
ethSTARK Documentation – Version 1.1

StarkWare Team∗

January, 2021

Abstract

This document is intended to accompany the ethSTARK codebase, describing the computa-
tional integrity statement proved by that code and the specific STARK construction used to
prove the statement.

∗StarkWare Industries Ltd., Israel. Send inquiries to info@starkware.co.

Page 1

https://starkware.co/
https://github.com/starkware-libs/ethSTARK.git

Contents

1 Introduction 4

2 Rescue 4
2.1 Rescue Cipher . 4
2.2 Rescue Hash Function . 5

3 The STARK Protocol 5
3.1 The Trace . 7
3.2 Periodic Columns . 8
3.3 The Constraints . 8

3.3.1 Intermediate Values . 10
3.3.2 The Rescue Constraints . 11
3.3.3 From Polynomial Constraints to Low Degree Testing Problem 14

3.4 Trace Low Degree Extension . 14
3.5 Commitment Scheme . 15
3.6 Composition Polynomial . 15

3.6.1 Degree Adjustment . 15
3.6.2 Combining the Constraints . 16
3.6.3 Committing to the Composition Polynomial 16

3.7 Consistency Check on a Random Point (the DEEP Method) 16
3.8 The DEEP Composition Polynomial . 17

3.8.1 Verifying the Mask Values . 17
3.8.2 Verifying the Trace Values . 18

3.9 The FRI Protocol for Low Degree Testing . 18
3.9.1 Commit Phase . 19
3.9.2 Query Phase . 19

3.10 Transformation to Non-Interactive Protocol (the Fiat-Shamir heuristic) 20
3.11 Proof Length Optimizations . 20

3.11.1 Skipping FRI Layers . 20
3.11.2 FRI Last Layer . 21
3.11.3 Grinding . 21

4 Measurements and Benchmarks 21
4.1 Prover/Verifier Time and Proof Size vs. Number of Hash Invocations 22
4.2 Prover/Verifier Time and Proof Size vs. Blowup Factor 22
4.3 Memory Consumption and Recursive Proof Composition 23

5 Provable Knowledge Soundness and Security in the IOP Model 24
5.1 Satisfiable Algebraic Intermediate Representations (AIRs) 25
5.2 Soundness, knowledge soundness and security . 26
5.3 The IOP Protocol . 27
5.4 Prior results needed for the analysis . 30
5.5 The Knowledge Extractor . 31
5.6 Upper bound on knowledge soundness error . 32

Page 2

5.7 Proof of Theorem 4 . 34
5.8 Proofs of Lemmas . 36

5.8.1 Proof of Lemma 2 . 36
5.8.2 Proof of Lemma 3 . 37
5.8.3 Proof of Lemma 4 . 37

5.9 Security . 38
5.9.1 IOP Toy Problem . 38

5.10 Parameter settings . 39
5.10.1 Suggested IOP Parameter Settings based on Conjectured Soundness 40
5.10.2 Suggested IOP Parameter Settings based on Provable IOP Knowledge Sound-

ness . 41

Page 3

1 Introduction

On July 2, 2018, the Ethereum Foundation gave StarkWare a 2-year milestone-based grant to select
a STARK friendly hash (SFH) function, to be used in combination with transparent and plausibly
post-quantum secure proof systems within blockchains, and release an open source efficient STARK
system for it. Under the grant agreement, StarkWare committed to publishing, among other things:

“Production-quality software released under a software license, approved by the Ethereum
Foundation, for the STARK-friendly hash function:

1. Arithmetised circuit with proofs compressing 100,000 hashes (3.2MB of data) to
200kB with 80 bits of security

2. Prover that compresses 100 hashes per second with a quad-core CPU and 16GB of
RAM

3. Verifier verifying proofs in 10ms on a single-core CPU with 4GB of RAM

4. Detailed specification of the prover and verifier mechanics, inluding optimisations
. . . ”

The ethSTARK code released by StarkWare answers items 1–3 above, and the purpose of this
document is to address item 4. We assume familiarity with the notion of interactive proofs [GMR89],
non-interactive Computationally Sound proofs [Mic00], Interactive Oracle Proofs (IOPs) [RRR16,
BCS16a] and Scalable Transparent ARgument of Knowledge (STARK) systems [BBHR19].

Organization of the document Section 2 describes the Rescue hash function family and the
particular member of it that ethSTARK implements. Section 3 describes in great detail the specific
STARK protocol used in the code, including a description of the full system of constraints included
in the Algebraic Intermediate Representation (AIR) of the system. Section 4 provides measurements
and benchmarks of the system and discusses them. Security and soundness analysis are presented
in Section 5.

Acknowledgment We would like to thank Justin Drake from the Ethereum Foundation for his
thoughtful and detailed comments. We thank Venkatesan Guruswami and Amnon Ta-Shma for
carefully auditing Section 5 and offering numerous comments that clarified the presentation, and
the Ethereum Foundation for funding their audit.

2 Rescue

In this section we give a short description of the Rescue cipher family, referring the interested reader
to [AAB+19] for full details. We then present an instantiation of a hash function based on this
Rescue cipher family.

2.1 Rescue Cipher

Rescue is a family of ciphers based on substitution-permutation networks (SPNs). A Rescue cipher
manipulates a state of m > 1 elements in the vector space Fmp where Fp is a field of characteristic
p ≡ 5 (mod 6).

Page 4

https://github.com/starkware-libs/ethSTARK
https://github.com/starkware-libs/ethSTARK

A Rescue permutation is an iterative application of a round function R times where R is
determined by the desired security level. The inputs to the first round are the plaintext and a
master-key, and the output of the last round is the ciphertext. Each round takes as inputs the
previous state and a subkey, derived from the master-key, and outputs a new state.

A round of a Rescue permutation includes two steps. In each step an S-box is applied to each
of the m state elements, followed by a multiplication by a Maximum Distance Separable (MDS)
matrix which mixes the elements together. At the end of each step a subkey is injected into the
state. The S-boxes π1 and π2 that are used in the first and second step of each round, consist of
the power maps x1/α and xα, respectively, for an integer α that does not divide p − 1 (in which
case 1/α is well-defined).

2.2 Rescue Hash Function

The Rescue hash function is a sponge construction hash function, based on an un-keyed Rescue
permutation, in which the secret key is set to zero and round constants are used instead of keys.
A sponge construction generates a hash function from an underlying permutation by iteratively
applying it to a large state. The state consists of m = r+ c field elements, where r and c are called
the rate and the capacity of the sponge, respectively.

We now present our instantiation of a Rescue hash function. Henceforth, the term “Rescue”
refers to this particular instantiation, not to the larger family defined in [AAB+19]. The native
field in which Rescue operates is Fp where p = 261 + 20 · 232 + 1. The state is viewed as a column
vector of m = 12 field elements. For the S-boxes π1 and π2 we use α = 3 such that the power maps
are x1/3 and x3, respectively. Since 3 does not divide p − 1 it holds that (2p − 1)/3 is an integer
and furthermore,

∀x ∈ Fp,
(
x3
)(2p−1)/3

=
(
x(2p−1)/3

)3
= x.

Therefore we use 1/3 to denote (2p− 1)/3, noticing that x 7→ x1/3 is indeed the cube-root permu-
tation, modulo p. To compute the Rescue permutation from a given input, the round function is
iterated R = 10-times with constants injected before the first round, between each two consecutive
steps (within and between rounds), and after the last round (a total of 21 constant vectors).

Let K = {K0, . . . ,K20} denote the constants used in the Rescue hash function such that
K2r+1,K2r+2 are the constants used in the rth round for r ∈ [0, 9] and K0 is the constant used
before the first round. Note that each Ki ∈ K is in fact a field element vector of length m = 12.
Thus, adding a constant to a state is merely a vector addition. Figure 1 is a graphic description of
a single round of the Rescue permutation.

To transform the Rescue permutation to a hash function, we apply the Sponge construction:
The first 8 elements of the state are the rate and the last 4 elements are the capacity. The hash
of two inputs w0, w1 ∈ F4

p is defined by applying the rescue permutation to (w0, w1, 0) ∈ F12
p and

taking the first 4 elements. A graphic description of the Rescue hash function is given in Fig. 2,
and its pseudo-code appears in Algorithm 1.

3 The STARK Protocol

STARKs (Scalable Transparent ARguments of Knowledge) are a family of proof systems character-
ized by scalability and transparency. Scalability – via quasilinear proving time and poly-logarithmic

Page 5

Figure 1: Round r of the Rescue permutation. M denotes a multiplication by the MDS matrix.
Interr represents the state in the middle of the round.

Algorithm 1 The Rescue permutation with an MDS matrix M

INPUT: w0, w1 ∈ F4
p, round constants K

OUTPUT: Rescue(w0, w1)

Let Statein be the vector (w0, w1, 0) ∈ F12
p .

State0 = Statein +K0

for r = 0 to 9 do
for i = 0 to 11 do
Interr[i] =

∑m−1
j=0 M [i, j](Stater[j])1/3 +K2r+1[i]

end for
for i = 0 to 11 do
Stater+1[i] =

∑m−1
j=0 M [i, j](Interr[j])3 +K2r+2[i]

end for
end for
return State10

Page 6

Figure 2: Instantiating the Rescue hash function as a sponge construction based on the Rescue
permutation.

verification time, and transparency – meaning all verifier-side messages are public random coins
(requiring no trusted setup). We assume familiarity with the general definition of STARKs, as de-
scribed in [BBHR19]. In this section we describe the STARK proof system as an interactive protocol
between two parties, the prover and the verifier. The prover sends a series of oracle messages in an
attempt to convince the verifier that a certain computation on some input (the proven statement)
was executed correctly. The verifier responds to the messages with public random values. After
the interaction ends, the verifier uses more public random coins to query a small number of entries
from the oracle messages sent by the prover. Based on the answers to these queries, the verifier
reaches a decision whether to accept the statement as correct, or reject it. The completeness and
soundness properties of the STARK system imply that correct statements proved by honest provers
are guaranteed to be accepted by the verifier (with probability 1 over the random coin-tosses made
by the verifier). Conversely, incorrect statements, and statements whose witness is unknown to the
prover will be rejected with all but negligible probability (which we set here to be at most 2−80).

While we describe the system below as an interactive protocol, it is noted that this interactivity
is eventually replaced by a transformation to a non-interactive system wherein the prover provides
a proof and the verifier decides whether to accept or reject it. See Section 3.10.

3.1 The Trace

An execution trace of a computation, or trace, in short, is a sequence of machine states, one per
clock cycle. If the computation requires W registers and lasts for N cycles, the execution trace
can be represented by a table of size N ×W . Given a statement regarding the correctness of a
computation, the prover first builds a trace.

Denote the columns of the trace by f1, . . . , fW . Each fj is of a fixed length, N , that is a power

Page 7

of two. The values in the trace cells are elements in a finite field1 Fp. The trace evaluation domain
is defined to be a multiplicative subgroup of F×p of size N , generated by an element g; we denote
this subgroup by 〈g〉. Effectively, we enumerate the trace rows using the elements of 〈g〉, where
the ith row is enumerated by gi (the first row is the 0th row, enumerated by 1 = g0). Each trace
column is interpreted as N point-wise evaluations of a polynomial2 of degree smaller than N over
the trace evaluation domain. These polynomials are referred to as the trace column polynomials or
column polynomials in short.

The Rescue trace has 12 columns, corresponding to the m = 12 field elements of the state.
Applying each hash requires slightly more than 10 rows (one per round). The hashes3 can be
computed in batches of 3 hashes that fit into 32 rows as follows (see Fig. 3):

• Row 0: initial state of the first hash (8 input field elements and 4 zeros).

• Rows 1 to 10: state in the middle4 of every round of the first hash.

• Rows 11 to 20: state in the middle of every round of the second hash.

• Rows 21 to 30: state in the middle of every round of the third hash.

• Row 31: final state of the third hash (the first 4 field elements in this state are the output).

3.2 Periodic Columns

Many cryptographic primitives involve using some list constants. Applying the same cryptographic
primitive many times, yields a periodic list of constants. For this, we use a technique we refer to as
periodic columns. The periodic structure of each such column leads to a column polynomial which
can be represented succinctly. In the classic representation of a polynomial

∑
aix

i as a vector of
its coefficients (a0, a1, . . .), a succinct representation means that most of the ai’s are zeros. This
enables the verifier to efficiently compute the point-wise evaluations of these polynomials.

We maintain the round constants of Rescue using periodic columns. For each trace column
we have two periodic columns, one for each of the two steps of a round, up to the following small
modifications. Each periodic column is of length 32 (corresponding to 3 hashes, see Section 3.1 for
more details). For technical reasons that will be explained in Section 3.3, we decided to add K0

to the round constants that correspond to the second step of a round, in the first four columns in
rows 10 and 20 (the left inputs of the second and third hash invocations).

