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Abstract. We consider the problem of finding low-weight multiples of polynomials over binary fields; a
problem which arises in stream cipher cryptanalysis or in finite field arithmetic. We first devise memory-
efficient algorithms based on the recent advances in techniques for solving the knapsack problem. Then,
we tune our algorithms using the celebrated Parallel Collision Search (PCS) method to decrease the time
cost at the expense of a slight increase in space. Both our memory-efficient and time-memory trade-off
algorithms improve substantially the state-of-the-art.
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1 Introduction

We consider the following problem:

Definition 1 (The Low-Weight Polynomial Multiple (LWPM) problem). Given a binary polynomial P ∈
F2[X] of degree d and a bound n, find a multiple of P with degree less than n and with the least possible weight ω,
where the weight of a multiple is the number of its nonzero coefficients.

The LWPM arises in stream cipher cryptanalysis, and in efficient finite field arithmetic.

Stream cipher cryptanalysis. A Linear Feedback Shift Register (LFSR) is the core component of a large class
of stream ciphers. It consists of an initial state, which corresponds to the shared secret key, and a connection
polynomial over F2. A parity check for an LFSR is a multiple of its connection polynomial.

Fast correlation attacks [19,16] are well-known cryptanalytic attacks against LFSR-based stream ciphers.
They recover the initial state of the constituent LFSR by viewing the output keystream as a noisy transmission
of the sequence generated by the LFSR. The attacks take advantage of parity check equations satisfied by
the LFSR output, which are given by multiples of the LFSR connection polynomial. To keep the bias as low
as possible, low-weight multiples are required.

Another type of attacks against LFSR-based stream ciphers is distinguishing attacks, which aim at verifying
whether a bitsream is encryption of some message. These attacks assume the keystream can be written as
the sum of some γ-biased sequence and an LFSR’s output. Given a parity check equation of the LFSR with
weight ω, the output keystream is biased with 1

2γ
ω, which requires γ−2ω samples to build the distinguisher

according to standard cryptanalytic techniques. Thus the need for a low-weight multiple of the LFSR
connection polynomial.

Finite field arithmetic. Another important application of low-weight multiples lies in representations of
finite fields. In fact, von zur Gathen and Nöker[22] found that F2d = F2[x]/(g), where g is a low-weight
irreducible polynomial of degree d, is the most efficient representation of finite fields if exponentiation is a
core operation. Ideally, one would use irreducible polynomials of weight 3. However, these do not always
exist. Brent and Zimmerman [4] proposed an interesting solution: take an irreducible polynomial f ∈ F2[X]
of degree d but possibly large weight, a multiple g of f with small weight, and work in the ring F2[X]/(g)
most of the time, going back to the field F2d only when necessary.



1.1 Related work

There have been several approaches for computing low-weight multiples of polynomials. Most methods
first estimate the minimal possible weight ω of multiples of the given polynomial P with degree at most n,
then look for multiples of weight at most ω. To estimate the minimal weight, one solves for ωe the following
inequality (

n
ωe

)
≥ 2d (1)

where d is the degree of P; the minimal weight ω is the smallest solution. In fact, if multiples are uniformly
distributed, then one expects the inequality to hold. It is worth noting that the number of such multiples
can be approximated byNM = 2−d(n

ω

)
.

Given a polynomial P ∈ F2[X] of degree d and a bound n, we summarize below the strategies used to
find a multiple of P of degree at most n and with the least possible weight ω. We describe the time or space
complexity using the Big-O notation, which denotes the worst case complexity of the algorithms. Also, we
use the approximation

(n
ω

)
≈ O(nω).

Discrete-log-based techniques They were introduced in [17], then improved and generalized in [8,18]. They
work with discrete logarithms in the multiplicative group of F2d instead of the direct representation of
the polynomials. [8] use a time-memory trade-off to solve the problem in time O(nd

ω−2
2 e) and memory

O(nb
ω−2

2 c). [18] provide an efficient-memory algorithm that runs in approximately O( 2d

n ). The methods
assume however a constant cost of the discrete logarithm computations, using precomputed tables that
do not require excessive storage. This is not the case if 2d

− 1 is not smooth. Also, the methods assume
some conditions on the input polynomial: primitive in case of [8] or product of powers of irreducible
polynomials with coprime orders in case of [18].

Syndrome decoding This technique reduces LWPM to finding a low-weight codeword in a linear code;
a popular problem for which there exists known algorithms to solve it, e.g. the so-called information-
set decoding algorithms [20,6,2,14,13,15]. These algorithms introduce many parameters to optimize
the running time and the memory consumption according to the problem instance, however, we can
approximate the running time by O(Poly(n) · ( n

d )ω), and the memory complexity by O(dω).
Lattice-based techniques This technique, introduced in [9], reduces the LWPM problem to finding short

vectors in an n-dimensional lattice. The method uses the LLL reduction [12] to solve the problem in
time O(n6) and space O(n · d). Unfortunately, this technique gives inaccurate results, i.e. fails to find a
multiple with the least possible weight, as soon as the bound n exceeds few hundreds.

