
Lightweight, Verifiable Function Secret Sharing and
its Applications

Leo de Castro
MIT CSAIL
ldec@mit.edu

Antigoni Polychroniadou
J.P. Moran AI Research

antigoni.poly@jpmorgan.com

Abstract—In this work, we present a lightweight construction
of verifiable two-party function secret sharing (FSS) for point
functions and multi-point functions. We use these verifiable FSS
schemes to construct two-server private information retrieval and
private set intersection that are secure & verifiable in the face
of any one malicious corruption.

Our verifiability method is lightweight in two ways. Firstly, it
is concretely very efficient, making use of only symmetric key
operations and no MPC or linear PCP techniques. For security
parameter λ, our verification procedure is simply to check if
two 2λ-bit strings match. Secondly, our verification procedure
is essentially unconstrained. It will verify that distributed point
function (DPF) shares correspond to some point function irre-
spective of the output group size, the structure of the DPF output,
or the set of points on which the DPF must be evaluated. This is
in stark contrast with prior works, which depended on at least
one and often all three of these factors.

In addition, we give a novel method for packing DPFs into
shares of a multi-point function that allows for the number
of nonzero points in the multi-point function to grow without
growing the evaluation time. We also show how our verification
scheme carries over to the multi-point setting.

We give an implementation of our verifiable distributed point
functions and our verifiable distributed multi-point function.

I. INTRODUCTION

Function secret sharing (FSS), first introduced by Boyle et
al. [3], is a cryptographic primitive that extends the classical
notion of secret-sharing a scalar value to secret sharing a
function. FSS allows a party to secret-sharing a function
f : D → G and produce function shares k0 and k1. These
shares have several useful properties. Firstly, viewing either
share alone computationally hides the function f . Second, the
function shares can be evaluated at points in the domain D to
produce additive shares of the output of f . In other words, for
x ∈ D, we have k0(x) + k1(x) = f(x).

Boyle et al. [4] gave an efficient construction of a distributed
point function (DPF), which is a special case of FSS that
supports point functions. A point function f : D → G is
defined by a single point (α, β) ∈ D×G such that f(α) = β
and for all γ 6= α we have f(γ) = 0. We will often denote
the point function f , defined by (α, β), as fα,β .

An FSS construction is immediately applicable to the
problem of constructing two-server protocols, where a client
interacts with two servers that are assumed to not collude.
Despite the simplicity of point functions, DPFs give rise to
a rich class of two-server protocols, including private infor-
mation retrieval (PIR) [4], private set intersection (PSI) [10],

Oblivious-RAM [12], contact-tracing [11], and many more [1],
[23]. These two-server protocols often have a similar structure.
For example, the PIR construction from a DPF begins with a
client generating DPF shares for the function fi,1, where i is
the query index. The client then sends one function share to
each server; the servers hold an identical copy of the database
of size N . The servers evaluate the share on each index i ∈ [N]
to obtain a secret sharing of a one-hot vector. The servers then
take the inner product with their copy database to obtain an
additive share of the ith element, which is returned to the
client.

Verifiable DPF: A crucial barrier that must be overcome
in order for many applications to be deployed in the real world
is achieving some form of malicious security. For the two-
server model, this often means verifying that the client’s inputs
are well-formed in order to ensure that the client does not learn
unauthorized information about the servers’ database. A DPF
scheme that supports this well-formedness check is called a
verifiable DPF (VDPF).

In addition to constructing DPFs, the work of Boyle et al.
[4] also constructed VDPFs. These VDPF schemes relied on
some form of multi-party computation (MPC) between the
servers. In order to efficiently run this MPC, the servers relied
on correlated randomness provided by the client. However,
this verification procedure is only relevant when the client is
potentially malicious, and hence may send malformed corre-
lated randomness. Therefore, the MPC that is used in these
verification techniques must be resilient against malformed
randomness, which limits the usefulness of the techniques in
several ways. Firstly, the output field must always be at least
as large as the security parameter, which prevents applications
where a smaller field is necessary. Second, the verification
procedure often strictly limits the values of β that will pass the
verification. In particular, there is often only two options for β,
such as β ∈ {0, 1} or β ∈ {−1, 1}. This prevents applications
with many valid β values. Finally, as discussed in more detail
in Boyle et al., it is often the case that only some subset of
the domain can be verified to be a valid point function, rather
than the full domain, in order to maintain the MPC security
for malformed client randomness. While there has been recent
improvements in the verification method for β ∈ {0, 1} in the
work of Boneh et al. [1], the persistence of these issues raises
the need for better DPF verification techniques.

Distributed Multi-Point Functions: While DPFs result
in a surprisingly rich class of two-server protocols, in many
applications [10], [11] it is desirable to have FSS for functions
with more than one nonzero point, which we call multi-point
functions (MPFs) (see section IV-B for more details). Naively,
this requires constructing a DPF for each nonzero point. To
evaluate the MPF share, the servers must perform a DPF
evaluation for each nonzero point in the function. In other
words, if a function contains t non-zero points and the servers
wish to evaluate the MPF share at η points, then they must
perform t·η DPF evaluations. This clearly wastes a tremendous
amount of work, since we know that for each of the t DPF
shares, at most one of the η evaluation points will map to a
non-zero value, and yet each share is evaluated the full η times.
To maintain efficient FSS for these multi-point functions, it is
clear that a more efficient manner of batching DPF shares is
required.

A. Our Contribution & Technical Overview

This paper improves the state-of-the-art in DPF construc-
tions in two main ways.

Lightweight Verifiable DPF: We give a lightweight con-
struction of a verifiable DPF, which admits a very efficient
way to verify that the DPF shares are well-formed. This
construction is light-weight in two ways. First, it’s perfor-
mance is comparable with the state-of-the-art non-verifiable
DPF constructions, as we show in section VI. Unlike all other
DPF verification methods, we do not make use of any public
key operations or arithmetic MPC; for a security parameter λ,
our verification procedure is a simple exchange of 2λ bits.

Second, the constraints on the verification procedure are
essentially non-existent. We can verify that a share is a well-
formed DPF share regardless of output field size, regardless
of the value of the non-zero output element, and our approach
also works for any set of evaluations. Our method is able
to verify that there is at most one non-zero value in any set
of outputs of the DPF share, even if the set is adversarially
chosen. This is in stark contrast to prior works, which depend
on at least one and often all of these constraints.

As a brief technical overview, our VDPF construction takes
a non-black-box view of the GGM-style DPF construction of
Boyle et al. [4]. For readers not familiar with this construction,
we provide a more thorough review in section III. At a high
level, this tree-based construction punctures a single path
through a pair of GGM PRFs by applying a correction word
at each level. Our observation is that a correction word can
correct at most one difference at each level. By extending the
GGM tree by one additional level, we can map the true output
to the left leaves and then check that all of the right leaves
are the same. Since the correction word can only correct one
difference, if all the right leaves are the same, then all but one
of the left leaves must also be the same. For more details and
intuition about this approach, see section III.

Efficient Batched DPFs: We give an efficient technique
to batch DPFs into a distributed multi-point function (DMPF).
Our batching technique can be viewed orthogonally to our

verification technique, and we believe it is of independent
interest. However, we give a construction of our DMPF that
is also efficiently verifiable, obtaining a verifiable DMPF
(VDMPF). Our verification guarantee is a bit weaker than in
the DPF. Namely, if a multi-point function has t non-zero
points, our verification procedure will guarantee to the servers
that they hold well-formed share for some multi-point function
with no more that 2t evaluation points. More details on the
exact tightness of this relation in section IV-A.

The main efficiency improvement of our VDMPF construc-
tion is that the evaluation time is significantly faster than the
naive, or “textbook,” DMPF evaluation time. In the textbook
DMPF construction, evaluation of a share with t nonzero
points requires evaluating t DPF shares. In our batched con-
struction, only three DPF shares must be evaluated, regardless
of the number of nonzero points in the point function. We use
a novel PRP-based Cuckoo-hashing scheme to achieve this
evaluation speed-up while still maintaining an efficient share
generation time. As we show below, share generation time
increases by a factor of 4-5× over the textbook version, but
overall this is only a few additional milliseconds of client work
that saves orders of magnitude (as shown in figure 6) on the
server side for functions with many nonzero points.

As a brief technical overview, our VDMPF construction
makes use of cuckoo hashing with κ = 3 hash functions to
pack the t nonzero points of the MPF into a cuckoo hash table
of size m < 2t. For each bucket in the table, the client creates
a VDPF, and this is the VDMPF share. Now, the server only
needs to evaluate the DPF in three buckets instead of all t.
The full construction and further performance optimizations
are given in section IV.

Ultimately, we will show the following two theorems.

Theorem I.1 (Verifiable DPF (informal)). There exists a
secure verifiable DPF for any point function f : {0, 1}n → G.
For security parameter λ, the runtime of share generation is
O(nλ), and the size of a function share is O(nλ). For any
x ∈ {0, 1}n, the runtime of share evaluation O(nλ). The proof
size is 2λ and the verification time is also 2λ, simply checking
that the two proofs match.

Theorem I.2 (Verifiable DMPF (informal)). There is a se-
cure verifiable DMPF construction for multi-point functions
f : [N]→ G with at most t non-zero evaluation points. For any
MPF f , security parameter λ, and m = O(tλ+ t log(t)), the
runtime of share generation is O (mλ log(N/m)). The runtime
of share evaluation is O(λ log(N/m)). The proof size is 2λ
and the verification time is also 2λ, simply checking that the
two proofs match.

We also provide an implementation of our VDPF and
VDMPF and present benchmarks in section VI.

Malicious Two-server Protocols: As an immediate conse-
quence, we obtain several concretely efficient and maliciously
secure protocols in the two-server model. We present two in
this work to illustrate the usefulness of our construction. All
protocols we present are secure against any one malicious

corruption (i.e. either the client or one of the two servers)
and are verifiable by all parties.

1) A malicious two-server PIR protocol, where the honest
servers are guaranteed that at most one database entry is
revealed per query. The honest client is guaranteed that
the protocol is run correctly on the database, otherwise
the protocol outputs ⊥. In other words, a malicious
server cannot, except with negligible probability, make
the honest client output an incorrect result to its query.
The ideal functionality of this protocol is defined in figure
7.

2) A malicious two-server PSI protocol, where if the honest
set size is t then the servers are guaranteed that their
answer can be simulated by the ideal functionality with
an input set of size at most 2t. As in the PIR protocol,
a malicious server cannot alter the client’s output (i.e.
the intersection) from the correct output without being
detected with overwhelming probability. The ideal func-
tionality of this protocol is defined in figure 8.

B. Related Work

The most relevant related work is the verifiable DPF con-
structions of Boyle et al. [4] and subsequent works of Boneh
et al. [1]. As discussed in the introduction, the constraints on
these techniques make then incomparable to ours, although
we note that all of the techniques in these works make use of
some MPC, while our VDPF verification uses no MPC.

For other relevant works on two-server protocols, we briefly
mention the work of Demmler et al. [10], which is a two-server
PSI protocol that uses both distributed point functions and
cuckoo hashing, although in very different ways than in our
construction. They cite Boyle et al. [4] as a method to achieve
malicious security, but they do not provide a maliciously
secure implementation. As with any other protocol that uses
DPFs, our verifiable DPF can be used in this protocol to
immediately obtain meaningful malicious security guarantees.
Furthermore, our VDMPF construction could be used here to
likely give a performance improvement along with malicious
security.