3.3 The Constraints

An execution trace is valid if (1) certain boundary constraints hold and (2) each pair of consec-
utive states satisfies the constraints dictated by the computation. For example, if at time t the

1We use the same field in which Rescue operates (Fp where p = 261 + 20 · 232 + 1).
2Such interpolation polynomial (uniquely) exists since for any N distinct points x0, . . . , xN−1 and correspond-

ing values y0, . . . , yN−1, there exists a unique polynomial of degree at most N − 1 that interpolates the data
(x0, y0), . . . , (xN−1, yN−1).

3A chain of n hash invocations consists of n+ 1 inputs w0, . . . , wn, and a single output. Let Oi denote the output
of the ith invocation, the output of the chain is On. The inputs to the first invocation are (w0, w1) and the inputs to
the ith invocation, for i ≥ 2, are (Oi−1, wi).

4We refer to the value of Interr after the first inner loop in Algorithm 1 as the state in the middle of every round.

Page 8

Figure 3: A batch of three hashes in the Rescue execution trace.

Page 9

computation should add the contents of the 1st and 2nd registers and place the result in the 3rd
register, the relevant constraint would be f1(g

t) + f2(g
t)− f3(g · gt) = 0 where fj is the jth column

polynomial and g is the generator of the trace evaluation domain.
The constraints are expressed as polynomials composed over the trace cells that are satisfied if

and only if the computation is correct. Hence, they are referred to as the Algebraic Intermediate
Representation (AIR) Polynomial Constraints on the trace. For example, in the context of proving
the computational integrity of an execution of a Rescue hash function, the constraints are such that
they all hold if and only if the output of the hash function matches the input, where the input and
output are designated cells within the trace (these cells will be part of the boundary constraints
defining validity of the statement).

Some examples of constraints over the trace cells:

1. f2(x)− a = 0 for x = g7 (the value in column 2 row 7 is equal to a).

2. f26 (x)− f6(g3x) = 0 for all x (the squared value in each row in column 6 is equal to the value
three rows ahead).

By writing a set of polynomial constraints which are satisfied if and only if the computation
is valid, we reduce the original problem – proving the correctness of a computation – to proving
that the polynomial constraints are satisfied. This reduction is a special case of the general process
known in theoretical computer science as “arithmetization”.

The AIR for the Rescue hash chain corresponds to the following claim:

“I know a sequence of inputs w = {w0, . . . , wn} such that

H(. . . H(H(w0, w1), w2) . . . , wn) = output”, (1)

where H is the Rescue hash function, each wi is a 4-tuple of field elements and output is the
public output of the hash (which consists of 4 field elements). Recall that the hashes are computed
in batches of 3 hashes, hence, |w| = 3k + 1 = n + 1 for some k ∈ Z. We note that the number of
hash invocations, which is known to the verifier, is |w| − 1 = n and refer to n as the chain length.

3.3.1 Intermediate Values

There are numerous ways to capture the correctness of an execution trace via polynomial con-
straints. When designing an AIR, one should take the tradeoffs that each approach yields into
consideration. For example, consider the following synthetic trace with only two cells:

X
3
√
X + 1

A näıve constraint linking the two cells is f0(g) − 3
√
f0(1) + 1 = 0. Recall that in Rescue’s native

field x1/3 = x(2p−1)/3. Therefore, the degree5 of this polynomial constraint, (2p− 1)/3, is huge.
A different possible approach would be to maintain intermediate execution values within the

trace. For example, adding a column to the trace with the cubed values of the original column:

5In the following sections we will see that the degrees of the polynomial constraints play a major role in the
efficiency of the prover.

Page 10

X X3

3
√
X + 1 X + 1

Now, we can replace the former constraint with the following ones:

f30 (x)− f1(x) = 0 for x = 1, g (2)

f0(1) + 1− f1(g) = 0 (3)

Note that while the maximal degree of these constrains is 3, there are now three constraints instead
of one. Also, the size of the trace is twice the size of the original trace. Both measures, number
of constraints and trace size, affect the prover efficiency. Crucially, in both approaches we force
the prover to place 3

√
X + 1 in a certain well-defined trace cell, as needed to achieve computational

integrity.
A third approach is to compute the intermediate values for the constraints in which they are

used, instead of adding them to the trace and asserting their validity by more constraints. Conse-
quently, constraint (3) becomes f0(1) + 1−A = 0, where A = f30 (g) and the intermediate value A
does not appear in the trace. Note that this constraint is defined over the original trace and is of
degree 3. Although intermediate values are not part of the trace, it is helpful to think of them as
trace intermediate columns.

Recall that the rows in the Rescue trace are the states in the middle of rounds (except for the
first and last rows of every batch of 3 hashes). Thus, as can be seen in Figure 4, calculating the
second step of a round from a row in the trace should yield the same result as calculating the first
step of a round, in reverse, from its consecutive row.

In the Rescue AIR, for each trace column we have 3 intermediate columns. We denote these
intermediate columns by:

1. x cube: computes the third powers of the state. Corresponds to transition A in Figure 4.

2. after linperm: computes the state at the end of a full round (half round forward from the
current row). Corresponds to transition B in Figure 4.

3. before next linperm cubed: computes the state at the beginning of the next full round
(half round backward from the next row). Corresponds to transition C in Figure 4. Note
that this intermediate value depends on the next row, so for a given column polynomial f(x),
before next linperm cubed corresponds to f(gx).

In the following section, for each intermediate column we use brackets notation to denote the
corresponding trace column. For example, x cube[j](gi) refers to the third power of the value of
the cell in the jth column and the ith row.

3.3.2 The Rescue Constraints

We now describe the constraints used in the Rescue AIR. For each constraint, we first describe
the meaning of the constraint, that is, what the constraint enforces on the trace values. We then
state the polynomial constraint itself, followed by the domain and columns to which the constraint
should apply.

In the following constraints let K denote the constants used in Rescue as in Section 2. We
write Ki[j] for the constant used in the ith step of the algorithm for the jth column. As mentioned
above, we pack 3 hash invocations into 32 trace rows.

Page 11

Figure 4: A “shifted” round of the Rescue permutation. Represents the execution between consec-
utive rows of the trace.

1. The capacity part at the beginning of each hash is zero.

(a) The capacity part of the first row of each batch of 3 hashes is zero.

fj(x) = 0

for x = gi where i ≡ 0(32) and j ∈ [8, 11].

(b) The capacity part of the second and third hashes is zero.

K0[j]− before next linperm cubed[j](x) = 0

for x = gi where i ≡ 10, 20(32) and j ∈ [8, 11]: First row of the second and third hashes
in each batch.

To see why this holds, recall that between consecutive hashes the capacity is nullified and the
constant K0 is injected before the first step of each invocation.

2. The second row of each batch is obtained by applying the first half round of Rescue.

fj(x) +K0[j]− before next linperm cubed[j](x) = 0

for x = gi where i ≡ 0(32) and j ∈ [0, 11].

3. The connection between the middle of a round (current row) with the middle of the next
round (next row).

Page 12

(a) For State[0], . . . ,State[11].

after linperm[j](x)− before next linperm cubed[j](x) = 0

for x = gi where i 6≡ 0, 10, 20, 30, 31(32) and j ∈ [0, 11]: All rows except for the first and
last rows of each batch and the last row of each hash.

Note that this constraint does not apply to rows 10 and 20 since in the connection be-
tween consecutive hashes, the capacity is nullified and the right input (State[4], . . . ,State[7])
is reset to some nondeterministic witness. However, between consecutive hashes, the left
input (State[0], . . . ,State[3]) must be equal to the output of the former hash. Since
we add K0 to the round constants that correspond to the constants used in the second
step of a round in the first four columns in rows 10 and 20 (See Section 3.2), we have
the following constraint.

(b) For State[0], . . . ,State[3].

after linperm[j](x)− before next linperm cubed[j](x) = 0

for x = gi where i ≡ 10, 20(32) and j ∈ [0, 3].

To see why this holds, recall that the state after the first hash (corresponds to after linperm)
is: OUTPUT0|JUNK|JUNK. The state before the second hash (which corresponds to
before next linperm cubed - K0) is: INP0|INP1|0. We require that OUTPUT0 =
INP0. But instead of writing the equation:

after linperm = before next linperm cubed−K0,

we in fact add K0 to the round constants that correspond to the constants used in the
second step of a round in the first four columns in rows 10 and 20, and thus +K0 is
already part of after linperm.

4. The connection between the last two rows of each batch (final half round of the third hash).

after linperm[j](x)− fj(gx) = 0

for x = gi where i ≡ 30(32) and j ∈ [0, 11]: Last row of the third hash in each batch.

5. The output of the third hash of a batch is the input of the first hash of the next batch.

fj(x)− fj(gx) = 0

for x = gi where i ≡ 31(32), i < N − 1 and j ∈ [0, 3] where N is the length of the trace: Last
row of the third hash in each batch except for the last row of the trace.

6. The output of the hash chain is the expected output.

fj(x)− output = 0

for x = g32(chain length/3−1)+31 where j ∈ [0, 3], chain length is the number of hash
invocations and output is the expected output of the hash chain.

Page 13

Note, each of the constraints listed above represents multiple constraints. For example, the last
constraint (6) represents four constraints that correspond to the first four columns of the trace (as
the output of the function is the first four elements of the state’s rate). There is a total of 52
constraints in the Rescue AIR6.

3.3.3 From Polynomial Constraints to Low Degree Testing Problem

Next, we represent each constraint as a rational function. Recall that the trace evaluation domain
is of order N and generated by g. Hence, 〈g〉 = {x ∈ Fp | xN = 1}. Constraint (1a) above is
translated into the rational function:

C1(x) =
fj(x)

xN/32 − 1
(4)

which is a polynomial of degree at most deg(fj)−N/32 if and only if the constraint holds over 〈g〉.
Represented as rational functions, the constraints are such that each numerator defines a rele-

vant rule needed to be enforced over the trace cells, and each denominator defines the domain in
which the corresponding rule should hold.

Two remarks are in order. First, in order for the process of representing each constraint as
a rational function to be well-defined, we need to make sure that the denominators are never
zero. As we will see in the next section, the constraint polynomials will not be evaluated over
the trace evaluation domain, but rather on a (larger) disjoint domain, which we call the evaluation
domain. Thus, while the denominator can zero out over a subset of the trace evaluation domain, no
denominator equals zero over the evaluation domain and expressions like Eq. (4) will be well-defined
over the evaluation domain. Second, since the verifier needs to evaluate these rational functions,
it is important for the succinctness of the STARK protocol that the domains are such that their
corresponding denominators can be evaluated efficiently, i.e., that all high-degree polynomials be
sparse, as indeed is the case with Eq. (4).

3.4 Trace Low Degree Extension

Recall that each trace column is viewed as N evaluations of a polynomial of degree less than N . In
order to achieve a secure protocol, each such polynomial is evaluated over a larger domain, disjoint
from the trace evaluation domain, which we call the evaluation domain. We refer to this evaluation
as the trace Low Degree Extension (LDE) and the ratio between the size of the evaluation domain
and the trace evaluation domain as the blowup factor, β. (Those familiar with coding theory
notation will notice that β is the inverse of the rate and the LDE is in fact simply a Reed-Solomon
code of the trace.)

The trace LDE is computed in two steps. First, we calculate the interpolation polynomial
of each trace column using the Inverse Fast Fourier Transform (IFFT). Then, we evaluate each
interpolation polynomial on the evaluation domain using the Fast Fourier Transform (FFT).

In order to make sure that the evaluation domain and the trace evaluation domain are disjoint,
we use a non-unit7 coset of the multiplicative subgroup of size (β · N) of F×p as the evaluation

6Constraint 3 as described above, represents 16 constraints, which leads to a total of 56 constraints. However,
in our implementation, we write constraint 3a for i 6≡ 0, 10, 20, 30, 31(32) and j ∈ [4, 11] and constraint 3b for
i 6≡ 0, 30, 31(32) and j ∈ [0, 3]. Resulting in 12 constraints for constraint 3 and a total of 52 constraints.

7By non-unit coset we mean a coset with offset different than 1. Specifically, we use the generator 3 of F×p as the
coset’s offset.

Page 14

domain.
For Rescue, we use a blowup factor of 4 so the evaluation domain is of size 4 ·N .

3.5 Commitment Scheme

Following the generation of the trace LDE, the prover commits to it. Throughout the system,
commitments are implemented by building Merkle trees over the series of field elements and sending
the Merkle roots to the verifier. We use BLAKE2s with digest size of 20 bytes, or 160 bits, as the
underlying hash function, to reach 80-bit security.

To gain better efficiency we use two optimizations for the Merkle tree implementation.

1. The leaves of the Merkle tree are selected such that if a decommitment is likely to involve
multiple field elements together, they are grouped into a single Merkle leaf. In the case of the
trace LDE, this implies we group all field elements in a trace LDE “row” into a single Merkle
leaf.

2. When the size of each element (Merkle leaf) is smaller than the input size of the hash used by
the Merkle tree, feeding individual elements into such a tree is wasteful. Instead, we group
several elements together into a package that fits as a single input to the hash and use these
packages as the input elements for the tree.