Birthday techniques This is by far the standard method for solving the LWPM problem. There exists a
plethora of variations and improvements to this method. The standard approach works as follows. Set
ω = q1 + q2 + 1 and build a list H1 of all weight-q1 combinations of residues Xi mod P, 0 < i ≤ n and a
list H2 of all weight-q2 combinations of the same residues. Then look for pairs in the lists that sum to 1.
Clearly this method runs in O(nq2 ) (if H1 is implemented as an efficient hash table), and uses O(nq1 ) of
memory. The usual time-memory trade-off uses q1 = bω−1

2 c and q2 = dω−1
2 e in order to balance the time

and the space complexities.
Chose et al. [7] cut down the memory utilization to O(nb

ω−1
4 c) using a match-and-sort approach. Using

a divide-and-conquer technique, the task of finding collisions in a search space of nω is divided into
smaller tasks: find less restrictive collisions on smaller subsets, sort the results and then aggregate these
intermediate results to solve the complete task.
Canteaut and Trabbia [5] introduced a memory-efficient method for solving the LWPM problem. They
compute all residues Xi mod P, 0 ≤ i ≤ n and store the exponent i in a table indexed by Xi mod P. Then,
they form all weight-(ω− 1) combinations of the residues and look for collisions with X j mod P. Clearly
X j + Xi1 + · · · + Xiω−1 is a weight-ω multiple of P. The algorithm runs in O(nω−1) and requires only linear
memory.
When the degree of the multiple gets very large and there are many low-weight multiples, but it is
sufficient to find only one, Wagner’s generalized birthday paradox becomes more efficient. For instance, if
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n ≥ 2d/(1+log2(ω−1)), then this method finds a weight-ωmultiple of P of degree at most n in O((ω− 1)n) and
uses O(n) memory.

We summarize in Tables 1 & 2 the costs (time and space) of the different methods.

Method Exhaustive search Discretelog method Birthday method Lattice method

Time min(2n−d,nω)
2d

n
nω−1 n6

Table 1. Summary of memory-efficient techniques

Method Discrete log technique Syndrome Decoding Birthday Paradox Generalized BP
Time nd

ω−2
2 e Poly(n) ·

(
n
d

)ω
nd

ω−1
2 e (ω − 1)2d/(1+log2(ω−1))

Space nb
ω−2

2 c dω nb
ω−1

4 c 2d/(1+log2(ω−1))

Table 2. Summary of time-memory trade-off techniques

1.2 Our Approach

We view the LWPM problem as a special instance of the following subset sum problem:

Definition 2 (Group Subset Sum Problem). Let (G, .) be an abelian group. Given a0, a1, . . . , an ∈ G together with
ω, 0 < ω ≤ n

2 such that there exists some solution z = (z1, . . . , zn) ∈ {0, 1}n satisfying

n∏
i=1

azi
i = a0 with weight(z) = ω

The goal is to recover z (or some other weight-ω solution z).

This definition generalizes that in [10] as it does not impose the group order to be of bitsize n. It captures
then the LWPM problem as follows. Let P be a degree-d polynomial in F2[X]. Consider further the group
(Fd

2,+) of d-dimensional vectors over F2, where the group law is the bitwise addition over F2. A weight-ω
multiple 1 +

∑n
i=1 ziXi of P, with nonzero constant term and degree at most n satisfies:

n∑
i=1

ziai = a0 with ai = Xi mod P, 0 ≤ i ≤ n

Note that the condition on the weight (ω ≤ n
2 ) is not restrictive as most instances of LWPM that arise from

either stream cipher cryptanalysis or finite field arithmetic satisfy it. Actually, the searched weight ω is
obviously smaller than the weight of P, which is often smaller than d

2 , and thus smaller than n
2 .

Also, for convenience purposes, we consider throughout the document the relative weight ωn = ω/n.
The (group) subset sum problem is one of the most popular and ubiquitous problems in cryptography.

It has undergone an extensive analysis with a focus on polynomial-memory algorithms to solve it. In fact,
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it is known that random-access memory is usually more expensive than time. Most algorithms for solving
the subset sum problem [1,10] try to find as many representations as possible of the solution; in fact, the
more representations there exists the faster the solution can be found. For example, the folklore algorithm,
described in [11], represents the solution z = x || y as a concatenation of two n

2 -dimensional vectors x and y
with weight(x) = weight(y) = ω

2 . In the same spirit, [1] split the solution z into two n-dimensional vectors
x and y , with weight(x) = weight(y) = ω

2 , that add up to z. Recently, [10] further increase the number of
representations by splitting z into a sum over Z of two integers of smaller weight by exploiting the carry
propagation.

In this paper, we adapt these ideas to our setting and achieve algorithms for LWPM that significantly
improve the state-of-the-art. More precisely, we make the following contributions.

Contributions First, we present two memory-efficient algorithms for LWPM that improve the state-of-the-
art in polynomial-memory algorithms for LWPM. The idea behind the algorithms consists in splitting the
solution z into two n-dimensional vectors x and y that add up to z over F2. The weight of both x and y is
some function of ω to be determined according to the input.

More precisely, Algorithm 1 assumes and puts in place a Bernoulli distribution on the representation of z,
then determines the optimal weight φ(ω) to be used for x and y. As a result, we significantly improve the
running time offered by the state-of-the-art methods (see Figure 1).

Since Algorithm 1 uses a pseudo-random number generator to establish the desired Bernoulli distribution,
it incurs a slight overhead in the computations. Therefore, we reinforce our contribution with Algorithm 2
which does not use any assumptions; the result still substantively betters the state-of-the-art (see Figure 1).

We show the practicality of our technique with an implementation of the algorithms that confirm our
theoretical estimates.
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Fig. 1. Comparison between the efficient-memory techniques and our algorithms

Second, we tune our algorithms via the Parallel Collision Search (PCS) technique [21] to decrease the
running time at the expense of memory. Again, we improve the classic Time-Memory Trade-off (TMTO) or
birthday method, described earlier in the text, in both time and space (see Figure 2).

