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Abstract. In this work, we present a lightweight construction of ver-
ifiable two-party function secret sharing (FSS) for point functions and
multi-point functions. Our verifiability method is lightweight in two ways.
Firstly, it is concretely efficient, making use of only symmetric key op-
erations and no public key or MPC techniques are involved. Our perfor-
mance is comparable with the state-of-the-art non-verifiable DPF con-
structions, and we outperform all prior DPF verification techniques in
both computation and communication complexity, which we demonstrate
with an implementation of our scheme. Secondly, our verification proce-
dure is essentially unconstrained. It will verify that distributed point
function (DPF) shares correspond to some point function irrespective of
the output group size, the structure of the DPF output, or the set of
points on which the DPF must be evaluated. This is in stark contrast
with prior works, which depend on at least one and often all three of
these constraints. In addition, our construction is the first DPF verifica-
tion protocol that can verify general DPFs while remaining secure even
if one server is malicious. Prior work on maliciously secure DPF verifi-
cation could only verify DPFs where the non-zero output is binary and
the output space is a large field.
As an additional feature, our verification procedure can be batched so
that verifying a polynomial number of DPF shares requires the exact
same amount of communication as verifying one pair of DPF shares. We
combine this packed DPF verification with a novel method for packing
DPFs into shares of a multi-point function where the evaluation time,
verification time, and verification communication are independent of the
number of non-zero points in the function.
An immediate corollary of our results are two-server protocols for PIR
and PSI that remain secure when any one of the three parties is malicious
(either the client or one of the servers).

1 Introduction

Function secret sharing (FSS), first introduced by Boyle, Gilboa, and Ishai [2],
is a cryptographic primitive that extends the classical notion of secret-sharing
a scalar value to secret sharing a function. FSS allows a party to secret-share
a function f : D → G and produce function shares k0 and k1. These shares
have several useful properties. Firstly, viewing either share alone computationally
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hides the function f . Secondly, the function shares can be evaluated at points in
the domain D to produce additive shares of the output of f . In other words, for
x ∈ D, we have k0(x) + k1(x) = f(x).

A point function f : D → G is defined by a single point (α, β) ∈ D ×G such
that f(α) = β and for all γ 6= α we have f(γ) = 0. We will often denote the
point function f defined by (α, β) as fα,β . Distributed point functions (DPFs),
first introduced by Gilboa and Ishai [9], are a special case of FSS that supports
point functions. Boyle, Gilboa, and Ishai [3] gave an efficient construction of a
distributed point function.

An FSS construction is immediately applicable to the problem of constructing
two-server protocols, where a client interacts with two servers that are assumed
to not collude. Despite the simplicity of point functions, DPFs give rise to a rich
class of two-server protocols, including private information retrieval (PIR) [3],
private set intersection (PSI) [6], Oblivious-RAM [8], contact-tracing [7], and
many more [1, 13]. These two-server protocols often have a similar structure.
For example, a simple, semi-honest PIR construction from a DPF begins with
a client generating DPF shares for the function fi,1, where i is the query index,
and the servers begin with identical copies of a database of size N . The client
sends one function share to each server, and the servers evaluate the share on
each index i ∈ [N ] to obtain a secret sharing of a one-hot vector. The servers
then take the inner product with their copy of the database to obtain an additive
share of the ith element, which is returned to the client.

Verifiable DPF. A crucial barrier that must be overcome in order for many ap-
plications to be deployed in the real world is achieving some form of malicious
security. For the two-server model, this often means verifying that the client’s
inputs are well-formed in order to ensure that the client does not learn unau-
thorized information about the servers’ database or modify the database in an
unauthorized way. A DPF scheme that supports this well-formedness check is
called a verifiable DPF (VDPF).

In addition to constructing DPFs, the work of Boyle et al. [3] also constructs
VDPFs that are secure when the servers are semi-honest; a malicious server
is able to learn non-trivial information about the client’s chosen point (α, β)
through the verification procedure. Even to achieve semi-honest security, the
VDPF protocol of [3] requires a constant-sized MPC protocol (consisting of
several OLEs) to be run between the servers to verify the DPF. The recent
work of Boneh, Boyle, Corrigan-Gibbs, Gilboa, and Ishai [1] achieves maliciously
secure VDPFs when β ∈ {0, 1} and the output group has size at least 2λ, but
they do not extend their protocol to support general β values or smaller output
groups. They also require a constant sized MPC (also a few OLEs) to be run
between the servers to verify a single DPF share. More detail on these protocols
is given in Section 1.2. These works leave open the problem of constructing a
maliciously-secure VDPF for general β values, which we solve in this work.

Distributed Multi-Point Functions. While DPFs result in a surprisingly rich class
of two-server protocols, in many applications [6,7] it is desirable to have FSS for
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functions with more than one nonzero point. We call these multi-point functions
(MPFs) (see Section 4.2 for more details). Naively, this requires constructing
a DPF for each nonzero point. To evaluate the naive MPF share the servers
must perform a DPF evaluation for each nonzero point in the function. In other
words, if a function contains t non-zero points and the servers wish to evaluate
the MPF share at η points, then they must perform t · η DPF evaluations. This
clearly wastes a tremendous amount of work, since we know that for each of the
t DPF shares, at most one of the η evaluation points will map to a non-zero
value, and yet each share is evaluated the full η times. To maintain efficient
FSS for these multi-point functions, it is clear that a more efficient manner
of batching DPF shares is required. Furthermore, the naive verifiable DMPF
construction is simply a concatenation of many verifiable DPF shares, which
means the complexity of the verification procedure grows linearly in t. Prior
works have left open the problem of constructing DMPF shares with evaluation
time and verification complexity sublinear in the number of nonzero points,
which we solve in this work.

1.1 Our Contributions

Lightweight Verifiable DPF. We give a lightweight construction of a verifiable
DPF, which admits a very efficient way to verify that DPF shares are well-
formed. This construction is light-weight in two ways. First, it’s performance is
comparable with the state-of-the-art non-verifiable DPF constructions (within a
factor of 2 in both communication and computation), as we show in Section 5.
In addition, we strictly outperform all prior DPF verification methods in both
communication and computation. These verification methods often have strictly
stronger or incomparable constraints, such as remaining secure when the servers
are semi-honest or only verifying if β ∈ {0, 1}. Unlike all other DPF verification
methods [1, 3], we do not make use of any public key operations or arithmetic
MPC; for a security parameter λ, our verification procedure is a simple exchange
of 2λ bits.

Second, the constraints on the verification procedure are essentially non-
existent. We can verify that a DPF share is well-formed regardless of output
field size, regardless of the value of the non-zero output element, and regardless
of the set of evaluation points the servers choose. This is in stark contrast to
prior works [1,3], which depend on at least one and often all of these constraints,
as we describe in Section 1.2. Our method is able to verify that there is at most
one non-zero value in any set of outputs of the DPF share, even if the set is
adversarially chosen.

Efficient Batched Verification. Another novel feature of our verification proce-
dure is efficient batching. When verifying any polynomial number of shares in our
VDPF scheme, the communication for the verification procedure remains only
an exchange of 2λ bits. This is because our verification procedure for a single
pair of VDPF shares is to check if two 2λ-bit strings are equal (we explain how
these strings are generated in Section 3), so the two servers are able to check if
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many pairs of 2λ-bit strings are equal by simply hashing all strings down into a
single pair of 2λ-bit strings. This batching requires no additional computational
overhead beyond hashing the strings together. Furthermore, this means that the
communication to verify VDPF shares from many different clients is bounded
at 2λ bits, and, to our knowledge, this is the first efficient cross-client batched
VDPF verification procedure of its kind.

Verifiable FSS for Multi-Point Functions. Another immediate consequence of
our batched verification procedure is verifiable FSS for multi-point functions. Our
VDMPF scheme goes beyond the naive construction, which is to simply generate
a pair of VDPF shares for each non-zero point in the multi-point function. As
mentioned above, when using this naive method for an MPF with t non-zero
points, a sever evaluating the MPF at η points needs to perform t · η VDPF
evaluations. We show how a simple application of Cuckoo-hashing can reduce
the number of VDPF evaluations to 3η regardless of the value of t. This is
at the cost of the client needing to produce and send roughly 2× the number
of VDPF shares as in the naive case, where these VDPF shares are at most
the same size as in the naive case. For even moderately sized t (e.g. t > 30)
this provides a tremendous savings in the overall computation time. Due to our
batched verification, the communication between the two servers never grows
beyond 2λ bits.

Ultimately, we will show the following two theorems.

Theorem 1 (Verifiable DPF (informal)). There exists a verifiable DPF for
any point function f : {0, 1}n → G that remains secure even when one server is
malicious. For security parameter λ, the runtime of share generation is O(nλ),
and the size of a function share is O(nλ). For any x ∈ {0, 1}n, the runtime of
share evaluation O(nλ). For the verification procedure with η outputs, additional
runtime is O(ηλ) and the communication between the two servers is O(λ).