3.6 Composition Polynomial

In order to efficiently prove the validity of the execution trace, we strive to achieve the following
two goals:

1. Compose the constraints on top of the trace polynomials to enforce them on the trace. (De-
scribed in Section 3.3.)

2. Combine the constraints into a single (larger) polynomial, called the Composition Polynomial,
so that a single low degree test can be used to attest to their low degree. To reach this
goal, some of the composed polynomials will require adjustment to their degrees, so that all
composed polynomials have the same designated degree (the ethSTARK code indeed enforces
this degree adjustment).

Before we continue to describe how the above is performed, we introduce another finite field.
Recall that the elements in the trace are from Fp, Rescue’s native field, whose size is between 261

and 262. In order for the STARK protocol to be secure, one must use a larger field in some places.
For this, we use the quadratic extension field Fp(φ) where φ is a root of the irreducible polynomial
X2−X − 1. Thus, Fp(φ) is the field Fp[X]/(X2−X − 1). In the following sections it is crucial, for
the soundness of the protocol, that each field element used in the protocol is from the appropriate
field.

3.6.1 Degree Adjustment

In order to ensure soundness, we need to show that all individual constraints composed with
the trace column polynomials are of low degree. Let max deg be the highest degree of all the
constraints. We adjust the degree of the constraints to degree D−1, where D is the smallest power
of 2 such that D > max deg.

Page 15

Degree adjustment is performed as follows: Given a constraint Cj(x) of degree Dj , we define a
polynomial of the form:

Cj(x)(αjx
D−Dj−1 + βj)

where αj and βj are random field elements from the extension field Fp(φ), chosen by the verifier.
As a result, if the new constraint is of degree lower then D, it automatically follows (w.h.p) that
the original constraint is of degree at most Dj , as desired.

3.6.2 Combining the Constraints

Once the prover has committed to the trace LDE, the verifier provides random coefficients for
creating a random linear combination of the constraints8 resulting in the composition polynomial.
Instead of checking each constraint individually, it suffices to apply a low degree test to the com-
position polynomial.

Thus, the composition polynomial takes the form:

k∑
j=1

Cj(x)(αjx
D−Dj−1 + βj)

where k is the number of constraints.
Since the constraints used in the Rescue AIR are of degree three or below, the degree of the

composition polynomial is < 4N .9 Hence, we can represent the composition polynomial h(x) as
a single column of evaluations of length 4N . Instead, we prefer to represent it as four columns
h0(x), . . . , h3(x) of length N , where h(x) = h0(x

4) + xh1(x
4) + x2h2(x

4) + x3h3(x
4). We “break”

h(x) into hi(x) by computing partial (two layer) IFFT.

3.6.3 Committing to the Composition Polynomial

Next, the prover performs yet another low degree extension of the four composition polynomial
columns h0(x), . . . , h3(x). As these columns are of the same length as the trace columns, we
sometimes refer to them as the Composition Polynomial Trace and we address extending and
committing to them in the same manner as with the execution trace. This step includes extending
them by the same blowup factor, grouping the rows (of field element quadruples) into leaves of a
Merkle tree, calculating the hash values and sending the root of the tree as the commitment.

3.7 Consistency Check on a Random Point (the DEEP Method)

The value of h(x) for a given point (an extension field element) z ∈ Fp(φ) can be obtained in
two ways: by calculating the above mentioned linear combination of constraints (the composition
polynomial) or from h0(z

4), . . . , h3(z
4). For the former, the composition polynomial calculation

induces a set of points over the trace columns that are needed in order to compute h(z). This set
of points, required to calculate h(x) for a single point, is called the mask. Hence, given a point z,
we can check the consistency between the commitment on the execution trace and the commitment

8There are 52 constraints in Rescue, as described in Section 3.3.2. Therefore, in Rescue the verifier sends 104
random field elements – two for each constraint, as described in Section 3.6.1.

9The constraint used in the Rescue AIR are of degree three, but we prefer to have a degree bound for the
composition polynomial which is a power of two.

Page 16

on the composition trace. For this we need the values of the induced mask on the trace and the
values of h0(z

4), . . . , h3(z
4).

Recall that in the Rescue AIR, the constraints assert the transition between consecutive rows
(except for the boundary constraints, which deal with the first and last rows of the trace). Thus, the
mask of a given point z in the Rescue AIR consists of 24 elements. For each of the 12 polynomial
columns, fj(x), there are two mask points: fj(z) and fj(g · z), where g is the generator of the trace
evaluation domain.

At this phase, the verifier sends a randomly sampled point z ∈ Fp(φ). The prover sends back
28 elements: the evaluations of the relevant elements in the mask required for calculating h(z),
along with the evaluations of h0(z

4), . . . , h3(z
4). Denote the mask values sent by the prover by

{yj,s}j∈[0,11],s∈{0,1}, and the evaluations of hi(z
4) sent by the prover by {ŷi}i∈[0,3]. For an honest

prover, the value of each ŷi equals hi(z
4), and the value of each yj,s equals to fj(zg

s) where j is
the column of the corresponding cell and s is its row offset. The verifier may then calculate h(z) in
two ways: based on h0(z

4), . . . , h3(z
4) (using h(z) =

∑3
i=0 x

ihi(z
4)) and based on the mask values

yj,s. It verifies that the two results are identical.
It remains to show that the values sent by the prover in this phase are correct (i.e., indeed equal

to the evaluation of the composition polynomial trace and the mask values of the point z), which
will be done in the next section. This method of checking consistency between two polynomials
by sampling a random point from a large domain is called Domain Extension for Eliminating
Pretenders (DEEP); see [BGKS20] for more details about it.

3.8 The DEEP Composition Polynomial

Verifying that the DEEP values sent by the prover are correct includes two parts:

1. Verifying that they are equal to the mask values of the point z.

2. Verifying that the trace is defined over Fp, the native field in which Rescue operates (as
opposed to the extension field Fp(φ)).

In the rest of this section we describe how these verifications are performed.

3.8.1 Verifying the Mask Values

In order to verify the values sent by the prover, we create a second set of constraints and then
translate them to a problem of low degree testing, similar to the composition polynomial. For each
mask value yj,s, sent by the prover, we define the following constraint:

fj(x)− yj,s
x− zgs

where j, s are the column and row offset of the corresponding cell. This rational function is a
polynomial of degree (deg(fj)−1) if and only if fj(zg

s) = yj,s for some polynomial fj(X) of degree
deg(fj).

Likewise, for each value ŷi that the prover sent, we define the following constraint:

hi(x)− ŷi
x− z4

Page 17

where i is the corresponding column index of the composition polynomial trace. This rational
function is a polynomial of degree (deg(hi(x))− 1) if and only if hi(z

4) = ŷi.
Denote the size of the mask by M1, the mask values {yj,s} by {y`}`∈[0,M1−1] and the number

of columns in the composition polynomial trace by M2. The verifier samples M = M1 + M2

random elements from the extension field γ0 . . . , γM−1 ∈ Fp(φ). We define the DEEP Composition
Polynomial as follows:

M1−1∑
`=0

γ` ·
fj`(x)− y`
x− zgs`

+

M2−1∑
i=0

γM1+i ·
hi(x)− ŷi
x− z4

where j` and s` are the column and row offset corresponding to y`. This is a (random) linear
combination of constraints of the form:

f(x)− y
x− z

where f is either a trace column polynomial or hi polynomial. Thus, proving that this linear
combination is of low degree implies proving the low degreeness of the trace column polynomials
and that of the hi polynomials, as well as that the DEEP values are correct.

3.8.2 Verifying the Trace Values

In order to verify that the trace is defined over Fp, we add yet another set of constraints that assert
that the coefficients of each column polynomial is indeed from Fp (rather than Fp(φ)).

Denote the conjugate of an element x ∈ Fp(φ) by x. Recall that the mask of the Rescue AIR
consists of two consecutive rows – two elements in each column. We pick a single row10, and for
each column add the following constraint:

fj(x)− yj,0
x− z

This rational function is a polynomial of degree (deg(fj) − 1) if and only if fj(z) = yj,0. Let m
denote the number of columns in the trace. The verifier then chooses another m random extension
field elements δ0, . . . , δm−1 and adds the following linear combination to the DEEP composition
polynomial:

m−1∑
j=0

δi ·
fj(x)− yj,0

x− z

For a column polynomial f(x), if it holds for a random z ∈ Fp(φ) that f(z) = f(z), then (w.h.p)
all the coefficients of f(x) are from Fp. Thus, proving that the new DEEP composition polynomial
is of low degree, now also implies that the trace is defined over Fp as desired.

3.9 The FRI Protocol for Low Degree Testing

For low degree testing, we use an optimized variant of a protocol known as FRI (which stands for
Fast Reed-Solomon Interactive Oracle Proof of Proximity) described in [BBHR18], with improved
soundness bounds appearing in [BKS18, BGKS20, BCI+20]. The optimizations we use are described
in Section 3.11. The FRI protocol consists of two phases: a commit phase and a query phase.

10Since we verify that the coefficients of each column polynomial are from the appropriate field, adding the constraint
for both mask values of each column is redundant. This is in contrast to verifying the mask values, where both mask
values of each column are needed.

Page 18

3.9.1 Commit Phase

In the basic FRI version, the prover splits the original DEEP composition polynomial of degree
less than N , denoted here as p0(x), into two polynomials of degree less than N/2, call them g0(x)
and h0(x), satisfying p0(x) = g0(x

2) + x · h0(x2). The verifier chooses a random value ζ0 ∈ Fp(φ),
sends it to the prover, and asks the prover to commit (using a Merkle commitment scheme) to the
polynomial p1(x) = g0(x) + ζ0 · h0(x). Note that p1(x) is of degree less than N/2. (Looking ahead,
in our optimized FRI version the degree reduction from p0(x) to p1(x) is actually from N to N/2i

for some i ≥ 1, see Section 3.11.1.)
We then continue recursively by splitting p1(x) into g1(x) and h1(x), then constructing p2(x)

with a random ζ1 ∈ Fp(φ) chosen by the verifier, and so on. Each time, the degree of the polynomial
is halved. Hence, after log2(N) steps we are left with a constant polynomial, and the prover can
simply send the constant value to the verifier.

For the above protocol to work, we need the property that for every v in the evaluation domain
L, it holds that −v is also in L, i.e., that L be closed under negation. Moreover, the commitment
on p1(x) will not be over L but over L2 := {x2 : x ∈ L}. Since we iteratively apply the FRI step,
L2 also has to be closed under negation, and so on. These algebraic requirements are satisfied via
our choice of a multiplicative11 coset of size 2k for integer k as our evaluation domain.

3.9.2 Query Phase

We now have to check that the prover did not cheat. Let L be the evaluation domain. The verifier
samples a random v ∈ L and queries p0(v) and p0(−v). These two values suffice to determine
the values of g0(v

2) and h0(v
2), as can be seen by the following two linear equations in the two

“variables” g0(v
2) and h0(v

2):

p0(v) = g0(v
2) + v · h0(v2)

p0(−v) = g0(v
2)− v · h0(v2)

The verifier can solve this system of equations and deduce the values of g0(v
2) and h0(v

2). It
follows that it can compute the value of p1(v

2) which is a linear combination of the two. Now the
verifier queries p1(v

2) and makes sure that it is equal to the value computed above. This serves as
an indication that the commitment to p1(x), which was sent by the prover in the commit phase, is
indeed the correct one. The verifier may continue, by querying p1(−v2) (recall that (−v) ∈ L2 and
that the commitment on p1(x) was given on L2) and deduce from it p2(v

4).
The verifier continues in this way until it uses all these queries to finally deduce the value of

plog(d)(v
d). Recall that plog(d)(x) is a constant polynomial whose constant value was sent by the

prover in the commit phase, prior to choosing v. The verifier checks that the value sent by the
prover is indeed equal to the value that the verifier computed from the queries to the previous
functions.

All query responses received by the verifier also need to be checked for consistency with the
Merkle commitments sent by the prover during the commit phase. Hence, the prover sends decom-
mitment information (Merkle paths) together with these responses to allow the verifier to enforce
this.

11Recall that Rescue’s native field is Fp where p = 261 + 20 · 232 + 1, thus |F×p | is divisible by 232.

Page 19

In addition, the verifier must also verify the values p0(v) and p0(−v) it received from the
prover. Recall that the verifier does not maintain the DEEP composition polynomial p0. For this,
the prover also sends the values of the trace fj and the composition polynomial trace hj , induced
by the DEEP composition polynomial, together with their decommitments. Then, the verifier
checks the consistency of these values with the commitments on the traces, calculates the values of
p0(v), p0(−v) and checks consistency with the values sent by the prover.

