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Abstract—We consider the strong secret key (SK) agreement
problem for the satellite communication setting, where a satellite
chooses a common binary phase shift keying modulated input
for three statistically independent additive white Gaussian noise
measurement channels whose outputs are observed by two
legitimate transceivers (Alice and Bob) and an eavesdropper
(Eve), respectively. Legitimate transceivers have access to an
authenticated, noiseless, two-way, and public communication link,
so they can exchange multiple rounds of public messages to agree
on a SK hidden from Eve. Without loss of essential generality,
the noise variances for Alice’s and Bob’s measurement channels
are both fixed to a value Q > 1, whereas the noise over
Eve’s measurement channel has a unit variance, so Q represents
a channel quality ratio. We show that when both legitimate
transceivers apply a one-bit uniform quantizer to their noisy
observations before SK agreement, the SK capacity decreases at
least quadratically in Q.

I. INTRODUCTION

The problem of secret key (SK) agreement consists in
legitimate parties that observe dependent random variables to
reliably agree on a key that is hidden from an eavesdropper
by using a public communication link. We consider the source
model for SK agreement where two legitimate parties, called
Alice and Bob, and an eavesdropper, called Eve, observe n
independent and identically distributed (i.i.d.) realizations of
random variables distributed according to a fixed joint prob-
ability distribution [1], [2]. The SK capacity, defined as the
supremum of all achievable SK rates, is given in [2] for one-
way public communication between legitimate parties. General
upper and lower bounds on the SK capacity for two-way and
multi-round public communication are also given in [1], [2].
Early results on the SK capacity use a weak secrecy-leakage
metric that measures the normalized amount of information
leaked about the SK to Eve. In [3], [4], lower and upper bounds
on the SK capacity with a weak secrecy constraint are shown
to be valid also with a strong secrecy constraint that is not
normalized by the blocklength. Furthermore, improved lower
and/or upper bounds on the SK capacity for general probability
distributions are proposed, e.g., in [5]–[8]. A necessary and
sufficient condition for the SK capacity to be positive for
general probability distributions with two-way and multi-round
public communication is provided in [9] and a sufficient
condition in terms of Chernoff information is given in [10].
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Extensions to multiple parties are discussed in [11]–[15] and
capacity regions for SK agreement with privacy and storage
rate constraints are given in [16]–[20].

As a binary example that provides interesting insights, SK
agreement with a helpful satellite that is a remote source
[21, p. 118], [22, p. 78] whose outputs are measured through
independent binary symmetric channels (BSCs) is considered
in [1], [23]. The satellite setting with BSCs illustrates that two-
way and multi-round public communication, unlike one-way
public communication, allows to achieve a positive SK rate
even when both Alice’s and Bob’s noisy observations of the
satellite outputs have a lower quality than Eve’s noisy obser-
vations. The conditions for this result to hold are that Eve’s
measurement channel should not be noiseless and Alice’s and
Bob’s measurement channels should have positive channel
capacities; see also [24, Section 1.4] for precise definitions.

To achieve a positive SK rate with two-way and multi-
round public communication advantage distillation protocols
are used, including the repetition protocol [1], the parity
check protocol [23], [25], and other protocols such as in [10],
[26], [27]. Advantage distillation protocols aim to provide
an information-theoretic advantage to the legitimate parties
by selecting a subset of their observed symbols for which
legitimate parties have an advantage over Eve. To focus on
scenarios where advantage distillation is necessary to reliably
agree on a SK, a metric called channel quality ratio is defined
in [24] as the maximum of the ratio of the capacity of the
Eve’s BSC vs. the capacity of Alice’s or Bob’s BSC. For
the satellite setting with BSCs, the SK capacity is shown to
decrease quadratically in the channel quality ratio when it is
sufficiently large, achieved by using the parity check protocol
[24]. Furthermore, extensions of the satellite setting with BSCs
to channels with binary phase shift keying (BPSK) modulated
inputs and additive white Gaussian noise (AWGN) components
are considered in [5], [28], the former of which proves a
sufficient condition to achieve a positive SK rate and the latter
proves that using soft information increases the achievable SK
rate as compared to a BSC that can be obtained by applying
a one-bit uniform quantization at Alice and Bob.