Theorem 2 (Verifiable DMPF (informal)). There exists is a verifiable DMPF
for multi-point functions f : [N ]→ G with at most t non-zero evaluation points
that remains secure even when one server is malicious. For security parameter λ
and a number of hash table buckets m = O(tλ+t log(t)), the runtime of share gen-
eration is O (mλ log(N/m)). The runtime of share evaluation is O(λ log(N/m)).
For the verification procedure with η outputs, the additional runtime is O(ηλ)
and the communication between the two servers is O(λ).

We implement our VDPF and VDMPF schemes and present benchmarks in
Section 5.

Applications As a direct result of our verifiable FSS construction, we obtain
several protocols in the two-server model that are secure against any one ma-
licious corruption. More specifically, our verifiable DPF directly results in a
maliciously-secure two-server PIR scheme and our verifiable DMPF directly re-
sults in a maliciously-secure two-server PSI scheme. We exclude the presentation
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of the constructions due to space constraints and because these protocol follow
immediately from our constructions. We give these constructions in the full ver-
sion.

1.2 Related Work

The most relevant related work is the verifiable DPF constructions of Boyle,
Gilboa, and Ishai [3] and the subsequent work of Boneh, Boyle, Corrigan-Gibbs,
Gilboa, and Ishai [1]. We begin with an overview of the DPF construction of
[3], then discuss the semi-honest verification protocols presented in [3]. We also
briefly discuss the malicious verification procedure in [1], which handles the case
where β ∈ {0, 1} and the DPF output space is a large field.

Overview of the Boyle et al. [3] construction. The DPF construction of Boyle et
al. [3] is a function secret sharing scheme for point functions in the two-server
model. As described in Section 2.2, a distributed point function scheme allows
a client to run an algorithm (k0, k1) ← Gen(1λ, fα,β), where fα,β : {0, 1}n → G
is a point function. This client can then send k0 to a server S0 and send k1 to
a server S1. A single share kb completely hides the function fα,β ; it completely
hides the location and value of the non-zero point, but not necessarily the fact
that fα,β is a point function. For any x ∈ {0, 1}n, the servers are able to compute
yb = Eval(b, kb, x), such that y0 + y1 = fα,β(x).

The construction of [3] begins with the observation that a point function
differs from the zero function (the function that outputs zero on every input)
on at most a single point. Therefore, they begin with the following protocol to
share the zero function. The zero function can be shared by giving each server
an identical copy of a PRF along with an additional bit that indicates if the
output should be negated. The servers S0 and S1 can then evaluate their PRF
on the same input x, then server S1 negates the output. The scheme will produce
outputs from the same input x that sum to zero, making this a secret sharing of
the zero function.

We can then instantiate this PRF using the GGM [10] construction, where
the PRF is evaluated by expanding a tree of PRGs, and the output of the PRF
is a leaf of this tree. Each input to the PRF will arrive at a unique leaf and will
have a distinct path through the tree. To turn this zero function into a point
function, we need to puncture a single path in this tree. In other words, we need
to ensure that there is exactly one path in the tree where the values at the GGM
nodes differ. For a point function fα,β , the path through the tree and the location
of the leaf corresponds to α, and the value at the leaf corresponds to β. Since all
other paths will have matching nodes, they will result in matching leaves, which
become additive shares of zero. The GGM nodes along the punctured path will
differ, which will result in this path terminating in leaves that do not match. We
will discuss in Section 3 how to arrange operations at the final level to turn this
one specific mismatched pair into additive shares of the desired non-zero output
β.
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As we traverse the tree, we maintain the following invariant. If we are along
the punctured path (the path leading to the leaf at position α), the PRG seeds
should differ. If we are not along the punctured path, then the PRG seeds should
be the same. At each level in the tree, we need to ensure that as soon as we
diverge from the punctured path, the seeds will match again, bringing us back
to the zero-function state. To achieve this, a correction operation is applied at
each GGM node as we traverse the tree. One of the core contributions of [3] is a
method to achieve this correction operation. We make use of the same correction
operation and exploit its useful properties to obtain our VDPF construction.
More details are provided in Section 1.3.

Verification procedure of [3]. We will now provide a high-level overview of the
verification procedures for the DPF construction of [3]. One of the main features
of these verification procedures is that they view the DPF as a black-box. With
this view, the task becomes taking a secret-shared vector y = y0 +y1 of length N
and verifying that the shared values are non-zero in at-most one location. There
are several different protocols presented in [3] to achieve this, although all follow
a basic template. These verification procedures all begin by sampling a linear
sketching matrix L from a distribution L with N columns and a small constant
number of rows. Each server Sb multiplies their share yb by L to obtain a short
vector zb. The servers then run a simple MPC procedure is run to verify that z0
and z1 are well-formed. These verification procedures are only secure when the
servers are semi-honest.

To give an example, the verification for β ∈ {0, 1} with an output field F
begins by defining a matrix L ∈ F 3×N . Each column j of L is defined to be
L1,j = rj , L2,j = sj , and L3,j = rjsj , where rj and sj are sampled uniformly at
random over F. The two servers begin with PRG seeds to locally generate this
L matrix. The servers then locally compute L · yb = zb, which is a secret sharing
of three elements z1, z2, and z3. Finally, the servers run an MPC protocol to
check if z3 = z1z2. In [3], it is shown that the probability this check passes if y is
not the zero-vector or a unit vector is at most 2/|F|. For security parameter λ,
this means that |F| must be at least 2λ+1; all verification procedures given in [3]
require that |F| must be O(2λ).

To obtain a verification for a general β, we can simply take the protocol
for β ∈ {0, 1} and slightly modify the verification procedure to account for a
β 6= β2. In particular, the servers run the same protocol as above, but the
final MPC check now verifies that β · z3 = z1z2. The client provides a secret-
sharing of β to the servers to allow them to compute shares of the product β ·z3.
We conclude this description by noting that this construction is vulnerable to
additive attacks, where a malicious server can learn non-trivial information about
the client’s point (α, β).

Verification procedure of [1]. We now briefly describe the maliciously secure
verification procedure of [1]. Recall that this approach verifies if DPF shares are
well formed and if β ∈ {0, 1}. At a high level, this approach is an extension of
the check for binary β described above with checksum values added to defend
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against additive attacks from a malicious server. Instead of sending a single
DPF share corresponding to the point (α, β), this VDPF scheme consists of
two DPF shares: one defined by the original point (α, β) and the other defined
by the point (α, κ · β), where κ is a uniformly random element of the output
field F. Intuitively, the purpose of this κ value is to defend against a malicious
server learning information about the non-zero point by applying additive shifts
to candidate α locations. However, the value κ must also be included in the
sketching checks in order to verify the consistency of the two DPF shares. This
task is prone to error. For example, if the servers were simply given shares of κ
directly, then a malicious server could learn if β was 0 if it applied an additive
shift to κ and the verification still passed. This would occur because both β
and κ · β are 0 when β is 0. The overcome this, the method of [1] embeds the
κ value in an OLE correlation that the client sends to the servers. We omit
the details, but we note that, at the time of this writing, there is no published
method to extend this binary check to a general check in the same way as in [3].
We conclude this description by summarizing the complexity of this approach.
The computational overhead of the verification includes evaluating the second
DPF share that encodes the checksum, as well as sampling the sketching matrix.
Then the sketching matrix must be multiplied by the output DPF vectors, which
is a constant number of length N inner-products. The communication of the
verification procedure consists of 4 elements of F sent by each server over two
rounds of communication.

1.3 Technical Overview

We now give a brief technical overview of our verification methods.

Our DPF verification procedure. In our work, we observe that the correction
operation of [3] is limited in a way that is useful for us. In particular, the cor-
rection operation is designed to correct at most one difference per level. With
this observation, we can construct a simple verification procedure by extending
the GGM tree by one level. This level takes each leaf in the original tree and
produces two children: a left leaf and a right leaf. The left leaves can all be
equivalent to the parent, while the right leaves should all correspond to a zero
output. This means that all pairs of right leaves in the two DPF shares should be
equal. Since the correction word can only correct one difference, if all the right
leaves are the same, then there can be at most one difference in the previous
level, meaning that all but one of the left leaves must be the same. The location
of the differing left leaf is the α value, and the value produced by the differing
leaves is the β value. All other left leaves will be equal, thus corresponding to the
zero output. Since the DPF evaluation is completely deterministic, the α and β
values that define the point function can be deterministically extracted from any
pair of DPF shares that pass this verification check, meaning that regardless of
the method a malicious client uses to generate the DPF shares, if the verification
check passes then the servers have the guarantee that the shares encode a DPF
defined by this (α, β) pair.
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Furthermore, the servers need only check that all of their right leaves (which
they can hash down into a single string of length 2λ) are equal, meaning that
if the DPF shares are well formed the servers’ messages to each other are per-
fectly simulatable. Therefore, this verification method introduces zero additional
privacy risk to an honest client even when one of the servers is malicious. This
security extends to verifying a polynomial number of DPF shares from the same
client or different clients, since an equality check that will always pass for honest
clients will not leak information about the honest clients’ choices of α and β.