In order to achieve the required soundness of the protocol, the query phase is repeated multiple
times. In particular, to reach soundness error below 2−λ, and using a blowup factor of 2k, we make
a number λ/k of queries, using [BCI+20, Conjecture 7.3] (with c1 = c2 = 1 there), i.e., each query
roughly contributes k “bits of soundness” to the protocol.

3.10 Transformation to Non-Interactive Protocol (the Fiat-Shamir heuristic)

So far, we described the proof generation process as an interactive protocol between a prover and
a verifier. We now transform this interactive protocol into a non-interactive version, in which the
prover generates a proof in the form of a file (or equivalent binary representation) and the verifier
receives it to verify its correctness.

The fundamental idea behind this construction is that the prover simulates receiving the ran-
domness from the verifier. This is done by the Fiat-Shamir heuristic applied to the transformation
of [BSCS16] that converts interactive oracle proofs (IOPs) into non-interactive random oracle proofs
(NIROPs). We extract randomness from a hash function that is applied to prior data sent by the
prover (and appended to the proof). We initialize the seed by hashing a description of the state-
ment – “Rescue hash chain”, and the public input, which are known to both the prover and the
verifier.

Recall that the AIR for the Rescue hash chain corresponds to the claim stated by Eq. (1). We
use the chain length (|w| − 1) and the four field elements of output as the seed to the hash
chain.

3.11 Proof Length Optimizations

We employ several optimization techniques in order to reduce the proof size. These techniques are
described in this section.

3.11.1 Skipping FRI Layers

Instead of committing to each of the FRI layers in the commitment phase of the FRI protocol, the
prover can skip layers and commit only to a subset of them. Doing that, the number of Merkle
trees is reduced, which means that the prover has less decommitment paths to send to the verifier.
There is a trade off, though. If, for example, the prover commits only to every third layer, in
order to answer a query, it needs to decommit to 8 elements of the first layer (instead of only 2 in
the standard case). This fact is taken into account in the commitment phase. It packs together
neighbor elements in each leaf of the Merkle tree. For more details see Section 3.5. Thus, the cost
of skipping layers is sending more field elements, but not more authentication paths.

Skipping FRI layers can be configured using the fri step list parameter. The FRI reduction
in the ith layer will be 2fri step list[i] and the total reduction factor will be 2

∑
i fri step list[i].

Page 20

3.11.2 FRI Last Layer

Another FRI optimization used to reduce the proof size, is to terminate the FRI protocol earlier
than when the last layer reaches a constant value. In such a case, instead of having the prover send
only the constant value of the last layer as a commitment, the prover sends the coefficients of the
polynomial representing the last layer. This allows the verifier to complete the protocol as before,
without the need for commitments (and sending decommitments for field elements in following
layers). The degree bound for early termination of the FRI protocol can be configured using the
last layer degree bound parameter.

3.11.3 Grinding

As mentioned in Section 3.9, every query adds a certain number of bits to the security (soundness)
of the proof. However, it also implies sending more decommitments which increases the proof size.
One mechanism to reduce the need for many queries is to increase the cost of generating a false
proof by a malicious prover. We achieve this by adding to the above protocol a requirement that
following all the commitments made by the prover, the prover must find a 64 bit nonce that when
hashed together with the state of the hash chain, results in a required number of leading zeros.
The number of the leading zeros defines a certain amount of work that the prover must perform
before generating the randomness representing the queries. As a result, a malicious prover that
attempts to generate favorable queries will need to repeat the grinding process every time that a
commitment is changed. On the other hand, an honest prover only needs to perform the grinding
process once.

This is similar to the grinding performed on many block-chains. The nonce found by the prover
is sent to the verifier as part of the proof and in turn the verifier checks its consistency with the
state of the hash chain by running the hash function once.

The required number of leading zeros is configured by the proof of work bits parameter.

4 Measurements and Benchmarks

To estimate the concrete efficiency of our system, we ran experiments measuring the proving and
verification time, the maximal memory consumption, and the generated proofs size, for different
numbers of hash invocations, security levels and blowup factors. All the experiments, for both the
prover and the verifier, were run on the same machine with the following specifications:

1. Operating-System: Linux 5.3.0-51-generic x86 64.

2. CPU: Intel(R) Core(TM) i7-7700K @ 4.20GHz (4 cores, 2 threads per core).

3. RAM: 16GB DDR4 (8GB × 2, Speed: 2667 MHz)

We note that while the prover uses multi-threading, in all of the experiments the verifier was
restricted to utilize only a single thread. In addition, measurements corresponding to 80 bits of
security are done using BLAKE2s with a digest size of 20 bytes (160 bits) as the underlying hash
function, whereas measurements corresponding to 100 bits of security used BLAKE2s with a digest
size of 25 bytes (200 bits).

Page 21

4.1 Prover/Verifier Time and Proof Size vs. Number of Hash Invocations

In Figure 5 we present measurements of proving and verification time as well as proof size, as a
function of the number of Rescue hash invocations. Recall that we fit batches of 3 hashes into 32
rows in the Rescue trace, see Section 3.1 for more details. Therefore, the number of hash invocations,
also referred to as the chain length, is divisible by 3. Since the actual traces we produce must have
a length that is a power of 2, we use 3× 2i, for i ∈ [10, 18], as the number of hash invocations for
our measurements.

Since the values for the x-axis grow exponentially (3×2i), and the y-axis is on a logarithmic scale,
the measurements in the top graphs in Figure 5 match our theoretical predictions that the amount
of time spent by the prover scales nearly-linearly in the number of hash invocations. Whereas
verification time and proof size scale poly-logarithmically in the number of hash invocations.

(a) 80 bits of security. (b) 100 bits of security.

Figure 5: Verification time and proof size (bottom graphs) and proving time (top graphs) as a
function of the number of Rescue hash invocations, measured for 80 bit security (left side) and 100
bits of security (right side). In the top graphs, the prover time is measured in seconds, while in the
bottom graphs, the verifier time is measured in milliseconds.

4.2 Prover/Verifier Time and Proof Size vs. Blowup Factor

Recall that the blowup factor is the ratio between the size of the evaluation domain and the
trace evaluation domain, see Section 3.4 for more details. In Fig. 6 we present measurements of

Page 22

proving/verifying time and proof size as a function of the blowup factor. The measurements are
done with 80 bits of security, a chain length of size roughly 98K (98, 304, to be precise) and blowup
factors 4, 8 and 16.

It is evident from Figure 6 that the blowup factor enables shifting computation overheads
between the prover and the verifier. For fixed security level, increasing the blowup factor increases
prover time (blue bars) but reduces proof size (red bars) and verification time (green bars). Notice
that none of the changes are linear, but rather sub-linear. I.e., as the blowup factor doubles (4→ 8
and 8→ 16) proving time increases only by ≈ 50% while proof size and verification time decrease
by ≈ 25%.

Figure 6: Proving/verification time and proof size as a function of the blowup factor. Measurements
are done with 80 bits of security and a chain length of size 98304.

4.3 Memory Consumption and Recursive Proof Composition

Memory Figure 7a depicts the prover’s peak memory (RAM) consumption as a function of
the number of Rescue hash invocations. It is readily apparent from the figure that: (i) memory
consumption measured for 80 bits of security and 100 bits of security are fairly similar, (ii) prover
memory requirements are satisfied by a machine with standard specifications, even for chain length
nearing one million hashes, and (iii) as long as the computation fits inside the machine’s available
RAM, memory consumption matches the theoretical prediction of linear growth with the number
of Rescue hash invocations. However, once memory consumption becomes larger than the available

Page 23

(a) Prover peak memory consumption. (b) Hash (BLAKE2s) count.

Figure 7: Prover peak memory consumption and the number of underlying hash (BLAKE2s) invo-
cations as a function of Rescue hash invocations.

RAM, a deterioration in performance is expected (not discussed in the scope of this work). We
stress that memory consumption need not scale linearly with chain length but rather, memory and
proving time can be traded off, one against the other.

Recursion Any universal and succinct proof/argument of knowledge system (in particular, STARKs)
can be used to incrementally verify computation [Val08, BCCT13]. This means that a computation
may generate a proof that attests to the correctness of a previous instance of that computation, a
concept known informally as “recursive proof composition”, or, in our case, “recursive STARKs”.
In other words, a recursive STARK prover would generate a proof for a statement saying the state
of a system can be moved from xi to xi+1 because the prover has verified a (recursive) proof attest-
ing to the computational integrity of xi and has faithfully executed the computation on the state
xi, reaching the new state xi+1.

While the impact of recursion depth is a delicate matter (cf. [Val08]), it is clear that a major
part of the prover’s computation in this case is focused on verifying a STARK proof. This requires
verifying all the hashes in the decommitment paths of a previous STARK. For instance, if the
statement proved recursively roughly matches our Eq. (1), the size of the recursive computation
(i.e., the AIR and execution trace) would likely be dominated by the need to verify the correctness
of the hash decommitments.

In Figure 7b we present the number of hash invocations used in a proof of Eq. (1) for varying
chain length, ranging between 3K and 786K hashes. Crucially, the number of hashes involved in
decommitments of these statements does not reach even the lower end and ranges between ≈ 1000
and ≈ 2700. This suggests that for simple computational statements proved via STARKs that use
the Rescue hash (instead of Blake2s) to commit to proof oracles, and for secure recursion depth (as
discussed in [Val08]), recursive STARKs could be efficiently constructed.

5 Provable Knowledge Soundness and Security in the IOP Model

One of the main advantages on proof systems based on interactive oracle proofs is that in that model,
knowledge soundness can be mathematically proven. The bulk of this section formally defines and

Page 24

proves the knowledge soundness of the ethSTARK IOP protocol. At the very end we discuss the
security of the ethSTARK IOP, and this part resembles the kind of security analysis applied to other
systems, e.g., ones whose security relies on conjecture but unproven number theoretic assumptions.

In more detail, we start by formally defining the algebraic intermediate representation (AIR)
format used by our system (Section 5.1), followed by formal definitions of soundness and knowl-
edge soundness (Section 5.2). Then we define the particular IOP used to verify these AIR instances
(Section 5.3). We describe the preliminary results needed to argue soundness in Section 5.4. Sec-
tion 5.5 defines the knowledge extractor used in our soundness proof. In Section 5.6 we state the
main theorem (Theorem 4) regarding knowledge soundness of the ethSTARK IOP protocol. The
proof of this theorem appears in Section 5.7 and the sub-claims used in the proof are proved in
Section 5.8. Section 5.9 discusses the IOP security. We end with parameter settings (Section 5.10).

5.1 Satisfiable Algebraic Intermediate Representations (AIRs)

The following definition is a variant on previous AIR definitions, like [BBHR19, Appendix B.2].
It is catered towards the specific use case of ethSTARK and stated using multiplicative groups.
Thus, the following definition restricts our attention only to finite fields F that contain a large
multiplicative subgroup of size 2h even though the definition of an AIR could apply to more general
fields.

Given a set S ⊆ F, we define the vanishing polynomial of S to be ZS(X) :=
∏
α∈S(X−α). This

is the unique monic polynomial of degree |S| whose set of roots is precisely S (each root having
multiplicity 1).

Definition 1 (AIR). An algebraic intermediate representation (AIR) is a tuple A = (F,w, h, d, s, g, I,Cset)
where:

• F is a finite field

• w, h, d, s are integers indicating the following sizes:

– w is the number of columns in the trace

– h denotes the logarithm of the size of a multiplicative subgroup used as the trace domain

– d is the maximal degree of a constraint

– s is the size of the set of constraints

• g is a generator of a multiplicative group H0 ⊂ F∗, |H0| = 2h. We call H0 the trace domain.

• I ⊆ {1, . . . ,w} × {0, . . . , 2h − 1} is a set of pairs of indices known as the set of mask indices.
Let Y = {Yi,j : (i, j) ∈ I} be a set of formal variables, called the mask variables, indexed by
elements of I.

• Cset = {C1, . . . ,Cs} is a finite set of constraints, of size s. Each constraint is an ordered pair
Ci = (Qi,Hi) where:

– Qi ∈ F≤d[Y] is a multivariate polynomial over the mask variables, of total degree at most
d, called the ith constraint polynomial.

– Hi ⊆ H0 is a subset of the trace domain, called the ith constraint enforcement domain

Page 25

We use |Cset| to denote the arithmetic complexity of the constraints, defined as

|Cset| :=
s∑
i=1

|Qi|+ |Hi|,

where |Qi| is the arithmetic circuit computing the polynomial Qi and |Hi| is the arithmetic
complexity of the vanishing polynomial ZHi

.

In the case of the ethSTARK statement of Eq. (1) we have w = 12, d = 3, s = 52, |I| = 2w = 24
because the mask involves two consecutive rows of the execution trace, and for chain length of 3 ·2k
we have h = k + 5; this latter parameter is the only one that depends on the chain length and,
concretely, for the target length of 98304 we have h = 20.

Remark 1 (Boundary constraints). Prior definitions of AIRs (cf. [BBHR19]) include a set of
boundary constraints that vary among instances (in our setting, the boundary constraints include
the claimed hash digest). Our protocol treats such a boundary constraint as a special case of con-
straint, in which Hi is a singleton.

