→
db values {−→v i} of forward neutral bytes, and ς(

−→
dgb

+
←−→
dgbr

) guessed
values {−→v g} for forward, compute forward to the matching point and store
all ς

−→
db+
−→
dgb

+
←−→
dgbr partial matching values {−→v m} in a look up table −→T (the

values are −→v i and −→v g, and the index is −→v m).
4. For all ς

←−
dr values {←−v i} of backward neutral bytes, and ς(

←−
dgr +

←−→
dgbr

) guessed
values {←−v g} for backward, compute backward to the matching point, obtain
the partial matching values ←−v m.

5. For all values of −→v i and −→v g in entry −→T [←−v m], use −→v i and ←−v i to compute
and check if the guessed values −→v g and ←−v g are correct. For correct guesses,
compute to the matching point to check if it is a full-state match. If so, use
−→v i and←−v i to compute the preimage, output it, and return; otherwise, repeat
from Step 1.

In the above framework of the MITM attack with guess-and-determine,

– the total degree of freedom for Blue with guessing is
−→
db +

−→
dgb

+
←→
dgbr

;
– the total degree of freedom for Red with guessing is

←−
dr +

←−
dgr +

←→
dgbr

;
– the expected number of matched pairs ς

−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m ;

– the required number of repetitions to get a full match at the guessing cells and
a full-state match is ς−(

−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m ) · ς

−→
dgb

+
←−→
dgbr

+
←−
dgr · ς(n−

→←
m ),

which equals ςn−
−→
db−
←−
dr−
←−→
dgbr ;

Thus, the complexity of the attack is ςn−
−→
db−
←−
dr−
←−→
dgbr ·(ς

−→
db+
−→
dgb

+
←−→
dgbr +ς

←−
dr+
←−
dgr +

←−→
dgbr +

ς
−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m ), which equals

ςn · (ς−(
←−
dr−
−→
dgb

) + ς−(
−→
db−
←−
dgr ) + ς−(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

))
' ςn ·max(ς−(

←−
dr−
−→
dgb

), ς−(
−→
db−
←−
dgr ), ς−(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

))
(8)

Thus, the complexity is determined by

min(
←−
dr −

−→
dgb

,
−→
db −

←−
dgr

,
→←
m −

−→
dgb
−
←−
dgr
−
←→
dgbr

).
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Building Model for Guessing. To model the mechanism of guess-and-determine,
three binary variables, gb, gr, gbr, are introduced for each cell in the input state
of MixColumns (invMixColumns for the backward computation).

The variables indicate whether the values of the cells should be guessed to
be of one attribute. Concretely, gb = 1 for guessing one White cell to be Blue.
gr = 1 for guessing one White cell to be Red. gbr = 1 for guessing one White cell
to be Blue (for forward propagation) and also Red (for backward propagation).

With these guess-indicating variables, attribute-indicating variables for each
cell in the input of MixColumns are thus constrained together with attribute-
indicating variables for the cell in output state of last operations (e.g., ShiftRows
or AddRoundKey).

Besides, according to the complexity Eq. (8) of the attack with guess-and-
determine, the objective should turn from min(

−→
db ,
←−
dr ,
→←
m ) to min(

−→
db −

←−
dgr

,
←−
dr −−→

dgb
,
→←
m −

−→
dgb
−
←−
dgr
−
←→
dgbr

). Thus, the variable that to be maximized is constrained
as in Eq. (9) and (10).

−→
dgb =

totalr−1,n−1∑
r=0,i=0

gb
r
i ,

←−
dgr =

totalr−1,n−1∑
r=0,i=0

gr
r
i ,

←→
dgbr =

totalr−1,n−1∑
r=0,i=0

gbr
r
i ,


τObj ≤

−→
db −

←−
dgr ,

τObj ≤
←−
dr −

−→
dgb ,

τObj ≤
→←
m −

−→
dgb −

←−
dgr −

←→
dgbr .

(9) (10)

Note that in the starting round, all cells are known and in the matching round,
guessing brought no advantage. Thus, for these two rounds, such constraints on
guessing can be omitted. Besides, heuristically, guessings are generally required
around the matching points. Thus, for efficiency, these guessing constraints can
be added only for those ending rounds, i.e., round-dependent modeling.

When only consider the scenario where one attribute canceling its freedom
for the propagation of the opposite attribute in only one direction, one variable g
instead of three (gb, gr, gbr) is sufficient. Because in each direction, the guessing
is for the propagation of only one attribute.

3.3 Separating Attributes in the Same States for Linear Operations

As mentioned above, the attribute-propagation of Blue and Red are mutually
exclusive. But under some conditions, one attribute-propagation may concede to
the propagation of the opposite attribute-propagation by consuming freedom of
itself. The XOR-RULE and MC-RULE have different requirements for enabling such
concession (cancellation). Combining these two operations, states of attribute that
do not meet the individual requirements are possible to make such concession.

In [5], the propagation through the combination of AddRoundKey and Mix-
Columns is characterized using the set of XOR-MC-RULE. In XOR-MC-RULE, the
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OR of the attribute of encryption-state cell and key-state cell is regarded as the
attribute of the input cell of MixColumns. In that way, the group of cells of the
same attribute in both encryption and key states can jointly cancel impacts
on the output cell of the opposite attribute. However, using only XOR-MC-RULE,
the possibility of the following scenario is missed. That is, an attribute can be
completely canceled via XOR-RULE before propagating through MixColumns, which
is not possible using only the XOR-MC-RULE (because MC-RULE cannot turn active
cells into inactive) (refer to Fig. 2a for an illustration). Thus, to find optimal
attack configurations, applying XOR-RULE-then-MC-RULE and XOR-MC-RULE should
be both considered in the models.

In this work, we model the combination of AddRoundKey and MixColumns by
considering the separation of (Blue and Red) attribute propagations. Note that
AddRoundKey and MixColumns are linear. Essentially, for linear operations, in
the same state, the attributes of Blue and Red can separately propagate through
them and then combine by cell-wise XOR upon the non-linear operation (i.e.,
SubBytes).

Additionally, the key-schedule also has linear operations. It is possible that
before going through the non-linear operation in the key-schedule, the attribute
of one cell in the round-key is a linear combination of Blue and Red. If not
be separately considered, such a linear combination of Blue and Red becomes
White. Separately, the Blue component in the linear combination can be used
with the Blue component in the encryption state, and the Red component can be
used with the Red component in the encryption state. Consequently, cancellation
constraints to reduce impacts on the opposite attribute propagation that cannot
be fulfilled previously become possible.

Moreover, at the matching point, if a key state cell is a linear combination of
Blue and Red, it does not impact the matching ability of the corresponding state
cell, and instead, the Blue component and Red component may provide degrees
of matching.

Thus, we separately consider Blue-attribute propagation and Red-attribute
propagation through linear operations in both encryption and key-schedule; Due
to this separation, XOR-RULE and MC-RULE without XOR-MC-RULE is sufficient
(refer to Fig. 2 for an illustration of the separation of attribute-propagations
through AddRoundKey and MixColumns).

3.4 Using the Similarity between Encryption and Key-Schedule

In previous work [5], the target cipher is AES hashing mode. For AES, the
operations in the key-schedule are different from those in the encryption. However,
in Whirlpool, the key-schedule share the same operations except for AddRoundKey.
This similarity between encryption and key-schedule enables an effect that might
not occur in other ciphers. This effect is that the AddRoundKey can be directly
moved around MixColumns in the encryption by changing to adding the key state
before MixColumns (denoted by #KMC) or the actual key state after MixColumns
(denoted by k).
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XOR-MC

XOR-MC

MC

MC

XOR-then-MC

MC

−1

(a) A propagation
missed by XOR-MC-RULE

XOR-MC
−1

XOR-MC

MC

MC

XOR-then-MC

MC

MC

MC-then-XOR

MC

(b) The necessity of XOR-MC-RULE
without separation

MC

−1

Blue

MC

MC

Red

MC

(c) The sufficiency without
XOR-MC-RULE with separation

– In 2a, using XOR-MC-RULE, a result of full Red attribute can not be achieved, which can be
obtained by XOR-then-MC-RULE.

– In 2b, without separation, (Blue and Red) attribute-propagation ruled by XOR-MC-RULE (the
first) cannot be obtained directly by XOR-then-MC-RULE and MC-then-XOR-RULE (the last two).

– In 2c, with the separation of (Blue and Red) attribute-propagation, XOR-RULE and MC-RULE are
sufficient (2c achieve the same results as the first in 2b).

Fig. 2: Combination of linear operations and separation of attribute-propagations

It is possible that moving AddRoundKey before MixColumns and using the key
state before MixColumns bring more advantages for the attribute-propagation on
the encryption data-path. Take the scenario of preserving Blue by consuming Red
for example; considering one column, suppose there are a few Red cells in #MC
and a few Red cells in #KMC; these few Red cells will be diffused into the whole
column if there is no constraint. Adding #KMC with #MC before MixColumns in
the encryption and letting the Red in #MC be canceled by the few Red in #KMC
might consumes fewer degrees of Red than adding #AK with k.

Similarly, it is also possible that adding #AK with k after the MixColumns
has more advantages than adding #MC with #KMC. Thus, to find optimal attack
configurations, both scenarios should be considered. The essential difference
between the scenarios is to either firstly use freedom in the key state to directly
cancel impacts before diffusion or to postpone the insertion of the key state
in order to postpone impacts from the key. We name the choice of applying
the first scenario by AK-MC-RULE and the second scenario by MC-AK-RULE. The
integration of the two scenarios into one model is in the form of indicator
constraints that is available in Gurobi. Note that, for forward computation,
AK-MC-RULE corresponds to using #MC ⊕ #KMC, MC-AK-RULE corresponds to
using #AC ⊕ k; for backward computation, AK-MC-RULE corresponds to using
#SB⊕ k, and MC-AK-RULE corresponds to using #MC⊕ #KMC;

In addition, since the MixColumns is column-wise, different columns can use
different modeling independently. Besides, since MixColumns is linear, different
attributes of Blue and Red can independently apply in different ways.

Allowing such flexibility of choice, the efficiency of the solving is impacted.
So, to decide in which way to proceed for each column, we use the heuristic that
when the key-schedule has consumed some degree of freedom in that column, we
apply MC-AK-RULE; otherwise, apply AK-MC-RULE.
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3.5 Using the Symmetry of the Ciphers

Due to the integration of many technical improvements and generalizations, the
search space is greatly enlarged. One needs to make a trade-off between the
quality of the searching result and the efficiency of the search. Besides trade-offs
made by removing some techniques, the symmetry of the ciphers is used to
reduced the problem scale.