For more details and intuition about this approach, see Section 3.

Multi-point function packing. A natural application of our packed verification
technique is to verify multi-point functions, since the communication for the
verification will not increase as the number of non-zero points grows. As discussed
above, the naive construction of a multi-point function with t non-zero points
requires time linear in t for each evaluation. This is prohibitively expensive for
applications where the servers must evaluate the DMPF at many points. To
avoid this linear scaling of the evaluation time, we observe that in the list of
tuples (α1, β1), . . . , (αt, βt) all of the α values are unique. Therefore, for each
evaluation point x, the output of at most one of the DPFs will be nonzero,
which occurs if x = αi. This means that our DMPF evaluation algorithm only
needs to guarantee that the evaluation point x will be evaluated on the DPF
with αi = x if this point is nonzero in the MPF.

Towards this goal, we have the client insert the values α1, . . . , αt into a
Cuckoo-hash table. At a high level, a Cuckoo-hash table is defined by a list
of m buckets and κ = O(1) of hash functions h1, . . . , hκ (in our case we use
κ = 3). Each hash function has an output space that is {1, . . . ,m}, and each
element α inserted in the table is at an index i = hj(α) for some 1 ≤ j ≤ κ.

The client constructs a DMPF share from this Cuckoo-hash table by creating
a DPF share for each bucket in the table. The empty buckets will hold a DPF
that shares the zero function, and the buckets that hold an index αi hold a DPF
that shares fαi,βi

. The domain of this DPF can be the same as the domain of
the MPF, so the index of this non-zero point is simply αi. The client then sends
these m DPF shares to the server along with the hash functions defining the
Cuckoo-hash table. To evaluate a point x on these shares, the servers simply
hash x with each of the κ hash functions to get κ candidate buckets. If x = αi
for one of the non-zero points in the MPF, the guarantee is that αi is in one of
these buckets, so the servers evaluate only these κ DPFs at x then sum the result.
This is an MPF evaluation procedure with a runtime that does not grow with
the number of non-zero points in the MPF. In Section 4, we discuss a variant
of this method that allows the domain of the DPFs for Cuckoo-hash buckets to
shrink as the number of nonzero points grows, further speeding up evaluation
time.

To maintain client privacy, we must ensure that the Cuckoo-hash table does
not leak information about the client’s choice of α1, . . . , αt values. The only in-
formation that is leaked from the Cuckoo-hash table is that the client’s choice of
non-zero indices did not fail to be inserted in this Cuckoo-hash table. Therefore,
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we must choose parameters for the Cuckoo-hash table such that the probability
of failure is at most 2−λ for security parameter λ. For a fixed κ, the failure prob-
ability of a Cuckoo-hash table shrinks as the number of buckets m increases.
For κ = 3 and λ = 80, we get an upper bound on the number of buckets as
m ≤ 2t for nearly all practical values of t. Therefore, for less than a 2× growth
in the client computation and the client-server communication, we can achieve
this significant improvement in the servers’ evaluation time.

To verify that these DMPF shares are well-formed, we can simply put ver-
ifiable DPF shares in the buckets. Since the DPF verification method can be
packed, the communication between the two servers never grows beyond the 2λ
equality check, and the security against a malicious server is maintained. Our
only sacrifice is in the verification of the number of nonzero points in the DMPF.
The naive approach would allow the servers to verify that there are at most t
nonzero points in the MPF, while the Cuckoo-hashing approach only allows the
servers to verify that there are at most m nonzero points in the MPF. However,
as we mentioned, for nearly all settings of t we get m ≤ 2t, and we believe this
gap is acceptable for many applications.

2 Background

2.1 Notation

Let T be a complete binary tree with 2n leaves. If we index each leaf from 0 to

2n − 1, let v
(n)
α be the leaf at index α ∈ {0, 1}n. Let v

(i)
α be the node at the ith

level of T such that v
(n)
α is in the subtree rooted at v

(i)
α . We will sometimes refer

to v
(i)
α as the ith node along the path to α.
For a finite set S, we will denote sampling a uniformly random element x as

x
$←− S.
For n ∈ N, we denote the set [n] := {1, . . . , n}.
We will denote a set of n-bit strings as either {xi}Li=1 or simply as x if the

length is not relevant or clear from context.
For a parameter λ, we say that a function negl(λ) is negligible in λ if it shrinks

faster than all polynomials in λ. In other words, for all polynomials poly(λ), there
exists a λ′ such that for all λ > λ′ we have negl(λ) < poly(λ).

2.2 Function Secret Sharing

In this section, we give a high level definition of function secret sharing and
distributed point functions. A function secret sharing scheme takes a function
f : D → R and generates two function shares f0 and f1. These function shares
can be evaluated a points x ∈ D such that fb(x) = yb and y0 +y1 = y = f(x). In
other words, when evaluated at an input x the function shares produce additive
secret shares of the function output. It is currently an open problem to construct
an efficient FSS scheme where the function is split into more than two shares [4].
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Definition 1 (Function Secret Sharing, Syntax & Correctness [2, 3]).
A function secret sharing scheme is defined by two PPT algorithms. These

algorithms are parametrized by a function class F of functions between a domain
D and a range R.

– FSS.Gen(1λ, f ∈ F)→ (k0, k1)
The FSS.Gen algorithm takes in a function f ∈ F and generates two FSS
keys k0 and k1.

– FSS.Eval(b, kb, x ∈ D)→ yb
The FSS.Eval algorithm takes in an x ∈ D and outputs an additive share
yb ∈ R of the value y = f(x). In other words, y0 + y1 = y = f(x).

We now give the basic security property that an FSS scheme must satisfy.

Definition 2 (FSS Security: Function Privacy [2,3]). Let FSS be a function
secret sharing scheme for the function class F , as defined in Definition 1. For
any f, f ′ ∈ F , the following should hold:

{kb | (k0, k1)← FSS.Gen({0, 1}, f)} ≈c
{k′b | (k′0, k

′
1)← FSS.Gen({0, 1}, f ′)}, for b ∈ {0, 1}

In words, the marginal distribution of one of the FSS keys computationally hides
the function used to compute the share.

We now give the definition of a distributed point function (DPF) in terms of
the FSS definitions above. We begin by defining a point function.

Definition 3 (Point Function). A function f : D → R is a point function if
there is α ∈ D and β ∈ R such that the following holds:

fα,β(x) =

{
β x = α
0 x 6= α

Throughout this work, we will be interested in point functions with domain
D = {0, 1}n and range R = G for a group G.

Definition 4 (Distributed Point Function). Let Fn,G be the class of point
functions with domain D = {0, 1}n and range R = G. We call an FSS scheme
a Distributed Point Function scheme if it supports the function class F .

3 Lightweight, Verifiable DPF

3.1 Definitions

We begin by defining a verifiable DPF. We define correctness and security for a
batched evaluation, since the verification procedure operates is defined over a set
of outputs. The procedure ensures that at-most one of these outputs is non-zero.
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Definition 5 (Verifiable DPF, denoted VerDPFn,G). A verifiable distributed
point function scheme VerDPFn,G supports the function class F of point func-
tions f : {0, 1}n → G. It is defined by three PPT algorithms. Define VerDPF :=
VerDPFn,G.

– VerDPF.Gen(1λ, fα,β)→ (k0, k1)
This is the FSS share generation algorithm. It takes in a function fα,β and
generates two shares k0 and k1.

– VerDPF.BVEval(b, kb, {xi}Li=1)→
(
{y(xi)
b }Li=1, πb

)
This is the verifiable evaluation algorithm, denoted BVEval for batch verifi-
able evaluation. It takes in a set of L inputs {xi}Li=1, where each xi ∈ {0, 1}n,
and outputs a tuple of values. The first set of values are the FSS outputs,

which take the form y
(xi)
b for i ∈ [L] satisfying y

(xi)
0 + y

(xi)
1 = f(xi). The

second output is a proof πb that is used to verify the well-formedness of the
output.

– VerDPF.Verify(π0, π1)→ Accept/Reject
For some pair of VerDPF keys (k0, k1), the VerDPF.Verify algorithm takes
in the proofs π0 and π1 from (yb, πb) ← BVEval(b, kb, {xi}Li=1) and outputs
either Accept or Reject. The output should only be Accept if y0 + y1 defines
the truth table of some point function, which occurs if it is non-zero in at
most one location.

Correctness for a verifiable DPF is defined in the same way as correctness for
any FSS scheme, as in Definition 1. To verify that the entire share is well-formed,
the BVEval algorithm can be run on the whole domain. We give a more efficient
algorithm for evaluating our verifiable DPF on the whole domain in Algorithm 3,
which uses techniques from Boyle et al. [3] to save a factor of n on the overall
runtime.