Definition 2 (AIR assignment and composition). An AIR assignment is a sequence of polynomials
~P = (P1, . . . ,Pw),Pi ∈ F[X].

Given an AIR constraint polynomial Q ∈ F[Y], the composition of Q and the assignment ~P is
the univariate polynomial denoted Q ◦ ~P ∈ F[X] that is obtained by replacing each variable Yi,j ∈ Y
that appears in Q(Y) with the polynomial Pi(g

j ·X) ∈ F[X]. Henceforth we use Y ← Z to denote
that Z replaces Y .

Notice that if the total degree of Q is d and the maximal degree of Pi is d′ then deg(Q◦~P) ≤ d·d′.

Definition 3 (Satisfiability). An AIR assignment ~P = (P1, . . . ,Pw),Pi ∈ F[X] is said to satisfy
an AIR A = (F,w, h, d, s, g, I,Cset) if and only if

∀i ∈ [s] : x ∈ Hi ⇒ (Qi ◦ ~P)(x) = 0.

In words, ~P satisfies A iff for every constraint Ci = (Qi,Hi) ∈ Cset it holds that Qi ◦ ~P vanishes on
Hi. We say that the AIR A is satisfiable if there exists an AIR assignment ~P that satisfies it.

Notice that Qi ◦ ~P vanishes on Hi if and only if the polynomial ZHi
(X) divides (Qi ◦ ~P)(X) in

the ring F[X], i.e., (Qi ◦ ~P)(X)/ZHi
(X) ∈ F[X].

5.2 Soundness, knowledge soundness and security

Recall the definition of the interactive oracle proof (IOP) model [RRR16, BSCS16]. We recall the
standard notions of soundness and knowledge soundness in this model, as well as the notion of
security from [BBGR16, Section 1.1]. We use V,P to denote the IOP verifier and prover, and allow
them to receive auxiliary parameters aux that may depend on A, in addition to the AIR instance
(as indeed will be the case later on).

Definition 4 (Soundness and Knowledge Soundness). Let LAIR be the language of satisfiable AIR
instances as defined above. We say that an interactive oracle proof (IOP) protocol verifies LAIR with
soundness error at most ε if the following two conditions hold. If the third condition holds as well,
we say the IOP has knowledge soundness error at most ε.

Page 26

• Completeness: There exists a prover P such that ∀A ∈ LAIR, and letting aux = aux(A)
denote the auxiliary parameters used by the protocol:

Pr[〈V(A, aux)↔ P(A, aux)〉 = accept] = 1,

where 〈V(A, aux)↔ P(A, aux)〉 denotes the verifier’s output after receiving input (A, aux) and
interacting with the prover (which also receives A, aux as input).

• Soundness: For every instance A, auxiliary information aux and prover P∗(A, aux) the fol-
lowing holds:

If Pr[〈V(A, aux)↔ P∗(A, aux)〉 = accept] ≥ ε, then A ∈ LAIR.

• Knowledge soundness: There exists an algorithm E — the knowledge extractor — that
runs in expected time that is polynomial in w, 2h, d, |Cset|, log |F| and 1/ε (a Las Vegas algo-
rithm), and for any instance A, auxiliary information aux and prover P∗(A, aux) the following
condition holds:

If Pr[〈V(A, aux)↔ P∗(A, aux)〉 = accept] ≥ ε, then E(A, aux,P∗(A, aux)) = ~P and ~P satisfies A.

An IOP that has knowledge soundness error at most ε also has soundness error at most ε but
the converse is not necessarily true.

5.3 The IOP Protocol

We now describe the specific IOP used in the ethSTARK system. It satisfies the definition of a
Scalable Transparent IOP of Knowledge (STIK) as per [BBHR19, Definition 3.3]. Since it relies
on AIRs for arithmetization and uses the FRI protocol for low-degree testing, it may be called
a FRI-AIR, or an AIR-FRI12, STIK. When instantiated with Merkle tree commitments instead
of oracles, it satisfies the definition of a Scalable Transparent ARgument of Knowledge (STARK)
from [BBHR19] and may be called a FRI-AIR (or AIR-FRI) STARK to distinguish it from other
STARKs that use different methods, like [BCG+19] which uses succinct-R1CS arithmetization
instead of AIR.

To describe this IOP we need to define the auxiliary inputs aux used by it:

• K is a finite extension of F, of size qe, e ≥ 1 where q = |F|.

• D ⊂ K∗ is a nontrivial coset of a multiplicative group13 D0 ⊂ K∗ where D0 ⊃ H0. We call D
the evaluation domain, noticing it is disjoint from the trace domain H0.

• k′ denotes the logarithm of |D|, i.e., |D| = 2k
′
, where k′ > h. We define the rate of the IOP

by ρ := 2h/2k
′

and the IOP blowup factor is 1/ρ.

• auxFRI is auxiliary information required by the FRI protocol (to be defined later)

12These names were suggested by Pratyush Mishra and Daira Hopwood, respectively.
13 The ethSTARK implementation uses D ∪ D0 ⊂ F∗, for computational efficiency, but we opt for a more general

definition as it does not affect soundness.

Page 27

We shall also use the following notation:

• For (x0, y0) ∈ (K \ D)×K and f : D→ K let the quotient of f by (x0, y0) be the function

Quotient (f ;x0, y0) : D→ F, Quotient (f ;x0, y0) (x) :=
f(x)− y0
x− x0

.

• Let RS[K, S, ρ] denote the Reed-Solomon code over field K, evaluation domain S and rate ρ:

RS[K, S, ρ] = {f : S → K : deg(f) < ρ|S|}.

Description of the protocol The protocol starts with an AIR instance A = (F,w, h, d, s, g, I,Cset)
and auxiliary IOP parameters aux = (K, e,D, k′, auxFRI) given to both prover and verifier. We pro-
ceed as follows:

0. Preprocessing:

• Constraint weighted degree: For each constraint Ci = (Qi,Hi) ∈ Cset define the ith
composed degree as

di := deg(Qi) · (2h − 1)− |Hi|.

• Designated degree: Let dmax be the smallest integral power of 2 that is strictly greater
than maxi∈[s] di. Let a := dmax/2

h.

• Degree correction: For each Ci ∈ Cset let the degree correction parameter be ci :=
dmax − di − 1.

1. Execution trace oracle: Prover sends oracle functions f1, . . . , fw : D → K. The function
fi is supposedly the evaluation of some polynomial Pi(X) ∈ F[X],deg(Pi) < 2h where ~P =
(P1, . . . ,Pw) is an AIR assignment that satisfies A. Notice that if D ⊂ F (as is the case with
ethSTARK, see Footnote 13) then f1, . . . , fw have their range in F as well (cf. Remark 2).

2. Constraint randomness: Verifier samples uniform randomness~r := (r1, r
′
1, . . . , rs, r

′
s) ∈ K2s,

two elements per constraint, and defines the following constraint Q~r, which is a rational
function over variables (X,Y) (i.e., Q~r(X,Y) ∈ K(X,Y)):

Q~r(X,Y) :=
s∑
i=1

(
ri + r′i ·Xci

)
· Qi(Y)

ZHi
(X)

. (5)

Notice that

• Q~r(X,Y) has no poles outside of H0 so it can be evaluated on any x 6∈ H0.

• Assuming (i) Yi,j is replaced by a polynomial Pi,j of degree strictly less than 2h, and

(ii) Qi ◦ ~P vanishes on Hi, we conclude that each summand on the right hand side of
Eq. (5) is a polynomial R~ri(X),deg(R~ri(X)) < dmax. Let R~r(X) denote the sum of these
s polynomials.

Page 28

3. Constraint trace oracle: Prover sends oracle functions f~r0, . . . , f
~r
a−1 : D → K. The func-

tion f~ri is supposedly the evaluation on D of a polynomial P~ri(X),deg(P~ri) < 2h such that
P~r0, . . . ,P

~r
a−1 satisfy (

Q~r(X,Y) ◦ ~P
)

(X) =
a−1∑
k=0

Xk · P~rk(Xa). (6)

I.e., supposedly the right hand side above equals R~r(X) from the previous step.

4. DEEP query: Verifier samples DEEP query q uniformly at random from K∗ \ (H0 ∪ D̄)
where D̄ = {y ∈ K∗ : ya ∈ D}. (We forbid q ∈ H0 to ensure we can evaluate Eq. (7), and
forbid q ∈ D̄ to ensure we can apply the quotient operation in Step 7.) Notice |D̄| ≤ a · |D|.

5. DEEP answer: Prover sends an answer sequence answer = {αi,j : (i, j) ∈ I} ∪ {βk : k ∈
{0, . . . , a− 1}} ∈ KI∪[a], supposedly αi,j = Pi(q · gj) and βk = P~rk(q

a). We say the constraint
Q~r(X,Y) is validated by answer if the following equality holds:

Q~r (q, {Yi,j ← αi,j}) =

a−1∑
k=0

qk · βk (7)

where, recall, Yi,j ← αi,j means evaluating14 Yi,j to αi,j .

6. FRI combination randomness: Verifier samples randomness

rF := {rF(i,j) : (i, j) ∈ I} ∪ {rFk : k ∈ {0, . . . , a− 1}} ∈ KI∪[a].

7. FRI protocol: Both parties apply FRI with auxiliary information auxFRI to check proximity
to the code RS[K,D, ρ] of the function g(~r,q,answer,rF) : D→ K defined thus:

g(~r,q,answer,rF)(x) :=
∑
(i,j)∈I

rF(i,j) · Quotient
(
fi; q · gj , αi,j

)
(x) +

a−1∑
k=0

rFk · Quotient
(
f~rk; q

a, βk

)
(x)

(8)
The answer to a FRI query to g(~r,q,answer,rF) at x0 is simulated by querying each fi(x0), i =

1, . . . ,w and f~rk(x0), k = 0, . . . , a − 1 and computing the value of g(~r,q,answer,rF)(x0) according

to the equation above. Namely, if yi = fi(x0) and zk = f~rk(x0) then set

g(~r,q,answer,rF)(x0) :=
∑
(i,j)∈I

rF(i,j) ·
yi − αi,j
x0 − q · gj

+

a−1∑
k=0

rFk ·
zk − βk
x0 − qa

Notice that g(~r,q,answer,rF)(x0) is well defined because x0 ∈ D but gj · q and qa do not belong
to D so all denominators in the sum above are nonzero.

8. Decision: Verifier accepts iff (i) the FRI protocol accepts g(~r,q,answer,rF) and (ii) the random

constraint Q~r(X,Y) is validated by the answers provided by the prover, i.e., Eq. (7) holds.
14The query complexity — the number of field elements sent by the prover — is |I|+a and the arithmetic complexity

of computing Eq. (7) is the sum of complexities of Q1, . . . , Qs and ZH1 , . . . ,ZHs . In certain cases the arithmetic
complexity of ZHi may be far smaller than |Hi|, e.g., when Hi is a multiplicative subgroup.

Page 29

Remark 2 (Subfield test). The ethSTARK code includes an additional test, described in Sec-
tion 3.8.2, for ensuring that the AIR assignment is over the subfield F and not the larger field K.
We omit this sub-field test because it is not needed for soundness.

Remark 3 (Field structure). The IOP protocol above requires K to contain some sufficiently large
2-smooth multiplicative group. Thus, the protocol can only be applied to AIR instances over such
fields. Since ethSTARK is defined over such fields this does not pose a problem. Note that the
protocol can be modified to work over any field that contains a sufficiently large smooth additive
or multiplicative sub-group. In particular, this includes fields of small characteristic (like binary
fields). See [BBHR18, BBHR19] for details.

5.4 Prior results needed for the analysis

In our proof of Theorem 4 we shall rely on several prior results, stated here. In this section
V = RS[Fq,D, ρ], n = |D|, k = ρn and ρ = 2−R for a positive integer R, and D is a coset of a
multiplicative subgroup of Fq, the size of which is a power of 2. For the next result we say that
V ⊂ Fnq is (γ, `)-list decodable if for every u ∈ Fnq , there are no more than ` codewords of V that
are within relative Hamming distance at most γ from u. Our first result is the Johnson bound for
RS codes; see, e.g., [Gur07, Theorem 3.3] for a proof of this particular version.

Theorem 1 (Johnson bound). For every η ∈ (0, 1 −√ρ), the code V is (1 −√ρ − η, 1/(2η√ρ))-
list-decodable.

The next result is the polynomial time list-decoding algorithm of Guruswami and Sudan for RS
codes [GS99].

Theorem 2 (Guruswami–Sudan list decoding). The Guruswami–Sudan list decoding algorithm on
received word u : D → Fq, RS code V and slackness parameter η > 0 outputs the list of codewords
in V that agree with u on at least a

√
ρ + η fraction of D, in expected time that is polynomial in

n, 1/ρ, 1/η and log q.