Specifically, with respect to the MITM attacks considered in this work, many
AES-like designs can be viewed as of the Matryoshka structure. Properties
exploited in the attack are translation invariant in the direction of the row axis
and/or column axis. Rotational parameters of rows of the large version can wrap
to identical rotational parameters of rows for all small versions along the row
axis. The branch number of columns of the large version can be implied by
identical branch numbers of columns of all small versions along the column axis.
This allows projecting attack configurations on small-size versions to that on the
large-size version.

Concretely, a state of 8× 8 cells can be viewed as a 2× 2 matrix of state of
4× 4 cells (we call this 2x2-symmetry), or a 1× 2 matrix of state of 8× 4 cells.
Obtaining an attack configuration for the 4× 4 state version, cloning the state
patterns four times, and placing them in a 2× 2 matrix result in a configuration
for the 8× 8 state version. The projection from the attack configuration in Fig. 3
to the attack configuration in Fig. 10 is one example of such correspondence.
Similarly, obtaining an attack configuration for 8× 4 state version, cloning the
state patterns two times, and placing them side-by-side in a 1× 2 matrix, also
result in a configuration for the 8× 8 state version. Fig. 14 shows an example of
reducing 8× 8 version to be an 1× 2 of 8× 4 version.

Exploiting such symmetry of the ciphers, the search can be efficient, while
might lose asymmetric attack configurations (e.g., that in Fig. 12).

4 Application to Whirlpool

4.1 Description of Whirlpool

Whirlpool, a block-cipher based secure hash function designed by Rijmen and
Barreto in 2000, produces a 512-bit hash value using Miyaguchi-Preneel construc-
tion for an input message of maximum length less than 2256 bits. And it has been
adopted as an ISO/IEC standard.

Basically, the compression function consists of the key schedule and state
update transformation. The compression function uses a 10-round AES-like block
cipher Ek with 8× 8-byte internal states which takes a 512-bit chaining value Hi

as a key and operates on a 512-bit message block of a plaintext Mi, to output
F (Hi,Mi) = EHi

⊕Mi ⊕Hi. The (8j + i)-th input bytes of the message block is
placed at the i-th row and j-th column of the state. Each round consists of four
operations:

– SubBytes (SB) applies the Substitution-Box to each byte.

17



– ShiftColumns (SC) cyclically shifts the j-column downwards by j bytes.
– MixRows (MR) multiplies each row of the state matrix by an MDS matrix.
– AddRoundKey (AK) XOR the round key to the state.
H0 serves as the key value k0, and then ten 512-bit subkeys k1, k2, · · · , k10 are
generated by the key-schedule function below:

ki+1 ← AC ◦ MR ◦ SC ◦ SB(Ki)

for i = 0, 1, 2, · · · , 9, where AddRoundConstants (AC) XOR a 512-bit constant
defined in the key schedule.

At the start of hashing, Mi serves as the plaintext p, and the whitening
operation is performed to get s0 = k0 ⊕ p. In each round, the output state si+1
of the block cipher is updated as follows:

si+1 ← AK ◦ MR ◦ SC ◦ SB(si)

for i = 0, 1, 2, · · · , 9.

4.2 New Attacks Resulted from Applying the MILP Modeling
Applying the MILP models described in Sect. 3 on Whirlpool, improved attacks
are found for 5- and 6-round, and first attacks are found for 7-round.

For 5-round attacks (refer to Fig. 13), guess-and-determine is not required,
but allowing one attribute-propagation conceding to the opposite attribute-
propagation in both directions is essential for achieving the best complexity. For
6-round attacks (refer to Fig. 12), guess-and-determine is the critical technique
that enables the improved results; Expanding to 7-round attacks (refer to Fig. 3,
Fig. 10, Fig. 11), besides guess-and-determine, flexible choices of adding #KMC
or adding k is an additional key point.

The following of this section describes how to use one of the resulted attack
configurations to launch a concrete attack on 7-round Whirlpool. A brief descrip-
tion of the improved 6-round attack is then followed. In the description, ShiftRows
and MixColumns instead of ShiftColumns and MixRows as specified in the design
of Whirlpool are used. Thus, the states should be transposed to correspond with
the specification of Whirlpool. This transposition does not influence the attacks.
Please refer to Sect. C for a summary of notations.

The attack on 7-round Whirlpool. Fig. 3 and 10 show one of the attack
configurations on 7-round Whirlpool. Using symmetry of the cipher, the search
was done on small versions with Nrow × Ncol = 4 × 4. Cloning the resulted
configurations four times and placing four identical small states in a 2× 2 matrix,
the resulted configurations with Nrow ×Ncol = 8× 8 is a valid one for the real
version (e.g., the correspondence between Fig. 3 and Fig. 10).

In the sequel, for the ease of finding correspondence with our implementation
for experimental verification, we describe the attack using the small version with
Nrow × Ncol = 4× 4. One can quickly project this attack on the small version to
the real version of Whirlpool. The complexity of the attack on the real version is
to the power of four of this small version’s complexity.
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Compute initial values of neutral bytes in Red. The left-hand side of Fig. 3 is found
by solving the MILP models. Following this configuration, one can obtain the
initial values of neutral bytes in Red that fulfill the cancellation constraints among
states (#AK3, k3,#SB3) and (#MC5,#KMC4). The computational complexity will
be no more than 232.

However, one can observe an equivalent configuration shown on the right-hand
side of Fig. 3. Following both configurations, one can devise the attack, with a
different procedure of computing the initial values of backward neutral bytes
between the two. The latter (right-hand side of Fig. 3) is more direct in terms
of computing values of Red neutral bytes; thus, it will be used in the following
description of attack 4.

To get the initial values of backward neutral bytes, one only needs to enumerate
all possible values of cell k3[15], and fix values of cells in the main anti-diagonal
of #SB4. That is due to the following observation. Fixing the values of cells in the
first column of #MC4 to be 0 (equivalently, fixing the values of cells in the main
anti-diagonal of #SB4 to be Sbox−1[0]), the values of the first column of #SB5

equals that of k4. Note that the operations of the round function in encryption
and key-schedule are exactly the same, excepting the former using AddRoundKey
and the latter using AddRoundConstants. Thus, the first anti-diagonal of #MC5

will equal that of #KMC4. Consequently, the impact brought by adding Red cells
in the 4th round (k4) will be canceled in the next round by adding #KMC4.

Compute initial values of neutral bytes in Blue. To get the initial values of
forward neutral bytes (in Blue), one focuses on the constraints among states
{#MC2,#AK2,#SB3,#MC3,#AK3}.

There are five degrees of freedom (in bytes) for the forward (Blue). Using
four out of the five, one can keep the same attack complexity because the degree
of freedom for backward is the bottleneck. Thus, we fix the value of one Blue
cell in #AK3, i.e., #AK3[3], as indicated by C .

Note that values of Blue cells are constrained to have constant impacts on
the last anti-diagonal of #MC2 and constant impact on the first diagonal of #AK3.
Denote the constant impacts by #MC2

C[3, 6, 9, 12] and #AK3
C[0, 5, 10]. The initial

values of forward neutral bytes can be computed using a local meet-in-the-middle
procedure as shown in Algorithm 1. In Algorithm 1, the procedure starts from
guessing two free cells in the first column of #AK3 and one cell in each of the
columns in #SB3, computes other undetermined cells using predetermined impacts
on cells in #MC2 column-by-column, and compute back pair-wisely to match
at constant cells in #AK3. From Algorithm 1, the computational complexity
for obtaining the initial values of neutral bytes in Blue is 232 and the memory
required is 232 (blocks) 5

4 Both procedures of computing values of backward neutral bytes are experimentally
verified in our implementation.

5 Implementation of Algorithm 1 can be found together with the implementation of
the entire attack via https://github.com/MITM-AES-like-Hashing/Whirlpool_7R.
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The Main Procedure. Fix the values of constant impacts of Blue on Red in
#MC2 (denoted by #MC2

C[3, 6, 9, 12]) and the value of #AK3
C[3] to be arbitrary.

Set #AK3[0, 5, 10, 12, 13, 14, 15] be 0, and k3[0, 5, 10, 15] be Sbox−1[0].
Precompute the initial values of forward neutral bytes as shown in Algorithm 1

and store the result in −−→TInit.

1. For each possible value of 12 Gray bytes k3[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14],
calculate the values of Gray bytes in k4 and #KMC4.
(a) For each value −→v i of Blue cells in #MC3 stored in −−→TInit,

i. start from #MC3, compute forward (only cells in Blue) with the
values of Gray bytes in k3 and k4 to #MC5;

ii. XOR #MC5 with the values of Gray bytes in #KMC4;
iii. set the first anti-diagonal of #MC5 to be zero, and compute forward

to #MC6 (without AddRoundKey with k5 but need to XOR the round
constant RC[5], because #KMC4 is used instead);

iv. compute MC(#MC6) and get the value −→v m of the main diagonal
v. store −→v i in a look-up table −→T with −→v m as index;

(b) For each value ←−v i of the Red cell in k3, with the value of Gray cells,
i. compute all values of the round keys, i.e., k2, k1, k0, km, k4, k5, k6,

where km is the master key;
ii. set the Red cell #AK3[15] to be ←−v i ⊕ Sbox−1[0], combine with the

constant value in #AK3, compute backward up to #AK0;
iii. For each value ←−v g of the Pink cells in #AK0,

A. with the value of Red cell in the first column of #AK0, compute
backward through feed-forward, XOR the given target T , compute
#AK6;

B. get the value ←−v m of the main diagonal of #AK6.
C. for each value −→v i of Blue cells in #MC3 stored in −→T [←−v m], com-

bine the values of Red cells, restart the computation from #AK3

up to #AK0;
D. If the newly computed value −→v ′g of the Pink cells in #AK0 does

not equal ←−v g, go to Step 1(b)iii. Else, compute to #AK6, denote
the value by ←−v .

E. Start from #AK3 with the combined knowledge of values of both
Blue and Red cells, compute to MC(#MC6), if its value −→v equals
←−v , a full-state match is found, output the state #SB0 and the
key state km. Otherwise, go to Step 1.