For statistically independent AWGN satellite measurement
channels with BPSK modulated inputs, we define below a new
metric Q that represents a channel quality ratio, which is a
ratio of signal-to-noise ratios rather than the ratio of channel



capacities defined for BSCs in [24]. For any sufficiently large
Q, we prove that the SK capacity is bounded from above by a
term that decreases quadratically in Q when a one-bit uniform
quantization is applied at legitimate parties.

II. PROBLEM DEFINITION AND MAIN RESULTS

Consider a SK agreement problem where Alice and Bob
who observe correlated random variables want to agree on
a SK by using multiple rounds of public communication
without a storage rate constraint such that the SK is hidden
from Eve who also observes a correlated random variable.
To obtain these correlated random variables we consider the
following hidden source model, which is a sensible variation
of the satellite setting defined in [1]. Suppose a binary remote
source (or satellite) publicly chooses a strictly positive number
w ∈ R+ and puts out either the symbol R = +w or R = −w,
i.e., BPSK modulated symbols, each with probability 1/2.
Without loss of generality, the antipodal satellite output is
transmitted to Alice, Bob, and Eve through statistically in-
dependent zero-mean additive Gaussian noise channels with
variances, respectively, σ2

A = σ2
B = σ2 and σ2

E , and Alice,
Bob, and Eve observe i.i.d. random variables Xn, Y n, and
Zn, respectively, where n is the blocklength.

Define the number of public communication rounds without
a public-storage constraint as ` ≥ 1, which can be optimized
for each parameter set. For k = 1, 2 . . . , `, Alice creates
public messages F2k−1 according to some PF2k−1|Xn,F 2k−2 ,
where F 0 is a constant, and sends the public messages to
Bob. Similarly, Bob creates public messages F2k according
to some PF2k|Y n,F 2k−1 and sends the public messages to
Alice. We remark that to create the random public messages a
local source of randomness can be provided by using physical
unclonable functions, which are unique and unclonable digital
circuit outputs that are embodied by a device [29], [30],
such as Alice’s and Bob’s encoders. After ` rounds of public
communication, Alice generates a SK KA by using (Xn, F 2`)
and Bob generates another SK KB by using (Y n, F 2`). Alice
and Bob aim to generate the same uniformly distributed
key without leaking any information about it to Eve. Fig. 1
illustrates the SK agreement setting with a helpful satellite for
` = 1 round of public communication.

Without loss of generality, we focus on the setting where
the Satellite-to-Eve channel noise component has a variance
σ2
E = 1, whereas the Satellite-to-Alice and Satellite-to-Bob

channel noise components both have variances σ2 = Q > 1.
Therefore, for this setting the legitimate receivers Alice and
Bob observe Xn and Y n, respectively, that are lower quality
versions of the binary satellite outputs Rn as compared to
the quality of Eve’s observations Zn. This setting represents
the general setting with having Alice, Bob, and Eve scale
their observations by 1

σE
such that Q = σ2

σ2
E
≥ 1. Thus, Q

represents a channel quality ratio between Alice or Bob’s
channel and Eve’s channel, where the quality of Alice’s and
Bob’s observations Xi and Yi, respectively, of the satellite
output Ri as compared to the quality of Eve’s observation Zi
degrades as Q increases for all i = 1, 2, . . . , n.
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Fig. 1. SK agreement with a helpful satellite for ` = 1 round of public
communication.