We now define security for a verifiable DPF. Note that we are only interested
in detecting a malformed share when the evaluators are semi-honest. However,
we do require that even a malicious evaluator does not learn any information
about the shared function; in other words, we require that the verification process
does not compromise the function privacy of an honestly generated DPF share
if one of the evaluators is malicious.

Definition 6 (Verifiable DPF Share Integrity, or Security Against Ma-
licious Share Generation). Let VerDPF := VerDPFn,G, and let kb be the (pos-
sibly maliciously generated) share received by server Sb. For an adversarially cho-

sen set of inputs {xi}ηi=1, let ({y(xi)
b }ηi=1, πb) ← VerDPF.BVEval(b, kb, {xi}ηi=1).

We say that VerDPF is secure against malicious share generation if the the fol-
lowing holds with all but negligible probability over the adversary’s choice of ran-

domness. If VerDPF.Verify(π0, π1) outputs Accept, then the values y
(xi)
0 + y

(xi)
1

must be non-zero in at most one location.

Definition 7 (Verifiable DPF Function Privacy, or Security Against a
Malicious Evaluator). Let VerDPF := VerDPFn,G support the class of point
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functions F with domain {0, 1}n and range G. For a set of function inputs x,
define the distribution representing the view of server Sb for a fixed function
f ∈ F .

ViewVerDPF(b, f,x) :={
(kb, π1−b)

∣∣∣∣ (k0, k1)← VerDPF.Gen(1λ, f),
( , π1−b)← VerDPF.BVEval(1− b, k1−b,x)

}
We say that VerDPF maintains function privacy if there exists a PPT simulator
Sim such that for any adversarially chosen x the following two distributions are
computationally indistinguishable for any f ∈ F .{

(kb, π1−b) | (kb, π1−b)← ViewVerDPF(b, f,x)
}
≈c{

(k∗, π∗) | (k∗, π∗)← Sim(1λ, b, n,G,x)
}

3.2 Our Construction

In this DPF scheme, the shares of the point function are k0 and k1. Each key

kb contains a starting seed s
(0)
b that defines the root of a GGM-style binary

tree, where at each node there is a PRG seed that is expanded into two seeds
that comprise the left and the right child of that node. However, the seeds that
define the left and right children are not the direct output of the PRG; instead,
we apply a correction operation to the PRG output in order to maintain the
required property of these trees, which we call the “DPF invariant.”

In addition to the PRG seed, each node is associated with a control bit, which
is one additional bit of information that is updated along with the seed during
the correction operation. This control bit is used in the correction operation,
and its purpose is to maintain the DPF invariant.

Definition 8 (DPF Invariant). Let DPF = DPFn,G, and let

(k0, k1)← DPF.Gen(1λ, fα,β)

for α ∈ {0, 1}n. Each key kb defines a binary tree Tb with 2n leaves, and each
node in the tree is associated with a PRG seed and a control bit.

For a fixed node location, let s0, t0 be the seed and control bit associate with
the node in T0, and let s1, t1 be the seed and control bit associated with the node
in T1. The DPF invariant is defined as the following:

s0 = s1 and t0 = t1 if the node is not along the path to α.

t0 6= t1 if the node is along the path to α.

In our construction, it is also very likely that s0 6= s1 if the node is along the
path to α, but this requirement is not necessary for the invariant.

From this invariant, we maintain that at each level there is exactly one place
in which the two trees differ, which is the node in that level corresponding to
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Algorithm 1 VerDPFn,G node expansion, denoted NodeExpand. This algorithm
describes generating the child nodes from the parent node in the DPF tree.

Input: PRG G : {0, 1}λ → {0, 1}2λ+2

Seed s ∈ {0, 1}λ, control bit t ∈ {0, 1}.
Correction word cw = (sc, t

L
c , t

R
c ).

1: Expand (sL, tL, sR, tR)← G(s)
2: s′0 ← correct(sL, sc, t) and t′0 ← correct(tL, tLc , t)
3: s′1 ← correct(sR, sc, t) and t′1 ← correct(tR, tRc , t)

Output: (s′0, t
′
0), (s′1, t

′
1)

the path to α. At the final level, all of the 2n leaves in both trees will be the
same, except at position α. We can define deterministic transformations on the
values at the leaves such that leaves with the same value produce additive shares
of zero. These transformations are each determined by the control bit, and sym-
metry in the control bits results in symmetric application of these deterministic
operations. At the leaf where the values differ, the invariant tells us that the
control bits will differ, and we can take advantage of this asymmetry to produce
additive shares of β at this pair of leaves.

In order to maintain the invariant in Definition 8, we perform a correction
operation at each node as we traverse the tree. Each level of the tree is associated
with a correction word. At each node, we perform the PRG expansion defined
in Definition 9, then apply the correction operation define in Definition 10 to
compute the seeds and control bits for the left and right children.

Definition 9 (VerDPF PRG Expansion [3]). Let s ∈ {0, 1} be a seed for
the PRG G : {0, 1}λ → {0, 1}2λ+2. Define the PRG expansion of the seed s as
follows:

sL||tL||sR||tR ← G(s)

where sL, sR ∈ {0, 1}λ and tL, tR ∈ {0, 1}.

Definition 10 (VerDPF Correction Operation [3]). The VerDPF correction
operation

correctG : G×G× {0, 1} → G

is defined as follows:

correctG(ξ0, ξ1, t) =

{
ξ0 if t = 0
ξ0 + ξ1 if t = 1

When G is not defined, the group G is taken to be Z`2 for some positive integer `.
In particular, this makes the group addition operation the component-wise XOR
of ξ0 and ξ1.

From the node expansion described in Algorithm 1, it becomes clear what
the correction word must be in order to maintain that only one pair of nodes
differ at each level of the tree. In particular, if the bit xi disagrees with αi, the
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corresponding bit of α, then the correction word must ensure that seeds and
controls bits in the next level match. We define the correction word generation
algorithm in Algorithm 2.

Algorithm 2 VerDPFn,G correction word generation, denoted CWGen.

Input: PRG G : {0, 1}λ → {0, 1}2λ+2

Left seed s0, left control bit t0.
Right seed s1, right control bit t1.
Bit x of the input.

1: Expand (sLb , t
L
b , s

R
b , t

R
b )← G(sb) for b ∈ {0, 1}.

2: if x = 0 then Diff ← L, Same← R . Set the right children to be equal.
3: else Diff ← R, Same← L . Set the left children to be equal.

4: sc ← sSame
0 ⊕ sSame

1

5: tLc ← tL0 ⊕ tL1 ⊕ 1⊕ x . Ensure that the left control bits are not equal iff x = 0.
6: tRc ← tR0 ⊕ tR1 ⊕ x . Ensure that the right control bits are not equal iff x = 1.
7: cw← sc||tLc ||tRc
8: s′b ← correct(sDiff

b , sc, t
(i−1)
b ) for b ∈ {0, 1}.

9: t′b ← correct(tDiff
b , tDiff

c , tb) for b ∈ {0, 1}.
Output: cw, (s′0, t

′
0), (s′1, t

′
1)

Intuitively, our construction takes advantage of the fact that the correction
words in the DPF construction of Boyle et al. can only correct at most one
difference in each level. In our construction, we extend the GGM tree by one
level, extending the DPF evaluation to all of the left children. In addition, at the
final level we replace the PRG with a hash function H sampled from a family
H that is collision-resistant and correlation-intractable for an XOR correlation
defined below. We then have the servers check that all of their right children are
the same by hashing all right children and exchanging the hash value.

In an honest pair of function shares, the trees should only differ at one node
at each level, and in the final level the only difference should be in one of the
left children. The collision resistance of the hash function ensures that any dif-
ference in the second-to-last level will result in a difference in the right children.
This forces the correction word to correct these right children in order for the
consistency check to pass. Since the correction word can correct at most one
difference in the right children, this will guarantee that all other right children
are the same because their parents are the same, which, in turn, implies that all
corresponding left children are the same.

As discussed above, it is straightforward to turn matching leaf nodes into
additive shares of zero, although we will have to generate the final control bit
slightly differently in this final level to ensure that this conversion is performed
correctly. In particular, we generate these control bits deterministically from the
seeds, which ensures that matching seeds will result in matching control bits. For
the non-zero output, we will have the honest client generate the function shares
until the control bits at the non-zero point are different. If a malicious client
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samples shares such that these bits are the same, this will simply correspond to
a different choice of β.

To securely instantiate the final level of the tree, our hash function family
must be collision resistant, which will ensure that a difference in the previous
level will translate to a difference in the children. We will also require the hash
function to be secure against a similar, but incomparable, correlation, which we
call XOR-collision resistance. Intuitively, satisfying this definition will ensure
that each correction seed will only be able to correct one difference in the right
children.