Complexity. As analyzed above, the computational and memory complexity of
the precomputation of the initial value of forward neutral bytes is 232. As for the
complexity of the main procedure, the attack configuration on the small version
(n = Nrow ×Ncol = 4× 4 = 16) is,

−→
db = 4,

←−
dr = 1,

←−
dgr

= 3, →←m = 4, ς = 28, and
−→
dgb

=
←→
dgbr

= 0. According to Eq. (8), the complexity of the whole attack on the
small version is therefore ςn · (ς−(

←−
dr−
−→
dgb

) + ς−(
−→
db−
←−
dgr ) + ς−(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

)) =
ς16 ·max(ς−1 + ς−(4−3) + ς−(4−3)) = ς15 = 2120
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Projecting to the real version of Whirlpool (n = Nrow × Ncol = 16 · 4 = 64)
(refer to Fig. 10 in which fix four extra Blue cells in #AK3), the complexity will
be (2120)4 = 2480. Concretely, the attack configuration will be

−→
db = 4 · 4 = 16,

←−
dr = 1 · 4 = 4,

←−
dgr

= 3 · 4 = 12, →←m = 4 · 4 = 16, ς = 28, and
−→
dgb

=
←→
dgbr

= 0.
Accordingly, the attack complexity on the real version of 7-round Whirlpool is
ς64 ·max(ς−4 + ς−(16−12) + ς−(16−12)) = 2480.

The memory required in the main procedure is that taken by −→T , whose size
is also limited by the degree of freedom for forward, that is 232 as for the small
version, and 2128 for the real version.

To further verify the attack and its complexity analysis, we implemented the
full attack on the small version with Nrow × Ncol = 4 × 4. Round function of
AES is used to simulate the round function and key schedule of the small version
of Whirlpool compression function (round constants are from full Whirlpool).
To make the verification practical, the experiments aim for partial matching
instead of full matching between the matching states, while preserving the 28

complexity gain. Concretely, the goal is to match m bits instead of 128 bits
with verified complexity max{232, 2m−8}. Please refer to https://github.com/
MITM-AES-like-Hashing/Whirlpool_7R for results on m ∈ {36, 40, 44, 48}.

Remark 3. Besides the presented attack, there are several different attack con-
figurations generated by solving MILP models, e.g., the example illustrated in
Fig. 11. These results commonly require to guess at least three cells in at least
one direction and use the flexibility of choosing XOR #KMC or k.

The attack on 6-round Whirlpool. When using the symmetry of the cipher
and search on small versions ( with Nrow×Ncol = 4×4, and Nrow×Ncol = 8×4), the
best attack configurations imply attacks on the real version with a configuration−→
db = 8,

←−
dr = 8, →←m = 8, ς = 28, and

−→
dgb

=
←−
dgr

=
←→
dgbr

= 0. Thus, the complexity
is 2448 (refer to Fig. 14).

When searching on the full-size version (Nrow×Ncol = 8×8), better results are
found with asymmetric patterns. One example is depicted in Fig. 12. Following
the configuration depicted in Fig. 12, one can devise a better attack on 6-round
of Whirlpool. The procedures to compute the initial values of neutral bytes for
both directions are relatively simpler than that of the above attack on 7-round.
That is because, the cancellation constraints on the Blue is at a single point, i.e.,
(#MC2,#AK2). The cancellation constraints on the Red is also at a single point,
i.e., (#MC4,#AK4). As for such constraints, column-by-column independent
computations can be used to derive the initial values of neutral bytes for both
directions. The concrete attack configuration is

−→
db = 9,

←−
dr = 24,

−→
dgb

= 15, →←m =
24, ς = 28, and

←−
dgr

=
←→
dgbr

= 0. Accordingly, the attack complexity on the full-size
version of 6-round Whirlpool is ς64 ·max(ς−24−15 + ς−(9) + ς−(24−15)) = 2440. The
memory required is 224×8 = 2192.

Conversion from Pseudo-Preimage to Preimage Attacks. This has been
discussed in previous works, and we follow the Two Types of Last Block Attacks
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configuration automatically found equivalent configuration used in the experimental verification

• (−→ι , ←−ι ) = (12 , 8 ) • (
−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (5 , 1 , 4 , 0 , 3 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (2, 1, 1)

Config

This implies an attack on the full version (8× 8) as shown in Fig. 10 with configuration
((
−→
db −

←−
dgr ,

←−
dr −

−→
dgb

,
→←
m −

−→
dgb
−
←−
dgr −

←−→
dgbr

) = (8, 4, 4))

Fig. 3: An example of using (2× 2 of 4× 4) to search the MITM attack on 7-round Whirlpool and an
equivalent configuration used in the experimental verification
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from [25, 29]. Denote the time complexity of inverting the reduced-Whirlpool
compression function as 2l. A random message fulfills the padding rule of Whirlpool
with probability 2−9, hence it costs 2l+9 to find a right last block. Then an
unbalanced meet-in-the-middle is carried out between the initial value and
the input chaining value of the last block, which costs 2(512+l)/2 and sums to
2(512+l)/2 + 2l+9 to find a long and full preimage. Detailed calculations are
summarized in Table 1. We note further complexity optimizations are possible,
by finding pseudo-preimages under multi-target scenarios and utilizing them in
the “unbalanced meet-in-the-middle” phase as discussed in [12].

4.3 Discussions on the New Attacks

The previous best attack on Whirlpool is up to 6-round [25], in which guess-and-
determine is the essential technique that enables expanding one more attacked
round than the 5-round attack in [29]. Besides, in the 6-round attack in [25],
freedom degree in the key is exploited to reduce the complexity. However, the
computational chunks between the key schedule and the encryption data-path
are designed to be almost identical (due to the feasibility of manual analysis).
Concretely, in the attack on 6-round Whirlpool in [25], to continue the propagation
of Red, values of 24 cells (

←−
dgr

= 24) are guessed. The freedom in Blue is 32
bytes (

−→
db = 32); the freedom in Red is 8 bytes (

←−
dr = 8); and the degree of

matching is 32 bytes (→←m = 32). Thus, the total complexity is determined by
min(

−→
db −

←−
dgr

,
←−
dr −

−→
dgb

,
→←
m −

−→
dgb
−
←−
dgr
−
←→
dgbr

) = min(32− 24, 8− 0, 32− 24) = 8,
which is 2448.

In contrast, in the new attack automatically found by the MILP model, as
can be seen in Fig. 12, the computational chunks between the key schedule and
the encryption data-path are largely different (but still share common patterns
in the starting rounds). Thus, the degree of freedom in Blue and Red can be
relatively more balanced, and the required number of guessing bytes is relatively
less. Consequently, the complexity is further improved (to 2440).

To extend one more attacked round to 7-round, additional strategies are
required on top of those appeared in [25]. As can be seen in Fig. 3 and 10, in
round 5, the equivalent round-key #KMC should be added before MixColumns to
enable the cancellation of impacts from Red cells on Blue-attribute propagation
to the forward. Moreover, complex constraints (cover two rounds across non-
linear operations) must be imposed on Blue cells to cancel their impacts on the
Red-attribute propagation to the backward. Non-trivial procedure (e.g., the local
meet-in-the-middle procedure in Algorithm 1) for obtaining initial values of Blue
neutral cells fulfilling the non-linear constraints is also necessary here.

Overall, the improvements obtained over [5] are the combined effort of the
new techniques including guess-and-determine and relaxed model, and model
optimization utilizing the similarity between key-schedule and encryption.
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5 Application to Grøstl

5.1 Description of Grøstl

Grøstl, proposed by Gauravaram et al. is one of the five finalists of SHA-3
competition hosted by NIST. Grøstl adopts a double-pipe design, i.e., the size of
the chaining value, which is 2n-bit, is twice as the hash size, which is n-bit. For
Grøstl-256, the hash size is 256 bits, and for Grøstl-512, it is 512 bits.

Two 2n-bit AES-like permutations P and Q are employed to build the com-
pression function (CF) and output transformation (OT). The P and Q work
on 8 × 8 sized state for Grøstl-256 and 8 × 16 sized state for Grøstl-512. For
Grøstl-256, they consist of 10 AES-like rounds; and for Grøstl-512, they consist of
14 AES-like rounds. Concretely, the round function of P and Q is made up of 4
operations, i.e., SubBytes (SB), ShiftRows (SR), MixColumns (MC), AddRoundCon-
stants (AC). The ShiftRows (SR) of P cyclically shifts the i-th row leftwards for j
bytes. For P of Grøstl-256, j is in (0,1,2,3,4,5,6,7), while for P of Grøstl-512, j is
in (0,1,2,3,4,5,6,11). Since the ShiftRows (SR) operation for P and Q is different
and Q is not involved in our attack, details of Q are skipped.

The compression function of Grøstl built from P and Q is written as: Hi =
P (Hi−1 ⊕mi)⊕Q(mi)⊕Hi−1 (i ≥ 1), where Hi is the chaining value, and mi

is the message block. After processing all the message blocks, the last chaining
value serves as the input of the output transformation, which is

Ω(X) = Truncn(P (X)⊕X).

The right half of P (x)⊕X is the output hash value (refer to Fig. 4).

P

Q

Hi Hi+1

Mi

PX

truncated

Fig. 4: Grøstl’s compression function (CF) and output transformation (OT)

5.2 New Attacks Resulted from Applying the MILP Modeling

Applying the MILP models described in Sect. 3 on the OT (resp. P (Hi)⊕Hi

in the CF) of Grøstl-256 and Grøstl-512 6, new attacks are found on 6-round
(refer to Fig. 5, 6) and 8-round (refer to Fig. 7, 8), respectively. Besides, many

6 Should omit the modeling for AddRoundKey and add constraints for truncation.
Besides, because of the truncation, matching point has only three choices, i.e., the
first, the second last, or the last rounds.
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efficient attacks on shorter rounds are also found (refer to Fig. 15, 16 for 5-round
Grøstl-256, Fig. 19, 20 for 6-round Grøstl-512, Fig. 17, 18 for 7-round Grøstl-512 ).

For the 6-round attack on the OT of Grøstl-256, guess-and-determine is
the essential that enables to cover one more attacked round than previous 5-
round attack in [29]; allowing one attribute (Blue and Red) propagating in both
directions is the essential that enables better complexity than previous 6-round
attack in [18]. Besides, many inferior attacks than the presented best one on
6-round Grøstl-256 are also found. For those inferior attacks, the computation of
initial values of neutral bytes is relatively easier, but the complexity of the entire
attack is higher. Thus, a non-trivial procedure to compute the initial structure
(initial values of neutral bytes) is essential for achieving the best complexity.