In general, our two-server protocol setting differs from the
majority of prior works in this area because we explicitly
consider malicious security. We therefore choose to compare
directly to DPF constructions, which we believe best show-
cases the improvements in this work.

There are many works that focus on malicious security
for multiparty PSI [5], [7], [13], [14], [16], [17], [19], [20].
However, these protocols consider multi-party PSI, which is
distinct from our setting. Our setting is essentially two-party
PSI where one party is split into two servers, so these protocols
are not comparable to ours.

There is a recent line of work [9], [22] on two-server PIR
protocols in the preprocessing model with online computation
time that is sublinear in the database size. This line of
work differs from ours in two ways. We do not consider
preprocessing, and these preprocessing works all focus on
achieving only semi-honest security.

II. BACKGROUND

A. Notation

Let T be a complete binary tree with 2n leaves. If we index
each leaf from 0 to 2n − 1, let v(n)α be the leaf at index α ∈
{0, 1}n. Let v(i)α be the node at the ith level of T such that
v
(n)
α is in the subtree rooted at v(i)α . We will sometimes refer

to v(i)α as the ith node along the path to α.
For a finite set S, we will denote sampling a uniformly

random element x as x $←− S.
For n ∈ N, we denote the set [n] := {1, . . . , n}.

B. Function Secret Sharing

In this section, we give a high level definition of functions
secret sharing and distributed point functions. A function
secret sharing scheme takes a function f : D → R and
generates two function shares f0 and f1. These function shares
can be evaluated a points x ∈ D such that fb(x) = yb and
y0+y1 = y = f(x). In other words, when evaluated at an input
x the function shares produce additive secret shares of the
function output. It is currently an open problem to construct
an efficient FSS scheme where the function is split into more
than two shares.

Definition II.1 (Function Secret Sharing, Syntax & Correct-
ness [3], [4]). A function secret sharing scheme is defined by
two PPT algorithms. These algorithms are parametrized by
a function class F of functions between a domain D and a
range R.

• FSS.Gen(1λ, f ∈ F)→ (k0, k1)
The FSS.Gen algorithm takes in a function f ∈ F and
generates two FSS keys k0 and k1.

• FSS.Eval(b, kb, x ∈ D)→ yb
The FSS.Eval algorithm takes in an x ∈ D and outputs
an additive share yb ∈ R of the value y = f(x). In other
words, y0 + y1 = y = f(x).

We now give the basic security property that an FSS scheme
must satisfy.

Definition II.2 (FSS Security: Function Privacy [3], [4]). Let
FSS be a function secret sharing scheme for the function class
F , as defined in Theorem II.1. For any f, f ′ ∈ F , the following
should hold:

{kb | (k0, k1)← FSS.Gen({0, 1}, f)} ≈c
{k′b | (k′0, k′1)← FSS.Gen({0, 1}, f ′)},

for b ∈ {0, 1}

In words, the marginal distribution of one of the FSS keys
computationally hides the function used to compute the share.

We now give the definition of a distributed point function
(DPF) in terms of the FSS definitions above as well as
background on the concrete DPF construction that is the
starting point for our protocol. We begin by defining a point
function.

Definition II.3 (Point Function). A function f : D → R is a
point function if there is α ∈ D and β ∈ R such that the
following holds:

fα,β(x) =

{
β x = α
0 x 6= α

Throughout this work, we will be interested in point func-
tions with domain D = {0, 1}n and range R = G for a group
G.

Definition II.4 (Distributed Point Function). Let Fn,G be the
class of point functions with domain D = {0, 1}n and range
R = G. We call an FSS scheme a Distributed Point Function
scheme if it supports the function class F .

III. LIGHTWEIGHT, VERIFIABLE DPF

In this section, we present our lightweight, verifiable dis-
tributed point function. Our approach follows the construction
of Boyle et al. [4] and the verification approach follows the
punctured PRF verification method of Boyle et al. [2].

A. Definitions

We begin by defining a verifiable DPF.

Definition III.1 (Verifiable DPF, denoted VerDPFn,G). A ver-
ifiable distributed point function scheme VerDPFn,G supports
the function class F of point functions f : {0, 1}n → G.
It is defined by three PPT algorithms. Define VerDPF :=
VerDPFn,G.
• VerDPF.Gen(1λ, fα,β)→ (k0, k1)

Takes in a function fα,β and generates two shares k0 and
k1.

• VerDPF.Eval(b, kb, x ∈ D)→ yb
Same as DPF.Eval, as defined in definition II.1.

• VerDPF.FDEval(b, kb)→
(
{y(i)b }Ni=1, πb

)
The VerDPF.FDEval algorithm outputs additive shares
{y(i)b }Ni=1 ∈ GN for N = 2n such that y(i)0 +y

(i)
1 = f(i).

The FDEval algorithm also outputs a proof πb that is
used to verify the well-formedness of the output.

• VerDPF.Verify(π0, π1)→ Accept/Reject
For some pair of VerDPF keys (k0, k1), the
VerDPF.Verify algorithm takes in the proofs π0
and π1 from (yb, πb)← FDEval(b, kb) and outputs either
Accept or Reject. The output should only be Accept if
y0 + y1 defines the truth table of some point function.

Correctness for a verifiable DPF is defined in the same way
as correctness for any FSS scheme, as in definition II.1.

We now define security for a verifiable DPF. Note that
we are only interested in detecting a malformed share when
the evaluators are semi-honest. However, we do require that
even a malicious evaluator does not learn any information
about the shared function; in other words, we require that the
verification process does not compromise the function privacy
of an honestly generated DPF share if one of the evaluators
is malicious.

Definition III.2 (Verifiable DPF Share Integrity, or Secu-
rity Against Malicious Share Generation). Let VerDPF :=
VerDPFn,G, and let kb be the (possibly maliciously gener-
ated) share received by server Sb. Let ({y(i)b }ni=1, πb) ←
VerDPF.FDEval(b, kb). We say that VerDPF is secure against
malicious share generation if the the following holds. If
VerDPF.Verify(π0, π1) outputs Accept, then the values y(i)0 +

y
(i)
1 must define the truth table of some fα,β ∈ F .

Definition III.3 (Verifiable DPF Function Privacy, or Security
Against a Malicious Evaluator). Let VerDPF := VerDPFn,G
support point function class F . Define the distribution repre-
senting the view of server Sb for a fixed function f ∈ F .

ViewVerDPF(b, f) :={
(kb, π1−b)

∣∣∣∣ (k0, k1)← VerDPF.Gen(1λ, f),
(, π1−b)← VerDPF.FDEval(1− b, k1−b)

}
We say that VerDPF maintains function privacy if there exists
a PPT simulator Sim such that the following two distributions
are computationally indistinguishable for any f ∈ F .{

(kb, π1−b) | (kb, π1−b)← ViewVerDPF(b, f)
}
≈c{

(k∗, π∗) | (k∗, π∗)← Sim(1λ, b, n,G)
}

B. Our Construction

We will now review the DPF construction of Boyle et al.
[4], the starting point for our protocol, which is a construction
of two-server functions secret sharing scheme for distributed
point functions. Recall that a distributed point function scheme
allows a party to run an algorithm (k0, k1) ← Gen(1λ, fα,β),
where fα,β : {0, 1}n → G is a point function. This party
can then send k0 to a server S0 and send k1 to a server
S1. A single share kb completely hides the function fα,β ; it
completely hides the location of the non-zero point of f , but
not the fact that it’s a point function. For any x ∈ {0, 1}n,
the servers are able to compute yb = Eval(b, kb, x), such that
y0 + y1 = fα,β(x).

This DPF scheme is based on the PRF construction of
Goldreich, Goldwasser, & Micali [15]. At a high level, the
idea behind this DPF scheme is that a the zero function can
be secret-shared by giving each server an identical copy of a
PRF along with an additional bit that indicates if the output
should be negated. Each server S0 and S1 is each given the
same PRF seed σ. The servers can then evaluate their PRF
on the same input x, then server S1 negates the output. The
result will be that outputs of the same input x will sum to
zero, making this a secret sharing of the zero function.

We can then instantiate this PRF using the GGM construc-
tion, where the output of the PRF is a leaf of the GGM tree.
Each input to the PRF will arrive at a unique leaf, and will
have a distinct path through the tree. To turn this zero function
into a point function, we need to puncture a single path in this
tree. In other words, we need to ensure that there is exactly
one path in the tree where the values at the GGM nodes differ.
Since all other paths will have matching nodes, they will result
in matching leaves, which become additive shares of zero.

The GGM nodes along the punctured path will differ, which
will result in this path terminating in leaves that do not match.
We will arrange operations at the final level to turn this one
specific mismatched pair into additive shares of the non-zero
output. The main idea will be that as soon as we diverge from
this path, the seeds will match again, bringing us back to the
zero-function state. To achieve this, a correction operation is
applied each GGM node as we traverse the tree.

In this DPF scheme, the shares of the point function are k0
and k1. Each key kb contains a starting seed s(0)b that defines
the root of a GGM-style binary tree, where at each node there
is a PRG seed that is expanded into two seeds that comprise
the left and the right child of that node. However, the seeds
that define the left and right children are not the direct output
of the PRG; instead, we apply a correction operation to the
PRG output in order to maintain the required property of these
trees, which we call the “DPF invariant.”

In addition to the PRG seed, each node is associated with a
control bit, which is one additional bit of information that is
updated along with the seed during the correction operation.
This control bit is used in the correction operation, and its
purpose is to maintain the DPF invariant.

Definition III.4 (DPF Invariant). Let DPF = DPFn,G, and
let (k0, k1) ← DPF.Gen(1λ, fα,β) for α ∈ {0, 1}n. Each key
kb defines a binary tree Tb with 2n leaves, and each node in
the tree is associated with a PRG seed and a control bit.

For a fixed node location, let s0, t0 be the seed and control
bit associate with the node in T0, and let s1, t1 be the seed and
control bit associated with the node in T1. The DPF invariant
is defined as the following:

s0 = s1 and t0 = t1 if the node is not along the path to α.

t0 6= t1 if the node is along the path to α.

In our construction, it is also very likely that s0 6= s1 if
the node is along the path to α, but this requirement is not
necessary for the invariant.

From this invariant, we maintain that at each level there
is exactly on place in which the two trees differ, which is
the node in that level corresponding to the path to α. At
the final level, all of the 2n leaves in both trees will be
the same, except at position α. We can define deterministic
transformations on the values at the leaves such that leaves
with the same value produce additive shares of zero. These
transformations are each determined by the control bit, and
symmetry in the control bits results in symmetric application
of these deterministic operations. At the leaf where the values
differ, the invariant tells us that the control bits will differ, and
we can take advantage of this asymmetry to produce additive
shares of β at this pair of leaves.

In order to maintain the invariant in definition III.4, we
perform a correction operation at each node as we traverse the
tree. Each level of the tree is associated with a correction word,
which is defined in defintion III.6. At each node, we perform
the PRG expansion defined in definition III.5, then apply the

correction operation define in definition III.8 to compute the
seeds and control bits for the left and right children.

Definition III.5 (VerDPF PRG Expansion [4]). Let s ∈ {0, 1}
be a seed for the PRG G : {0, 1}λ → {0, 1}2λ+2. Define the
PRG expansion of the seed s as follows:

sL||tL||sR||tR ← G(s)

where sL, sR ∈ {0, 1}λ and tL, tR ∈ {0, 1}.