Definition 11 (XOR-Collision Resistance). We say a function family F
is XOR-collision resistant if no PPT adversary given a randomly sampled f ∈
F can find four values x0, x1, x2, x3 ∈ {0, 1}λ such that (x0, x1) 6= (x2, x3),
(x0, x1) 6= (x3, x2), and f(x0) ⊕ f(x1) = f(x2) ⊕ f(x3) 6= 0 with probability
better than some function negl(λ) that is negligible in λ.

To satisfy this definition, our hash function output has length 4λ, since we must
defend against a birthday-attack where the adversary is searching for a colliding
4-tuple. We expand on this more in the full version. With a hash function satis-
fying this definition, we will be able to argue that if an adversary can construct
invalid VerDPF keys that pass the consistency check, then this adversary has
found either a collision or an XOR-collision in the hash function.

We define the VerDPF key in Definition 12. The full verifiable DPF construc-
tion is given in Figure 1.

Definition 12 (VerDPF Function Share). Let VerDPFn,G be our verifiable
DPF scheme. Let λ be the security parameter. A function share contains the
following elements.

– Starting seed s(0) ∈ {0, 1}λ.
– Correction words cw1, . . . , cwn, where each cwi ∈ {0, 1}λ × {0, 1} × {0, 1}.
– One additional correction seed cs ∈ {0, 1}4λ, which corrects differences in

the final level. Corrections to the control bits are not necessary at the final
level.

– A final output correction group element ocw ∈ G.

Lemma 1 (VerDPF Correctness). The VerDPF scheme defined in Figure 1
defines a correct verifiable DPF scheme.

Proof. If we ignore the last level of the DPF expansion, our DPF is essentially
the same as the DPF construction of Boyle et al. [3]. The only difference is the
way the final control bits are generated. The control bits for the nodes that
correspond to zero outputs will be the same, since the seeds for these leaves will
also be the same. In the key generation, the seeds are sampled such that the
control bits for the leaf at position α will differ, allowing the selective XOR of
the final correction word. Since the correct operation is deterministic, the nodes
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Verifiable Distributed Point Function VerDPFn,G.
Let VerDPF := VerDPFn,G. Let G : {0, 1}λ → {0, 1}2λ+2 be a PRG. Let
H : {0, 1}n+λ → {0, 1}4λ be a hash function sampled from a family H that is
both collision-resistant and XOR-collision-resistant. Let H′ : {0, 1}4λ → {0, 1}2λ
be a hash function sampled from a family H′ that is collision-resistant. Let
convert : {0, 1}λ → G be a map converting a random λ-bit string to a pseudo-
random element of G. Let LSB{0, 1}` → {0, 1} be the function that takes any
bit-string and extracts the least significant bit.
The VerDPF.Verify algorithm simply checks if the two input proofs are equal.

VerDPF.Gen

Input: Security parameter 1λ and point function fα,β : {0, 1}n → G
1: Sample s

(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ. Set t

(0)
0 = 0 and t

(0)
1 = 1.

2: Let α1, . . . αn be the bits of α.
3: for i from 1 to n do
4: vals← CWGen(G, s(i−1)

0 , t
(i−1)
0 , s

(i−1)
1 , t

(i−1)
1 , αi)

5: Parse cwi, (s
(i)
0 , t

(i)
0 ), (s

(i)
1 , t

(i)
1 )← vals

6: π̃b ← H(α||s(n)b ) for b ∈ {0, 1}.
7: cs← π̃0 ⊕ π̃1.
8: s

(n+1)
b ← s

(n)
b . True output always extends to left child.

9: t
(n+1)
b ← LSB(s

(n+1)
b )

10: if t
(n+1)
0 = t

(n+1)
1 then goto 1

11: Compute output correction word: ocw ← (−1)t
(n+1)
1 [β − convert(s

(n+1)
0 ) +

convert(s
(n+1)
1 )]

12: Set kb ← (s
(0)
b , {cwi}ni=1, cs, ocw) for b ∈ {0, 1}

Output: (k0, k1)

VerDPF.BVEval

Input: b ∈ {0, 1} and VerDPF key kb.
Set of L distinct evaluation points x1, . . . , xL.

1: Parse the VerDPF key (s(0), {cwi}ni=1, cs, ocw)← kb.
2: Define y← {} and π ← cs
3: for ` from 1 to L do
4: Let s← s(0) and t← b.
5: Let β1 = MSB(x`), . . . , βn = LSB(x`) be the bits of x`.
6: for i from 1 to n do
7: (s′0, t

′
0), (s′1, t

′
1)← NodeExpand(G, s, t)

8: if βi = 0 then (s, t)← (s′0, t
′
0)

9: else (s, t)← (s′1, t
′
1)

10: π̃ ← H(x`||s) and t← LSB(s)
11: y.append

(
(−1)b · correctG(convert(s), ocw, t)

)
12: π ← π ⊕ H′(π ⊕ correct(π̃, cs, t))

Output: (y, π)

Fig. 1. Verifiable Distributed Point Function VerDPFn,G.
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Algorithm 3 VerDPF.FDEval. The verifiable full-domain evaluation function for
our verifiable DPF construction. The hash functions H and H′ are as in Figure 1.

Input: b ∈ {0, 1} and VerDPF key kb.
1: Parse the VerDPF key (s(0), {cwi}ni=1, cs, ocw)← kb.
2: Let s← s(0) and t← b
3: Define nodes← {(s, t)}
4: for i from 1 to n do
5: Define nodes′ ← {}
6: for (s, t) in nodes do
7: (s′0, t

′
0), (s′1, t

′
1)← NodeExpand(G, s, t)

8: nodes′.append((s′0, t
′
0))

9: nodes′.append((s′1, t
′
1))

10: nodes← nodes′

11: Define y← {} and π ← cs
12: for i from 1 to N do
13: (s, )← nodes[i].
14: π̃ ← H(i||s)
15: t← LSB(s)
16: y.append

(
(−1)b · correctG(convert(s), ocw, t)

)
17: π ← π ⊕ H′(π ⊕ correct(π̃, cs, t))

Output: (y, π)

with matching seeds and control bits will produce shares of zero. This can be
seen below, where we set s0 = s1 and t0 = t1.

yb = (−1)b · correctG(convert(sb), ocw, tb) = −1 · y1−b

For the leaf at position α, we have that t0 6= t1. Here, the output values will
be a secret sharing of β. For simplicity, we write gb = convert(sb).

ocw = (−1)t1 [β − g0 + g1]

y0 + y1 = correctG(g0, ocw, t0) + correctG(g1, ocw, t1)

= g0 − g1 + (−1)t0 · ocw = g0 − g1 + β − g0 + g1 = β

where we get that (−1)t0 · ocw = β − g0 + g1 from t0 6= t1.

3.3 VDPF Security Proof

We will now prove that the verifiable DPF construction given in Figure 1 is
secure. We will focus on proving the following theorem.

Lemma 2 (Detection of Malicious Function Shares). Except with prob-
ability negligible in the security parameter λ, no PPT adversary A can generate
VerDPF keys (k∗0, k

∗
1)← A(1λ) where the final level uses a hash function H← H

sampled from a family H of collision-resistant and XOR-collision-resistant hash
functions such that the following holds. For an adversarially chosen set of eval-
uation points {xi}Li=1, let (yb, πb) ← VerDPF.BVEval(b, k∗b , {xi}Li=1) such that
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Accept← VerDPF.Verify(π0, π1) passes but y0 + y1 is nonzero in more than one
location.

Proof. The approach to proving this theorem will be to focus on the final level
of the GGM tree. At the second-to-last level, each server has a set of seeds

{s(xi)
0 }Li=1 and {s(xi)

1 }Li=1. The servers also have the same correction seed cs. Let

π̃
(x)
b ← H(x||s(x)b ), let t

(x)
b ← LSB(s

(x)
b ), and let π

(x)
b ← correct(π̃

(x)
b , cs, t

(x)
b ). The

bulk of this proof is covered by the following lemma.

Lemma 3. For L ≥ 2, let x := {xi}Li=1. Suppose there exists two distinct inputs

u, v ∈ x such that s
(u)
0 6= s

(u)
1 and s

(v)
0 6= s

(v)
1 . If H is sampled from a collision-

resistant and XOR-collision-resistant family, then no PPT adversary can find a

correction seed cs such that for all x ∈ x we will have π
(x)
0 = π

(x)
1 .

Proof. Suppose for contradiction that there exists two inputs u, v ∈ x such that

s
(u)
0 6= s

(u)
1 and s

(v)
0 6= s

(v)
1 and for all x ∈ x we have π

(x)
0 = π

(x)
1 . By collision-

resistance, we have that π̃
(u)
0 6= π̃

(u)
1 and π̃

(v)
0 6= π̃

(v)
1 . In order to get π

(u)
0 = π

(u)
1

and π
(v)
0 = π

(v)
1 , we need the following:

cs = π̃
(u)
0 ⊕ π̃(u)

1 = π̃
(v)
0 ⊕ π̃(v)

1 6= 0

From the XOR-collision-resistance of H, in order to get this equality we must
have one of the following two cases.