For the 8-round attack on the OT of Grøstl-512, guess-and-determine is the
essential that enables to achieve better complexity than the previous 8-round
attack [29]. Besides, compared to the 8-round attack in [29], in the presented
attack, the initial structure covers one more round (4 rounds) by allowing one
attribute-propagation conceding to the opposite attribute-propagation in both
directions.

The following of this section describes how to use the resulted attack configu-
rations to launch concrete attacks on 6-round OT of Grøstl-256 and 8-round OT
of Grøstl-512. Brief discussions on conversions to pseudo-preimage attacks on the
hash function using both attacks on OT and on CF are than followed. Please
refer to Sect.C for a summary of notations.

The attack on 6-round OT of Grøstl-256. Fig. 5 shows one of the attack
configurations on 6-round OT of Grøstl-256. Firstly, one launch a precomputation
to compute initial values of neutral bytes.

To compute initial values of neutral bytes in Red one can adopt a local meet-in-
the-middle procedure as specified in Algorithm 2, which is similar to Algorithm 1.

Concretely, in the configuration of the attack in Fig. 5, the degree of freedom
for the forward computation is the bottleneck; there are four bytes extra degrees
of freedom for the backward that can be fixed for the ease of computing initial
values of backward neutral bytes (in Red). Thus, we fix the value of four Red cells
in #MC2, i.e., #MC2

col0
[6, 7], #MC2

col1
[5, 6], as indicated by C . In Algorithm 2,

the focus is on cancellation constraints among states {#MC2, #AC2, #SB3, #MC3,
#AC3}. The procedure starts from guessing eight free cells in the first two
columns of #MC2 and four cells in each pair of columns in #MC3, computes
other undetermined cells using constant impacts in #AK3 column-by-column, and
compute back octuple-wisely to match at constant cells in #MC2. The complexity
of this procedure is 2128 computations and 2128 blocks of memory.

The Whole Attack Procedure (refer to Fig. 5). First, fix the value of 16 Gray cells
in #MC2

col{0,1,3,4,5,6}
(including the four C cells #MC2

col0
[6, 7], #MC2

col1
[5, 6]); fix

the value of 16 impacts on C-marked Blue cells in #AC3. With these constants,
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compute the initial values of neutral bytes in Red by Algorithm 2, and obtain a
hash table ←−−TInit.

1. For each possible value of the 12 Gray cells in #MC2
col{2,7}

,
(a) for each value ←−v i of Red neutral bytes in ←−−TInit, i.e., Red cells in #AC2,

i. with values of Gray cells in #MC2
col{2,7}

(the constraints imposed
by other Gray cells in #MC2 have already been fulfilled during the
precomputation of ←−v i), compute backward to #AC0;

ii. from #AC0
SR−1(col{1,3,4,5,6,7}), derive value

←−v m of 16 bytes for matching
through MC (2 bytes in each column, refer to [5, 22] for matching
through MC);

iii. store ←−v i into a look-up table ←−T , with ←−v m as the index.
(b) for each value −→v i of the four Blue neutral bytes in #MC2,

i. with values of Gray cells in #MC2, compute backward to get values
of Blue cells in #AC0;

ii. with values of Gray cells in #MC2, compute forward to get values of
Blue cells in #AC2 and #AC3;

iii. XOR the value of constant impacts on C-marked Blue cells in #AC3;
compute forward to #MC5,

iv. for each value −→v g of the 12 Cyan cells in #MC5,
A. compute the two Blue columns, XOR with the given target, com-

pute forward the Blue cells through feed-forward to #MC0;
B. from values of Blue cells in both #MC0 and #AC0, derive a value
−→v m of 16 bytes for matching (i.e., 2 bytes in each column);

C. for each value of Red cells in #AC2 that is stored in entry←−T [−→v m],
- with values of Blue cells in #AC2, compute forward to #MC5;
get the value −→v ′g of cells at the position of Cyan cells, if −→v ′g 6= −→v g,
go to Step 1(b)iv;
- compute forward to get values of all cells without hatching-
mark in #AC5, XORing the given target at the feed-forward point),
compute through feed-forward to #MC0, - if the values of White
cells without hatching-marks are fully matched with values of
Blue and Red cells through MixColumns (values of cells with
hatching-marks in #MC0 can be chosen), a full truncated-state
match found, output and return; otherwise, go to Step 1;

Complexity. The memory complexity is 2128 (blocks). As for the computational
complexity, it is determined by the following configuration of this attack, i.e.,
n = 8 × 4 = 32 (truncated 4 out of the 8 columns),

−→
db = 4,

←−
dr = 16 (minus

4 from that shown in Fig. 5),
−→
dgb

= 12, →←m = 16, ς = 28, and
←−
dgr =

←→
dgbr

= 0.
Accordingly, the computational complexity of this attack on 6-round Grøstl-256
is ς32 ·max(ς−(4), ς−(16−12) + ς−(16−12)) = 228·8 = 2224.

Note that, the required number of repetitions of the main MITM procedure
is ςn−

−→
db−
←−
dr , i.e., ς12 for this attack configuration. Thus, enumerating all possible
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values of 12 Gray cells in #MC2
col{2,7}

, as did in Step 1, is sufficient. This condition
enables to fix values of all other Gray cells in #MC2 and all 16 constant impacts
on C-marked Blue cells in #AC3, as did at the very beginning of the attack.

The attack on 8-round OT of Grøstl-512. Fig. 7 shows one of the attack
configurations on 8-round OT of Grøstl-512.

The whole attack requires a precomputation phase to obtain initial values of
neutral bytes in Blue and in Red for various values of Gray cells and values of
impacts on cells of opposite attributes. Compared to the procedure of Algorithm 2
in the attack on 6-round Grøstl-256, the precomputation procedure in here is
simpler. Concrete procedures can be found in Algorithm 3 and 4. The complexity
of the precomputation for obtaining the values of neutral bytes in Blue is 228·8,
i.e., 2224 computations and 2224 blocks of memory. That for neutral bytes in Red
is 216·8, i.e., 2128 computations and 2128 blocks of memory.

During the main attack procedure, the resulted look-up tables −−→TInit and ←−−TInit
from Algorithm 3 and 4 will be used to retrive the initial values of neutral bytes
under various values of Gray bytes and values of impacts.

The Main Attack Procedure (refer to Fig. 7).

1. For each possible value of Gray cells in #MC4, #AC4, #AC5, and value of
impacts from Blue on C-marked Red cells in #MC3, and value of impacts
from Red on C-marked Blue cells in #AC6,
(a) compute the value of Gray cells in #MC5 from that in #AC4 (cell-by-cell)
(b) use the value of #AC4[37, 47, 57, 67, 80] ‖

#MC3[60, 61, 67, 70, 77, 86, 87, 95, 96, 97, 104, 105, 106, 107] 7 to look up the
table −−→TInit, retrive the value of 28 Blue neutral cells in #MC4.

(c) for each value −→v i of the 28 Blue neutral cells in #MC4,
i. with the value of Gray cells in #MC4, #AC4, #AC5, compute forward

to #AC6; XOR with values of pre-determined impacts on C-marked
cells in #AC6, compute forward to #AC7;

ii. XOR with the value of given target T (truncated out half of the state),
compute through feed-forward to #MC0;

iii. derive the value −→v m of 10 (i.e., 2+3+3+2) bytes from #MC0
col{7,8,9,10}

for matching through MC (refer to [5, 22]);
iv. store −→v i into a look-up table −→T , with −→v m as the index.

(d) use the values of #AC6[56, 57, 67, 77, 80, 87] ‖ #MC5[80, 87, 97, 107, 117] to
look up the table ←−−TInit, retrive the values of 16 Red neutral cells in #AC5.

(e) for each value ←−v i of Red neutral cells in #AC5,
i. with the value of Gray cells in #AC5, #MC5, #AC4, #MC4, compute

backward to #MC3; XOR with values of pre-determined impacts on
C-marked cells in #MC3, compute forward to #AC1;

7 The notation S[ij] is used to represent the j-th cell in the i-th column of a state S,
which is the shorten for Scoli [j].
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Fig. 5: An example of the MITM attack on the OT of the 6-round
Grøstl-256
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Fig. 6: An example of the MITM attack on P (H ′)⊕H ′ in the CF of
the 6-round Grøstl-256 (without guessing)
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Fig. 7: An example of the MITM attack on the OT of the 8-round
Grøstl-512
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Fig. 8: An example of the MITM attack on P (H ′)⊕H ′ in the CF of
the 8-round Grøstl-512 (without guessing)
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ii. for each value ←−v g of the 4 Pink cells in #AC1

A. compute backward to #AC0; derive the value ←−v m of 10 bytes
from #AC0

col{7,8,9,10}
for matching through MC;

B. for each value −→v i stored in entry −→T [←−v m],
- with values of Red and Gray cells in #MC4, compute backward
to #AC1; get the value ←−v ′g of cells at the position of Pink cells,
if ←−v ′g 6=←−v g, go to Step 1(e)ii;
- compute backward to #AC0, denote the value by ←−v ;
- with values of Red and Gray cells in #MC4, compute forward
(XORing the given target at the feed-forward point) to #MC0,
denote the value of cells without hatching-marks by −→v ; if −→v and
←−v can be fully matched through MixColumns (values of cells with
hatching-marks in #MC0 can be chosen), a full truncated-state
match found, output and return; otherwise, go to Step 1;

Complexity. Due to the precomputation, the memory complexity is 2224 (blocks).
As for the computational complexity, it is determined by the following config-
uration of this attack. n = 8 × 8 = 64 (truncated 8 out of the 16 columns),
−→
db = 9,

←−
dr = 5,

←−
dgr

= 4, →←m = 10, ς = 28, and
←−
dgr

=
←→
dgbr

= 0. Accord-
ingly, the computational complexity of this attack on 8-round Grøstl-512 is
ς64 ·max(ς−(9−4), ς−(5), ς−(10−4)) = 259·8 = 2472.

Conversion to Pseudo-Preimage Attacks. The attack procedures pre-
sented above are on the OT of Grøstl. They can be converted into pseudo-preimage
attacks on Grøstl combining with similar attack procedures on the P (H)⊕H of
the CF using the conversion method in [29]. The complexity of the converted
pseudo-preimage attacks are summarized in Table 1. More details can be found
in F.