We assume that all parties apply a one-bit uniform quantizer
to its observed Gaussian symbols to obtain Xn

q , Y nq , and
Znq , where Xq, Yq, Zq ∈ {−w,+w} since one-bit uniform
quantizers result in Xq,i = w · sgn(Xi), Yq,i = w · sgn(Yi),
and Zq,i = w · sgn(Zi) for all i = 1, 2, . . . , n. We next define
the quantized SK capacity with a helpful satellite, denoted as
SqW(Q).

Definition 1. For the satellite setting depicted in Fig. 1 and for
a fixed w ∈ W and Q > 1, a SK rate Sq(w,Q) is achievable
if, for any δ > 0, there are some n≥ 1, encoders, decoders,
and ` ≥ 1 for which Sq(w,Q) = log(|KA|)/n and

Pr[KA 6= KB ] ≤ δ (reliability) (1)
H(KA) ≥ nSq(w,Q)− δ (uniformity) (2)

I(KA;F
2`, Zn) ≤ δ (strong secrecy). (3)

The quantized SK capacity with a helpful satellite is defined
as

SqW(Q) = sup
w∈W

Sq(w,Q). (4)

In practice, hardware implementations, e.g., of communi-
cation networks impose that any modulated symbol R trans-
mitted by the satellite can be chosen from a bounded set W ,
which can be large. Thus, we assume in the following that
W ⊆ R+ is a bounded set.

We next provide an upper bound on the quantized SK
capacity and for this result, we consider the case where the
channel quality ratio Q is large, which corresponds to the
best case for Eve in terms of the respective observed symbol
quality. We prove that the quantized SK capacity scales at
most by O

(
1
Q2

)
for every sufficiently large channel quality

ratio Q.

A. Main Results

We next list the main results of this work. The proof of
Theorem 1 is given in Section III. The proof of Corollary 1



below follows by combining a simple reduction argument with
the result of Theorem 1, which is explained below.

Theorem 1. We have SqW(Q) = O

(
1

Q2

)
for every non-empty

bounded set W ⊆ R+ and sufficiently large Q > 1.

Remark 1. The bound on SqW(Q) given in Theorem 1 directly
implies that the same bound is valid also on Sq(w,Q) for all
w > 0 since the bound on the SqW(Q) follows for any non-
empty bounded set W ⊆ R+.

The assumption that Eve has to apply a one-bit uniform
quantizer is not realistic as a passive attacker cannot be forced
to apply a particular decoding method. Thus, we next remove
the assumption that Eve has to apply any quantization to Zn,
whereas Alice and Bob still have to apply a one-bit uniform
quantization to Xn and Y n, respectively. We show that the
bound O

(
1
Q2

)
on the quantized SK capacity with a helpful

satellite SqW(Q) is also a bound for the more realistic version
with Xn

q , Y nq , and Zn.

Corollary 1. For every non-empty bounded set W ⊆ R+

and sufficiently large Q > 1, the SK capacity for the case
where Alice and Bob quantize but Eve does not quantize
their corresponding observations can be upper bounded by

O

(
1

Q2

)
.

The proof of Corollary 1 follows since allowing Eve to
use more information than a one-bit quantizer output cannot
increase the SK capacity. Thus, Corollary 1 illustrates that
the results of Theorem 1 follow also when we remove the
assumption that Eve has to apply quantization.

III. QUANTIZED SK CAPACITY UPPER BOUND

We consider the quantized SK capacity with a helpful
satellite defined in Definition 1, where Alice, Bob, and Eve
apply a uniform one-bit quantization to each symbol of their
noisy measurements Xn, Y n, and Zn, respectively, to obtain
Xn
q , Y nq , and Znq . The proof of Theorem 1 is provided below.

Proof of Theorem 1 : Applying a classic upper bound
on the SK capacity from [1, Theorem 2] [4, pp. 6], we have

Sq(w,Q) ≤ I(Xq;Yq|Zq).