– Case (i): π̃
(u)
0 = π̃

(v)
0 and π̃

(u)
1 = π̃

(v)
1

– Case (ii): π̃
(u)
0 = π̃

(v)
1 and π̃

(u)
1 = π̃

(v)
0

We can show that any one of these four equalities violates the collision-resistance

of H. Suppose we have H(u||s(u)b ) = π̃
(u)
b = π̃

(v)
b′ = H(v||s(v)b′ ) for any b, b′ ∈ {0, 1}.

Since u 6= v, any equality between these hash outputs violates the collision
resistance of H.

Therefore, no value of cs will result in π
(x)
0 = π

(x)
1 for all x ∈ x.

From the collision resistance of H′, if the proofs produced by the BVEval

algorithm match, then π
(x)
0 = π

(x)
1 for all x ∈ x. From Lemma 3, this implies

that there is at most one u ∈ x such that s
(u)
0 6= s

(u)
1 , and for all x ∈ x such that

x 6= u, we have s
(x)
0 = s

(x)
1 .

Define α = u for the unique u such that s
(u)
0 6= s

(u)
1 . If no such u exists (which

occurs if all outputs are zero), set u = x1. Define

β = correctG
(
convert(s

(u)
0 ), ocw, t

(u)
0

)
− correctG

(
convert(s

(u)
1 ), ocw, t

(u)
1

)
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Note that this β is well-defined for any s
(u)
b and t

(u)
b . For all other x 6= u,

observing that t
(x)
b = LSB(s

(x)
b ) implies the following:

s
(x)
0 = s

(x)
1 =⇒ t

(x)
0 = t

(x)
1 =⇒ correctG

(
convert(s

(x)
0 ), ocw, t

(x)
0

)
= correctG

(
convert(s

(x)
1 ), ocw, t

(x)
1

)
=⇒ y

(x)
0 + y

(x)
1 = 0

Since s
(x)
0 = s

(x)
1 for all x 6= u, y0 + y1 defines the truth table of fα,β . Therefore,

the construction in Figure 1 satisfies Definition 6.

Lemma 4 (VerDPF Function Privacy). The VDPF construction VerDPF
satisfies Definition 7.

Proof. All elements of a VerDPF key are computationally indistinguishable from
random elements. The starting seed is randomly sampled from {0, 1}λ. Each
correction word is XOR’d with the output of a PRG where the seed is not known
to the evaluator, and hence is also indistinguishable from random. Finally, the
inclusion of the correct proof from the other party does not add any information,
since the evaluator holding the share kb can locally compute the correct proof
π1−b = πb. Therefore, the simulator Sim can set all elements of the key k∗ to be
randomly sampled elements, then compute ( , π∗)← VerDPF.BVEval(b, k∗,x) to
output (k∗, π∗) ≈c (kb, π1−b).

Combining Lemma 2 and Lemma 4 gives the proof of the following theorem.

Theorem 3 (Verifiable Distributed Point Function). The construction in
Figure 1 is a secure verifiable DPF for the class of point functions Fn,G. For
any f ∈ Fn,G, the runtime of (k0, k1) ← VerDPF.Gen(1λ, f) is O(nλ), and
the size of a function share is O(nλ). For any x ∈ {0, 1}n, the runtime of
VerDPF.Eval(b, kb, x) is O(nλ), and the runtime of VerDPF.BVEval(b, kb,x) is
O(n · λ · |x|).

4 Verifiable Distributed Multi-Point Function

In this section, we present a novel method for efficiently batching many verifiable
DPF queries to obtain a verifiable FSS scheme for multi-point functions (MPFs).
Multi-point functions are defined as the sum of several point functions. While any
function can be viewed as an MPF, we will focus here on MPFs that have a small
number of non-zero points relatively to the domain size. This scheme will also be
verifiable in a similar, although more relaxed, manner as in the verifiable DPF
from Section 3. Our construction is based on a novel Cuckoo-hashing scheme
described below.
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4.1 Cuckoo-hashing from PRPs

Our technique is inspired by the use of Cuckoo-hashing schemes that are common
throughout the PSI [5, 6] and DPF [12] literature. In particular, it is common
for the Cuckoo-hashing scheme to have two modes: a compact mode and an ex-
panded mode. Both modes are parameterized by m buckets and κ hash functions
h1, . . . , hκ : {0, 1}∗ → [m].

Compact Cuckoo-hashing mode. In the compact mode, the input is t elements
x1, . . . , xt to be inserted into a table of m buckets. To insert an element xi, an
index k ∈ [κ] is randomly sampled and xi is inserted at index hk(xi). If this
index is already occupied by some other element xj , then xj is replaced by xi
and xj is reinserted using this same method. After some limit on the number of
trials, the insertion process is deemed to have failed. The purpose of the compact
mode is to efficiently pack t elements into the table of size m. This algorithm,
denoted CHCompact, is given in Algorithm 4.

Algorithm 4 CHCompact Compact Cuckoo-hashing scheme. The algorithm is
given a fixed time to run before it is deemed to have failed.

Input: Domain elements α1, . . . , αt
Hash functions h1, . . . , hκ : {0, 1}? → m
Number of buckets m ≥ t

1: Define an empty array of m elements Table where each entry is initialized to ⊥.
2: for ω from 1 to t do
3: Set β ← αω and set success← False
4: while success is False do
5: Sample k

$←− [κ]
6: i← hk(β).
7: if Table[i] = ⊥ then
8: Table[i] = β and success← True
9: else Swap β and Table[i]

Output: Table

We consider m = e · t for e > 1, where the size of e determines the proba-
bility over the choice of hash functions of failing to insert any set of t elements.
More specifically, from the empirical analysis of Demmler et al. [6], we have the
following lemma.

Lemma 5 (Cuckoo-hashing Failure Probability [6]). Let κ = 3 and t ≥ 4.
Let m = e · t for e > 1. Let H be a family of collision-resistant hash functions,
and let h1, . . . , hκ ← H be randomly sampled from H. We have that t elements
will fail to be inserted into a table of size m with probability 2−λ, where

λ = at · e− bt − log2(t)

at = 123.5 · CDFNormal(x = t, µ = 6.3, σ = 2.3)

bt = 130 · CDFNormal(x = t, µ = 6.45, σ = 2.18)
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Here, CDFNormal(x, µ, σ) refers to the cumulative density function of the normal
distribution with mean µ and standard deviation σ up to the point x.

Remark 1 (Cuckoo-hash parameters). Asymptotically, we have the number of
Cuckoo-hash buckets as m = O(tλ + t log(t)); however, concretely, the picture
is much nicer than the asymptotics suggest. For sufficiently large t (i.e. t ≥ 30),
we can simplify Lemma 5 to be λ = 123.5 · e− 130− log2(t), since the CDFNormal

factors become effectively one. Then, for λ = 80, we have that m ≤ 2t for all
30 ≤ t ≤ 237, which we believe captures nearly all practical use cases.

Expanded Cuckoo-hashing mode. In the expanded Cuckoo-hashing mode, the
hashing scheme takes as input t elements and produces a matrix of dimension
m × B that contains κ · t elements. This mode is produced by hashing all t
elements with each of the κ hash functions, then inserting each of the t elements
in all κ buckets as indicated by the hash functions. The parameter B is the
maximum size of these buckets.

Our PRP Cuckoo-hashing. In the Cuckoo-hashing schemes from the prior litera-
ture, the design of the scheme is focused on the compact mode, and the extended
mode is added without much change to the overall design. In our Cuckoo-hashing
scheme, we begin with an efficient construction of the expanded mode, then show
how we maintain efficiency of the compact mode. For a domain of elements D
of size n = |D|, we define the expanded mode of our Cuckoo-hashing scheme
with a PRP of domain size nκ. Let m be the number of bins in the Cuckoo-hash
table. Define B := dnκ/me. The PRP then defines an expanded Cuckoo-hash
table of dimension m× B by simply arranging the nκ outputs of the PRP into
the entries of an m×B matrix. More specifically, let PRP : {0, 1}λ× [nκ]→ [nκ]
be the PRP. Let σ ← {0, 1}λ be the seed of the PRP. Define entry (i, j) of the
m × B matrix A to be Ai,j := PRP(σ, (i − 1) ·m + j). Note that the last row
of the matrix may have some empty entries, but this turns out to have little
consequence on the overall scheme.