From [BCI+20] we use the state-of-the-art bounds on the soundness error of the batched FRI
protocol. Recall that the batched FRI protocol starts with a commitment to a sequence of l + 1
functions u0, . . . , ul : D → K and applies the (non-batched) FRI protocol to a uniformly random
element in the affine space U spanned by u1, . . . , ul and shifted by u0. Thus, in the first round of
the batched FRI protocol the verifier VFRI samples uniformly random x1, . . . , xl ∈ K and the prover
commits to u : D→ K, where supposedly

u = u0 +
∑
i

xiui. (9)

Then the standard (non-batched) FRI protocol is applied to u using r rounds, where in the ith
round of the COMMIT phase a ti-to-1 map is applied to the ith oracle to obtain the next oracle
which is smaller by a ×ti factor. For the batched setting we also apply the following natural
modification: each query to u(x) by the (non-batched) FRI verifier is augmented with queries to
u0(x), . . . , ul(x) and that invocation of the QUERY phase is rejected if Eq. (9) does not hold with
respect to x.

Let 〈VUFRI(~t, s) ↔ PUFRI(~t)〉 denote the batched FRI verifier decision at the end of the protocol,
when using a single COMMIT phase with a sequence of ~t = (t0, . . . , tr−1)-to-1 maps and s indepen-
dent invocations of the QUERY phase, and we denote by auxFRI = (~t, s) the auxiliary information

Page 30

needed to execute the FRI protocol. This decision is a random variable depending on the random-
ness used by VUFRI and the intermediate commitments supplied by PUFRI. The following statement is
[BCI+20, Theorem 8.3].

Theorem 3 (Batched FRI soundness error). Let U = u0 + span{u1, . . . , ul} ⊂ FD
q be the affine

space spanned by u1, . . . , ul ∈ FD
q and shifted by u0. Suppose the batched FRI verifier VUFRI(~t, s)

described above is invoked for checking proximity of U = u0 + span(u1, . . . , ul) to V . For an integer
m ≥ 3 let

εFRI(q, n, ρ,m, s,~t) =

(
m+ 1

2

)7 · n2
2ρ3/2q

+
(2m+ 1) · (n+ 1)

√
ρ

·
∑r−1

i=0 ti
q

+

(
√
ρ ·
(

1 +
1

2m

))s
. (10)

Suppose there exists a batched FRI prover P∗ UFRI such that

Pr
[
〈VUFRI(~t, s)↔ P∗ UFRI (~t)〉 = accept

]
≥ εFRI(q, n, ρ,m, s,~t).

Then there exists S ⊂ D and v0, . . . , vl ∈ V satisfying

• Density: |S|/|D| ≥ √ρ
(
1 + 1

2m

)
, and

• Correlated agreement: for all i ∈ {0, . . . , l}, the functions ui and vi agree on all of S, i.e.,
∀x ∈ S, ui(x) = vi(x).

Remark 4. We point out that the first two summands in Eq. (10) correspond to the probability
of error during the FRI COMMIT phase, and the third and last summand corresponds to the FRI
QUERY phase (see [BCI+20, Theorem 8.3]). This distinction will be relevant to the suggested
parameter settings for ethSTARK, as discussed in Section 5.10.2 and Eq. (21).

5.5 The Knowledge Extractor

In this section we describe the extractor that will be used to prove the knowledge soundness in
Section 5.6. The extractor will use the correlated list decoder, described next.

Definition 5 (Correlated agreement). Let V ⊂ KD be a set of vectors, W = {w1, . . . , wk}, wi ∈ KD

be a sequence of vectors and σ ∈ [0, 1] an agreement parameter. We say W has correlated agreement
with V on agreement domain S ⊂ D of density σ if |S|/|D| ≥ σ and there exist v1, . . . , vk ∈ V
such that wi agrees with vi on S (i.e., ∀x ∈ S : wi(x) = vi(x)).

We say S is a maximal agreement domain if no set strictly containing S is an agreement
domain.

Lemma 1 (Correlated agreement list decoder). Let V = RS[K,D, ρ] and W = {w1, . . . , wk}, wi ∈
KD be a sequence of vectors. Let σ =

√
ρ+ η, η > 0 be an agreement density parameter. Then there

exists a randomized algorithm running in expected time that is polynomial in 1/ρ, 1/η, k, log |K| that
outputs a list S = {S1, . . . , S`} of all maximal correlated agreement domains of density at least σ,
and ` ≤ 1/(2η

√
ρ). Additionally, for each Si and wj ∈W the element vi,j ∈ V that agrees with wj

on Si is uniquely defined.

Proof. Run the following procedure, which uses the Guruswami–Sudan list decoding algorithm
from Theorem 2 [GS99], which has expected polynomial running time:

Page 31

• Apply the Guruswami–Sudan algorithm to w1 with agreement parameter σ, and let S =
{S1, . . . , S`1} be the set of agreement sets derived from it. Notice `1 ≤ 1/(2η

√
ρ) due to

Theorem 1.

• For i = 2, . . . , k:

– Apply the Guruswami–Sudan algorithm to wi with agreement parameter σ, and let
Si = {Si,1, . . . , Si,`i} be the set of agreement sets derived from it. Let ` = `1.

– Let
Ŝi = {S ∩ S′ : S ∈ S, S′ ∈ Si, |S ∩ S′|/|D| ≥ σ}

In words, Ŝi is the set of correlated agreement domains of density at least σ for w1, . . . , wi.
Set S = Ŝi and continue.

Notice that Theorem 1 applied to the RS code of rate ρ over the field of size |K|i implies
that |Ŝi| ≤ ` for each i = 1, . . . , k.

• Return S = {S1, . . . , S`}, noticing ` ≤ 1/(2η
√
ρ).

The claim on the running time of the algorithm follows from Theorems 1 and 2. Uniqueness of vi,j
follows from the assumption σ > ρ (recall ρ < 1).

The Knowledge Extractor The extractor E(A = (F,w, h, d, s, g, I,Cset), aux, f = (f1, . . . , fw))
receives the auxiliary IOP parameters aux = (K, e,D, k′, auxFRI) and extracts an assignment from
the very first prover oracle. It operates thus:

1. Recall ρ = 2h/|D|. Let ρ+ := 2h+1
|D| , noticing codewords of RS[F, S, ρ] are evaluations of poly-

nomials of degree less than 2h whereas codewords of RS[F, S, ρ+] correspond to polynomials
of degree at most 2h. Run the correlated agreement list decoder from Lemma 1 with agree-
ment parameter

√
ρ+(1 + 1/(2m)) on U = {f1, . . . , fw} ⊂

(
FD
)w

and V = RS [F,D, ρ+]. Let

S = {S1, . . . , S`} be the set of agreement domains of density ≥
√
ρ+(1 + 1/(2m)) and let

P = {~P1, . . . , ~P`} be the set of polynomials of degree ≤ 2h that match these domains, where
~Pi = {Pi,1, . . . ,Pi,w}, and Pi,j(X) ∈ F≤2h [X] agrees with fj on all of Si. Notice ~Pi is an AIR
assignment per Definition 3, containing polynomials over F, even though later parts of the
protocol may use a strictly larger field K ⊃ F.

2. For k = 1, . . . , `, if the AIR assignment ~Pk satisfies A then output it and terminate with
“success”. Otherwise – if no ~Pk satisfies A – terminate with “failure”.

Computational Complexity By Lemma 1 the expected running time of the extractor is poly-
nomial in |D|,m, 1/ρ+, log |K| and w. Clearly 1/ρ+ ≤ |D| and likewise m may be bounded by |D|
because the agreement parameter is an integral multiple of 1/|D|. Therefore, the expected running
time of the extractor is polynomial in |D|, logK and w.

5.6 Upper bound on knowledge soundness error

The main result of this section is the following statement.

Page 32

Theorem 4 (Knowledge soundness). The knowledge extractor E(A = (F,w, h, d, s, g, I,Cset), aux, f =
(f1, . . . , fw)) from Section 5.5 successfully outputs a satisfying AIR assignment, whenever the ver-
ifier V satisfies both of the following conditions:

1. V invokes the FRI verifier with s iterations of the QUERY phase, and

2. There exists some prover P∗(A, aux) sending f = (f1, . . . , fw) as its first oracle in Step 1, and
the acceptance probability of V(A, aux) upon interacting with P∗(A, aux) is greater than

errtotal =
`

|K|
+

(dmax + 2h + a) · `2

|K| − a · |D|+ |H0|
+ εFRI(q, n, ρ,m, s,~t). (11)

where m ≥ 3 is an integer and ` = m/ρ.

From this statement we deduce the following result, which extracts a satisfying assignment from
any prover that causes the verifier to accept with probability that is twice that which is stated in
Eq. (11).

Corollary 1 (Knowledge extraction from sufficiently convincing prover). Fix positive integers
R ≥ 1,m ≥ 3. Let A = (F,w, h, d, s, g, I,Cset), aux = (K, e,D, k′, auxFRI) and auxFRI = (~t, s) where
2−R = 2h/2k

′
. Suppose there exists a prover P∗ such that, when it interacts with the verifier V

described in Section 5.3 satisfies

Pr[〈V(A, aux)↔ P∗(A, aux)〉 = accept] ≥ 2 · errtotal (12)

where errtotal is as defined in Eq. (11) (and εFRI is as defined in Eq. (10)). Then A ∈ LAIR and
furthermore, there exists a knowledge extractor E′ that, on input (A, aux), interacts with P∗ and
outputs a satisfying assignment for A in expected time that is polynomial in w, 2h, d, |Cset|, log |F|
and 1/ε.

Proof. The extractor E′ repeats the following process a number 1/errtotal of times:

• Invoke the prover P∗ and read the first oracle f = (f1, . . . , fw)).

• Invoke E(A, aux, f) and terminate the operation of E′ if E(A, aux, f) terminates with “success”;
otherwise, continue to next iteration of the loop

We claim that E′ satisfies the conditions above. By the assumption of Eq. (12), with probability
at least errtotal the first oracle f satisfies Item 2 of Theorem 4. Assuming f indeed satisfies this
condition, Theorem 4 implies that E outputs a satisfying assignment to A. Inspection shows that
the expected running time of E is bounded by a polynomial in w, 2h, d, |Cset|, log |F|, because m
and ρ are fixed. Hence E′ also runs in expected polynomial time in w, 2h, d, |Cset|, log |F| and 1/ε,
as claimed.

Fixing ρ and m as in Corollary 1 gives the following result which generalizes Corollary 1 to show
that the protocol of Section 5.3 constitutes a scalable and transparent IOP of knowledge (STIK)
per [BBHR19, Definition 3.3].

Corollary 2 (Scalable Transparent IOP of Knowledge (STIK) for LAIR). For any ε > 0, the
IOP protocol described in Section 5.3 constitutes an IOP of knowledge for the language LAIR from
Definition 4 with knowledge soundness error at most ε.

Page 33

In the proof below we prefer simplicity to optimizing parameters.

Proof. Given ε and an AIR instance A = (F,w, h, d, s, g, I,Cset), set the auxiliary IOP parameters
aux = (K, e,D, k′, auxFRI) thus:

• Let e be the smallest integer divisible by 4 that satisfies

1

2ε

(
(24)2 · (10d + 2h) + 100d2h

)
< |F|e (13)

• Let K be the degree-e extension of F. Notice that K contains a subgroup of size 8 ·2h because
2h divides |F| − 1 and |F|4 − 1 = (|F| − 1) · (|F|+ 1)3 and |F|+ 1 is divisible by 2 (recall e is
divisible by 4). Therefore, we conclude that |K| is polynomial in |F|, 1/ε, d and 2h.

• Set k′ = h + 3 and pick D to be a subgroup of K of size 2k
′
, thus fixing ρ = 1/8.

• Set auxFRI = (~2, s) where ~2 = (2, 2, . . . , 2) and s = 100 · log(1/ε) (the constant 100 can likely
be vastly reduced)

We claim that the IOP protocol of Section 5.3 constitutes an IOP of Knowledge for LAIR with
knowledge soundness error ≤ ε.

Completeness is argued in the standard way (we omit details). Regarding soundness, we invoke
the extractor E′ of Corollary 1 with m = 3, noticing its expected running time is polynomial in
2h,w, |F|, |Cset| and 1/ε because m, ρ are fixed, |D| = 2h+3, and |K| is polynomial in |F| and 1/ε.
We now invoke Theorem 4 with m = 3 and ` = m/ρ = 24 and notice that by definition of the size
of K in Eq. (13), if the acceptance probability of the protocol is greater than 2ε then the extractor
described in Corollary 1 will output a satisfying assignment for A in time that is polynomial in
w, 2h, d, |Cset|, log |F| and 1/ε, as claimed.

5.7 Proof of Theorem 4

Proof of Theorem 4. In our proof of Theorem 4 we make a few simplifying assumptions:

• The prover P∗(A, aux) is deterministic. In particular,

– For every ~r the prover’s composition oracles f~r0, . . . , f
~r
a−1 : D→ K provided in Step 3 are

determined by ~r.