The rest of the paper is organized as follows. Section 2 recalls the necessary background and establishes
the notation that will be used throughout the document. Sections 3 & 4 respectively describe, analyze,
and experimentally validate our algorithms. Finally, the time-memory trade-off tuning of the proposed
algorithms is given in Section 5.
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Fig. 2. Comparison between the classic TMTO and our time-memory trade-off algorithms

2 Theoretical Background

2.1 Notations and Conventions

Let a, b ∈Nwith a < b. We conveniently write [a, b] := {a, a + 1 . . . , b}. For a vector z = (z1, . . . , zn) ∈ {0, 1}n, we
denote by weight(z) := |{i ∈ [1,n] : zi = 1}|. ZN denotes the ring of integers modulo N. F2 denotes the field
of two elements where the additive identity and the multiplicative identity are denoted 0 and 1, as usual.
F2[X] refers to the ring of polynomials with coefficients in F2.

Let P ∈ F2[X]. deg(P) and weight(P) refer to the degree and weight of P respectively; the weight of
a polynomial in F2[X] corresponds to the number of its non-zero coefficients. In the text, we identify
polynomials in F2[X] with their coefficient vectors. For instance, the sum of two polynomials in F2[X] is the
sum over F2 of their coefficient vectors termwise.
Suppose deg(P) = d. Then, F2[X]/P denotes the ring of polynomials modulo P; addition and multiplication
are performed modulo P. Finally, (Fd

2,+) refers to the group of d-dimensional vectors over F2, where the
group law + is the bitwise addition and the identity is referred to as 0Fd

2
.

The Big-O, Θ, and Θ̃ notations. The Big-O notation represents the upper bound of the running time of an
algorithm; it gives then the worst case complexity of an algorithm. TheΘ notation represents the upper and
the lower bound of the running time of an algorithm. It is useful when studying the average case complexity
of algorithms. The Θ̃ notation suppresses the polynomial factors in the input. For example Θ̃(2n) suppresses
the polynomial factors in n.

Binomial coefficient. The binomial coefficient
(n

k
)

refers to the number of distinct choices of k elements within
a set of n elements. We have: (

n
k

)
=

n!
k! · (n − k)!

Often, we need to obtain asymptotic approximation for binomials of the form
(

n
α n

)
or

(
n
bα nc

)
for values

α ∈]0, 1[. This is easily achieved using Stirling’s formula:

n! = (1 + o(1))
√

2πn
(n

e

)n
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Thus (
n
αn

)
≈

1√
2π nα(1 − α)

· 2nH(α)

where H is the binary entropy function defined as H(x) := −x log2(x)− (1−x) log2(1−x); log2 is the logarithm
in base 2. We can then write (

n
αn

)
= Θ

(
n−1/22nH(α)

)
or

(
n
αn

)
= Θ̃

(
2nH(α)

)
Probability laws. For a finite set E, e ∈R E refers to drawing uniformly at random an element e from E. The
PMF of a random variable denotes its probability mass function.

Let X be a random variable, p ∈ [0, 1], and n ∈N.
X ∼ Bernoulli(p) signifies that X takes the value 1 with probability p and the value 0 with probability 1 − p.
X := (X1, . . . ,Xn) ∼ Bernoulli(p,n) means that the Xi are independent and identically distributed with
Xi ∼ Bernoulli(p), for i ∈ [1,n].
X ∼ Binomial(p,n) means that X follows the Binomial distribution with PMF:

Pr[X = k] =

(
n
k

)
pk(1 − p)n−k , k ∈ [0, k]

Finally, if X ∼ Bernoulli(p,n), then the random variable Y corresponding to the number of successes of X
follows the binomial distribution, i.e. Y := weight(X) ∼ Binomial(p,n).

2.2 Random Functions

Birthday paradox. Let E be a finite set of n elements. If elements are sampled uniformly at random from
E, then the expected number of samples to be taken before some element is sampled twice is less than
√
πn/2 = Θ(

√
n). The element that is sampled twice is called a collision . See [11] for the details.

Expected number of collisions. Let f : E→ F be a random function. We are interested in the expected number
of collisions of f , i.e. the number of distinct pairs (x, y) with f (x) = f (y). For instance, if k elements have the
same value, this counts as

(k
2
)

collisions.

Fact 1 Let f : E→ F be a random function, with |E| = n and |F| = m. The expected number of f collisions is Θ
(

n2

2m

)
.

Proof. For each pair {x, y} (x , y), we define the following indicator variable:

I{x,y} =

{
1 if f (x) = f (y)
0 otherwise

Let further C denotes the number of collisions of f . C is a random variable whose expectation E(C) is
given by

E(C) =
∑
{x,y}

E(I{x,y})

=
1
m

∑
{x,y}

1 =
1
m

(
n
2

)

= Θ

(
n2

2m

)
ut
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Collision-finding algorithms Let f : E → F, with F ⊆ E, be a random function. According to the birthday
paradox, a collision of f can be found in roughly Θ(

√
|F|) evaluations. Common search algorithms, e.g.

Brent’s cycle-finding algorithm [3], achieve this by computing a chain of invocations of f from a random
starting point s until a collision occurs. In the text, the notation (x, y)←− Rho( f , s) refers to the collision (x, y)
returned by f from starting point s, using a cycle-finding algorithm.

In [21], van Oorschot and Wiener extend this idea to search collisions between two functions f1 and
f2 (both have the same domain E and range F). The construction defines a new function f that alternates
between f1 and f2 depending on the input. The new function f is a random function, thus any cycle-finding
algorithm applies and finds a collision for the new function in Θ(

√
|F|) and constant memory. The found

collision is a collision between f1 and f2 with probability 1
2 . Therefore the running time will roughly double

if collisions are random. This is achieved by randomizing the output of the algorithm.
In fact, Brent’s cycle-finding algorithm is likely to produce always the same collision. To remediate this

problem, [1,10] consider a family of permutations (Pk)k∈N in E addressed by k: they apply the collision-
finding algorithm to g : E→ E with g(x) = Pk( f (x)), where Pk is a random permutation from the considered
family. In other terms, a new permutation is used with each invocation of the collision search algorithm,
which ensures that the produced collisions are uniformly distributed.