To define the compact mode of this Cuckoo-hashing scheme, we explicitly
define the hash functions in terms of the PRP. As above, let PRP : {0, 1}λ ×
[nκ]→ [nκ] be the PRP, and let σ ← {0, 1}λ be the seed of the PRP. For i ∈ [κ],
define the hash function hi : [n]→ [m] as follows:

hi(x) := bPRP(σ, x+ n · (i− 1))/Bc (1)

The hash functions h1, . . . , hκ can then be used in the original compact Cuckoo-
hashing scheme with m buckets. The main benefit of our construction comes
with the next feature, which allows a party to learn the location of an element
within a specific bucket of the expanded Cuckoo-hash table without directly
constructing the expanded table. More specifically, for i ∈ [κ], we define the
function indexi : [n]→ [B] as follows:

indexi(x) := PRP(σ, x+ n · (i− 1)) mod B (2)



22 de Castro and Polychroniadou

With these functions index1, . . . , indexκ in addition to the hash functions h1,
. . ., hκ, we can compute the locations {(i, j)k ∈ [m]× [B]}κk=1 for each of the κ
locations of an element x ∈ [n] in the expanded Cuckoo-hash table. In particular,
we have (i, j)k = (hk(x), indexk(x)).

4.2 Verifiable Distributed MPFs via PRP Hashing

We now present our verifiable MPF scheme that makes use of the Cuckoo-hashing
scheme described in the previous section. Let N be the MPF domain size. Our
input will be an MPF f defined by t point functions fαi,βi

: [N ]→ G for i ∈ [t].
Without loss of generality, we consider α1, . . . , αt as distinct points. We would
like to efficiently support an FSS scheme for the function f : [N ] → G that is
defined as follows:

f(x) =

t∑
i=1

fαi,βi
(x)

Naively, we would generate t different DPF shares, one for each point function.
Evaluation of this naive distributed MPF (DMPF) share at a single point would
require t DPF share evaluations.

To improve over this naive construction, the idea is to pack our point func-
tions into a Cuckoo-hash table with m buckets. We begin by instantiating our
PRP-based Cuckoo-hashing scheme with a PRP of domain size Nκ and define
B = dNκ/me. The client can then use the compact mode to pack the values
α1, . . . , αt into a Cuckoo-hash table of size m. For each bucket at index i ∈ [m],
let α′i be the value in the bucket. We can either have α′i = αj for one of the
input αj , or α′i = ⊥ if the bucket is empty. If α′i = αj , let k ∈ [κ] be the index
of the hash function used to insert αj to bucket i. In other words, hk(αj) = i.
Define the index γi = indexk(αj), which is the index of αj in the ith bucket in the
expanded Cuckoo-hash mode. Next, define the point function gγi,βj

: [B] → G,
which evaluates to βj at the index of αj within the ith bucket. This point func-

tion is then shared to create (k
(i)
0 , k

(i)
1 ) ← VerDPF.Gen(1λ, gγi,βj

). In the case
where α′i = ⊥, the shared function is set to be the zero function. The verifiable

distributed MPF (VDMPF) share has the form mpkb = (σ, k
(1)
b , . . . , k

(m)
b ) where

σ is the PRP seed.
To evaluate this multi-point function share at a point x ∈ [N ], the evaluator

first computes the κ possible buckets in which x could lie, denoted ik = hk(x)
for k ∈ [κ]. Next, the evaluator computes the index of x in each bucket, denoted
jk = indexk(x) for k ∈ [κ]. Finally, the evaluator computes the sum of the VDPF
in each of the buckets at i1, . . . , ik evaluated at j1, . . . , jk. This gives the output

yb = VerDMPF.Eval(b,mpkb, x) =
∑
k∈[κ]

VerDPF.Eval(b, k
(ik)
b , jk)

In addition, this VDMPF inherits all of the features of the VDPF construc-
tion from Section 3, including the O(log(B)) savings when evaluating the full
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domain (via tree traversal), as well as verifiability of share well-formedness. We
note that the verifiability is a bit weaker than the definition achieved for point
functions. More specifically, for point functions we showed how the servers can
ensure that at most one evaluation point is nonzero when evaluating any subset
of the domain. For this VDMPF construction, we can show that there are no
more than m non-zero points in any subset of evaluations by showing there is no
more than one non-zero point in the VDPF in each bucket. This is slightly weaker
than the best-possible guarantee, which would be that there are no more than t
non-zero points in any set of evaluations. However, as discussed in Section 4.1,
we will essentially always have m ≤ 2t (see Remark 1), so we consider this gap
acceptable for most applications. In addition, we can achieve an exact guaran-
tee by reverting to the naive construction using the VDPFs from Section 3. We
leave for future work the challenge of closing this gap while maintaining similar
performance.

Our VDMPF construction is given in Figure 2.

Lemma 6 (VerDMPF Correctness). Let F be the function class of multi-
point functions with at most t non-zero points. Figure 2 gives a correct function
secret sharing scheme for F .

Proof. This follows directly from the correctness of the VerDPF shares in each
bucket and the low statistical failure probability of the Cuckoo-hashing scheme.

Lemma 7 (VerDMPF Function Privacy). Let F be the function class of
multi-point functions with at most t non-zero points. Figure 2 gives a function-
private FSS scheme for F , as defined in Definition 2

Proof. The VerDPF shares in this construction computationally hide all infor-
mation regarding the non-zero evaluation points. The only additional leakage is
that these t evaluation points fit into a Cuckoo-hash table with the hash func-
tions specified by the PRP seed σ. Lemma 5 gives us a way to set the number
of buckets so that any t inputs will fail to hash with 2−λ probability. Setting λ
to be the computational security parameter maintains the adversary’s negligible
distinguishing advantage.

Lemma 8 (VerDMPF Share Integrity). Let VerDPF be a secure verifiable
point function scheme. Let VerDMPF := VerDMPFN,G be a verifiable multi-
point function scheme as defined in Figure 2 that uses VerDPF for the Cuckoo-
hash buckets. No PPT adversary A can generate VerDMPF keys (k∗0, k

∗
1) ←

A(1λ) along with L ≥ 1 distinct evaluation points x1, . . . , xL ∈ [N ] such that
the following holds. Let (yb, πb) ← VerDMPF.BVEval(b, k∗b , {xi}Li=1) such that
Accept ← VerDMPF.Verify(π0, π1) but there are ω > m indices i1, . . . , iω such

that y
(ij)
0 + y

(ij)
1 6= 0 for j ∈ [ω]. In other words, the output of the batched

evaluation contains more than m non-zero outputs.

Proof. This follows directly from the verifiability of the VerDPF shares, which
guarantees that there is at most one non-zero evaluation for each of the m
buckets.



24 de Castro and Polychroniadou

Lemma 6, Lemma 7, and Lemma 8 combine to give the following theorem.

Theorem 4. The construction in Figure 2 is a secure verifiable DMPF for the
class F of multi-point functions f : [N ]→ G with at most t non-zero evaluation
points. For any f ∈ F and m = O(tλ + t log(t)), the runtime of VerDMPF.Gen
is O (mλ log(N/m)). For η inputs, the runtime of VerDMPF.BVEval is
O(ηλ log(N/m)).

Proof. The asymptotics follow from the fact that generating a single VerDPF
share in this scheme takes time O(λ log(N/m)), and evaluation of a VerDPF
share at one point is also O(λ log(N/m)), where we take the PRP and PRG
evaluations to be O(λ).

Remark 2. We note briefly that if a PRP for the domain κN is not available,
our method will work just as well utilizing a generic Cuckoo-hashing scheme and
setting all indexj(i) = i. The difference will be that the domain size of the DPF in
each Cuckoo-hash bucket will not shrink as the number of nonzero points grows,
resulting in a VerDMPF.Gen time of O (mλ log(N)) and a VerDMPF.BVEval time
of O(ηλ log(N)).

In Appendix A, we give an alternate evaluation mode of our VDMPF, which
we call “match-mode” evaluation. This mode has identical performance to the
regular batch verifiable evaluation mode with the same verification guarantee.
The difference is that for each of the m buckets, match-mode evaluation com-
putes additive shares of whether or not any of the inputs matched with the
nonzero point in that bucket. This mode is useful in two-server PSI protocols,
among others.

5 Implementation & Performance

In this section, we present an implementation of our verifiable DPF and verifiable
MPF constructions and compare them to their non-verifiable and non-batched
counterparts.

Implementation Details. We implemented our VDPF and VDMPF constructions
in C++. We follow the approach of Wang et al. [13] by using a fixed-key AES
cipher to construct a Matyas-Meyer-Oseas [11] one-way compression function.
We use AES-based PRFs to construct our PRGs, our hash functions, and our
PRP. Using an AES-based PRP implicitly fixes our DMPF domain size to be
128 bits, and we leave for future work the task of implementing an efficient
small-domain PRP. Our implementation is accelerated with the Intel AES-NI
instruction, and all benchmarks were run on a single thread on an Intel i7-8650U
CPU. For comparison, we also implemented a non-verifiable DPF following the
constructions of Boyle et al. [3] and Wang et al. [13], which we refer to as the
“textbook” DPF. We implement the “textbook” distributed MPF by naively
applying the textbook DPF; namely, our textbook DMPF share contains one
DPF share per non-zero point, and evaluating the share requires evaluation all
DPF shares and summing their results.
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Verifiable Distributed Multi-Point Function VerDMPFN,G.
For a domain D of size N and output group G, let VerDMPF := VerDMPFN,G. Let
domain : D → [N ] be an injective function mapping domain elements to indices in
[N ]. Unless otherwise specified, we will consider a domain element as its index.
For κ = 3, let PRP : {0, 1}λ × [Nκ] → [Nκ] be a pseudorandom permutation.
Let CHBucket(t, κ, λ) → N be the function that outputs the number of cuckoo
hash buckets required so that inserting t elements with κ hash functions fails with
probability at most 2−λ. The hash function H′ is as in Figure 1.
The VerDMPF.Verify algorithm simply checks that the two input proofs are equal.