Definition III.6 (VerDPF Correction Word [4]). A VerDPF
correction word consist of a seed sc ∈ {0, 1}λ and two
correction bits tLc and tRc , where tLc corresponds to the left
direction and tRc corresponds to the right direction. Denote
the full correction word as cw = (sc, t

L
c , t

R
c).

Definition III.7 (VerDPF Output Correction Word [4]). For
a DPF supporting point functions with output group G, an
output correction word is a single element of the group G.
Denote this group element as ocw.

Definition III.8 (VerDPF Correction Operation [4]). The
VerDPF correction operation

correctG : G×G× {0, 1} → G

is defined as follows:

correctG(ξ0, ξ1, t) =

{
ξ0 if t = 0
ξ0 + ξ1 if t = 1

When G is not defined, the group G is taken to be Z`2 for some
positive integer `. In particular, this makes the group addition
operation the component-wise XOR of ξ0 and ξ1.

Algorithm 1 VerDPFn,G Node Expansion, denoted
NodeExpand. This algorithm describes generating the
child nodes from the parent node in the DPF tree.

Input: PRG G : {0, 1}λ → {0, 1}2λ+2

Seed s ∈ {0, 1}λ, control bit t ∈ {0, 1}.
Correction word cw = (sc, t

L
c , t

R
c).

1: Expand (sL, tL, sR, tR)← G(s)
2: s′0 ← correct(sL, sc, t) and t′0 ← correct(tL, tLc , t)
3: s′1 ← correct(sR, sc, t) and t′1 ← correct(tR, tRc , t)

Output: (s′0, t
′
0), (s

′
1, t
′
1)

From the node expansion described in algorithm 1, it
becomes clear what the correction word must be in order
to maintain that only one pair of nodes differ at each level
of the tree. In particular, if the bit xi disagrees with αi, the
corresponding bit of α, then the correction word must ensure
that seeds and controls bits in the next level match. We define
the correction word generation algorithm in Algorithm 2.

Intuitively, our construction takes advantage of the fact that
the correction words in the DPF construction of Boyle et al.
can only correct at most one difference in each level. In our
construction, we extend the GGM tree by one level, extending
the DPF evaluation to all of the left children. In addition,

Algorithm 2 VerDPFn,G correction word generation, denoted
CWGen.
Input: PRG G : {0, 1}λ → {0, 1}2λ+2

Left seed s0, left control bit t0.
Right seed s1, right control bit t1.
Bit x of the input.

1: Expand (sLb , t
L
b , s

R
b , t

R
b)← G(sb) for b ∈ {0, 1}.

2: if x = 0 then Diff ← L, Same← R . Set the right
children to be equal.

3: else Diff ← R, Same← L . Set the left children to be
equal.

4: sc ← sSame
0 ⊕ sSame

1

5: tLc ← tL0 ⊕ tL1 ⊕ 1⊕ x . Ensure that the left control bits
are not equal iff x = 0.

6: tRc ← tR0 ⊕ tR1 ⊕ x . Ensure that the right control bits are
not equal iff x = 1.

7: cw← sc||tLc ||tRc
8: s′b ← correct(sDiff

b , sc, t
(i−1)
b) for b ∈ {0, 1}.

9: t′b ← correct(tDiff
b , tDiff

c , tb) for b ∈ {0, 1}.
Output: cw, (s′0, t

′
0), (s

′
1, t
′
1)

at the final level we replace the PRG with a hash function
H sampled from a family H that is collision-resistant and
correlation-intractable for an XOR correlation defined below.
We then have the servers check that all of their right children
are the same by hashing all right children and exchanging the
hash value.

In an honest pair of function shares, the trees should only
differ at one node at each level, and in the final level the only
difference should be in one of the left children. The collision
resistance of our hash function ensures that any difference in
the second-to-last level will result in a difference in the right
children. This forces the correction word to correct these right
children in order for the consistency check to pass. Since the
correction word can correct at most one difference in the right
children, this will guarantee that all other right children are
the same because their parents are the same, which, in turn,
implies that all corresponding left children are the same.

As discussed above, it is straightforward to turn matching
leaf nodes into additive shares of zero, although we will have
to generate the final control bit slightly differently in this final
level to ensure that this conversion is performed correctly.
In particular, we generate these control bits deterministically
from the seeds, which ensures that matching seeds will result
in matching control bits. For the non-zero output, we will have
the honest client generate the function shares until the control
bits at the non-zero point are different. If a malicious client
samples shares such that these bits are the same, this will
simply correspond to a different choice of β.

To securely instantiate the final level of the tree, our hash
function family must be collision resistant, which will ensure
that a difference in the previous level will translate to a differ-
ence in the children. We will also require the our hash function
to be secure against a similar, but incomparable, correlation,

which we call XOR-collision resistance. Intuitively, satisfying
this definition will ensure that each correction seed will only
be able to correct one difference in the right children.

Definition III.9 (XOR-Collision Resistance). We say a func-
tion family F such that f ∈ F is XOR-collision resistant if no
adversary given a randomly sampled f ∈ F running in time
less than O(2λ) with space less than O(2λ) can find four
values x0, x1, x2, x3 ∈ {0, 1}λ such that (x0, x1) 6= (x2, x3),
(x0, x1) 6= (x3, x2), and f(x0)⊕ f(x1) = f(x2)⊕ f(x3) 6= 0
with probability better than 2−λ.

To satisfy this definition, our hash function output has length
4λ, since we must defend against a birthday-attack where the
adversary is searching for a colliding 4-tuple. With a hash
function satisfying this definition, we will be able to argue that
if an adversary can construct invalid VerDPF keys that pass
the consistency check, then this adversary has found either a
collision or an XOR-collision in the hash function.

We define the VerDPF key in defintion III.10. The full
verifiable DPF construction is given in figure 1.

Definition III.10 (VerDPF Function Share). Let VerDPFn,G
be our verifiable DPF scheme. Let λ be the security parameter.
A function share contains the following elements.

• Starting seed s(0) ∈ {0, 1}λ.
• n correction words cw1, . . . , cwn, as defined in definition

III.6.
• One additional correction seed cs ∈ {0, 1}4λ, which

corrects differences in the final level. Corrections to the
control bits are not necessary at the final level.

• A final output correction group element ocw ∈ G.

Lemma III.11 (VerDPF Correctness). The VerDPF scheme
defined in figure 1 defines a correct verifiable DPF scheme.

Proof. See appendix B.

C. VDPF Security Proof

We will now prove that the verifiable DPF construction
given in Figure 1 is secure. We will focus on proving the
following theorem.

Lemma III.12 (Detection of Malicious Function Shares). No
PPT adversary A can generate VerDPF keys (k∗0, k

∗
1) ←

A(1λ) where the final level uses a hash function H ← H
sampled from a family H of collision-resistant and XOR-
collision-resistant hash functions such that the following holds.
Let (yb, πb) ← VerDPF.FDEval(b, k∗b) such that Accept ←
VerDPF.Verify(π0, π1) passes but y0+y1 is not the truth table
of a point function.

Proof. The approach to proving this theorem will be to
focus on the final level of the GGM tree. At the second-
to-last level, each server has a set of seeds {s(i)0 }Ni=1 and
{s(i)1 }Ni=1. The servers also have the same correction seed
cs. Let π̃(i)

b ← H(i||s(i)b), let t(i)b ← LSB(s
(i)
b), and let

Verifiable Distributed Point Function VerDPFn,G.
Let VerDPF := VerDPFn,G. Let G : {0, 1}λ → {0, 1}2λ+2 be a PRG. Let H : {0, 1}n+λ → {0, 1}4λ be a hash function
sampled from a family H that is both collision-resistant and XOR-collision-resistant. Let H′ : {0, 1}4λ → {0, 1}2λ be
a hash function sampled from a family H′ that is collision-resistant. Let convert : {0, 1}λ → G be a map converting a
random λ-bit string to a pseudorandom element of G. Let LSB{0, 1}` → {0, 1} be the function that takes any bit-string
and extracts the least significant bit.
We now give the share generation and and evaluation algorithm for our batched DPF scheme. The VerDPF.Verify algorithm
simply checks if the two input proofs are equal.

VerDPF.Gen

Input: Security parameter 1λ

Point function fα,β : {0, 1}n → G
1: Sample s(0)0 ← {0, 1}λ and s(0)1 ← {0, 1}λ.
2: Set t(0)0 = 0 and t(0)1 = 1.
3: Let α1, . . . αn be the bits of α.
4: for i from 1 to n do
5: vals← CWGen(G, s(i−1)0 , t

(i−1)
0 , s

(i−1)
1 , t

(i−1)
1 , αi)

6: Parse cwi, (s
(i)
0 , t

(i)
0), (s

(i)
1 , t

(i)
1)← vals

7: π̃b ← H(α||s(n)b) for b ∈ {0, 1}.
8: cs← π̃0 ⊕ π̃1.
9: s

(n+1)
b ← s

(n)
b . True output always extends to left child.

10: t
(n+1)
b ← LSB(s

(n+1)
b)

11: if t(n+1)
0 = t

(n+1)
1 then goto 1

12: Compute output correction word:

ocw← (−1)t
(n+1)
1 [β−convert(s

(n+1)
0)+convert(s

(n+1)
1)]

13: Set kb ← (s
(0)
b , {cwi}ni=1, csocw) for b ∈ {0, 1}

Output: (k0, k1)

VerDPF.FDEval

Input: b ∈ {0, 1} and VerDPF key kb.
1: Parse the VerDPF key (s(0), {cwi}ni=1, cs, ocw)← kb.
2: Let s← s(0) and t← b
3: Define nodes← {(s, t)}
4: for i from 1 to n do
5: Define nodes′ ← {}
6: for (s, t) in nodes do
7: (s′0, t

′
0), (s

′
1, t
′
1)← NodeExpand(G, s, t)

8: nodes′.append((s′0, t
′
0))

9: nodes′.append((s′1, t
′
1))

10: nodes← nodes′

11: Define y← {} and π ← cs
12: for i from 1 to N do
13: (s,)← nodes[i].
14: π̃ ← H(i||s)
15: t← LSB(s)
16: y.append

(
(−1)b · correctG(convert(s), ocw, t)

)
17: π ← π ⊕ H′(π ⊕ correct(π̃, cs, t))

Output: (y, π)

Fig. 1: Verifiable Distributed Point Function VerDPFn,G. For brevity, VerDPF.Eval is omitted, but the algorithm is clear from
the FDEval definition: simply follow one path of the GGM tree and skip the proof generation.

π
(i)
b ← correct(π̃

(i)
b , cs, t

(i)
b). The bulk of this proof is covered

by the following lemma.

Lemma III.13. Suppose there exists two indices i∗, j∗ ∈ [N]

such that s(i
∗)

0 6= s
(i∗)
1 and s(j

∗)
0 6= s

(j∗)
1 . If H is sampled from

a collision-resistant and XOR-collision-resistant family, then
no PPT adversary can find a correction seed cs such that for
all i ∈ [N] we will have π(i)

0 = π
(i)
1 .