5.3 Discussions on the New Attacks

An interesting feature of the presented attack on 6-round Grøstl-256 is that, with
necessary guessing, the computation of Blue covers the full 6-round. That is,
the propagation of Blue also requires computing to backward and contributes
to increasing degrees of matching. Besides, like the attack on 7-round Whirlpool,
a non-trivial local meet-in-the-middle procedure to compute initial values of
neutral bytes is also necessary.

Note that, obtaining the previous best attacks on Grøstl, the work in [29]
has already been assisted with automatic searching and the 5-round attack on
Grøstl-256 in [29] was claimed to be optimal. However, except for lacking of the
guess-and-determine technique, the search space is also limited. The presented
5-round attacks on Grøstl-256 in Fig. 15 and 16 achieve better compelxity than
that in [29] due to allowing the propagation of Blue and Red to both directions
while do not involve guessing. Overall, the improvements on Grøstl in this work
are results of the combination of the integration of new techniques, relaxed model,
and a powerful off-the-shelf solver.
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6 Conclusions

In [5] Bao et al. introduced the Mixed-Integer-Linear-Programming into the
search of best configurations for the MITM preimage attacks against AES-like
hashing. Based on their work, we introduced more techniques such as guess-
and-determine, relaxed modeling, and round-dependent modeling in order to
enlarge the configuration search space and hence to find better attacks. As a
result, we improved the best preimage attacks against Whirlpool and AES-256
from 6 to 7 and 9 to 10 rounds, and lowered the attack complexities of 5 and
6-round Whirlpool, 5 and 6-round Grøstl-256, and 8-round Grøstl-512. The results
are possible due the combination of new techniques which enlarged the search
space, and a set of model optimizations for the MILP program to output in real
time.
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A Concrete Inequalities modeling the Propagation rules

Inequalities for MC-RULE that allowing each attribute of Blue and Red conceding to
the opposite attribute propagation by consuming freedom of itself in both directions.



ω = Nrow−1max
i=0

(ωI
i ),

(
Nrow−1∑

i=0

xI
i )−Nrow · x ≥ 0,

(
Nrow−1∑

i=0

xI
i )− x ≤ Nrow − 1.

(
Nrow−1∑

i=0

yi
I)−Nrow · y ≥ 0,

(
Nrow−1∑

i=0

yi
I)− y ≤ Nrow − 1.

(11)



(
Nrow−1∑

i=0

xO
i ) + Nrow · ω ≤ Nrow,

(
Nrow−1∑

i=0

yO
i ) + Nrow · ω ≤ Nrow,

(
Nrow−1∑

i=0

(xI
i + xO

i ))− Brn · x ≤ (Niosum − Brn),

(
Nrow−1∑

i=0

(xI
i + xO

i ))−Niosum · x ≥ 0,

(
Nrow−1∑

i=0

(yI
i + yO

i ))− Brn · y ≤ (Niosum − Brn),

(
Nrow−1∑

i=0

(yI
i + yO

i ))−Niosum · y ≥ 0,

(12)



(
Nrow−1∑

i=0

yO
i )− cx ≥ 0

(
Nrow−1∑

i=0

yO
i )−Nrow · y − cx ≤ 0

(
Nrow−1∑

i=0

yO
i ) + Nrow · y + cx ≤ Niosum

(
Nrow−1∑

i=0

xO
i )− cy ≥ 0

(
Nrow−1∑

i=0

xO
i )−Nrow · x− cy ≤ 0

(
Nrow−1∑

i=0

xO
i ) + Nrow · x + cy ≤ Niosum

(13)

Note that, Niosum − (
∑Nrow−1

i=0 (xI
i + xO

i )) is the total number of Red or White
cells (i.e., active cells as for Red) in the input and output columns. Similarly,
Niosum − (

∑Nrow−1
i=0 (yI

i + yO
i )) is the total number of Blue or White cells (i.e.,

active cells as for Blue). They are constrained by the branch number Brn of
MixColumns.

Inequalities for MATCH-RULE. For concrete formalization of MATCH-RULE, the
involved variables include the binary variables that indicate the attribute of
each cell in the input and output columns (the corresponding columns in

−−→
End

34



and
←−−
End and also the key state

←−−
EndK or

−−→
EndKMC), i.e., (xI

i , y
I
i ), (xO

i , y
O
i ),

(xK
i , y

K
i ), and auxiliary binary variables ωI

i , ωO
i , ωK

i , ωE⊕K
i , xE⊕K

i , yE⊕K
i for

i ∈ {0, 1, · · · ,Nrow − 1}. Besides, one need the general variable →←m i to represent
the degree of matching in column i. Apart from those variables, the following
auxiliary binary variables are introduced to indicating the following attributes of
input/output columns (after the last AddRoundKey):

– −→eb : whether exist Blue cells ( );
– ←−er : whether exist Red cells ( );
– em: whether exist more than Nrow known cells ( , , or );
– →←ef : whether exist filtering ability, i.e., →←ef = AND(−→eb ,

←−er , em).

Suppose
−−→
EndKMC has fewer White cells than

←−−
EndK and thus using

−−→
End⊕

−−→
EndKMC

as the key addition, then, the concrete constraints on →←m i are as in Eq. (14).
ωE⊕K

i = OR(ωI
i , ω

K
i ),

xE⊕K
i = AND(xI

i , x
K
i ),

yE⊕K
i = AND(yI

i , y
K
i ).

→←
m i=

Nrow −
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i ), →←
ef = 1;

0, →←
ef = 0.

−→eb +
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i + yE⊕K
i + yO

i ) ≤ Niosum,

Niosum · −→eb +
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i + yE⊕K
i + yO

i ) ≥ Niosum,

←−er +
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i + xE⊕K
i + xO

i ) ≤ Niosum,

Niosum · ←−er +
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i + xE⊕K
i + xO

i ) ≥ Niosum,

(Nrow + 1) · em +
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i ) ≤ Niosum,

Nrow · em +
Nrow−1∑

i=0

(ωE⊕K
i + ωO

i ) ≥ Nrow,

→←
ef = AND(−→eb ,

←−er , em).
(14)

B Compute Initial values of Neutral Bytes in the Attacks

Property 1 (Property of MDS matrix). Known any Nrow out of the 2 ·Nrow input
and output elements of the MDS matrix, the remaining Nrow elements can be
computed.
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Algorithm 1 Compute initial values of forward neutral bytes (in Blue) in the
attack in Fig. 3
1: procedure ComputeForwardNeutralBytes
2: −−→

TInit ← ∅
3: for all possible values of #AK3[1, 2] do . 216

4: #MC3[0, 1, 2, 3] MC−1
← #AK3[0, 1, 2, 3] . #AK3[0, 3] are fixed

5: #SB3[0, 5, 10, 15] SB−1
← #MC3[0, 1, 2, 3]

6: for all possible values of #SB3[8] do . 28

7: #SB3[9]
MC46715← (#SB3[8, 10, 11],#MC2

C [9]) . according to Property 1 a

8: #MC3[8] SB← #SB3[8]
9: #MC3[5] SB← #SB3[9]
10: L#MC3

8,5

push← (#MC3[8, 5]) . the final size |L#MC3
8,5
| = 28

11: end for
12: for all possible values of #SB3[13] do . 28

13: #SB3[14]
MC45706← (#SB3[12, 13, 15],#MC2

C [12]) . according to Property 1
14: #MC3[9] SB← #SB3[13]
15: #MC3[6] SB← #SB3[14]
16: L#MC3

9,6

push← (#MC3[9, 6]) . the final size |L#MC3
9,6
| = 28

17: end for
18: for all possible values of #SB3[4] do . 28

19: #SB3[7]
MC45627← (#SB3[4, 5, 6],#MC2

C [6]) . according to Property 1
20: #MC3[4] SB← #SB3[4]
21: #MC3[11] SB← #SB3[7]
22: L#MC3

4,11

push← (#MC3[4, 11]) . the final size |L#MC3
4,11
| = 28

23: end for
24: for all possible values of #SB3[2] do . 28

25: #SB3[3]
MC45637← (#SB3[0, 1, 2],#MC2

C [3]) . according to Property 1
26: #MC3[10] SB← #SB3[2]
27: #MC3[7] SB← #SB3[3]
28: L#MC3

10,7

push← (#MC3[10, 7]) . the final size |L#MC3
10,7
| = 28

29: end for
30: for all (#MC3[8, 5]) ∈ L#MC3

8,5
do . 28

31: for all (#MC3[9, 6]) ∈ L#MC3
9,6

do . 28

32: a#AK3[5]
MC← (0 ‖ #MC3[5] ‖ #MC3[6] ‖ 0)[1]⊕ #AK3[5]

33: b#AK3[10]
MC← (#MC3[8] ‖ #MC3[9] ‖ 0 ‖ 0)[2]⊕ #AK3[10]

34: T#MC3
8,5,9,6

[a#AK3[5] ‖ b#AK3[10]]← (#MC3[8, 5, 9, 6]) . expected to
have one element in each entry of T#MC3

8,5,9,6

35: end for
36: end for
37: for all (#MC3[4, 11]) ∈ L#MC3

4,11
do . 28

38: for all (#MC3[10, 7]) ∈ L#MC3
10,7

do . 28

39: a′#AK3[5]
MC← (#MC3[4] ‖ 0 ‖ 0 ‖ #MC3[7])[1]

40: b′#AK3[10]
MC← (0 ‖ 0 ‖ #MC3[10] ‖ #MC3[11])[2]

41: for all #MC3[8, 5, 9, 6] ∈ T#MC3
8,5,9,6

[a′#AK3[5] ‖ b
′
#AK3[10]] do .

expected to have one element in the entry
42: −−→

TInit
push← #MC3[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] . the final size

|
−−→
TInit| = 232

43: end for
44: end for
45: end for
46: end for
47: return −−→TInit

48: end procedure

a MCabcde represents using values of the a-th, b-th, c-th, d-th cells in the array of (input
‖ output) of the MC to derive the value of the e-th cell according to Property 1.
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Algorithm 2 Compute values of backward neutral bytes (in Red) in Fig. 5
1: procedure ComputeBackwardNeutralBytes
2: ←−−