VerDMPF.Gen

Input: Security parameter 1λ and t point functions {fαi,βi}
t
i=1

1: m← CHBucket(t, 3, λ), where κ = 3.
2: Sample a random PRP seed σ ← {0, 1}λ and let B ← dNκ/me.
3: From σ,m,B, define h1, . . . , hκ : [Nκ] → [m] as in Equation (1) and

index1, . . . , indexκ : [Nκ]→ B in Equation (2).
4: Table ← CHCompact

(
{αi}ti=1, {hk}κk=1,m

)
. If this algorithm fails, return to

step 2 to sample a fresh PRP seed.
5: Let n′ = dlog(B)e and let VerDPF := VerDPFn′,G. Let k0 ← {σ} and k1 ← {σ}.
6: for i from 1 to m do
7: if Table[i] = ⊥ then Define α′ ← 0 and β′ ← 0
8: else
9: Let αj = Table[i], for j ∈ [t], and let k ∈ [κ] be such that hk(αj) = i.

10: Let α′ ← indexk(αj) and β′ ← βj

11: Sample (k
(i)
0 , k

(i)
1 )← VerDPF.Gen(1λ, fα′,β′)

12: Append k
(i)
0 to k0 and k

(i)
1 to k1.

Output: (k0, k1)

VerDMPF.BVEval

Input: Bit b and VerDMPF key kb and η inputs x1, . . . , xη ∈ D.

1: Parse σ, k
(1)
b , . . . , k

(m)
b ← kb and define B ← dNκ/me, n′ ← dlog(B)e.

2: Let VerDPF := VerDPFn′,G and initialize an array inputs of length m.
3: for ω from 1 to η do
4: Let i1, . . . , iκ ← h1(xω), . . . , hκ(xω)
5: Let j1, . . . , jκ ← index1(xω), . . . , indexκ(xω)
6: Append (jk, ω) to inputs[ik] for each k ∈ [κ], ignoring duplicates.

7: Initialize an array outputs of length η to all zeros and Initialize a proof π ← 0.
8: for i from 1 to m do
9: Parse (j1, ω1), . . . , (jL, ωL)← inputs[i]

10: {y`}L`=1, π
(i) ← VerDPF.BVEval(b, k

(i)
b , {j`}L`=1)

11: outputs[ω`]← outputs[ω`] + y` for ` ∈ [L]
12: π ← π ⊕ H′(π ⊕ π(i))

Output: outputs, π

Fig. 2. Verifiable Distributed Multi-Point Function.
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DPF Comparisons. We now present the results of our DPF comparisons. For
various domain sizes 2n, we benchmarked the share generation time, the evalu-
ation time, and the full-domain evaluation time for the textbook DPF and the
verifiable DPF. All benchmarks of the verifiable DPF include the generation of
the verification proof. The share evaluation comparison runs the verifiable DPF
at 100 random points in {0, 1}n and generates the proof verifying this set of
evaluations. The runtime reported is the time per evaluation point. Benchmarks
are given in Figure 4.

The slowdown for the verifiable evaluation time is quite small, as it essentially
only requires evaluating one additional level of the GGM tree. The slowdown for
the share generation time is a bit greater, since the verifiable share generation
has a 50% chance of failure, at which point it must be restarted. This can be
seen by the roughly factor of 2 slowdown in the runtime of the verifiable share
generation.

Overall, our comparisons show that our techniques introduce relatively little
overhead to the textbook DPF procedures. We view these results as an affirma-
tion of our claim that our verifiable DPF can replace the textbook DPF in any
application to provide a meaningful & robust malicious security claim without
seriously impacting performance. Our results are displayed in Figure 3.

Fig. 3. In this figure, we present the benchmarks of the textbook DPF and the ver-
ifiable DPF presented in this work. The top-left graph plots runtimes for the share
generation time. As can be seen, the slowdown for verifiability is roughly 2×. The top-
right graph plots the runtimes for the share evaluation. As discussed in Section 5, the
verifiable runtime was computed by taking the runtime of the verifiable batch evalua-
tion procedure (Figure 1) for 100 random points and dividing it by 100. The bottom
graph plots the runtimes for the full domain evaluation operation.
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DMPF Comparisons. We now present the results of our DMPF comparisons. We
benchmarked the share generation and evaluation time for MPFs with various
numbers of nonzero points t. As with the DPF comparisons, all benchmarks of
the VDMPFs include the time required to generate the verification proof. Recall
that our “textbook” benchmark uses neither the batching nor the verification
techniques presented in this work. The batched, verifiable share generation time
is about 2× slower than the textbook share generation time. This is a balancing
between the increased runtime due to the overhead of the verifiable share genera-
tion, the overhead due to the number of buckets being greater than the nonzero
values, and the savings due to the domain size shrinking thanks to the PRP
savings. To display benchmarks that demonstrate this optimization, we chose a
domain size of N = 2126. This is so that the κ ·N elements of the permutation
fit in the 128-bit domain of AES PRP. These benchmarks are given in Figure 4.

The real savings, and what we view as one of the main results of this section,
comes in the share evaluation. As discussed in Section 4, the performance of
the batched VDMPF evaluation effectively does not grow with the number of
nonzero points t in the shared multi-point function. This is in stark contrast to
the textbook version, where evaluation time grows linearly with the number of
nonzero points t in the shared multi-point function. This leads to a dramatic
difference in the evaluation times, even when considering the time to generate
the verification proof, even for a small number of nonzero points (e.g. 10 points).
These results are displayed in Figure 5.

Fig. 4. This graph plots the share generation time for the textbook DMPF and the
batched, verifiable DMPF presented in this work.
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Fig. 5. This figure plots the evaluation times for the textbook DMPF and the batched,
verifiable DMPF presented in this work. The domain sizes of these functions were 126
bits. Both graphs in this figure plot the same data; the first graph shows all plots while
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runtimes can be viewed. The x-axis for these graphs is the number of points η on which
the shares are evaluated, and the colors of each line represent the number of nonzero
points t in the shared multi-point functions. The number of points is indicated in the
legends of the graphs. Note in the second graph that the evaluation time decreases as
the number of nonzero points on in the MPF grows.
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A Match-Mode VDMPF: Point Matching

In this section, we present an alternative evaluation mode for our VDMPF
scheme that is be useful in various applications. In the “main” evaluation mode,
which was presented in Figure 2, the servers produce one output for each in-
put element to the batched evaluation algorithm. In the “match” evaluation
mode discussed in this section, the servers produce one output for each of the
cuckoo-hash buckets in the VDMPF key. The purpose of this evaluation mode
is to determine if one of the server’s input elements matches one of the non-zero
points of the multi-point function.

In more detail, during the evaluation algorithm the servers still produce a set
of inputs for each of the m buckets and evaluate the corresponding VDPF keys
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on these inputs. Instead of summing the VDPF outputs according to a matching
input, the servers sum the outputs of each VDPF to create a single output for
each of the m buckets. From the verifiability of the point function share in each
bucket, the servers can easily ensure that the evaluation of at most one of their
inputs is being revealed for each bucket. The algorithm is given in Algorithm 5.

Algorithm 5 VDMPF Match-Mode Evaluation, denoted VerDMPF.MatchEval.
The setting for this algorithm is the same as the VDMPF construction in Fig-
ure 2.
Input: bit b and VerDMPF key kb

η inputs x1, . . . , xη

1: Parse σ, k
(1)
b , . . . , k

(m)
b ← kb

2: Define B ← dNκ/me, n′ ← dlog(B)e.
3: Let VerDPF := VerDPFn′,G.
4: Initialize an array inputs of length m.
5: for ω from 1 to η do
6: Let i1, . . . , iκ ← h1(xω), . . . , hκ(xω)
7: Let j1, . . . , jκ ← index1(xω), . . . , indexκ(xω)
8: Append jk to inputs[ik] for each k ∈ [κ], ignoring duplicates.

9: Initialize an array outputs of length m to all zeros.
10: Initialize a proof π ← 0
11: for i from 1 to m do
12: {y`}L`=1, π

(i) ← VerDPF.BVEval(b, k
(i)
b , inputs[i])

13: outputs[i]← outputs[i] + y` for ` ∈ [L]
14: π ← π ⊕ H′(π ⊕ π(i))

Output: outputs, π
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