– The answer sequence answer = (α, β) ∈ KI∪[a] to the DEEP query q provided in Step 5
is determined by ~r and q.

• The aforementioned answer validates the constraint Q~r(X,Y), i.e., Eq. (7) is assumed to hold
for all~r and q. This assumption follows by modifying, say, the very last answer βa−1 ∈ answer
to ensure Eq. (7) holds; such an answer exists because q 6= 0. Such a change will not
decrease the probability of the verifier accepting because failing to validate Q~r(X,Y) implies
the protocol ends in rejection (see Step 8).

With these assumptions in hand, we proceed with the proof. Recall that the output of E on input
(f1, . . . , fw) is (S,P) where S = {S1, . . . , S`} are sets of agreement domains of density ≥

√
ρ+(1 +

1/(2m)) and P = {~P1, . . . , ~P`} are AIR assignments such that ~Pi has correlated agreement on Si

Page 34

with the sequence of functions (f1, . . . , fw). By Theorem 1 we have ` ≤ m/ρ+ ≤ m/ρ as claimed.
Now extend this latter sequence of functions (namely, f1, . . . , fw) by appending (f~r0, . . . , f

~r
a−1) to

it, and continue applying the correlated agreement decoder from Lemma 1 to this larger sequence,

using agreement parameter
√
ρ+ + η where η =

√
ρ+

2m . Let S~r = {S~r1, . . . , S~r`} denote the resulting

agreement domains of density
√
ρ+ + η. By construction, each S~ri is contained in some Sk ∈ S,

and, since the density of S~ri is greater than ρ+, the restriction of (f1, . . . , fw) to S~ri agrees with

the assignment ~Pk on all of S~ri . We thus say ~Pk is associated with S~ri , noticing that ~Pk may be
associated with several different domains S~r ∈ S~r.

Let ~P~ri = (P~r0, . . . ,P
~r
a−1) denote the a-tuple of polynomials of degree ≤ 2h that agree with

f~r0, . . . , f
~r
a−1 on S~ri , and let P~r = {~P~r1, . . . , ~P~r`}. If ~Pk is associated with S~ri we also say ~P~ri and ~Pk are

associated, noticing again that ~Pk may be associated with several different ~P~r ∈ P~r.
We say (~r, q) is good if

Pr
rF ,r′

[
FRI Verifier accepts g(~r,q,answer,rF)

]
≥ εFRI (14)

where r′ is the randomness used inside the FRI protocol (in both phases — COMMIT and QUERY)
and εFRI is the expression on the right hand side of Eq. (10).

The following lemma explains why we call a tuple “good”. Its proof is deferred to Section 5.8.

Lemma 2. If (~r, q) is good then there exists (i) an AIR assignment ~Pk = (Pk,1, . . . ,Pk,w) ∈ P,

(ii) an a-tuple ~P~r = (P~r0, . . . ,P
~r
a−1) ∈ P~r associated with ~Pk and (iii) S(~r,q) ⊆ Sk such that all the

following hold, in which case we say that (~r, q) is good for Sk.

• |S(~r,q)| > (
√
ρ+ + η) · |D|

• For each i ∈ [w] the polynomial Pk,i(X) agrees with fi on all of S(~r,q)

• For each (i, j) ∈ I,
Pk,i(q · gj) = αi,j

• For each l ∈ {0, . . . , a− 1} the polynomial P~rl(X) agrees with f~rl on all of S(~r,q)

• For each l ∈ {0, . . . , a− 1},
P~rl(q

a) = βl

Consequently, the polynomial P̂~r(X) :=
∑a−1

l=0 X
l · P~rl(Xa) satisfies

P̂~r(q) =
a−1∑
l=1

ql · βl

Next, we say ~r is useful for ~Pk ∈ P if the number of distinct q such that (~r, q) is good for Sk is
strictly greater than ((a + 1) · |H0| + a) · ` = (dmax + 2h + a) · `. (Notice that ~r may be useful for
more than one Sk.) We say ~r is not useful if there is no Sk ∈ S for which it is useful. We make two
claims regarding useful randomness strings, the proofs are deferred to Section 5.8.

Lemma 3. If ~r is useful for ~Pk, then the rational function
(
Q~r(X,Y) ◦ ~Pk

)
(X) from Eq. (5) is a

polynomial over K.

Page 35

Lemma 4. If linearly independent ~r1, . . . ,~r2s ∈ K2s are all useful for some ~Pk, then ~Pk satisfies A.

Assuming the lemmas, we complete the proof of Theorem 4. First we bound the fraction of
~r that are not useful. If ~r is not useful, then for each of the ` assignments ~Pk, there are at most
(dmax + 2h + a) · ` choices of q for which (~r, q) is good for ~Pk. Thus, when ~r is not useful, there
are at most (dmax + 2h + a) · ` · |P| = (dmax + 2h + a) · `2 values of q for which the FRI acceptance
probability is greater than εFRI, and for all other values of q the FRI acceptance probability is smaller
than εFRI. Thus, the probability of acceptance, conditioned on ~r being not useful is bounded by
(dmax+2h+a)·`2
|K|−a·|D|+|H0| + εFRI. The denominator is the size of the pool from which we sample q. We conclude

from the assumption of Eq. (11) that the probability of ~r being useful is greater than `/|K|. Let
~Pk ∈ P be an assignment for which the fraction of ~r useful for ~Pk is maximal. By the pigeonhole
principle this fraction is strictly greater than 1/|K|, so the set of useful~r for ~Pk must contain a basis
that spans K2s. Hence, by Lemma 4, we conclude ~Pk satisfies A and this completes our proof.

5.8 Proofs of Lemmas

In this section we prove the three main lemmas used in the proof of Theorem 4.

5.8.1 Proof of Lemma 2

Proof of Lemma 2. Recall from Eq. (8) that g(~r,q,answer,rF) is a uniformly random element of the
linear space U spanned by the following collection of functions vi,j and uk:

{vi,j := Quotient
(
fi; q · gj , αi,j

)
|(i, j) ∈ I} ∪ {uk := Quotient

(
f~rk; q

a, βk

)
|k = 0, . . . , a− 1}

Theorem 3 applied to U implies the existence of a set S = S(~r,q) ⊂ D and polynomials that agree

with vi,j and uk on all of S. Furthermore, |S| ≥ (
√
ρ+ + η)|D|. Let Ri,j(X) be the polynomial that

agrees with ui,j on S. Its degree is strictly smaller than |S| thus it is unique. Now “unquotient” it
by computing

R̃i,j(X) := (X − q · gj) ·Ri,j(X) + αi,j .

Notice R̃i,j is a polynomial of degree ≤ 2h that agrees with fi on all of S so there must be some
k ∈ [`] such that for every i, j, R̃i,j = Pk,i, because P is the set of all correlated agreement

assignments of density at least
√
ρ+ + η. We have now proved the first two bullets of Lemma 2.

Next, the polynomial R̃i,j = Pk,i evaluates to αi,j on q · gj . This holds for Pk,i with respect to
each j such that (i, j) ∈ I, and we thus conclude that Pk,i agrees with fi on S and evaluates to αi,j
on q · gj , as claimed in the third bullet.

In similar manner, “unquotient” the polynomial Rl(X) that agrees with ul on S by defining

R̃l(X) := (X − qa) ·Rl(X) + βl.

Notice R̃l(X) is of degree ≤ 2h and agrees with f~rl on S, showing (R̃0, . . . , R̃a−1) is some ~P~ri ∈ P~r

that is associated with ~Pk, and also proving the fourth bullet above. Additionally, R̃l(q
a) = βl by

construction. Therefore, the polynomial P̂~r(X) :=
∑a−1

l=0 X
l · R̃l(Xa) satisfies the last bullet above

and this completes our proof.

Page 36

5.8.2 Proof of Lemma 3

Proof of Lemma 3. To simplify the exposition rewrite Q~r(X,Y) as follows:

Q~r(X,Y) =
s∑
i=1

(
ri + r′i ·Xci

)
· Qi(Y)

ZHi
(X)

=
1

ZH0(X)
·

s∑
i=1

(
ri + r′i ·Xci

)
·
(
Qi(Y) · ZH0\Hi

(X)
)

(15)

The first equality comes from Eq. (5) and the second uses the fact that Hi ⊆ H0. Consequently,
composing Q~r(X,Y) with the AIR assignment ~P = ~Pk gives

(
Q~r(X,Y) ◦ ~P

)
(X) =

1

ZH0(X)
·

s∑
i=1

(
ri + r′i ·Xci

)
·
(
Qi

({
Yi,j ← ~Pi(X · gj)

})
· ZH0\Hi

(X)
)

=
P̃(X)

ZH0(X)
, (16)

where deg(P̃) ≤ a · 2h + |H0| = (a + 1) · |H0| by definition of ci and a in Step 0 of the IOP, and
because each polynomial in ~P has degree at most 2h = |H0|.

Let T = {q1, . . . , qt} be those elements for which the pair (~r, qi) is good for ~P ∈ P and some ~P~ri
associated with ~P. Let t = |T |, noticing we assume t > ((a + 1) · |H0|+ a) · `. Let ~P~r denote the ~P~ri
that maximizes the size of the subset Ti ⊆ T of elements q ∈ T for which (~r, q) leads to ~P~ri being

used in Lemma 2 (with ~P = ~Pk). Notice

|Ti| ≥ t/` = (a + 1) · |H0|+ a

because |P~r| ≤ `. For each such good q ∈ Ti, apply Lemma 2 to obtain

P̃(q)

ZH0(q)
=
(
Q~r(X,Y) ◦ ~P

)
(q) = Q~r (q, {Yi,j ← αi,j}) =

a−1∑
l=0

ql · βl =
a−1∑
l=0

ql · P~rl(qa) = P̂~ri(q).

where all q ∈ Ti lead to the same rightmost polynomial P̂~ri(X).
The first equality follows from Eq. (16), the next equality follows from the second and third

bullets of Lemma 2, the third equality follows from the assumption that the answers validate the
constraint (cf. Eq. (7)) and the last two equalities above comes from the last two bullets of Lemma 2.

We conclude that the polynomial

P̃(X)− ZH0(X) · P̂~ri(X)

which has degree at most (a + 1) · |H0| + a has t/` distinct roots, i.e., more roots than its de-
gree, thus it equals 0 in K[X]. Dividing both terms by ZH0(X) and using Eq. (16) again implies(
Q~r(X,Y) ◦ ~P

)
(X) ∈ K[X] and completes the proof.

5.8.3 Proof of Lemma 4

Proof of Lemma 4. To simplify notation we drop the subscript k from ~Pk and Sk, calling them ~P, S
instead. Let

vl := Ql

({
Yi,j ← ~P(X · gj)

})
· ZH0\Hl

(X), v′l := Xcl · vl. (17)

Page 37

where, recall, (Ql,Hl) is the lth constraint in Cset. Notice ~v = (v1, v
′
1, . . . , vs, v

′
s) ∈ (K[X])2s is a

collection of 2s vectors in a linear space over K (the space of univariate polynomials). Viewing
~ri = (ri,1, r

′
i,1, . . . , ri,s, r

′
i,s) as a vector in K2s, rewrite Eq. (16) as

(
Q~ri(X,Y) ◦ ~P

)
(X) =

1

ZH0(X)
·

s∑
j=1

(
ri,j · vj + r′i,j · v′j

)
=

1

ZH0(X)
· 〈~v,~ri〉,

where 〈~u,~v〉 :=
∑

j uj ·vj . In words,
(
Q~ri(X,Y) ◦ ~P

)
(X) is 1/ZH0(X) times the~ri-linear combination

of ~v. By Lemma 3 we have 1
ZH0

(X) ·〈~v,~ri〉 ∈ K[X] for each~ri. By the linear independence assumption

on ~r1, . . . ,~r2s and the fact that K[X] is a linear space over K, we conlude that vi
ZH0

(X) and
v′i

ZH0
(X)

belong to K[X] as well, for i = 1, . . . , s. Using Eq. (17) and cancelling common terms in ZH0\Hi
and

ZH0 we conclude that for all l ∈ [s]:

Ql

({
Yi,j ← ~P(X · gj)

})
ZHl

∈ K[X] and Xc
l ·
Ql

({
Yi,j ← ~P(X · gj)

})
ZHl

∈ K[X].

This means that ~P satisfies all constraints according to Definition 3, and completes our proof.

5.9 Security

When we say that a cryptographic system has a security level of λ bits, we mean, somewhat
informally, that the best known attack on it requires running time ≥ 2λ. We follow a similar
approach for discussing the security level of our systems. The security of PCP and IOP systems
was studied first in [BBGR16] and, to the best of our knowledge, that publication is the only one
addressing such questions thus far. To simplify the study of STARK security we offer a simple “toy
problem” and discuss its security. Furthermore, we conjecture that attacks on the toy problem can
be converted to attacks on real STARK systems (like ethSTARK). Finally, we recount the state of
the art attack on the toy problem and analyze its security (expected running time).