TInit ← ∅, #MC3
SR(col{2,7}) ← 0 . refer to Fig. 9 for cell index

3: for all possible values of #MC2[01, 03, 04, 05, 10, 12, 13, 14] do . 264

4: #AC2
col{0,1}

MC← #MC2
col{0,1} , #MC3

SR(col{0,1})
SR◦SB◦AC← #AC2

col{0,1}

5: for all possible values of #MC3[03, 04], #MC3[12, 13] do . 232

6: #MC3[05, 06] MC∗← (#MC3[00, 01, 02, 03, 04, 07],#AC3
C [03, 05]) . Property 1

7: #MC3[14, 15] MC∗← (#MC3[10, 11, 12, 13, 16, 17],#AC3
C [14, 16]) . Property 1

8: #AC2[33, 44, 55, 66, 32, 43, 54, 65] (SB◦AC)−1
← #MC2[03, 04, 05, 06, 12, 13, 14, 15]

9: L01
push← (#AC2[33, 44, 55, 66, 32, 43, 54, 65]) . the final size |L01| = 232

10: end for
11: for all possible values of #MC3[21, 22], #MC3[30, 31] do . 232

12: #MC3[23, 24] MC∗← (#MC3[20, 21, 22, 25, 26, 27],#AC3
C [25, 27]) . Property 1

13: #MC3[32, 33] MC∗← (#MC3[30, 31, 34, 35, 36, 37],#AC3
C [30, 36]) . Property 1

14: #AC2[31, 42, 53, 64, 30, 41, 52, 63] (SB◦AC)−1
← #MC2[21, 22, 23, 24, 30, 31, 32, 33]

15: L23
push← (#AC2[31, 42, 53, 64, 30, 41, 52, 63]) . the final size |L23| = 232

16: end for
17: for all possible values of #MC3[40, 41], #MC3[50, 51] do . 232

18: #MC3[42, 47] MC∗← (#MC3[40, 41, 43, 44, 45, 46],#AC3
C [41, 47]) . Property 1

19: #MC3[56, 57] MC∗← (#MC3[50, 51, 52, 53, 54, 55],#AC3
C [50, 52]) . Property 1

20: #AC2[40, 51, 62, 37, 50, 62, 36, 47] (SB◦AC)−1
← #MC2[40, 41, 42, 47, 50, 51, 56, 57]

21: L45
push← (#AC2[40, 51, 62, 37, 50, 62, 36, 47]) . the final size |L45| = 232

22: end for
23: for all possible values of #MC3[60, 65], #MC3[74, 75] do . 232

24: #MC3[66, 67] MC∗← (#MC3[60, 61, 62, 63, 64, 65],#AC3
C [61, 63]) . Property 1

25: #MC3[76, 77] MC∗← (#MC3[70, 71, 72, 73, 74, 75],#AC3
C [72, 74]) . Property 1

26: #AC2[60, 35, 46, 57, 34, 45, 56, 67] (SB◦AC)−1
← #MC2[60, 65, 66, 67, 74, 75, 76, 77]

27: L67
push← (#AC2[60, 35, 46, 57, 34, 45, 56, 67]) . the final size |L67| = 232

28: end for
29: for all (#AC2[33, 44, 55, 66, 32, 43, 54, 65]) ∈ L01 do . 232

30: for all (#AC2[31, 42, 53, 64, 30, 41, 52, 63]) ∈ L23 do . 232

31: a
MC← (#AC2[30, 31, 32, 33] ‖ 0 ‖ 0 ‖ 0 ‖ 0)[5, 7]⊕ #MC2[35, 37]

32: b
MC← (0 ‖ #AC2[41, 42, 43, 44] ‖ 0 ‖ 0 ‖ 0)[4, 6]⊕ #MC2[44, 46]

33: c
MC← (0 ‖ 0 ‖ #AC2[52, 53, 54, 55] ‖ 0 ‖ 0)[3, 5]⊕ #MC2[53, 55]

34: d
MC← (0 ‖ 0 ‖ 0 ‖ #AC2[63, 64, 65, 66] ‖ 0)[2, 4]⊕ #MC2[62, 64]

35: T [a ‖ b ‖ c ‖ d] ←
(#AC2[33, 44, 55, 66, 32, 43, 54, 65, 31, 42, 53, 64, 30, 41, 52, 63])

36: end for
37: end for
38: for all (#AC2[40, 51, 62, 37, 50, 62, 36, 47]) ∈ L45 do . 232

39: for all (#AC2[60, 35, 46, 57, 34, 45, 56, 67]) ∈ L67 do . 232

40: a′
MC← (0 ‖ 0 ‖ 0 ‖ 0 ‖ #AC2[34, 35, 36, 37])[5, 7]

41: b′
MC← (#AC2[40] ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ #AC2[45, 46, 47])[4, 6]

42: c′
MC← (#AC2[50, 51] ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ #AC2[56, 57])[3, 5]

43: d′
MC← (#AC2[60, 61, 62] ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ #AC2[67] ‖ 0)[2, 4]

44: for all #AC2[33, 44, 55, 66, 32, 43, 54, 65, 31, 42, 53, 64, 30, 41, 52, 63] ∈
T [a′ ‖ b′ ‖ c′ ‖ d′] do

45: ←−−
TInit

push← #AC2
col{0,1,3,4,5,6} . the final size |←−−TInit| = 2128

46: end for
47: end for
48: end for
49: end for
50: return ←−−TInit

51: end procedure
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Fig. 9: Index in Algorithm 2

Algorithm 3 Compute values of forward neutral bytes (in Blue) in Fig. 7
1: procedure ComputeForwardNeutralBytes
2: −−→

TInit ← ∅
3: for all possible value −→v i of the 28 Blue cells in #MC4 do . 22×28

4: c0
MC← (0 ‖ 0 ‖ 0 ‖ #MC4

col3 [3, 4, 5, 6] ‖ 0)[7]
5: c1

MC← (0 ‖ 0 ‖ #MC4
col4 [2, 3, 4, 5, 6] ‖ 0)[7]

6: c2
MC← (0 ‖ #MC4

col5 [1, 2, 3, 4, 5] ‖ 0 ‖ 0)[7]
7: c3

MC← (0 ‖ #MC4
col6 [1, 2, 3, 4] ‖ 0 ‖ 0 ‖ 0)[7]

8: c4
MC← (#MC4

col8 [0, 1, 2] ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0)[0]
9: compute backward cell-by-cell through SB−1, SR−1, and AC−1 to get the Blue

cells in #AC3

10: c5
MC−1
← (0 ‖ #AC3

col6 [1, 2, 3, 4] ‖ 0 ‖ 0 ‖ 0)[0, 1, 7]
11: c6

MC−1
← (#AC3

col7 [0, 1, 2, 3, 4, 5] ‖ 0 ‖ 0)[0, 7]
12: c7

MC−1
← (#AC3

col8 [0, 1, 2, 3, 4, 5, 6] ‖ 0)[6, 7]
13: c8

MC−1
← (0 ‖ #AC3

col9 [1, 2, 3, 4, 5, 6] ‖ 0)[5, 6, 7]
14: c9

MC−1
← (0 ‖ 0 ‖ #AC3

col10 [2, 3, 4, 5, 6] ‖ 0)[4, 5, 6, 7]
15: −−→

TInit[c0 ‖ c1 ‖ c2 ‖ c3 ‖ c4 ‖ c5 ‖ c6 ‖ c7 ‖ c8 ‖ c9]← −→v i

16: end for
17: return ←−−TInit

18: . Note that due to the linearity
of MixColumns, values of Gray cells in involved columns of #MC4 and #AC3 can
be set to zero in this precomputation phase. During the main attack phase, in the
backward computation, the values of Gray cells will be integrated; constant impacts
from these values of Gray cells together with the pre-determined impacts from the
Blue cells are needed to be XORed together to the involved Red cells.

19: end procedure

Algorithm 4 Compute values of backward neutral bytes (in Red) in Fig. 7
1: procedure ComputeBackwardNeutralBytes
2: ←−−

TInit ← ∅
3: for all possible value ←−v i of the 16 Red cells in #AC5 do . 22×16

4: compute forward cell-by-cell through AC, SB, and SR to get the Red cells in
#MC6

5: c0
MC← (0 ‖ 0 ‖ 0 ‖ #MC6

col5 [3, 4, 5, 6] ‖ 0)[6, 7]
6: c1

MC← (0 ‖ 0 ‖ #MC6
col6 [2, 3, 4, 5] ‖ 0 ‖ 0)[7]

7: c2
MC← (0 ‖ #MC6

col7 [1, 2, 3, 4] ‖ 0 ‖ 0 ‖ 0)[7]
8: c3

MC← (#MC6
col8 [0, 1, 2, 3] ‖ 0 ‖ 0 ‖ 0 ‖ 0)[0, 7]

9: c4
MC−1
← (#AC5

col8 [0, 1, 2, 3] ‖ 0 ‖ 0 ‖ 0 ‖ 0)[0, 7]
10: c5

MC−1
← (0 ‖ #AC5

col9 [1, 2, 3, 4] ‖ 0 ‖ 0 ‖ 0)[7]
11: c6

MC−1
← (0 ‖ 0 ‖ #AC5

col10 [2, 3, 4, 5] ‖ 0 ‖ 0)[7]
12: c7

MC−1
← (0 ‖ 0 ‖ 0 ‖ #AC5

col11 [3, 4, 5, 6] ‖ 0)[7]
13: ←−−

TInit[c0 ‖ c1 ‖ c2 ‖ c3 ‖ c4 ‖ c5 ‖ c6 ‖ c7]←←−v i

14: end for
15: return ←−−TInit

16: end procedure
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C Notations.