Proof. Suppose for contradiction that there exists two indices
i∗, j∗ ∈ [N] such that s(i

∗)
0 6= s

(i∗)
1 and s(j

∗)
0 6= s

(j∗)
1 and for

all i ∈ [N] we will have π(i)
0 = π

(i)
1 . By collision-resistance,

we have that π̃(i∗)
0 6= π̃

(i∗)
1 and π̃(i∗)

0 6= π̃
(i∗)
1 . In order to get

π
(i∗)
0 = π

(i∗)
1 and π(i∗)

0 = π
(i∗)
1 , we need the following:

cs = π̃
(i∗)
0 ⊕ π̃(i∗)

1 = π̃
(i∗)
0 ⊕ π̃(i∗)

1 6= 0

From the XOR-collision-resistance of H, in order to get this
equality we must have one of the following two cases.

• Case (i): π̃(i∗)
0 = π̃

(j∗)
0 and π̃(i∗)

1 = π̃
(j∗)
1

• Case (ii): π̃(i∗)
0 = π̃

(j∗)
1 and π̃(i∗)

1 = π̃
(j∗)
0

We can show that any one of these four equalities violates
the collision-resistance of H. Suppose we have H(i∗||s(i

∗)
b) =

π̃
(i∗)
b = π̃

(j∗)
b′ = H(j∗||s(j

∗)
b′) for any b, b′ ∈ {0, 1}. Since

i∗ 6= j∗, any equality between these hash outputs violates the
collision resistance of H.

Therefore, no value of cs will result in π
(i)
0 = π

(i)
1 for all

i ∈ [N].

From the collision resistance of H′, we have that if the
proofs produced by the FDEval algorithm match, then π(i)

0 =

π
(i)
1 for all i ∈ [N]. From lemma III.13, we have that this

implies that there is at most one i∗ ∈ [N] such that s(i
∗)

0 6=
s
(i∗)
1 , and for all i ∈ [N] such that i 6= i∗, we have s(i)0 = s

(i)
1 .

Define α = i∗ for the unique i∗ such that s(i
∗)

0 6= s
(i∗)
1 . If

no such i∗ exists, set i∗ = 0. Define

β =correctG
(

convert(s
(i∗)
0), ocw, t

(i∗)
0

)
− correctG

(
convert(s

(i∗)
1), ocw, t

(i∗)
1

)
Note that this β is well-defined for any s(i

∗)
b and t(i

∗)
b . Since

t
(i)
b = LSB(s

(i)
b), we have the following implication:

s
(i)
0 = s

(i)
1 =⇒ t

(i)
0 = t

(i)
1

=⇒ correctG
(

convert(s
(i)
0), ocw, t

(i)
0

)
= correctG

(
convert(s

(i)
1), ocw, t

(i)
1

)
=⇒ y

(i)
0 + y

(i)
1 = 0

Since s(i)0 = s
(i)
1 for all i ∈ i∗, y0+y1 defines the truth table of

fα,β . Therefore, the construction in figure 1 satisfies definition
III.2.

Lemma III.14 (VerDPF Function Privacy). The VDPF con-
struction VerDPF satisfies defintion III.3.

Proof. See appendix B.

Combining lemmas III.12 and III.14, we get the proof of
the following theorem.

Theorem III.15 (Verifiable Distributed Point Function). The
construction in figure 1 is a secure verifiable DPF for the
class of point functions Fn,G. For any f ∈ Fn,G, the runtime
of (k0, k1) ← VerDPF.Gen(1λ, f) is O(nλ), and the size
of a function share is O(nλ). For any x ∈ {0, 1}n, the
runtime of VerDPF.Eval(b, kb, x) is O(nλ), and the runtime
of VerDPF.FDEval(b, kb) is O(2nλ).

D. Verifiable Evaluation of a Domain Subset

We will now show that we can get a similar verifiability
guarantee without evaluating the full VDPF domain. We
observe that lemma III.13 generalizes to cases where we are
only concerned with a subset of seeds in the final level.
Therefore, we can apply the same verification technique to
show that for any set of evaluation outputs of the VDPF, at
most one will be nonzero. Let BVEval denote this batched
verifiable evaluation. This algorithm is defined in algorithm
3. At a high level, this algorithm evaluates the verifiable DPF
at L distinct points, then produces a proof that, if verified,
guarantees that of the L output shares produced by the VDPF
evaluation, at most one pair of shares will sum to a non-zero
value. In other words, since any subset of evaluations of a
point function can also be viewed as a truth table of a point
function, our evaluation procedure works just as well on a
subset of evaluations.

We now give the formal security statement for this algo-
rithm.

Lemma III.16 (Detection of Malicious Function Shares
for Batched Evaluation). No PPT adversary A can gen-
erate VerDPF keys (k∗0, k

∗
1) ← A(1λ) along with L ≥

1 distinct evaluation points x1, . . . , xL ∈ {0, 1}n where

Algorithm 3 VerDPF.BVEval. The hash functions H and H′

are as in figure 1

Input: b ∈ {0, 1} and VerDPF key kb.
Set of L distinct evaluation points x1, . . . , xL.

1: Parse the VerDPF key (s(0), {cwi}ni=1, cs, ocw)← kb.
2: Define y← {} and π ← cs
3: for ` from 1 to L do
4: Let s← s(0) and t← b
5: Let β1 = MSB(x`), . . . , βn be the bits of x`
6: for i from 1 to n do
7: (s′0, t

′
0), (s

′
1, t
′
1)← NodeExpand(G, s, t)

8: if βi = 0 then (s, t)← (s′0, t
′
0)

9: else (s, t)← (s′1, t
′
1)

10: π̃ ← H(xi||s)
11: t← LSB(s)
12: y.append

(
(−1)b · correctG(convert(s), ocw, t)

)
13: π ← π ⊕ H′(π ⊕ correct(π̃, cs, t))

Output: (y, π)

the final level uses a hash function H ← H sampled
from a family H of collision-resistant and XOR-collision-
resistant hash functions such that the following holds.
Let (yb, πb) ← VerDPF.BVEval(b, k∗b , {xi}Li=1) such that
Accept ← VerDPF.Verify(π0, π1) passes but y0 + y1 is not
the truth table of a point function.

Proof. This lemma follows directly from lemma III.13, since
checking that the right leaves match ensure that at most one
pair of left leaves differ. This one pair of differing leaves
defines the nonzero point in the point function. This holds
for any set of distinct evaluation points, even when the set is
adversarially chosen.

IV. VERIFIABLE DISTRIBUTED MULTI-POINT FUNCTION

In this section, we present a novel method for efficiently
batching many verifiable DPF queries to obtain a verifiable
FSS scheme for multi-point functions (MPFs). Multi-point
functions are defined as the sum of several point functions.
While any function can be viewed as an MPF, we will
focus here on MPFs that have a small number of non-zero
points relatively to the domain size. This scheme will also be
verifiable in a similar, although more relaxed, manner as in
the verifiable DPF from section III. Our construction is based
on a novel Cuckoo-hashing scheme described below.

A. Cuckoo-hashing from PRPs

Our technique is inspired by the use of Cuckoo-hashing
schemes that are common throughout the PSI [6], [10] and
DPF [21] literature. In particular, it is common for the Cuckoo-
hashing scheme to have two modes: a compact mode and an
expanded mode. Both modes are parameterized by m buckets
and κ hash functions h1, . . . , hκ : {0, 1}∗ → [m].

Compact Cuckoo-hashing mode: In the compact mode,
the input is t elements x1, . . . , xt to be inserted into a table
of m buckets. To insert an element xi, an index k ∈ [κ] is

randomly sampled and xi is inserted at index hk(xi). If this
index is already occupied by some other element xj , then xj
is replaced by xi and xj is reinserted using this same method.
After some limit on the number of trials, the insertion process
is deemed to have failed. The purpose of the compact mode
is to efficiently pack t elements into the table of size m. This
algorithm, denoted CHCompact, is given in algorithm 4.

Algorithm 4 CHCompact Compact Cuckoo-hashing scheme.
The algorithm is given a fixed time to run before it is deemed
to have failed.
Input: Domain elements α1, . . . , αt

Hash functions h1, . . . , hκ : {0, 1}? → m
Number of buckets m ≥ t

1: Define an empty array of m elements Table where each
entry is initialized to ⊥.

2: for ω from 1 to t do
3: Set β ← αω and set success← False
4: while success is False do
5: Sample k $←− [κ]
6: i← hk(β).
7: if Table[i] = ⊥ then
8: Table[i] = β and success← True
9: else Swap β and Table[i]

Output: Table

We consider m = e · t for e > 1, where the size of e
determines the probability over the choice of hash functions
of failing to insert any set t elements. More specifically, from
the empirical analysis of Demmler et al. [10], we have the
following lemma.

Lemma IV.1 (Cuckcoo-hashing Failure Probability [10]). Let
κ = 3 and t ≥ 4. Let m = e · t for e > 1. Let H be a family
of collision-resistant hash functions, and let h1, . . . , hκ ← H
be randomly sampled from H. We have that t elements will
fail to be inserted into a table of size m with probability 2−λ,
where

λ = at · e− bt − log2(t)

at = 123.5 · CDFNormal(x = t, µ = 6.3, σ = 2.3)

bt = 130 · CDFNormal(x = t, µ = 6.45, σ = 2.18)

Here, CDFNormal(x, µ, σ) refers to the cumulative density
function of the normal distribution with mean µ and standard
deviation σ up to the point x.

Remark IV.1 (Cuckoo-hash parameters). Asymptotically, we
have the number of Cuckoo-hash buckets as m = O(tλ +
t log(t)); however, concretely, the picture is much nicer than
the asymptotics suggest. For sufficiently large t (i.e. t ≥ 30),
we can simplify lemma IV.1 to be λ = 123.5·e−130−log2(t),
since the CDFNormal factors become effectively one. Then, for
λ = 80, we have that m ≤ 2t for all 30 ≤ t ≤ 237, which we
believe captures nearly all practical use cases.

Expanded Cuckoo-hashing mode: In the expanded
Cuckoo-hashing mode, the hashing scheme takes as input n

elements and produces a matrix of dimension m × B that
contains κ ·n elements. This mode is produced by hashing all
n elements with each of the κ hash functions, then inserting
each of the n elements in all κ buckets as indicated by the
hash functions. The parameter B is the maximum size of these
buckets.

Our PRP Cuckoo-hashing: In the Cuckoo-hashing
schemes from the prior literature, the design of the scheme is
focused on the compact mode, and the extended mode is added
without much change to the overall design. In our Cuckoo-
hashing scheme, we begin with an efficient construction of
the expanded mode, then show how we maintain efficiency
of the compact mode. For a domain of elements D of size
n = |D|, we define the expanded mode of our Cuckoo-hashing
scheme with a PRP of domain size nκ. Let m be the number
of bins in the Cuckoo-hash table. Define B := dnκ/me.
The PRP then defines an expanded Cuckoo-hash table of
dimension m×B by simply arranging the nκ outputs of the
PRP into the entries of an m×B matrix. More specifically, let
PRP : {0, 1}λ× [nκ]→ [nκ] be the PRP. Let σ ← {0, 1}λ be
the seed of the PRP. Define entry (i, j) of the m×B matrix
A to be Ai,j := PRP(σ, i ·m + j). Note that the last row of
the matrix may have some empty entries, but this turns out to
have little consequence on the overall scheme.