3 First Algorithm

Let P be a d-degree polynomial over F2 with nonzero constant term, and n > d be an integer. Our goal is to
compute a multiple of P with the least possible weight, and with nonzero constant term and degree at most
n. We proceed as follows.

We first determine the minimal weight using Inequality 1. Let ω be the found weight, and 1 + z =
1 +

∑n
i=1 ziXi be a weight-ω solution to the LWPM problem. We decompose z to z = x + y, with x, y ∈ (Fn

2 ,+)
and weight(x) = weight(y) = φ = n ∗ φn, where φ is a weight to be determined as a function of ω. Then, we
compute x and y as a collision to a random function f , using any collision-finding algorithm, e.g. [3].
To computeφ, we assume a Bernoulli distribution on x and y. This assumption is plausible as the coordinates
of x or y are independent (we ignore that they sum to φ, as this won’t impact much the analysis). It will be
then enough to have each coordinate (of x and y) equal 1 with the constant probability φn = φ/n.

This section is organized as follows. Subsection 3.1 defines the building blocks that will be used in the
algorithm, namely the weightφ, the random function f and a further function that puts in place the Bernoulli
distribution. Subsection 3.2 describes our first algorithm for solving LWPM. Finally Subsections 3.3 and 3.4
are dedicated respectively to the analysis and experimental validation of the presented algorithm.

3.1 Building blocks

Computation of φ. Assume a Bernoulli distribution on x and y. I.e. the coordinates of both x and y are
considered independent trials with the constant probability of success Pr(xi = 1) = Pr(yi = 1) = φn =

φ
n for

i ∈ [1,n]. We obviously ignore that
∑n

i=1 xi =
∑n

i=1 yi = φ as this won’t impact much our analysis.
Therefore z = x + y follows also a Bernoulli law with PMF Pr(zi = 1) = 2φn(1 − φn), for i ∈ [1,n]. Moreover
weight(z) ∼ Binomial(2φn(1−φn),n). Since weight(z) = ω−1, thusω − 1 = 2nφn(1−φn), which is equivalent
to φn = 1

2 (1 ±
√

1 − 2ωn), where ωn := ω−1
n . Note that we assumed ω ≤ n

2 , thus ωn ≤
1
2 .

Random function f . Let φ and φn be the quantities computed in the previous paragraph. Define the set T :

T =
{
x ∈ {0, 1}n : weight(x) = φ = n ∗ φn

}
(2)

Let further ai = Xi mod P for i ∈ [0,n]. Consider the functions f0, f1:

f0, f1 : T −→ Fd
2

f0(x) =

n∑
i=1

xiai and f1(x) = a0 +

n∑
i=1

xiai
(3)
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Define further the function f :
f : T −→ Fd

2

x 7−→
{

f0(x) if h(x) = 0
f1(x) if h(x) = 1

(4)

where h : {0, 1}n → {0, 1} is a random bit function. In other terms, f alternates between applications of f0 and
f1 depending on the input. It is clear that a collision (x, y) of the function f will lead to a multiple of P with
expected weight less than ω. In fact, a collision of type fi(x) = fi(y), i = 0, 1 gives a multiple with expected
weight ω − 1, and a collision of type fi(x) = f1−i(y), i = 0, 1 gives a multiple with expected weight ω.

Finally, since we will use a cycle-finding algorithm to search collisions of f , we need the function range
and domain to be the same. To achieve this, we consider an injective map τ : Fd

2 −→ T (provided 2d
≤ |T |).

Therefore, all collisions (x, y) of f satisfy

f (x) = f (y) ⇐⇒ τ ◦ f (x) = τ ◦ f (y)

In this way, any cycle-finding technique can be applied to τ ◦ f to search for collisions of f .
In the rest of the text, we conveniently identify τ ◦ f with f ; that is we assume that f outputs elements in T ,
provided that 2d

≤ |T |, but we keep in mind that | f (T )| = 2d.

Bernoulli distribution on the input of f . Recall that function f inputs vectors of T that follow a Bernoulli
distribution with parameters φn and n. That is, coordinates of the input vectors are independent and
identically distributed with the constant probability φn of being equal to one. With this assumption, a
collision of f leads to a multiple of P with expected weight less than ω.
We achieve such a distribution by using a random function σ

σ : {0, 1}n −→ {0, 1}n

x 7−→ σ(x) : σ(x) ∼ Bernoulli(φn,n)

More precisely, σ uses the input elements as a seed to produce n-bit vectors that satisfy the Bernoulli
distribution. Therefore, the input elements are only used to “remember” the state of the function, so that
when it is called with the same value, it produces the same output.
σ has range {0, 1}n. In fact, for a random input element x in {0, 1}n, we have:

Pr[σ(x) ∈ {0, 1}n] =

n∑
i=0

(
n
i

)
φi

n(1 − φn)n−i = 1

Note however that σ outputs elements of weight φ with non-negligible probability:

Pr[σ(x) ∈ T , x ∈R {0, 1}n] =

(
n
φ

)
φ
φ
n (1 − φn)n−φ

=

(
n

nφn

)
2−nH(φn)

≈
1√

2πnφn(1 − φn)

On other note, σ induces a uniform distribution on T . In fact, let y ∈ T be a given element in T , and x a
random input element to σ

Pr[σ(x) = y | σ(x) ∈ T ] =
Pr[σ(x) = y, σ(x) ∈ T ]

Pr[σ(x) ∈ T ]

=
φ
φ
n (1 − φn)n−φ(n

φ

)
φ
φ
n (1 − φn)n−φ

=
1
|T |

Therefore, we conveniently assume in the rest of this section that σ has range T on which it induces a
uniform probability distribution.
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3.2 The algorithm

Consider the following map:

g : {0, 1}n −→ T (⊂ {0, 1}n)
x 7−→ f ◦ σ(x)

g is well defined as we assumed that σ has range T . Moreover, g is a random function from {0, 1}n to {0, 1}n,
and thus we can apply any cycle-finding algorithm to search collisions for g. Note that σ will introduce
some unnecessary collisions as we are only interested in collisions of f . We explain later how we compute
this fraction of “useful” collisions among the total number of g collisions.