Notations
Blue ( ) active in the forward chunk
Red ( ) active in the backward chunk
Gray ( ) known constant in both chunks
White ( ) unknown in both chunks
Black ( ) any of Blue ( ), Red ( ), Gray ( ), White ( )
Cyan ( ) guessed for forward chunks
Pink ( ) guessed for backward chunks
Green ( ) guessed for both forward and backward chunks
Violet ( ) degree of matching
←→
S ENC starting state in the encryption data path
←→
S KSA starting state in the key-schedule data path
−−→
End ending state for the forward computation
←−−
End ending state for the backward computation
BLENC subset of N , index of Blue cells ( ) in ←→S ENC, BLENC ∩RDENC = ∅
BLKSA subset of N , index of Blue cells ( ) in ←→S KSA, BLKSA ∩RDKSA = ∅
RDENC subset of N , index of Red cells ( ) in ←→S ENC, RDENC ∩ BLENC = ∅
RDKSA subset of N , index of Red cells ( ) in ←→S KSA, BLKSA ∩RDKSA = ∅

GYENC subset of N , index of Gray cells ( ) in ←→S ENC,
GYENC = N − BLENC ∪RDENC

GYKSA subset of N , index of Gray cells ( ) in ←→S KSA,
GYKSA = N − BLKSA ∪RDKSA

Encoding

xS
i and yS

i

0-1 variables to encode the color (attribute) of the ith cell of a state S
(1, 0): Blue cell ( )
(0, 1): Red cell ( )
(1, 1): Gray cell ( )
(0, 0): White cell ( )

x
a binary variable, indicating a cell can be computed in the forward
chunk; is Blue or Gray

y
a binary variable, indicating a cell can be computed in the backward
chunk; is Red or Gray White

β a binary variable, indicating a cell is Gray ( )
ω a binary variable, indicating a cell is White
x a binary variable, indicating cells in a column all are Blue/Gray
y a binary variable, indicating cells in a column all are Red/Gray
ω a binary variable, indicating a column exists White cell
−→ι −→ι = |BLENC|+ |BLKSA|, the initial degrees of freedom for the forward
←−ι ←−ι = |RDENC|+ |RDKSA|, the initial degrees of freedom for the backward
−→σ

−→
db = −→ι −−→σ , the accumulated coniosumed degrees of freedom from the
forward
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←−σ
←−
dr =←−ι −←−σ , the accumulated coniosumed degrees of freedom from the
backward

cx
the binary variable indicating whether to coniosume a degree of
freedom from the forward in XOR-RULE

cy
the binary variable indicating whether to consume a degree of freedom
from the backward in XOR-RULE

cx
the general variable for the number of consumed degrees of freedom
from the forward in MC-RULE

cy
the general variable for the number of consumed degrees of freedom
from the backward in MC-RULE

−→
db the degrees of freedom for the forward computation
←−
dr the degrees of freedom for the backward computation
→←
m the degrees of matching
−→
dgb

the number of cells only guessed to be Blue (forward computation)
←−
dgr

be the number of cells only guessed to be Red (backward computation)
←→
dgbr

be the number of cells guessed to be both Blue and Red
τObj the auxiliary variable to set the objective function

Cipher Specification
Nrow the number of rows in the state of the compression function
Ncol the number of columns in the state of the compression function

c
the number of bits in each cell of the state of the compression function;
in targeted ciphers of this work, it is 8

ς
the number of possible values of a cell, i.e., ς = 2c; in targeted ciphers
of this work, it is 28

n
n = Nrow ·Ncol, the number of cells in the state of the compression
function

Niosum
the total number of cells in the input and output of the MC on one
column, Niosum = 2 ·Nrow.

Brn
Brn = Nrow + 1, the branch number of the MDS matrix used in the
compression function
Notations used in descriptions of concrete attacks

MC
excuating the MixColumns operation on a single column or on multiple
columns

SB excuating the SubBytes operation on a single cell or on multiple cells
SR excuating the ShiftRows operation on a single cell or on multiple cells

#SBr the state before go through SubBytes (SB) at the r-th round in the
encryption data-path

#SRr the state before go through ShiftRows (SR) at the r-th round in the
encryption data-path

#MCr the state before go through MixColumns (MC) at the r-th round in the
encryption data-path

#AKr the state before go through AddRoundKey (AK) at the r-th round in the
encryption data-path
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#KSBr the state before go through SubBytes (SB) at the r-th round in the
key-schedule

#KSRr the state before go through ShiftRows (SR) at the r-th round in the
key-schedule

#KMCr the state before go through MixColumns (MC) at the r-th round in the
key-schedule

kr the r-th round-key
S[i, j, · · · ] the i-th, j-th, · · · cells of a state (in the order of column first)
S[i] the i-th cell of a state (in the order of column first)
Scoli the i-th column of a state
Scol{i,j,··· } the i-th, j-th, · · · , columns of a state S
Scoli [j] the j-th cell in the i-th column of a state S
Scoli [j1, j2, · · · ] the j1-th, j2-th, · · · , cells in the i-th column of a state S
S[ij] the j-th cell in the i-th column of a state S, shorten for Scoli [j]
‖ concatenation
SSR−1(coli) the cells in the i-th diagonal of the state S
SSR(coli) the cells in the i-th anti-diagonal of the state S

MCabcde

using values of the a-th, b-th, c-th, d-th cells in the array of (input ‖
output) of the MC to derive the value of the e-th cell according to
Property 1

MC∗
using values of the Nrow cells in the array of (input ‖ output) of the MC
to derive the value of an additional cell according to Property 1

D Visualization of more Examples of Attack
Configurations
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−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (20 , 4 , 16 , 0 , 12 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (8, 4, 4)

Config

Fig. 10: The full version of the configuration in example Fig. 3 for the MITM attack
on 7-round Whirlpool (2× 2 of 4× 4)
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End

←−−
End

#AK6 #AK6

AK

T

#KMC5

k6

• (−→ι , ←−ι ) = (16 , 16 )

• (
−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (4 , 4 , 8 , 3 , 3 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (1, 1, 2)

Config

This implies an attack on the full version (8× 8) with configuration
((
−→
db −

←−
dgr ,

←−
dr −

−→
dgb

,
→←
m −

−→
dgb
−
←−
dgr −

←−→
dgbr

) = (4, 4, 8))

Fig. 11: Another example of using (2 × 2 of 4 × 4) to search the MITM attack on
7-round Whirlpool
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Fig. 12: An example of the MITM attack on 6-round Whirlpool
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• (−→ι , ←−ι ) = (18 , 8 )
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db,
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dr,
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m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (5 , 5 , 5 , 0 , 0 , 0 )
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−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (5, 5, 5)

Config

This implies an attack on the full version (8× 8) with configuration
((
−→
db −

←−
dgr ,

←−
dr −

−→
dgb

,
→←
m −

−→
dgb
−
←−
dgr −

←−→
dgbr

) = (20, 20, 20))

Fig. 13: An example of using (2× 2 of 4× 4) to search the MITM attack on 5-round
Whirlpool

45



#SB0

SB

SR

#MC0

MC-RULE(−2 , −10 )

XOR-RULE(−0 , −0 )

(AK-MC AK-MC AK-MC AK-MC←−−−−−−−−−−−−−−−−−−−−−−−−−−)

AKMC

#MC0

MC

AK

#AK0

AK

#KMC−1

k0

(−0 , −0 )

(+0 , +0 )

#SB1

SB

SR

#MC1

MC-RULE(−2 , −0 )

XOR-RULE(−0 , −0 )

(AK-MC AK-MC AK-MC AK-MC←−−−−−−−−−−−−−−−−−−−−−−−−−−)

AKMC

#MC1

MC

AK

#AK1

AK

#KMC0

k1

(−0 , −0 )

(+0 , +0 )

#SB2

SB

SR

#MC2

MC-RULE(−24 , −0 )

XOR-RULE(−0 , −0 )

(MC-AK MC-AK MC-AK MC-AK←−−−−−−−−−−−−−−−−−−−−−−−−−−)

AKMC

#MC2

MC

AK

#AK2

AK

#KMC1

k2

(+0 , +32 )

←→
S KSA

(−0 , −10 )

(+0 , +0 )

#SB3

SB

SR

(+32 , +0 )

←→
S ENC

#MC3

MC-RULE(−0 , −0 )

XOR-RULE(−0 , −0 )

(MC-AK MC-AK MC-AK MC-AK−−−−−−−−−−−−−−−−−−−−−−−−−−→)

AKMC

#MC3

MC

AK

#AK3

AK

#KMC2

k3

(−0 , −8 )

(+0 , +0 )

#SB4

SB

SR

#MC4

MC-RULE(−0 , −0 )

XOR-RULE(−0 , −0 )

(AK-MC AK-MC AK-MC AK-MC−−−−−−−−−−−−−−−−−−−−−−−−−−→)

AKMC

#MC4

MC

AK

#AK4

AK

#KMC3

k4

(−0 , −0 )

(+0 , +0 )

#SB5

SB

SR

#MC5

MC

Match
−−→
End

←−−
End

#AK5 #AK5

AK

T

#KMC4

k5

• (−→ι , ←−ι ) = (32 , 32 )
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−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (4 , 4 , 4 , 0 , 0 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (4, 4, 4)

Config

This implies an attack on the full version (8× 8) with configuration
((
−→
db −

←−
dgr ,

←−
dr −

−→
dgb

,
→←
m −

−→
dgb
−
←−
dgr −

←−→
dgbr

) = (8, 8, 8))

Fig. 14: An example of using (1× 2 of 8× 4) to search the MITM attack on 6-round
Whirlpool
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• (−→ι , ←−ι ) = (25 , 9 )
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−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (9 , 9 , 16 , 0 , 0 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (9, 9, 16)

Config

Fig. 15: An example of the MITM attack on the OT of the 5-round
Grøstl-256
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−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (9 , 9 , 9 , 0 , 0 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (9, 9, 9)

Config

Fig. 16: An example of the MITM attack on P (H ′)⊕H ′ in the CF
of the 5-round Grøstl-256 (without guessing)
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• (−→ι , ←−ι ) = (75 , 26 )
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←−
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→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (19 , 12 , 19 , 0 , 7 , 0 )
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−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (12, 12, 12)

Config

Fig. 17: An example of the MITM attack on the OT of the 7-round
Grøstl-512
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m −−→dgb−

←−−
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←−→
dgbr ) = (13, 13, 13)

Config

Fig. 18: An example of the MITM attack on P (H ′)⊕H ′ in the CF of
the 7-round Grøstl-512 (without guessing)
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←−→
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m −−→dgb−
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←−→
dgbr ) = (24, 24, 24)

Config

Fig. 19: An example of the MITM attack on the OT of the 6-round
Grøstl-512
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←−→
dgbr ) = (24 , 24 , 24 , 0 , 0 , 0 )

• (
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→←
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←−−
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←−→
dgbr ) = (24, 24, 24)

Config

Fig. 20: An example of the MITM attack on P (H ′)⊕H ′ in the CF of
the 6-round Grøstl-512 (without guessing)
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E 10-Round Attack on AES-256 Hashing Modes

We applied our tool set to the hashing modes based on AES-256 reduced to
10 out of the total 14 rounds, and found a configuration leading to an attack
with 28 time complexity gain, as depicted in Figure 21. It is interesting to note,
although the tool set is equipped with the guess-and-determine technique, the
result does not require it nor the symmetry properties, i.e.,

←−
dgr

=
−→
dgb

=
←→
dgbr

= 0.
The configuration (

−→
db ,
←−
dr ,

→←
m ) = (2, 1, 1) gives a pseudo-preimage attack

with time complexity 2120 and memory complexity 28.