To define the compact mode of this Cuckoo-hashing
scheme, we explicitly define the hash functions in terms of
the PRP. As above, let PRP : {0, 1}λ × [nκ] → [nκ] be the
PRP, and let σ ← {0, 1}λ be the seed of the PRP. For i ∈ [κ],
define the hash function hi : [n]→ [m] as follows:

hi(x) := bPRP(σ, x+ n · i)/Bc (1)

The hash functions h1, . . . , hκ can then be used in the original
compact Cuckoo-hashing scheme with m buckets. The main
benefit of our construction comes with the next feature, which
allows a party to learn the location of an element within a
specific bucket of the expanded Cuckoo-hash table without
directly constructing the expanded table. More specifically, for
i ∈ [κ], we define the function indexi : [n]→ [B] as follows:

indexi(x) := (PRP(σ, x+ n · i) mod B) (2)

With these functions index1, . . . , indexκ in addition to the hash
functions h1, . . . , hκ, we can compute the locations {(i, j)k ∈
[m]× [B]}κk=1 for each of the κ locations of an element x ∈
[n] in the expanded Cuckoo-hash table. In particular, we have
(i, j)k = (hk(x), indexk(x)).

B. Verifiable Distributed MPFs via PRP Hashing

We now present our verifiable MPF scheme that makes
use of the Cuckoo-hashing scheme described in the previous
section. Let N be the MPF domain size. Our input will be
an MPF f defined by t point functions fαi,βi : [N] → G for
i ∈ [t]. Without loss of generality, we consider α1, . . . , αt

as distinct points. We would like to efficiently support an FSS
scheme for the function f : [N]→ G that is defined as follows:

f(x) =

t∑
i=1

fαi,βi(x)

Naively, we would generate t different DPF shares, one for
each point function. Evaluation of this naive distributed MPF
(DMPF) share at a single point would require t DPF share
evaluations.

To improve over this naive construction, the idea is to pack
our point functions into a Cuckoo-hash table. We begin by
instantiating our PRP-based Cuckoo-hashing scheme with a
PRP of domain size Nκ and define B = dNκ/me. The client
can then use the compact mode to pack the values α1, . . . , αt
into a Cuckoo-hash table of size m. For each bucket at index
i ∈ [m], let α′i be the value in the bucket. We can either have
α′i = αj for one of the input αj , or α′i = ⊥ if the bucket is
empty. If α′i = αj , let k ∈ [κ] be the index of the hash function
used to insert αj to bucket i. In other words, hk(αj) = i.
Define the index γi = indexk(αj), which is the index of αj
in the ith bucket in the expanded Cuckoo-hash mode. Next,
define the point function gγi,βj

: [B]→ G, which evaluates to
βj at the index of αj within the ith bucket. This point function
is then shared to create (k

(i)
0 , k

(i)
1)← VerDPF.Gen(1λ, gγi,βj

).
In the case where α′i = ⊥, the shared function is set to
be the zero function (k

(i)
0 , k

(i)
1) ← VerDPF.Gen(1λ, g0,0).

The verifiable distributed MPF (VDMPF) share has the form
mpkb = (σ, k

(1)
b , . . . , k

(m)
b) where σ is the PRP seed.

To evaluate this multi-point function share at a point x ∈
[N], the evaluator first computes the κ possible buckets in
which x could lie, denoted ik = hk(x) for k ∈ [κ]. Next,
the evaluator computes the index of x in each bucket, denoted
jk = indexk(x) for k ∈ [κ]. Finally, the evaluator computes
the sum of the VDPF in each of the buckets at i1, . . . , ik
evaluated at j1, . . . , jk. This gives the output

yb = VerDMPF.Eval(b,mpkb, x)

=
∑
k∈[κ]

VerDPF.Eval(b, k
(ik)
b , jk)

In addition, this VDMPF inherits all of the features of the
VDPF construction from section III, including the O(log(B))
savings when evaluating the full domain (via tree traversal),
as well as verifiability of share well-formedness. We note that
the verifiability is a bit weaker than the definition achieved
for point functions. More specifically, for point functions we
showed how the servers can ensure that at most one evaluation
point is nonzero when evaluating any subset of the domain.
For this VDMPF construction, we can show that there are no
more than m non-zero points in any subset of evaluations by
showing there is no more than one non-zero point in each
bucket VDPF. This is slightly weaker than the best-possible
guarantee, which would be that there are no more than t non-
zero points in any set of evaluations. However, as discussed
in section IV-A, we will essentially always have m ≤ 2t (see
remark IV.1), so we consider this gap acceptable for most

applications. In addition, we can achieve an exact guarantee
by reverting to the naive construction using the VDPFs from
section III. We leave for future work the challenge of closing
this gap while maintaining similar performance.

The proofs of the following lemmas are in appendix C.

Lemma IV.2 (VerDMPF Correctness)). Let F be the function
class of multi-point functions with at most t non-zero points.
Figure 2 gives a correct function secret sharing scheme for
F .

Lemma IV.3 (VerDMPF Function Privacy). Let F be the
function class of multi-point functions with at most t non-zero
points. Figure 2 gives a function-private FSS scheme for F ,
as defined in definition II.2

Lemma IV.4 (VerDMPF Share Integrity). Let VerDPF be
a secure verifiable point function scheme. Let VerDMPF :=
VerDMPFN,G be a verifiable multi-point function scheme as
defined in figure 2 that uses VerDPF for the Cuckoo-hash
buckets. No PPT adversary A can generate VerDMPF keys
(k∗0, k

∗
1) ← A(1λ) along with L ≥ 1 distinct evaluation

points x1, . . . , xL ∈ [N] such that the following holds.
Let (yb, πb) ← VerDMPF.BVEval(b, k∗b , {xi}Li=1 such that
Accept ← VerDMPF.Verify(π0, π1) but there are ω > m

indices i1, . . . , iω such that y
(ij)
0 + y

(ij)
1 6= 0 for j ∈ [ω].

In other words, the output of the batched evaluation contains
more than m non-zero outputs.

Lemmas IV.2, IV.3, and IV.4 combine to give the following
theorem.

Theorem IV.5. The construction in figure 2 is a secure
verifiable DMPF for the class F of multi-point functions
f : [N] → G with at most t non-zero evaluation points.
For any f ∈ F and m = O(tλ + t log(t)), the runtime
of VerDMPF.Gen is O (mλ log(N/m)). For η inputs, the
runtime of VerDMPF.BVEval is O(ηλ log(N/m)).

Proof. The asymptotics follow from the fact that gener-
ating a single VerDPF share in this scheme takes time
O(λ log(N/m)), and evaluation of a VerDPF share at one
point is also O(λ log(N/m)), where we take the PRP and
PRG evaluations to be O(λ).

Remark IV.2. We note briefly that if a PRP for the domain
κN is not available, our method will work just as well
utilizing a generic Cuckoo-hashing scheme and setting all
indexj(i) = i. The difference will be that the domain size
of the DPF in each Cuckoo-hash bucket will not shrink as the
number of nonzero points grows, resulting in a VerDMPF.Gen
time of O (mλ log(N)) and a VerDMPF.BVEval time of
O(ηλ log(N)).

In appendix C-A, we give an alternate evaluation mode of
our VDMPF, which we call “match-mode” evaluation. This
mode has identical performance to the regular batch verifiable
evaluation mode with the same verification guarantee. The
difference is that for each of the m buckets, match-mode
evaluation computes additive shares of whether or not any of

the inputs matched with the nonzero point in that bucket. This
mode is used in the PSI construction in appendix E.

V. MALICIOUS TWO-SERVER PIR PROTOCOL

We will now present our malicious PIR protocol. Our
construction relies heavily on the VerDPF scheme described
in section III.

Network Topology.: Our two-server PIR protocol is a
three-party protocol between a client C and two servers S0
and S1. All three parties are connected to one another.

Threat model.: Our two-server PIR protocol will be
secure against any one adversarial corruption. This corruption
can be either semi-honest or malicious.

We will now define the API for our protocol.

Definition V.1 (Two-Server PIR API). A two-server PIR
protocol PIR := PIRN,G is parametrized by a database size
N and a group G, where each database element is a single
bit. This protocol is between a client C and two servers S0
and S1. The servers begin the protocol with identical copies
of a static database D ∈ GN . Our PIR protocol consists of
the following three PPT algorithms.

• dbState← PIR.Setup(1λ, N,G)
Takes as input the public parameters of the PIR scheme
and outputs state parameters that are used by the servers
when evaluating queries.

• (q0, q1, state)← PIR.QueryGen(1λ, i)
Takes as input a query index i and a database size N and
outputs query values q0, q1 as well as a query state state.
Intended to be run by the client, where qb is intended to
be sent to Sb. The query state state is held by the client
to verify the response.

• (resb, πb, dbState′)← PIR.QueryEval(qb,D, dbState)
Takes an input a query value qb and a database D.
Outputs a response share resb as well as a proof πb that
the query was well-formed. Also outputs updated state
variables dbState.

• Accept/Reject← PIR.QueryVerify(π0, π1)
Takes as input two proofs π0, π1 of query-wellformedness
and checks if the proofs are consistent with each other,
indicating that the query values correspond to a single
database index i ∈ [N]. Outputs Accept if this check
passes, and Reject otherwise.

• x or ⊥ ← PIR.Reconstruct(res0, res1, state)
Takes as input two response shares res0, res1 as well as a
query state state. If the response shares are not consistent
with the query state, output ⊥. Otherwise, reconstruct the
response x ∈ {0, 1}, which should equal the ith entry in
the database D[i].

We give formal definitions for security and privacy for a
malicious and verifiable PIR protocol in appendix D-A.

We will now present our construction of a malicious two-
server PIR protocol. This protocol will rely heavily on the
verifiable DPF described in section III. The construction is
given in figure 3.

Security against a malicious client follows from the verifia-
bility of the DPF. Security against a malicious server follows
from the size of the output group. Since β is a random
element of the output group, a malicious server cannot flip
the output bit without guess β. The proofs of security are
given in appendix D-B.

Due to space constraints, we present our PSI construction
in appendix E. Intuitively, this construction is mirrors the PIR
construction, except with use a VDMPF to batch the queries
of the client set.

VI. IMPLEMENTATION & PERFORMANCE

In this section, we present an implementation of our verifi-
able DPF and verifiable MPF constructions and compare them
to their non-verifiable and non-batched counterparts.

Implementation & Experimental Details: We imple-
mented1 our VDPF and VDMPF constructions in C++. We
follows the approach of Wang et al. [23] by using a fixed-key
AES cipher to construct a Matyas-Meyer-Oseas [18] one-way
compression function. We use AES-based PRFs to construct
our PRGs, our hash functions, and our PRP. Using an AES-
based PRP implicitly fixes our DMPF domain size to be 128
bits, and we leave for future work the task of implementing an
efficient small-domain PRP. Our implementation is accelerated
with the Intel AES-NI instruction, and all benchmarks were
run on a single thread on an Intel i7-8650U CPU. For com-
parison, we also implemented a non-verifiable DPF following
the constructions of Boyle et al. [4] and Wang et al. [23],
which we refer to as the “textbook” DPF. We implement the
“textbook” distributed MPF by naively applying the textbook
DPF; namely, our textbook DMPF share contains one DPF
share per non-zero point, and evaluating the share requires
evaluation all DPF shares and summing their results.

We note again that we did not comapre against the verifiable
constructions of Boyle et al. because of the incomparable
constraints placed on the DPF by their techniques, namely
that β must be of specific values.