Now therefore, in consideration of the foregoing, a cycle-finding algorithm for g picks a random starting
point s ∈R {0, 1}n, then computes a chain of invocations of g, i.e. g(s), g2(s) := g ◦ g(s), . . . until finding a
repetition. If such a repetition leads to a valid collision (x, y), i.e. g(x) = g(y) and x , y, return it otherwise
start again with a new starting point. Termination of the algorithm is guaranteed if the execution paths from
different starting points are independent. In other words, a random collision should be returned for each
new starting point.

To randomize collisions, we introduce our last ingredient, a family of permutations Pk addressed by
integer k:

Pk : {0, 1}n −→ {0, 1}n

The new function subject to collision search is

g[k] = g ◦ Pk : T −→ T

Note that the restriction of Pk to T is still a permutation from T to Pk(T )(⊂ {0, 1}n).
g[k] is a random function, with domain and range T , which satisfies the randomness requirement on

the computed collisions. In fact, for each new starting point s, a freshly random element Pk(s) is obtained
thanks to Pk (the permutation Pk is picked new with each new starting point), which is then used as a seed
to σ to produce a random n-bit vector in T (with non-negligible probability) that satisfies the Bernoulli
distribution. Therefore, execution paths, in cycle-searching algorithms for g[k], from different starting points
are independent due to the application of a random permutation Pk with each new search.
Moreover, (x, y) is a collision for g[k] if and only if (Pk(x),Pk(y)) is a collision for g. Therefore, we can apply
any cycle-finding algorithm to g[k] to search collisions for g.

We can now describe Algorithm 1 for solving the LWPM problem.

Remark 1. Algorithm 1 finds weight-ω multiples provided they exist. When Inequality 1 predicts a weight
that does not exist, the algorithm runs indefinitely. As a safety valve, one can allow a margin in the breaking
condition, and accept multiples with weights within that margin.

Remark 2. The µn’s considered in the first loop are all less than 1
2 . In fact, they satisfy µn = 2φn(1 − φn), and

the function x 7−→ 2x(1 − x) is upper bounded by 1
2 for x ∈ [0, 1].

Remark 3. Both the values 1
2 (1+

√
1 − 2µn) and 1

2 (1−
√

1 − 2µn) forφn give the same expected time in terms of
function calls, however, the latter value finds the solution faster as it is easier to manipulate sparse vectors.

3.3 Complexity analysis

Theorem 1. Algorithm 1 runs in time Θ(2Ct ) with

Ct =
d
2

+ n(−H(wn) + H1(ωn)) +
3
2

log2(2πnωn(1 − ωn))

where H1(ωn) = −ωn log2(2ωn(1 − ωn)) − (1 − ωn) log2(1 − 2ωn(1 − ωn)).
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Algorithm 1 for LWPM
Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible weight.
Compute the expected minimal weight ω by solving Inequality 1
ωn ←− (ω − 1)/n ; µ←− ω − 1
repeat

µn ←− µ/n; µ←− µ + 1
φn ←−

1
2 (1 ±

√
1 − 2 ∗ µn) ; φ←− n ∗ φn

until
(n
φ

)
≥ 2d . to ensure that f has range f (T ) ⊆ T

repeat
choose a random permutation Pk

choose a random starting point s ∈R T

(x, y)←− Rho(g[k], s)
(p, q)←− (σ ◦ Pk(x), σ ◦ Pk(y))

M←−
{

X ∗ (p + q) if fi(p) = fi(q), i = 0, 1
1 + X ∗ (p + q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

We first note that ω− 1 = φ. In fact, ω is the smallest integer such that the inequality
( n
ω−1

)
≥ 2d holds. On

other note, φ is the smallest integer such that
(n
φ

)
≥ 2d, thus φ = ω − 1 and φn = ωn.

Moreover, g and thus g[k] induces the uniform distribution on g[k](T ). In fact, σ induces the uniform
distribution on T , and f alternates with probability 1

2 between applications of the deterministic functions
f0 and f1. Thus, the birthday paradox applies and a collision of g[k] costs on average 2d/2. Actually, g[k] has
domain T and range g[k](T ) ⊆ T, with |g[k](T )| = 2d. Also, the expected number of g[k] collisions is Θ( |T |

2

2d+1 )
according to Fact 1.

Proof. The algorithm searches collisions (x, y) for g[k] that correspond to f collisions, and that satisfy a weight
condition. We call such collisions “useful collisions”. Let (x, y) ∈R T

2 with (p, q) = (σ ◦ Pk(x), σ ◦ Pk(y)). (x, y)
is useful collision for g[k] if the following hold:

Event E1: “p, q ∈ T ” (so that the function g and thus g[k] is well-defined)
Event E2: “weight(p + q) = n ∗ ωn”
Event E3: “X ∗ (p + q) or 1 + X ∗ (p + q) is a multiple of P”

Therefore the number of useful collisions is given by |T |2 ∗ Pr[E1 ∧ E2 ∧ E3].
According to the previous study of σ, we have Pr[E1] ≈ 1

2πnφn(1−φn) .
Moreover, p ∼ Bernoulli(φn,n) and q ∼ Bernoulli(φn,n). Therefore

p + q ∼ Bernoulli(2φn(1 − φn),n), and weight(p + q) ∼ Binomial(2φn(1 − φn),n). Thus:

Pr[E2 | E1] ≈ Pr[E2] =

(
n

n ∗ ωn

)
(2φn(1 − φn))n∗ωn (1 − 2φn(1 − φn))n−n∗ωn

=

(
n

ω − 1

)
(2φn(1 − φn))n∗ωn (1 − 2φn(1 − φn))n−n∗ωn

Finally, the probability that a random weight-ω polynomial with nonzero constant term and degree at
most n equals a weight-ω multiple of P with nonzero constant term and degree at most n is

( n
ω−1

)−1
NM,

whereNM is the number of such multiples which equals
( n
ω−1

)
2−d.