Therefore, it suffices to show that

sup
w∈W

I(Xq;Yq|Zq) = O

(
1

Q2

)
when Q → ∞. Assuming that w is restricted to an arbitrary
bounded set W , we can actually show that

SqW(Q) ≤ sup
w∈W

I(Xq;Yq|Zq) ≤
1

5Q2
(5)

for any sufficiently large Q. To prove a weaker version of (5)
for simplicity, we remark that Xq and Yq correspond to noisy
versions of a random bit R measured through a BSC with
crossover probability

ε =
1

2

(
1− erf

(
w√
2Q

))
(6)

whereas Zq corresponds to a noisy version of the same
random bit R measured through another BSC with crossover
probability

γ =
1

2

(
1− erf

(
w√
2

))
(7)

where erf(·) is the error function defined as erf(z) =
2√
π

∫ z

0

e−t
2

dt. Define Hb(p) = −p log(p)−(1−p) log(1−p)
as the binary entropy function. Then, using this representation
we have

I(Xq;Yq|Zq) = I(Xq;Yq|Zq = w)

= H(Xq|Zq = w)−H(Xq|Yq, Zq = w)

= Hb(εγ + (1− ε)(1− γ))−H(Xq|Yq, Zq = w)

= Hb(εγ + (1− ε)(1− γ))

− (εγ + (1− ε)(1− γ)) ·Hb

(
ε2γ + (1− ε)2(1− γ)
εγ + (1− ε)(1− γ)

)
− (ε(1−γ)+(1−ε)γ)·Hb

(
ε(1− ε)

ε(1− γ) + (1− ε)γ

)
. (8)

Using (8), for every w > 0 we have

lim
Q→∞

Q2 · I(Xq;Yq|Zq) =
2w4

(
1− erf

(
w√
2

)2)2

π2 ln 2
(9)

which can be obtained in a routine manner by combining the
following series expansions

ε =
1

2
− w√

2πQ
+O

(
1

Q3/2

)
(10)

as Q→∞,

Hb(p) =1− 2

ln 2

(
p− 1

2

)2

− 4

3 ln 2

(
p− 1

2

)4

+O

((
p− 1

2

)6
)

(11)

which is expanded around p = 1/2, and

(εγ + (1− ε)(1− γ)) =
[
1

2
− (1− 2γ)

(
ε− 1

2

)]
, (12)(

ε(1− ε)
ε(1− γ) + (1− ε)γ

)
=

[
1

2
− (1− 2γ)

(
ε− 1

2

)
− 8γ(1− γ)

(
ε− 1

2

)2

+O

((
ε− 1

2

)3
)]

, (13)(
ε2γ + (1− ε)2(1− γ)
εγ + (1− ε)(1− γ)

)
=

[
1

2
− (1− 2γ)

(
ε− 1

2

)
+ 8γ(1− γ)

(
ε− 1

2

)2

+O

((
ε− 1

2

)3
)]

(14)



which are expanded around ε = 1/2. SinceW is bounded, ap-
plying (10)-(14) to (8) yields (9) for all w ∈ W . Furthermore,
using the following inequality [31], [32]

1− erf(z) ≤ e−z
2

we obtain

1− 2e−z
2

≤ erf(z)2

which gives the inequality

(1− erf(z)2)2 ≤ 4e−2z
2

. (15)

Applying (15) to the limit in (9) for z =
w√
2

, we obtain the

upper bound

lim
Q→∞

Q2 · I(Xq;Yq|Zq) ≤
8w4e−w

2

π2 ln 2
(16)

for all w ∈ W , which is maximized at w∗ =
√
2 with the

value ≈ 0.6330. Using this bound, the proof of Theorem 1
follows.

IV. CONCLUSION

We considered the strong SK agreement problem for the
satellite communication setting with independent additive
Gaussian noise components whose variances define a channel
quality ratio. We proved that if the two legitimate parties apply
a one-bit quantizer to their noisy observations, the quantized
SK capacity decreases at least quadratically in the channel
quality ratio. In the follow-up work of this work in progress,
we will provide a lower bound for the SK capacity when no
party applies quantization to its noisy observations.
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