DPF Comparisons: We now present the results of our
DPF comparisons. For various domain sizes 2n, we bench-
marked the share generation time, the evaluation time, and
the full-domain evaluation time for the textbook DPF and the
verifiable DPF. All benchmarks of the verifiable DPF include
the generation of the verification proof. The share evaluation
comparison runs the verifiable DPF at 100 random points in
{0, 1}n and generates the proof verifying this set of evaluation.
The runtime reported is then the time per evaluation point.
Benchmarks are given in figure 5.

The slowdown for the verifiable evaluation time is quite
small, as it essentially only requires evaluating one additional
level of the GGM tree. The slowdown for the share generation
time is a bit slower, since the verifiable share generation has
a 50% chance of failure, at which point it must be restarted.
This can be seen by the roughly factor of 2 slowdown in the
runtime of the verifiable share generation.

1For anonymity, we omit the link to our code. We intend to include the
link in the published version.

Verifiable Distributed Multi-Point Function VerDMPFN,G.
For a domain D of size N and output group G, let VerDMPF := VerDMPFN,G. Let domain : D → [N] be an injective
function mapping domain elements to indices in [N]. Unless otherwise specified, we will consider a domain element as
its index. For κ = 3, let PRP : {0, 1}λ × [Nκ]→ [Nκ] be a pseudorandom permutation. Let CHBucket(t, κ, λ)→ N be
the function that outputs the number of cuckoo hash buckets required so that inserting t elements with κ hash functions
fails with probability at most 2−λ. The hash function H′ is as in figure 1.
We now give the share generation and and evaluation algorithm for our VDMPF scheme. As with the VerDPF scheme,
the VerDMPF.Verify algorithm simply checks that the two input proofs are equal.

VerDMPF.Gen

Input: Security parameter 1λ

t point functions {fαi,βi
}ti=1

1: m← CHBucket(t, 3, λ), where κ = 3.
2: Sample a random PRP seed σ ← {0, 1}λ.
3: Let B ← dNκ/me.
4: From σ,m,B, define h1, . . . , hκ : [Nκ]→ [m] as in eq.

1 and index1, . . . , indexκ : [Nκ]→ B in eq. 2.
5: Table← CHCompact ({αi}ti=1, {hk}κk=1,m)
6: Let n′ = dlog(B)e and let VerDPF := VerDPFn′,G.
7: Let k0 ← {σ} and k1 ← {σ}
8: for i from 1 to m do
9: if Table[i] = ⊥ then Define α′ ← 0 and β′ ← 0

10: else
11: Let αj = Table[i], for j ∈ [t]
12: Let k ∈ [κ] be such that hk(αj) = i.
13: Let α′ ← indexk(αj) and β′ ← βj

14: Define the point function f := fα′,β′

15: (k
(i)
0 , k

(i)
1)← VerDPF.Gen(1λ, f)

16: Append k
(i)
0 to k0 and k

(i)
1 to k1.

Output: (k0, k1)

VerDMPF.BVEval

Input: Bit b and VerDMPF key kb
η inputs x1, . . . , xη

1: Parse σ, k(1)b , . . . , k
(m)
b ← kb

2: Define B ← dNκ/me, n′ ← dlog(B)e.
3: Let VerDPF := VerDPFn′,G.
4: Initialize an array inputs of length m.
5: for ω from 1 to η do
6: Let i1, . . . , iκ ← h1(xω), . . . , hκ(xω)
7: Let j1, . . . , jκ ← index1(xω), . . . , indexκ(xω)
8: Append (jk, ω) to inputs[ik] for each k ∈ [κ],

ignoring duplicates.
9: Initialize an array outputs of length η to all zeros.

10: Initialize a proof π ← 0
11: for i from 1 to m do
12: Parse (j1, ω1), . . . , (jL, ωL)← inputs[i]

13: {y`}L`=1, π
(i) ← VerDPF.BVEval(b, k

(i)
b , {j`}L`=1)

14: outputs[ω`]← outputs[ω`] + y` for ` ∈ [L]
15: π ← π ⊕ H′(π ⊕ π(i))

Output: outputs, π

Fig. 2: Verifiable Distributed Multi-Point Function.

Overall, our comparisons show that our technique introduce
relatively little overhead to the textbook DPF procedures. We
view these results as an affirmation of our claim that our
verifiable DPF can replace the textbook DPF in any appli-
cation to provide a meaningful & robust malicious security
claim without seriously impacting performance. Our results
are displayed in figure 4.

DMPF Comparisons: We now present the results of our
DMPF comparisons. We benchmarked the share generation
and evaluation time for MPFs with various numbers of nonzero
points t. As with the DPF comparisons, all benchmarks of the
VDMPFs include the time required to generate the verification
proof. Recall that our “textbook” benchmark uses neither the
batching nor the verification techniques presented in this work.
The batched, verifiable share generation time is about 2×
slower than the textbook share generation time. This is a
balancing between the increased runtime due to the overhead
of the verifiable share generation, the overhead duo to the
number of buckets being greater than the nonzero values, and

the savings due to the domain size shrinking thanks to the
PRP savings. These benchmarks are given in figure 5.

The real savings, and what we view as one of the main
results of this section, comes in the share evaluation. As
discussed in section IV, the performance of the batched
VDMPF evaluation effectively does not grow with the number
of nonzero points t in the shared multi-point function. This
is in stark contrast to the textbook version, where evaluation
time grows linearly with the number of nonzero points t in the
shared multi-point function. This leads to a dramatic difference
in the evaluation times, even when considering the time to
generate the verifiability proof, even for a small number of
nonzero points (e.g. 10 points). These results are displayed in
figure 6.

Two-server MPC: We do not present explicit benchmarks
for our two-server PIR and two-server PSI constructions since
they are direct applications of the VDPF and VDMPF. Their
performance is dominated by the underlying FSS.

Let λ be a security parameter. For a group G with size at least 2λ, let VerDPF := VerDPFn,G be a verifiable distributed
point function secret sharing scheme. Let N = 2n. Let PIR := PIRN,G. Let G : {0, 1}λ → G× {0, 1}λ be a secure PRG.

PIR.Setup(1λ, N,G)

1: Sample a random seed s for G.
Output: dbState← s

We assume that the two servers have the same value of dbState. We now give the algorithms to process a database query.

Client Algorithms Server Algorithms

PIR.QueryGen(1λ, i)

1: Sample r $←− G
2: Define the point function fi,r.
3: (k0, k1)← VerDPF.Gen

(
1λ, fi,r

)
Output: (q0, q1, state)← (k0, k1, r)

PIR.QueryEval(qb,D, dbState)

1: (yb, πb)← VerDPF.FDEval(b, qb)
2: z ← 〈yb,D〉 . Inner product.
3: (g, s′)← G(dbState) . dbState is just a PRG seed.
4: if b = 0 then z ← z + g
5: else z ← z − g

Output: (resb, πb, dbState′)← (z, πb, s
′)PIR.Reconstruct(res0, res1, state)

1: g ← res0 + res1.
2: if g = state then ω ← 1
3: else if g = 0 then ω ← 0
4: else ω ← ⊥

Output: ω

PIR.QueryVerify(π0, π1)

1: if π0 = π1 then ν ← Accept
2: else ν ← Reject

Output: ν

Fig. 3: Our PIR construction.

Fig. 4: In this figure, we present the benchmarks of the textbook DPF and the verifiable DPF presented in this work. The left
graph plots runtimes for the share generation time. As can be seen, the slowdown for verifiability is roughly 2×. The middle
graph plots the runtimes for the share evaluation. As discussed in section VI, the verifiable runtime was computed by taking
the runtime of the verifiable batch evaluation procedure (algorithm 3) for 100 random points and dividing it by 100. The right
graph plots the runtimes for the full domain evaluation operation.

ACKNOWLEDGMENTS

We would like to thank Vinod Vaikuntanathan for his helpful
conversations and insights.

Leo de Castro is supported by a JP Morgan AI Research
PhD Fellowship.

This paper was prepared for information purposes by the
Artificial Intelligence Research group of JPMorgan Chase &
Co and its affiliates (“JP Morgan”), and is not a product of
the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all
liability, for the completeness, accuracy or reliability of the
information contained herein. This document is not intended

as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any
security, financial instrument, financial product or service, or
to be used in any way for evaluating the merits of participating
in any transaction, and shall not constitute a solicitation under
any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful. 2021
JPMorgan Chase & Co. All rights reserved.

REFERENCES

[1] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Lightweight techniques for private heavy hitters. Cryptology
ePrint Archive, Report 2021/017, 2021. https://eprint.iacr.org/2021/017.

https://eprint.iacr.org/2021/017

Fig. 5: This graph plots the share generation time for the
textbook DMPF and the batched, verifiable DMPF presented
in this work.

Fig. 6: This figure plots the evaluation times for the textbook
DMPF and the batched, verifiable DMPF presented in this
work. Both graphs in this figure plot the same data; the top
graph shows all plots while the bottom graph is only a plot of
the smallest four lines in so that the batched VDMPF runtimes
can be viewed. The x-axis for these graphs is the number of
points η on which the shares are evaluated, and the colors
of each line represent the number of nonzero points t in the
shared multi-point functions. The number of points is indicated
in the legends of the graphs. Note in the bottom graph that the
evaluation time decreases as the number of nonzero points on
in the MPF grows.

[2] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
Peter Rindal, and Peter Scholl. Efficient two-round ot extension and
silent non-interactive secure computation. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19, page 291–308, New York, NY, USA, 2019. Association for
Computing Machinery.

[3] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, pages 337–367, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[4] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page
1292–1303, New York, NY, USA, 2016. Association for Computing
Machinery.

[5] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bha-
vana Obbattu, Sruthi Sekar, and Akash Shah. Efficient linear multiparty
psi and extensions to circuit/quorum psi. Cryptology ePrint Archive,
Report 2021/172, 2021. https://eprint.iacr.org/2021/172.

[6] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection
from homomorphic encryption. In CCS ’17 Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 1243–1255. ACM New York, NY, USA ©2017, October 2017.

[7] Jung Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party privacy-
preserving set intersection with quasi-linear complexity. IACR Cryptol-
ogy ePrint Archive, 2010:512, 01 2010.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, FOCS ’95, page 41, USA, 1995. IEEE Computer
Society.

[9] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval
with sublinear online time. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, pages 44–75, Cham,
2020. Springer International Publishing.

[10] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi:
Scaling private contact discovery. Proceedings on Privacy Enhancing
Technologies, 2018:159–178, 10 2018.

[11] Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky, Mohamed
Elsabagh, Nikolaos Kiourtis, Brian Schulte, and Angelos Stavrou.
Function secret sharing for psi-ca: With applications to private contact
tracing. Cryptology ePrint Archive, Report 2020/1599, 2020. https:
//eprint.iacr.org/2020/1599.

[12] Jack Doerner and Abhi Shelat. Scaling oram for secure computation.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 523–535, New York, NY,
USA, 2017. Association for Computing Machinery.

[13] Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-
Cherniavsky. Psimple: Practical multiparty maliciously-secure private
set intersection. Cryptology ePrint Archive, Report 2021/122, 2021.
https://eprint.iacr.org/2021/122.

[14] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan L. Camenisch,
editors, Advances in Cryptology - EUROCRYPT 2004, pages 1–19,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[15] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, August 1986.

[16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable
multi-party private set-intersection. In Serge Fehr, editor, Public-Key
Cryptography – PKC 2017, pages 175–203, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg.