Similarly, the probability that a random weight-(ω − 1) polynomial with zero constant term and degree at
most n equals a weigh-(ω − 1) multiple of P with zero constant term and degree at most n is

( n
ω−1

)−1
N
′
M,

whereN ′M is the number of such multiples which equals
( n
ω−1

)
2−d. Thus Pr[E3 | E2,E1] = 2−d+1.
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Since φn = ωn (φ = ω − 1), we conclude that the number of useful collisions is given by

Nuseful−collisions = |T |2 ∗ Pr[E1 ∧ E2 ∧ E3]

≈ |T |
22−d+1

(
n

ω − 1

)
(2φn(1 − φn))n∗ωn (1 − 2φn(1 − φn))n−n∗ωn

1
2πnφn(1 − φn)

= |T |32−d+1(2ωn(1 − ωn))n∗ωn (1 − 2ωn(1 − ωn))n−n∗ωn
1

2πnωn(1 − ωn)

And the probability of a useful collisions is:

Pr[useful − coll] =
Nuseful−collisions

Ngk−collisions

≈ Θ

(
2−2
|T |(2ωn(1 − ωn))n∗ωn (1 − 2ωn(1 − ωn))n−n∗ωn

1
2πnωn(1 − ωn)

)
= Θ

(
2nH(ωn)(2ωn(1 − ωn))n∗ωn (1 − 2ωn(1 − ωn))n−n∗ωn

1
(2πnωn(1 − ωn))3/2

)
Finally, the running time (in terms of function calls) of the algorithm is the product of Pr[useful − coll]−1

and the cost of a g[k]-collision, i.e. 2d/2. Thus, on average, the running time exponent is approximately:

Ct =
d
2

+ n(−H(wn) + H1(ωn)) +
3
2

log2(2πnωn(1 − ωn)

where H1(ωn) = −ωn log2(2ωn(1 − ωn)) − (1 − ωn) log2(1 − 2ωn(1 − ωn)).
ut

3.4 Experimental results

We run Algorithm 1 on the following polynomial P for n ∈ [20, 600]. The results are depicted in Figure 3.

P = 1 + X2 + X4 + X5 + X6 + X8 + X9 + X10 + X11 + X13 + X14 + X15 + X17
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Fig. 3. Averaged function calls T for Algorithm 1 run on Polynomial P

We remark that the algorithm performs better for bigger weights ω. Actually, we did not consider in the
analysis when function σ outputs vectors x with weights close to φ (smaller or bigger) that contribute to the
solution; such an event is likely to occur when ω (and thus φ) is big.
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4 Second Algorithm

Algorithm 1 in Section 3 incurs an overhead in the computations due to function σ. Actually, with each
invocation of the function f , we make a call to σwhich uses a pseudo-random number generator to establish
the Bernoulli distribution on the input.

We remediate this problem in this section by not imposing anything on the input. Therefore, we decom-
pose the solution z of LWPM into a pair (x, y), where x, y are n-bit vectors that do not enjoy any specific
properties except having the same weight φ to be determined. We then look for such pairs by searching
collisions of f .

Consider the set T defined in Statement 2, and let x, y ∈R T . We proceed as follows. We first determine
the PMF of the random variable Y = weight(x + y) in order to compute φ as a function of ω. Then, we
describe, analyze and experimentally validate our second algorithm in the subsequent subsections.

4.1 Computation of φ

Probability law of Y = weight(x + y)

Fact 2 Pr[Y = 2k + 1] = 0, ∀k ∈N.

Proof. Pr[Y = 2k + 1] denotes the probability that x and y disagree on exactly 2k + 1 positions. Let x̄ and ȳ be
the (2k + 1)-bit strings extracted from x and y respectively, and composed of the bits where x and y disagree.
Let further x\x̄ and y\ȳ be the remaining strings of x and y after extraction of x̄ and ȳ respectively. We have
x̄i = 1 − ȳi, for i ∈ [1,n]. That is, there are 2k + 1 ones distributed between the bits of x̄ and ȳ.
Since weight(x) = weight(y) = φ. Then, we will have 2φ − 2k − 1 ones distributed equally between the bits
of x\x̄ and y\ȳ since x\x̄ = y\ȳ. This is impossible as 2φ − 2k − 1 is odd. We conclude that x and y cannot
disagree on an odd number of positions. ut

Fact 3 Pr[Y = k] = 0, for k < [0,min(2φ,n)].

Proof. There is a total of 2φ ones in both x and y. Therefore, x and y can disagree on at most 2φ positions.
That is Pr[Y > 2φ] = 0. On other note, it is obvious that Pr[Y > n] = Pr[Y < 0] = 0. ut

Let now, k ≤ min(φ,n/2) be an integer. Pr[Y = 2k] is given by the number of strings x and y that disagree
on 2k positions, divided by the size of the probability space. The number of such strings is given by the
product of:

–
( n

2k
)
: the number of ways to choose the positions where x and y disagree.