F Conversion of the Attacks on OT to Pseudo-Preimage
Attacks on Grøstl

The attack procedures presented in the main body are on the OT of Grøstl.
They can be converted into pseudo-preimage attacks on Grøstl combining with
similar attack procedures on the P (Hi) ⊕ Hi of the CF using the conversion
method in [29]. In [29], the psedudo preimage attack, i.e., finding (H,M) such
that X = P (H ⊕M) ⊕ H ⊕ Q(M) and Truncn(P (X) ⊕ X) = T for a given
T , is turn into solving a three-sum problem X1 ⊕ X2 ⊕ X3 = 0, where X1 =
P (H ′)⊕H ′⊕Q(M)⊕M , X2 = Q(M)⊕M , X3 = P (H ′)⊕H ′ while H ′ = H⊕M
and X1 satisfies Truncn(P (X1)⊕X1) = T . A procedure similar to the generalized
birthday attack was used in [29] and is as follows (refer to Fig. 22).

1. Find 2x1 preimagesX1 given the target T of the OT (use the MITM procedure
on OT) and store in a lookup table L1.

2. Choose 2x2 random M with correct padding and calculate X2 = Q(M)⊕M .
Find partial matches on the leftmost b bits between 2x2 X2’s and 2x1 X1’s
in L1, and store the partial matches (X1 ⊕X2,M) in a lookup table L2, of
which the size is expected to be 2x1+x2−b.

3. Find 2x3 H ′ such that the leftmost b bits of X3 are all zero (use the MITM
procedure on P (H ′)⊕H ′ of the CF) , where X3 = P (H ′)⊕H ′. Store (X3, H

′)
in a lookup table L3.

4. Find full matches (2n bits) between the 2x1+x2−b X1 ⊕X2’s in L2 and the
2x3 X3’s in L3, retrive the corresponding M and H ′, output (H ′ ⊕M,M).

Essentially, the b bits for partial matching can locate at any positions in the state
instead of the leftmost (noted in [29]); Further, they can be any fixed b-bit linear
relations on ` bits for ` ≥ b, which restrict the values of ` bits to a subspace of
dimension `− b, instead of b zero’s (this is not used in [29]).

Let the complexity of finding one 2n-bit X1 given the n-bit target T be
2C1(2n,n). Let the complexity of finding one 2n-bit H ′ given the b-bit restriction
on P (H ′) ⊕H ′ be 2C2(2n,b). Then, the complexity of the above precedure was
approximated in [29] as (after removing some constant factors)

2x1+C1(2n,n) + 2x2 + 2x1+x2−b + 2x3+C2(2n,b).
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In the MILP model, k−1‖k0 is
directly related to k3‖k4 instead
of being decided by k1‖k2. This
is to exploit the partial linearity
of the key schedule. Thus, k0 is
compatible with k2 (without con-
suming DoF). That is because in
columns 5 and 6 (start from 0) of
k2, the XOR of the two bytes in
row 0 (start from 0) is constant
according to k4.

• (−→ι , ←−ι ) = (5 , 19 ) • (
−→
db,
←−
dr,
→←
m ,

−→
dgb ,

←−−
dgr ,

←−→
dgbr ) = (2 , 1 , 1 , 0 , 0 , 0 )

• (
−→
db−
←−−
dgr ,

←−
dr−
−→
dgb ,

→←
m −−→dgb−

←−−
dgr−

←−→
dgbr ) = (2, 1, 1)

Config

Fig. 21: An example of the MITM attack on 10-round AES-256
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P (H′)⊕H′
⊕X3
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b 2n−b
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X = 0
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b 2n−b

2x1+x2+x3−2n× 2n

Zero

Unknown

Fig. 22: Outline for pseudo-preimage attack on the Grøstl hash function [29]

Suppose the configuration for attacking P (H ′)⊕H ′ be (
−→
db
∗,
←−
dr
∗,
→←
m
∗
) (in bytes),

when the target is of b-bit, the degree of matching →←m
∗

(b) = min(→←m
∗
, bb/cc).

The complexity 2C2(2n,b) =
{

2b−min(
−→
db
∗,
←−
dr
∗,
→←
m
∗

(b))·c b >= 2 ·min(
−→
db
∗,
←−
dr
∗) · c

2b−min(b/2,
→←
m
∗

(b)·c) b < 2 ·min(
−→
db
∗,
←−
dr
∗) · c

,

where, b/2 in the second case is because one cannot fully use all the freedom
degrees in that case.

However, we note that it is possible for Step 3 that, finding 2x3 H ′ requires
much less computations than 2x3+C2(2n,b). This is because one may find a large
number of H ′ within a single MITM procedure when the degree of freedom is
large and the number b of bits for partial preimage attack is small. For example,
for attacking 6-round P (H ′)⊕H ′ of Grøstl-256 using configuration Fig. 6 with
(
−→
db
∗,
←−
dr
∗,
→←
m
∗
) = (3, 3, 3), when b = 3× 8, with 23×8 computations, one can find

23×8 H ′ partially matching on b bits. Thus, the amortized complexity of finding
one H ′ is 20. When x3 is larger than b, the complexity of the above Step 3 is 2x3 .
Thus, unlike in [29] that limits the lower bound of 2C2(2n,b) to a birthday bound
2b/2, we use C2(2n, b) to represent the amortized complexity of finding one H ′,
and the complexity is then

2x1+C1(2n,n) + 2x2 + 2x3+C2(2n,b) + 2x1+x2−b.

Because x1 + x2 + x3 = 2n, the complexity is

2x1+C1(2n,n) + 2x2 + 2x3+C2(2n,b) + 22n−(x3+b).

When b ≤ min(
−→
db
∗,
←−
dr
∗,
→←
m
∗
) · c, C2(2n, b) = 0 for x3 ≥ b, that is, the amor-

tized complexity for finding each H ′ is one. When b ≥ min(
−→
db
∗,
←−
dr
∗,
→←
m
∗
) · c,

C2(2n, b) = 2b−min(
−→
db
∗,
←−
dr
∗,
→←
m
∗

)·c, increasing b has the same effect as increasing
x3. Thus, we can always take b = min(

−→
db
∗,
←−
dr
∗,
→←
m
∗
) · c and adjusting x3.
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Denote min(
−→
db
∗,
←−
dr
∗,
→←
m
∗
) · c by G2 meaning the gain over bruteforce attack

on P (H ′)⊕H ′. Further, denote min(
←−
dr−
−→
dgb

,
−→
db−
←−
dgr ,

→←
m −

−→
dgb
−
←−
dgr−

←→
dgbr

) ·c by
G1 meaning the gain over bruteforce attack on the OT, which equals n−C1(2n, n).
Then, the complexity is

2x1+n−G1 + 2x2 + 2x3 + 2x1+x2−G2 .

In this formula, there are three parameters x1, x2, x3 with x1 + x2 + x3 = 2n.
Given G1 and G2, one can find the best complexity by adjusting x1, x2, and x3.
The order of magnitude of the total complexity is

CT ≈
{
n− G1

3 , with (x1 = 2G1
3 , x2 = n− G1

3 , x3 = n− G1
3 ) if G2 ≥ 2G1

3 .

n− G2
2 , with (x1 = G1

2 + G2
4 , x2 = n− G1

2 + G2
4 , x3 = n− G2

2 ) else G2 <
2G1

3 .

(15)
The order of magnitude of the memory complexity is

CM ≈
{
n+ G1

3 −G2, i.e., x1 + x2 − b, if G2 ≥ 2G1
3 .

n− G2
2 , i.e., x3, if G2 <

2G1
3 .

(16)

Concrete values of parameters for obtaining the best complexity for various attacks
are summarized in Table 3.

Table 3: Concrete parameters for complexity of pseudo-preimage attacks on Grøstl
(with recomputed complexities for previous works)

#R x1 x2 x3 G1 G2 G CT CM Ref.

Grøstl-256 5/10 32 240 240 48 40 16 240 232 † [29]
Grøstl-256 5/10 42.67 234.67 234.67 64 64 21.33 234.67 213.33 ∗ [18, 31]
Grøstl-256 5/10 48 232 232 72 72 24 232 208 Fig. 15, 16

Grøstl-256 6/10 12 248 252 16 8 4 252 252 ∗ [18, 31]
Grøstl-256 6/10 21.33 245.33 245.33 32 24 10.67 245.33 242.67 Fig. 5, 6

Grøstl-512 6/14 128 448 448 192 192 64 448 384 Fig. 19, 20

Grøstl-512 7/14 64 480 480 96 104 32 480 440 Fig. 17, 18

Grøstl-512 8/14 12 508 508 16 8 4 508 508 † [29]
Grøstl-512 8/14 32 488 504 40 16 8 504 504 † [31]
Grøstl-512 8/14 28 496 500 40 24 12 500 500 Fig. 7, 8

G1 = min(
←−
dr −

−→
dgb

,
−→
db −

←−
dgr ,

→←
m −

−→
dgb
−
←−
dgr −

←−→
dgbr

) · c meaning the gain over bruteforce attack
on the OT.
G2 = min(

−→
db
∗,
←−
dr
∗,
→←
m
∗

) · c meaning the gain over bruteforce attack on P (H′)⊕H′.
G: the gain over bruteforce attack on CF + OT (pseudo-preimage attack).
C: the order of the total complexity.
† The presented parameters for the attacks in [29] and [31] are recomputed by removing constant
factors (e.g., the cost CT L for lookup table is replaced by 1) and replacing C2(2n, b) that is lower
bounded by b/2 in [29] with C2(2n, b) that can be 20 considering the amortized complexity. Thus,
all complexities in this table are computed follow the same way.
The claimed complexity of the 5-round attack on Grøstl-256 in [29] is 2244.85, with x1 = 36.93,
x2 = 244.93, x3 = 230.13, C1(2n, n) = 206, b = 31.
The claimed complexity of the 8-round attack on Grøstl-512 in [29] is 2507.32, with x1 = 10.50,
x2 = 506.50, x3 = 507.00, C1(2n, n) = 495, b = 0.
∗ The 5- and 6-round attacks in [18] are on the OT of Grøstl-256. To convert to pseudo-preimage,
we used the results for the case with no truncation in [18] . However, for the 6-round attack, in
which guessing are required, it cannot be directly used. Thus, we combined the attack on OT
in [18] with the best previous attack on the CF in [31].
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