[17] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu.
Efficient batched oblivious prf with applications to private set intersec-
tion. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 818–829, New York, NY,
USA, 2016. Association for Computing Machinery.

[18] S. M. MATYAS, C.H. Meyer, and J. Oseas. Generating strong one-
way functions with cryptographic algorithm. IBM Technical Disclosure
Bulletin, 27:5658–5659, 1985.

[19] Yingpeng Sang and Hong Shen. Privacy preserving set intersection
based on bilinear groups. In Proceedings of the Thirty-First Australasian
Conference on Computer Science - Volume 74, ACSC ’08, page 47–54,
AUS, 2008. Australian Computer Society, Inc.

[20] Yingpeng Sang and Hong Shen. Privacy preserving set intersection
protocol secure against malicious behaviors. pages 461 – 468, 01 2008.

https://eprint.iacr.org/2021/172
https://eprint.iacr.org/2020/1599
https://eprint.iacr.org/2020/1599
https://eprint.iacr.org/2021/122

Two-Server PIR.: This protocol is between three parties:
a client C and two servers S0 and S1. The servers each
begin with identical copies of a database D of size N ,
and the client begins with an index i ∈ [N]. At the end
of the protocol, the client should get the ith entry D[i]
of the database, and the servers should get nothing. This
functionality is detailed below.

1) Receive D(0) from S0 and D(1) from S1. If D(0) 6=
D(1) or |D(0)| 6= N , abort. Let D ← D(0).

2) Receive an index i from the client. If i 6∈ [N], abort.
3) Sent the database element D[i].

Fig. 7: Two-Server PIR Ideal Functionality

Two-Server PSI.: This protocol is between three parties:
a client C and two servers S0 and S1. The protocol is
parametrized by a domain D of size N . The client begins
with as set X ⊂ D, and the servers begin with identical
copies of a subset Y ⊂ D. At the end of the protocol,
the servers will receive nothing, and the client receives
X ∩ Y . The functionality is detailed below.

1) Receive Y (0) from S0 and Y (1) from S1. If Y (0) 6=
Y (1) or Y (0) 6⊂ D, abort. Let Y ← Y (0).

2) Receive X from the client. If X 6⊂ D, abort.
3) Sent the database elements X ∩ Y .

Fig. 8: Two-Server PSI Ideal Functionality

[21] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana
Raykova. Distributed vector-ole: Improved constructions and imple-
mentation. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, page 1055–1072,
New York, NY, USA, 2019. Association for Computing Machinery.

[22] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce
Maggs. Puncturable pseudorandom sets and private information retrieval
with polylogarithmic bandwidth and sublinear time. Cryptology ePrint
Archive, Report 2020/1592, 2020. https://eprint.iacr.org/2020/1592.

[23] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan,
and Matei Zaharia. Splinter: Practical private queries on public data. In
14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 299–313, Boston, MA, March 2017. USENIX
Association.

APPENDIX A
PIR & PSI BACKGROUND

Private information retrieval was first introduced by Chor et
al. [8]. We give the ideal PIR functionality in figure 7 and the
ideal PSI functionality in figure 8.

APPENDIX B
VERIFIABLE DPF PROOFS

In this section, we give the proofs for some lemmas from
section III. These lemmas are restated for convenience.

Lemma B.1 (VerDPF Correctness). The VerDPF scheme
defined in figure 1 defines a correct verifiable DPF scheme.

Proof. If we ignore the last level of the DPF expansion, our
DPF is essentially the same as the DPF construction of Boyle
et al. [4]. The only difference is the way the final control bits
are generated. The control bits for the nodes that correspond
to zero outputs will be the same, since the seeds for these
leaves will also be the same. In the key generation, the seeds
are sampled such that the control bits for the leaf at position α
will differ, allowing the selective XOR of the final correction
word. Since the correct operation is deterministic, the nodes
with matching seeds and control bits will produce shares of
zero. This can be seen below, where we set s0 = s1 and
t0 = t1.

yb = (−1)b · correctG(convert(sb), ocw, tb) = −1 · y1−b

For the leaf at position α, we have that t0 6= t1. Here, the
output values will be a secret sharing of β. For simplicity, we
write gb = convert(sb).

ocw = (−1)t1 [β − g0 + g1]

y0 + y1 = correctG(g0, ocw, t0) + correctG(g1, ocw, t1)

= g0 − g1 + (−1)t0 · ocw

= g0 − g1 + β − g0 + g1 = β

where we get that (−1)t0 ·ocw = β−g0+g1 from t0 6= t1.

Lemma B.2 (VerDPF Function Privacy). The VDPF construc-
tion VerDPF satisfies defintion III.3.

Proof. All elements of a VerDPF key are computationally
indistinguishable from random elements. The starting seed
is randomly sampled from {0, 1}λ. Each correction word is
XOR’d with the output of a PRG where the seed not known to
the evaluator, and hence is also indistinguishable from random.
Finally, the inclusion of the correct proof from the other party
does not add any information, since the evaluator holding the
share kb can compute the correct proof π1−b, since π1−b = πb.
Therefore, the simulator Sim can set all elements of the key
k∗ to be randomly sampled elements, then compute (,π∗) ←
VerDPF.FDEval(k∗) to output (k∗, π∗) ≈c (kb, π1−b).

APPENDIX C
VERIFIABLE DMPF PROOFS

In this section, we give proofs of lemmas that are omitted
in section IV. The lemmas are restated for convenience.

Lemma C.1 (VerDMPF Correctness). Let F be the function
class of multi-point functions with at most t non-zero points.
Figure 2 gives a correct function secret sharing scheme for
F .

Proof. This follows from the low statistical failure proba-
bility of the Cuckoo-hashing scheme and the correctness of
the VerDPF for each Cuckoo-hashing bucket. We consider
correctness only when the share generation succeeds, which
occurs with overwhelming probability. Therefore, this scheme
achieves perfect correctness, and the case where share gener-
ation fails is handled in the function privacy proof.

https://eprint.iacr.org/2020/1592

Lemma C.2 (VerDMPF Function Privacy). Let F be the
function class of multi-point functions with at most t non-zero
points. Figure 2 gives a function-private FSS scheme for F ,
as defined in definition II.2

Proof. The VerDPF shares in this construction computation-
ally hide all information regarding the non-zero evaluation
points. The only additional leakage is that these t evaluation
points fit into a Cuckoo-hash table with the hash functions
specified by the PRP seed σ. Lemma IV.1 gives us a way to set
the number of buckets so that any t inputs will fail to hash with
2−λ probability. Setting λ to be the computational security
parameter maintains the adversary’s negligible distinguishing
advantage.

Lemma C.3 (VerDMPF Share Integrity). Let VerDPF be a
secure verifiable point function scheme. Let VerDMPF :=
VerDMPFN,G be a verifiable multi-point function scheme as
defined in figure 2 that uses VerDPF for the Cuckoo-hash
buckets. No PPT adversary A can generate VerDMPF keys
(k∗0, k

∗
1) ← A(1λ) along with L ≥ 1 distinct evaluation

points x1, . . . , xL ∈ [N] such that the following holds.
Let (yb, πb) ← VerDMPF.BVEval(b, k∗b , {xi}Li=1 such that
Accept ← VerDMPF.Verify(π0, π1) but there are ω > m

indices i1, . . . , iω such that y
(ij)
0 + y

(ij)
1 6= 0 for j ∈ [ω].

In other words, the output of the batched evaluation contains
more than m non-zero outputs.

Proof. This follows directly from the verifiability of the
VerDPF shares, which guarantees that there is at most one
non-zero evaluation for each of the m buckets.

A. Match-Mode VDMPF: Point Matching

In this section, we present an alternative evaluation mode
for our VDMPF scheme that will be useful in constructing
protocols below. In the ‘main’ evaluation mode, which was
presented in figure 2, the servers produce one output for
each input element to the batched evaluation algorithm. In the
‘match’ evaluation mode discussed in this section, the servers
will produce one output for each of the cuckoo-hash buckets
in the VDMPF key. The purpose of this evaluation mode will
be to determine if one of the server’s input elements match
one of the non-zero points of the multi-point function.

In more detail, during the evaluation algorithm the servers
still produce a set of inputs for each of the m buckets and
evaluate the corresponding VDPF keys on these inputs. Instead
of summing the VDPF outputs according to a matching input,
the servers sum the outputs of each VDPF to create a single
output for each of the m buckets. From the verifiability of
the point function share in each bucket, the servers can easily
ensure that the evaluation of at most one of their inputs is being
revealed for each bucket. The algorithm is given in algorithm
5.

Lemma C.4 (VerDMPF Match-Mode Evaluation Integrity).
For a VDMPF scheme VerDMPF := VerDMPFN,G, al-
gorithm 5 defines an evaluation algorithm that takes time

Algorithm 5 VDMPF Match-Mode Evaluation, denoted
VerDMPF.MatchEval. The setting for this algorithm is the
same as the VDMPF construction in figure 2.

Input: bit b and VerDMPF key kb
η inputs x1, . . . , xη

1: Parse σ, k(1)b , . . . , k
(m)
b ← kb

2: Define B ← dNκ/me, n′ ← dlog(B)e.
3: Let VerDPF := VerDPFn′,G.
4: Initialize an array inputs of length m.
5: for ω from 1 to η do
6: Let i1, . . . , iκ ← h1(xω), . . . , hκ(xω)
7: Let j1, . . . , jκ ← index1(xω), . . . , indexκ(xω)
8: Append jk to inputs[ik] for each k ∈ [κ], ignoring

duplicates.
9: Initialize an array outputs of length m to all zeros.

10: Initialize a proof π ← 0
11: for i from 1 to m do
12: {y`}L`=1, π

(i) ← VerDPF.BVEval(b, k
(i)
b , inputs[i])

13: outputs[i]← outputs[i] + y` for ` ∈ [L]
14: π ← π ⊕ H′(π ⊕ π(i))

Output: outputs, π

O(mλ log(N/m)) such that no PPT adversary A can pro-
duce VerDMPF shares k∗0, k

∗
1 along with η evaluation points

x1, . . . , xη such that the following holds. Let (yb, πb) ←
VerDMPF.MatchEval(b, k∗b , {xi}Li=1 such that Accept ←
VerDMPF.Verify(π0, π1) but there are ω > m indices
i1, . . . , iω such that y

(ij)
0 + y

(ij)
1 6= 0 for j ∈ [ω]. In other

words, the output of the point-matching evaluation contains
more than m non-zero outputs.

APPENDIX D
PIR SECURITY AND PRIVACY

A. PIR Security and Privacy Definitions

We will now define security for this PIR protocol.

Definition D.1 (PIR Privacy Against a Malicious Server). Let
PIR := PIRN,G be a PIR protocol as defined in definition V.1.

ViewPIR(b, i;D, dbState) :={
(qb, π1−b)

∣∣∣∣ (q0, q1)← PIR.QueryGen(1λ, i),
(, π1−b)← PIR.QueryEval(q1−b,D, dbState)

}
We say that this PIR protocol maintains privacy against a
malicious server if there exists a simulator Sim for any
i ∈ [N] the following two distributions are computationally
indistinguishable.