–
(2k

k
)
: the number of ways to distribute k ones in those 2k positions. In fact, let x̄ and ȳ be the (2k)-bit

strings extracted from x and y respectively, and composed of the bits where x and y disagree. Then, x̄
and ȳ have the same weight, namely k, as x and y have the same weight φ, and agree on the remaining
n − 2k positions. Thus, the 2k ones must be equally distributed among x̄ and ȳ.

–
(n−2k
φ−k

)
: the number of ways to choose (n − 2k)-bit strings with weight (φ − k). I.e. the number of strings

where x and y agree.

The size of the probability space is given by |T |2 =
(n
φ

)2. Thus

Pr[Y = 2k, k ≤ min(φ,n/2)] =

(
n
2k

)(
2k
k

)(
n − 2k
φ − k

)/(
n
φ

)2

=

(
φ

k

)(
n − φ

k

)/(
n
φ

)
We conclude that:

Pr[weight(x + y) = 2k] =

{(φ
k

)(n−φ
k

)/(n
φ

)
if 0 ≤ k ≤ min(φ,n/2)

0 otherwise
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Computation of φ Note that the PMF of Y = weight(x + y) is reminiscent of the hypergeometric distribution
G given by PMF:

Pr[G = k] =

{(t
k
)(n−t
φ−k

)/(n
φ

)
if 0 ≤ t, φ ≤ n and 0 ≤ k ≤ min(φ, t)

0 otherwise

and expectation E(G) = φ2/n. Actually, for t = φ, we get

Pr[G = k] =

(φ
k

)(n−φ
φ−k

)/(n
φ

)
if 0 ≤ φ ≤ n and 0 ≤ k ≤ φ

0 otherwise

Therefore Pr[weight(x + y) = 2k] = Pr[G = φ − k]. We derive the expectation of Y = weight(x + y) as
follows.

E(Y) =

2φ∑
k=0,k=2p

k Pr[Y = k] =

φ∑
k=0

2k Pr[Y = 2k]

=

φ∑
k=0

2k Pr[G = φ − k] = 2
φ∑

k=0

(φ − k) Pr[G = k]

= 2φ − 2E(G) = 2φ(1 − φ/n)

Therefore, if we conserve our previous notations: φ = n ∗ φn, and ω − 1 = ωn ∗ n, and solve for φn the
equation ωn ∗ n = 2φ(1 − φ/n). We get φn = 1

2 (1 ±
√

1 − 2ωn) (ωn ≤
1
2 ). Note that we get the same value we

found for φ in Section 3, when we assumed a Bernoulli distribution on x and y, and consequently a binomial
distribution on weight(x+y) (x+y ∼ Bernoulli(φn(1−φn),n) and thus weight(x+y) ∼ Binomial(2φn(1−φn),n)).
This is not surprising; we know that for increasing n, the hypergeometric law converges to the binomial
law.

4.2 The algorithm

Let (P, d,n) be a LWPM instance. We compute the minimal weight ω as usual by solving Inequality 1, then
we compute φn as 1

2 (1 ±
√

1 − 2(ω − 1)/n) and φ as nφn.
To compute a weight-ω multiple of P with degree less than n, we similarly search for collisions (p, q) of the
function f defined earlier, where p and q are n-bit vectors with weight φ. There is a small particularity of
this algorithm depending on the parity of ω. In fact, collisions of f are of two types:

Type 1 collisions that correspond to fi(p) = f1−i(q), i = 0, 1. These collisions produce multiples of type
1 + X(p + q), with weight 1 + 2k, 1 ≤ k ≤ min(φ,n/2).

Type 2 collisions that correspond to fi(x) = fi(y), i = 0, 1. These collisions produce multiples of type X(p+q),
with weight 2k, 1 ≤ k ≤ min(φ,n/2)

Therefore, if ω = 1 + 2k, we set µ =: ω − 1 and φ = nφn, with φn = 1
2 (1 ±

√
1 − 2µ/n). As in Algorithm 1, we

ensure that f outputs values in T (using the injective map τ : Fd
2 −→ T ) by satisfying the condition |T | ≥ 2d,

where |T | =
(n
φ

)
: we keep increasing µ until the inequality holds. Similarly, if ω = 2k, then we initially set

µ := ω and keep increasing it until
(n
φ

)
≥ 2d, where φ = nφn and φn = 1

2 (1 ±
√

1 − 2µ/n). We note again that

both 1
2 (1 +

√
1 − 2µ/n) and 1

2 (1 −
√

1 − 2µ/n) lead to the same expected function calls, however, the latter
value finds the solution faster as it is easier to manipulate sparse vectors.

Finally, to randomize collisions, it is enough to use any family of permutations Pk : T −→ T . The
collision-finding algorithm is then applied to f [k] := Pk ◦ f .

We are now ready to give the pseudocode description of our second algorithm for LWPM in Algorithm 2.
First, we note that Remarks 1 & 2 & 3 for Algorithm 1 apply also here. Moreover, for even ω, Algorithm

2 finds multiples of the form X ∗ (p + q), where p + q is a polynomial with degree at most n − 1. That is,
the algorithm finds a weight-ω multiple with nonzero constant term and degree at most n − 1 (since P has
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Algorithm 2 for LWPM
Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible weight.
Compute the expected minimal weight ω by solving Inequality 1
if ω%2 = 1 then

ωn ←− (ω − 1)/n ; µ←− ω − 1
else

ωn ←− ω/n ; µ←− ω
end if
repeat

µn ←− µ/n ; µ←− µ + 1
φn ←−

1
2 (1 ±

√
1 − 2 ∗ µn) ; φ←− n ∗ φn

until
(n
φ

)
≥ 2d . to ensure that f has range f (T ) ⊆ T

repeat
choose a random permutation Pk : T −→ T
choose a random starting point s ∈R T

(p, q)←− Rho( f [k], s)

M←−
{

X ∗ (p + q) if fi(p) = fi(q), i = 0, 1
1 + X ∗ (p + q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

nonzero constant term) provided it exists. One could change, in this case, the definition of T and f and
manipulate (n + 1)-bit vectors instead of n-bit vectors in order to find multiples of degree at most n, but we
opted for the above description to keep the algorithm simple.