5.9.1 IOP Toy Problem

Rationale Consider an attacker, a malicious prover P∗ attempting to fool the verifier V to accept
an instance A which is either unsatisfiable, or perhaps is satisfiable but for which P∗ does not
“know” a satisfying assignment. This means that P∗ does not know how to provide an assignment
~P that will lead to all constraints being satisfied, which means that the random (rational) constraint
Q~r when composed with an assignment ~P known to P∗, will likely have a pole in H0.

However, the IOP protocol does not ask P∗ to provide an AIR assignment directly, but rather
provide oracle access to functions (f1, . . . , fw), fi : D → F that, supposedly, are the evaluations
of a satisfying AIR assignment, so that the random constraint Q~r, composed with these function,
results in an evaluation of a low-degree polynomial (that has no poles in D). To study this, the
toy problem presents a simple setting in which the attacker is confronted with the problem of pole
appearance. Details follow.

Page 38

Toy problem protocol Fix a finite field F such that D ⊂ F∗ is a multiplicative group of size 2h

ρ

where ρ = 2−R is the rate parameter, and R is a positive integer. The interactive protocol works
as follows:

1. Execution trace oracle: Prover sends oracle access to single function f : D→ F

2. Constraint randomness: Verifier samples a field element α ∈ F uniformly at random. Let
g : D → F be the function defined thus: g(x) := f(x)−α

x . Notice the function is well defined
on D because 0 6∈ D.

3. FRI protocol: Both parties apply the FRI protocol for checking proximity of g to RS[F,D, ρ]

We propose to analyze security of ethSTARK (and other STARK constructions) under the
following informal conjecture which says that attacks on the toy problem line up with attacks on
actual “interesting” IOP instances.

Conjecture 1 (Toy problem as general security proxy – Informal). If P∗ attacks the toy problem
over field F and rate ρ with time complexity T and success probability ε, then the IOP of Section 5.3
invoking the FRI protocol over field F and rate ρ can be attacked in time T with success probability
ε.

Vice versa, if P∗ attacks the IOP of Section 5.3 applied to an “interesting” family of AIR
instances using FRI over a field F with rate ρ – in particular, to the family of AIR instances
arising from the ethSTARK code — in time T and with success probability ε, then the toy problem
over F with rate ρ can be attacked in time T with success probability ε.

Toy problem security The following presents the state of the art attack on the toy problem
over F, with rate ρ. The attacker P∗ commits to a low degree polynomial as the first function, say,
the constant function ∀xf(x) = 1. Now, with probability 1/|F| we have α = f(0) in which case the
function g is a low degree polynomial and we succeed with probability 1. Otherwise, the function
g is a non-trivial rational function (in our example, g(x) = α

x).
Next, during the first iteration of the FRI protocol P∗ picks a ρ-fraction subset15 S of D and

interpolates the polynomial PS(X),deg(PS(X)) < |S| that agrees with g on S. The prover P∗

constructs all future FRI oracles using the (honest) FRI prover applied to PS(X) instead of g.
The resulting acceptance probability of the FRI protocol, used with t iterations of the QUERY
protocol, is ρt: this is the probability that all queries fall in S. Summarizing, the attack succeeds
with probability 1

|F| + ρt and this is our conjectured security level for instances of ethSTARK that
invoke FRI over a field F with rate ρ.

5.10 Parameter settings

We specify a few concrete parameter settings for the IOP that can be used in the ethSTARK code
to achieve 80, 100 and 128 bits of security or provable knowledge soundness16. Recall ethSTARK
operates over a base field F of size p = 261 + 20 · 232 + 1, so log2 p ≥ 61. The extension field for

15The set S is closed under negation (x ∈ S ⇒ −x ∈ S) to respect the cosets used by the FRI protocol.
16When referring to “provable knowledge soundness” henceforth we mean that the IOP parameter settings support

this soundness; however, the soundness of the IOP-to-noninteractive random-oracle IOP (NIROP) is omitted from
this paper.

Page 39

DEEP and FRI are either the degree 2 extension Fp2 or the degree 3 extension Fp3 ; let e denote the
extension degree. We use ρ to denote rate and R = − log2 ρ is the logarithm of the (inverse of the)
rate. Recall that s denotes the number of invocations of the FRI QUERY phase. We stress that
the parameters selected in this section are not necessarily optimal17, and can be easily modified in
the ethSTARK code base.

Hashes, the random oracle model, and grinding ethSTARK uses Blake2s as the hash func-
tion used to create Merkle tree commitments and as a realization of the random oracle when using
the Fiat-Shamir heuristic applied to the reduction from an IOP to a non-interactive IOP (NIROP)
as per the reduction of [BCS16b]. To achieve security level of λ bits we use Blake2s with digest
size of at least 2λ. Additionally, grinding may be used when generating the Fiat-Shamir challenge.
This means we select as the random oracle output an output of the random oracle that also has a ζ
number of leading bits all equal to 0. In ethSTARK grinding is applied only before the very last step
of the protocol, that of selecting the FRI queries in Step 7 of the ethSTARK IOP protocol described
in Section 5.3, and this reduces the probability of erroneously accepting a false statement by a
probability of 2−ζ , which adds ζ bits to the security/soundness of that last step. If ε0 denotes the
round-by-round soundness error of all steps before the FRI queries are generated, and ε1 denotes
the probability of acceptance of all FRI queries, the total probability of acceptance in the random
oracle model is

ε0 + (1− ε0) · 2−ζ · ε1 (18)

and therefore the number of bits of security in the random oracle model is the logarithm of the
expression above, which will be approximated by

λ ≥ min{− log2 ε0, ζ − log2 ε1} − 1.

see [CCH+18, CMS19] for further discussion of round-by-round soundness and the soundness of
IOP-to-NIROP transformations.

5.10.1 Suggested IOP Parameter Settings based on Conjectured Soundness

Based on Conjecture 1, the number of bits of security λ (in the random oracle model with ζ bits
of grinding and digest size ≥ 2λ), is given by the following formula:

λ ≥ min{ζ +R · s, log2 |K|} − 1 (19)

Therefore, fixing the code rate to ρ = 1/4 (with R = 2) and ζ = 20 bits of grinding:

• For λ = 80 bits of security use extension degree e = 2 (so |K| = p2) and a number of FRI
QUERY invocations equal to s = 31.

• For λ = 100 use e = 2 and s = 41.

• For λ = 128 increase the extension degree to e = 3 (so |K| = p3) and s = 55.

17For example, one may increase R, i.e., decrease ρ, and will thus increase proving time but reduce the number of
FRI invocations s and the total STARK argument length; see Fig. 5 for a concrete example of this tradeoff.

Page 40

5.10.2 Suggested IOP Parameter Settings based on Provable IOP Knowledge Sound-
ness

To fix parameters for provable soundness we rely on Eq. (11) from Theorem 4 and plug in the
expression for εFRI from Eq. (10) in Theorem 3, obtaining the following formula:

λ ≥ min

 − log2

(
`
|K| + (dmax+2h+a)·`2

|K|−a·|D|+|H0| +
(m+ 1

2)
7·n2

2ρ3/2q
+ (2m+1)·(n+1)√

ρ ·
∑r−1

i=0 ti
q

)
,

ζ − s · log2
(√
ρ ·
(
1 + 1

2m

))
− 1 (20)

where the parameters above are defined as in Theorems 3 and 4, noticing that the expression on
the top row corresponds to “pre-FRI-query error” as explained earlier (i.e., ε0 in Eq. (18)) and the
bottom row, to which grinding is applied in ethSTARK, corresponding to the FRI QUERY error (ε1
in Eq. (18)), see Remark 4. For simplicity we shall fix the extension degree to e = 3 so |K| > 2183

and the rate to ρ = 1/4 so that R = 2. Fix m = 3 so that in Eq. (20) we have ` = 12 ≤ 24. In
the ethSTARK statement referring to 98,304 invocations of the Rescue hash we have |H0| = 2h for
h = 20 and |D| = |H0|/ρ = 222. We also have dmax = 222 and a = 4. We notice that in the FRI
protocol

∑
i ti ≤ |H0| = 220. Therefore the sum in logarithm on the top row of Eq. (20) is bounded

by
24

2183
+

223 · 28

2182
+

47 · (222)2

2/8 · 2183
+ 226 · 220

2183
≤ 2−122, (21)

where the dominating term is the third summand above.
Fixing the number of bits of grinding to ζ = 20 as above, for provable soundness level of λ = 80

bits we may use s = 79 invocations to reach soundness error of less than 2−80, and for provable
soundness of λ = 100 bits we may use s = 104.

For provable soundness of λ = 128 bits the error term from Eq. (21) is too large. To lower
it to acceptable levels, the simplest option is to work with a degree 4 extension field18, so that
|K| ≥ 2244. This would lower the error term of Eq. (21) to well below 2−128, at which point fixing
the number s of FRI QUERY invocations to s = 140 (with ζ = 20 bits of grinding) will reach the
target soundness error.

References

[AAB+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepie-
niec. Efficient symmetric primitives for advanced cryptographic protocols (A marvellous
contribution). IACR Cryptology ePrint Archive, 2019:426, 2019.

[BBGR16] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. A security analysis
of probabilistically checkable proofs. Electron. Colloquium Comput. Complex., 23:149,
2016.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklama-
nis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech

18the current ethSTARK codebase does not specify a degree 4 extension for Fp.

Page 41

Republic, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Proceedings of the 39th Annual International Cryptology
Conference, CRYPTO ’19, pages 733–764, 2019.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM, 2013.

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and
Nicholas Spooner. Linear-size constant-query iops for delegating computation. In Den-
nis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
II, volume 11892 of Lecture Notes in Computer Science, pages 494–521. Springer, 2019.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity gaps for reed-solomon codes. Electronic Colloquium on Computational Com-
plexity (ECCC), 27:83, 2020.

[BCS16a] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
TCC (B2), volume 9986 of Lecture Notes in Computer Science, pages 31–60, 2016.

[BCS16b] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings,
Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60, 2016.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
sampling outside the box improves soundness. In Thomas Vidick, editor, 11th Innova-
tions in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020,
Seattle, Washington, USA, volume 151 of LIPIcs, pages 5:1–5:32. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case
reductions for the distance to a code. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume
102 of LIPIcs, pages 24:1–24:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Martin Hirt and Adam Smith, editors, Theory of Cryptography, pages 31–60, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and
Ron D. Rothblum. Fiat-shamir from simpler assumptions. Cryptology ePrint Archive,
Report 2018/1004, 2018. https://eprint.iacr.org/2018/1004.

Page 42

https://eprint.iacr.org/2018/1004

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the
quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors, Theory
of Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany,
December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in Computer
Science, pages 1–29. Springer, 2019.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of in-
teractive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary
version appeared in STOC ’85.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Trans. Information Theory, 45(6):1757–1767, 1999.

[Gur07] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and Trends®
in Theoretical Computer Science, 2(2):107–195, 2007.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Preliminary version appeared in FOCS ’94.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th ACM Symposium on the Theory
of Computing, STOC ’16, pages 49–62, 2016.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, Theory of Cryptography, pages 1–18,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Page 43

	Introduction
	Rescue
	Rescue Cipher
	Rescue Hash Function

	The STARK Protocol
	The Trace
	Periodic Columns
	The Constraints
	Intermediate Values
	The Rescue Constraints
	From Polynomial Constraints to Low Degree Testing Problem

	Trace Low Degree Extension
	Commitment Scheme
	Composition Polynomial
	Degree Adjustment
	Combining the Constraints
	Committing to the Composition Polynomial

	Consistency Check on a Random Point (the DEEP Method)
	The DEEP Composition Polynomial
	Verifying the Mask Values
	Verifying the Trace Values

	The FRI Protocol for Low Degree Testing
	Commit Phase
	Query Phase

	Transformation to Non-Interactive Protocol (the Fiat-Shamir heuristic)
	Proof Length Optimizations
	Skipping FRI Layers
	FRI Last Layer
	Grinding

	Measurements and Benchmarks
	Prover/Verifier Time and Proof Size vs. Number of Hash Invocations
	Prover/Verifier Time and Proof Size vs. Blowup Factor
	Memory Consumption and Recursive Proof Composition

	Provable Knowledge Soundness and Security in the IOP Model
	Satisfiable Algebraic Intermediate Representations (AIRs)
	Soundness, knowledge soundness and security
	The IOP Protocol
	Prior results needed for the analysis
	The Knowledge Extractor
	Upper bound on knowledge soundness error
	Proof of thm:knowledge soundness
	Proofs of Lemmas
	Proof of lem:good r q
	Proof of lem:satisfying single constraint
	Proof of lem:linearly independent useful

	Security
	IOP Toy Problem

	Parameter settings
	Suggested IOP Parameter Settings based on Conjectured Soundness
	Suggested IOP Parameter Settings based on Provable IOP Knowledge Soundness