{(qb, π1−b) | (qb, π1−b)← ViewPIR(b, i;D, dbState)}
≈c {(q∗, π∗) | (q∗, π∗)← Sim(1λ,D, dbState)}

Definition D.2 (PIR Security Against a Malicious Server).
Let PIR := PIRN,G be a PIR protocol as defined in
definition V.1. For b ∈ {0, 1}, let S∗b be the malicious
server and let S1−b be the honest server. Let D be the
database copy held by the honest server. For i ∈ [N],

let (q0, q1, state) ← PIR.QueryGen(1λ, i, N) be the client’s
query shares, let res1−b be the honest server’s response, and
let res∗b be the response from the malicious server. We say
that PIR is secure against a malicious server if no PPT
malicious server S∗b can produce a response res∗b such that
the output x∗ ← PIR.Reconstruct(res0, res1, state) is not in
the set {D[i],⊥}. In other words, if PIR.Reconstruct does not
output ⊥, then the output should be x = D[i], where D is the
honest server’s copy of the database.

Definition D.3 (PIR Security Against a Malicious Client). Let
PIR := PIRN,G be a PIR protocol as defined in definition
V.1. For any query shares q0 and q1, define the follow-
ing distribution of outputs of a pair of honest servers. Let
(resb, πb)← PIR.QueryEval(qb,D) for b ∈ {0, 1}.

Out(q0, q1;D) :=

 {res0, res1}
if Accept← PIR.QueryVerify(π0, π1)

⊥ otherwise.

We say that the PIR scheme is secure against a malicious
client if there exists a PPT simulator Sim such that for any
PPT adversary A and the following holds.{

Out(q0, q1;D) | (q0, q1)← A(1λ, N,G)
}
≈c{

Sim(q0, q1;D[i]) | (q0, q1)← A(1λ, N,G)
}

B. PIR Security and Privacy Proofs

We now argue the security of the PIR protocol in figure 3.

Lemma D.4 (PIR Privacy Against a Malicious Server). The
PIR construction given in figure 3 satisfies definition D.1.

Proof. This lemma follows from the function hiding of the
underlying VDPF scheme, shown in lemma III.14.

Lemma D.5 (PIR Security Against a Malicious Server). The
PIR construction given in figure 3 satisfies definition D.2.

Proof. This lemma follows from the size of the group G. The
output group element r $←− G is sampled uniformly at random.
In order to fool the client into outputting the wrong value (as
opposed to ⊥), a malicious server S∗b must output an additive
share y∗b that shifts the true output by exactly r. Let g = y0+y1
be the true output where both output shares are computed
honestly, and let g∗ = y∗b + y1−b be the output the client
receives when using the malicious output share. Since we
assume the client’s share is honestly generated, the malicious
server is able to compute the honest share yb. If g = 0, then we
must have g∗ = g+ r, so g∗−g = y∗b − yb = r. If g = r, then
we have g∗ = g−r, so g−g∗ = yb−y∗b = r. In both cases, the
output r is implicit in the view of S∗b , so either the malicious
server has broken the function hiding property of the VDPF or
has correctly guessed the value of a uniformly random element
of G, which succeeds with probability 1/|G| ≤ 2−λ.

Lemma D.6 (PIR Security Against a Malicious Client). The
PIR construction given in figure 3 satisfies definition D.3.

Proof. This lemma follows from the verifiability of the DPF.
From lemma III.12, if the output proofs of the VDPF evalu-
ation algorithm match, then the output is a secret sharing of
the truth table of some point function. This point function, by
definition, must have at most one non-zero element, and the
index of this non-zero element is exactly what the simulator
will use as the index of the database element to return. The
evaluation algorithms are completely deterministic, so this
index, if it exists, is completely determined by the input query.
Since the real shares are also masked with a pseudorandom
secret sharing of zero, the simulator can simply sample a truly
random share of the database element at the correct index.

APPENDIX E
MALICIOUS TWO-SERVER PSI PROTOCOL

We will now define the API for our protocol.

Definition E.1 (Two-Server PSI API). A two-server PSI
protocol PSI := PSIN,G is parametrized by a domain D of
size N and a group G. This protocol is between a client C
and two servers S0 and S1. The servers begin the protocol
with identical copies of a set Y ⊂ D, and the client begins
with a set X ⊂ D. Our PSI protocol consists of the following
three PPT algorithms.
• dbState← PSI.Setup(1λ, N,G)

Takes as input the public parameters of the PSI scheme
and outputs state parameters that are used by the servers
when evaluating queries.

• (q0, q1, state)← PSI.QueryGen(1λ, X)
Takes as input a set X ⊂ D and outputs query values
q0, q1 as well as a query state state. Intended to be run by
the client, where qb is intended to be sent to Sb. The query
state state is held by the client to verify the response.

• (resb, πb, dbState′)← PSI.QueryEval(qb, Y, dbState)
Takes an input a query value qb and a set Y ⊂ D. Outputs
a response share resb as well as a proof πb that the query
was well-formed. Also outputs updated state variables
dbState.

• Accept/Reject← PSI.QueryVerify(π0, π1)
Takes as input two proofs π0, π1 of query-wellformedness
and checks if the proofs are consistent with each other,
indicating that the query values correspond to a set of
at most some size that is a deterministic function of the
security parameter and the honest number of nonzero
points. Outputs Accept if this check passes, and Reject
otherwise.

• Z or ⊥ ← PSI.Reconstruct(res0, res1, state)
Takes as input two response shares res0, res1 as well as a
query state state. If the response shares are not consistent
with the query state, output ⊥. Otherwise, reconstruct the
response Z = X ∩ Y .

We give formal definitions for security and privacy for a
malicious and verifiable PSI protocol in appendix E-A.

We will now present our construction of a malicious two-
server PSI protocol. This protocol will rely heavily on the
verifiable DMPF described in section IV. The construction is

given in figure 9. The proofs of security are given in appendix
E-B.

A. PSI Security and Privacy Definitions

Definition E.2 (PSI Privacy Against a Malicious Server). Let
PSI := PSIN,G be a PSI protocol as defined in definition E.1.

ViewPSI(b,X;D, dbState) :={
(qb, π1−b)

∣∣∣∣ (q0, q1)← PSI.QueryGen(1λ, X),
(, π1−b)← PSI.QueryEval(q1−b, Y, dbState)

}
We say that this PSI protocol maintains privacy against a
malicious server if there exists a simulator Sim for any
i ∈ [N] the following two distributions are computationally
indistinguishable.

{(qb, π1−b) | (qb, π1−b)← ViewPSI(b,X;D, dbState)}
≈c {(q∗, π∗) | (q∗, π∗)← Sim(1λ, Y, dbState)}

Definition E.3 (PSI Security Against a Malicious Server). Let
PSI := PSIN,G be a PSI protocol as defined in definition
E.1. For b ∈ {0, 1}, let S∗b be the malicious server and
let S1−b be the honest server. Let D be the database copy
held by the honest server. For X ⊂ D, let (q0, q1, state) ←
PSI.QueryGen(1λ, X,N) be the client’s query shares, let
res1−b be the honest server’s response, and let res∗b be the
response from the malicious server. We say that PSI is secure
against a malicious server if no PPT malicious server S∗b
can produce a response res∗b such that the output x∗ ←
PSI.Reconstruct(res0, res1, state) is not in the set {D[i],⊥}.
In other words, if PSI.Reconstruct does not output ⊥, then the
output should be x = X ∩ Y , where Y is the honest server’s
copy of the database.

Definition E.4 (PSI Security Against a Malicious Client). Let
PSI := PSIN,G be a PSI protocol as defined in definition
E.1. For any query shares q0 and q1, define the follow-
ing distribution of outputs of a pair of honest servers. Let
(resb, πb)← PSI.QueryEval(qb, Y) for b ∈ {0, 1}.

Out(q0, q1;Y) :=

 {res0, res1}
if Accept← PSI.QueryVerify(π0, π1)

⊥ otherwise.

We say that the PSI scheme is secure against a malicious
client if there exists a PPT simulator Sim such that for any
PPT adversary A and the following holds.{

Out(q0, q1;Y) | (q0, q1)← A(1λ, N,G)
}
≈c{

Sim(q0, q1;X
′ ∩ Y) | (q0, q1)← A(1λ, N,G)

}
where |X ′| ≤ 2t and t is the size of the honest set.

B. PSI Security & Privacy Proofs

Lemma E.5 (PSI Privacy Against a Malicious Server). The
PSI construction given in figure 9 satisfies definition E.2.

Proof. This follows from the function hiding of the VDMPF.

Lemma E.6 (PSI Security Against a Malicious Server). The
PSI construction given in figure 9 satisfies definition E.3.

Proof. This follows from a parallel argument to lemma D.5;
namely, it follows from the size of the output group G.

Lemma E.7 (PSI Security Against a Malicious Client). The
PSI construction given in figure 9 satisfies definition E.4.

Proof. This follows from the verifiability of the VDMPF.

Let λ be a security parameter. For a domain size D with size N and group G, let PSI := PSIN,G. Let VerDMPF :=
VerDMPFN,G be the verifiable distributed multi-point function secret sharing scheme as defined in figure 2. Let
G : {0, 1}λ → G× {0, 1}λ be a secure PRG.
We assume that the two servers have the same value of dbState. We now give the algorithms to process a database query.

Client Algorithms Server Algorithms

PSI.Setup(1λ, N,G)

1: Sample a random seed s for G.
Output: dbState← s

PSI.QueryGen(1λ, X)

1: Define t← |X|.
2: For each xi ∈ X , sample ri

$←− G.
3: Define the point functions fi := fxi,ri for each
i ∈ [t].

4: (k0, k1)← VerDMPF.Gen
(
1λ, {fi}ti=1

)
Output: (q0, q1, state)← (k0, k1, {(xi, ri)}ti=1)

PSI.QueryEval(qb, Y, dbState)

1: (yb, πb)← VerDMPF.MatchEval(b, qb, Y) . Algorithm 5
2: for y

(i)
b in yb do

3: (g, dbState)← G(dbState)

4: if b = 0 then y
(i)
b ← y

(i)
b + g

5: else y
(i)
b ← y

(i)
b − g

Output: (resb, πb, dbState)← (yb, πb, dbState)

PSI.Reconstruct(res0, res1, state)

1: Parse (x1, r1), . . . , (xt, rt)← state
2: Initialize Z ← ∅
3: for (z1, z2) in (res0, res1) do
4: z ← z0 + z1.
5: if z = ri then Insert xi in Z

Output: Z

PSI.QueryVerify(π0, π1)

1: if π0 = π1 then ν ← Accept
2: else ν ← Reject

Output: ν

Fig. 9: Our PSI construction.

	Introduction
	Our Contribution & Technical Overview
	Related Work

	Background
	Notation
	Function Secret Sharing

	Lightweight, Verifiable DPF
	Definitions
	Our Construction
	VDPF Security Proof
	Verifiable Evaluation of a Domain Subset

	Verifiable Distributed Multi-Point Function
	Cuckoo-hashing from PRPs
	Verifiable Distributed MPFs via PRP Hashing

	Malicious Two-Server PIR Protocol
	Implementation & Performance
	References
	Appendix A: PIR & PSI Background
	Appendix B: Verifiable DPF Proofs
	Appendix C: Verifiable DMPF Proofs
	Match-Mode VDMPF: Point Matching

	Appendix D: PIR Security and Privacy
	PIR Security and Privacy Definitions
	PIR Security and Privacy Proofs

	Appendix E: Malicious Two-Server PSI Protocol
	PSI Security and Privacy Definitions
	PSI Security & Privacy Proofs