4.3 Complexity analysis

Let p, q ∈R T and j, ω ∈ [1,n]. Define the following events:

Event W: ”weight(p + q) = ω”
Event P j: ”(p + q)1... j = 0 . . . 0︸︷︷︸

j-1

1”, where (x)1... j denotes the length- j prefix of vector x.

Fact 4 Let ω be an even weight in [1,n]. Then

Pr[W ∧ P j] =
ω

n − j + 1
Pr[W]

j−2∏
l=0

(
1 −

ω
n − l

)
Moreover, for small ω and i, with j ≤ i ≤ n:

i∑
j=1

Pr[W ∧ P j] ≥ i Pr[W]
ω

n − i + 1

( n
n − i + 1

)ω
Proof. Let P j denote the event ”(p + q)1... j = 0 . . . 0”. We prove by induction that

Pr[W ∧ P j] = Pr[W]
j−1∏
l=0

(
1 −

ω
n − l

)
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For j = 1:

Pr[W ∧ (p + q)1 = 0] = Pr[p1 = q1 = 0] Pr[W | p1 = q1 = 0] + Pr[p1 = q1 = 1] Pr[W | p1 = q1 = 1]

=


(n−1
φ

)(n
φ

) 
2

Pr[W | p1 = q1 = 0] +


(n−1
φ−1

)(n
φ

) 
2

Pr[W | p1 = q1 = 1]

= (1 − φn)2 Pr[weight(p′ + q′) = ω] + φn
2 Pr[weight(p” + q”) = ω]

Where, p′, q′ are random (n − 1)-bit vectors with weight(p′) = weight(p′) = φ, and p”, q” are random
(n − 1)-bit vectors with weight(p”) = weight(p”) = φ − 1. Using the PMF of weight(p + q), we compute
Pr[weight(p′ + q′) = ω] and Pr[weight(p” + q”) = ω], and find that the expression of Pr[W ∧ (p + q)1 = 0]
simplifies to Pr[W]

(
1 − ω

n

)
.

Let now j ≥ 1, and suppose the result holds true until j. We have

Pr[W ∧ P j+1] = Pr[W ∧ P j ∧ (p + q) j+1 = 0]

The event ”W ∧ P j” is equivalent to the event W′ : weight(p′ + q′) = ω”, where p′, q′ are (n − j)-bit vectors
such that weight(p′) = weight(q′) = φ j with φ j taking values in the interval [φ − j, φ]. Therefore:

Pr[W ∧ P j+1] = Pr[W′
∧ (p′ + q′)1 = 0]

=

(
1 −

ω
n − j

)
Pr[W′] =

(
1 −

ω
n − j

)
Pr[W ∧ P j]

= Pr[W]
j∏

l=0

(
1 −

ω
n − l

)
Since Pr[W ∧ P j] = Pr[W ∧ P j−1] − Pr[W ∧ P j], then Pr[W ∧ P j] = ω

n− j+1 Pr[W]
∏ j−2

l=0

(
1 − ω

n−l

)
.

On the other hand, for small ω and i such that j ≤ i ≤ n, we have

log2

 i∑
j=1

Pr[W ∧ P j]

 = log2

 i∑
j=1

ω
n − j + 1

Pr[W]
j−2∏
l=0

(
1 −

ω
n − l

)
≥ log2

i Pr[W]
ω

n − i + 1

i−2∏
l=0

(
1 −

ω
n − l

)
= log2

(
i Pr[W]

ω
n − i + 1

)
+

i−2∑
l=0

log2

(
1 −

ω
n − l

)
≈ log2

(
i Pr[W]

ω
n − i + 1

)
+

i−2∑
l=0

ω
n − l

≈ log2

(
i Pr[W]

ω
n − i + 1

)
+ ω

(
log2(n) − log2(n − i + 1)

)
The last equation is due to the approximation of the harmonic series

∑n
k=1

1
k ≈ ln(n).

Finally:
∑i

j=1 Pr[W ∧ P j] ≥ i Pr[W] ω
n−i+1

(
n

n−i+1

)ω
.

Theorem 2. Algorithm 2 runs in time Θ̃(2Ct ) where Ct = d
2 + n (−H2(ωn) + H(ωn)), with H2(ωn) = ωn + (1 −

ωn)H
(

ωn
2(1−ωn)

)
.

Proof. The algorithm searches for two types of f -collisions: Type 1 collisions when ω is odd, and Type 2
collisions when ω is even. We detail below the cost of each collision.
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Type 1 collisions. A Type 1 collision (p, q) satisfies for an odd ω (i) weight(p + q) = ω− 1 and (ii) 1 + X ∗ (p + q)
is a weight-ω multiple of P.
Define the following events for a pair (p, q) ∈R T

2: W : ”weight(p + q) = ω − 1” and M : ” f | 1 + X ∗ (p + q)”.
According to the probability law of weight(p + q), we have

Pr[W] =

(
φ

(ω − 1)/2

)(
n − φ

(ω − 1)/2

)/(n
φ

)
=

(
ω − 1

(ω − 1)/2

)(
n − ω + 1
(ω − 1)/2

)/( n
ω − 1

)
≈ 2n

(
ωn+(1−ωn)H

(
ωn

2(1−ωn )

)
−H(ωn)

) 4(1 − ωn)√
2πnωn(2 − 3ωn)

In fact φ = ω − 1 (and thus φn = ωn) since φ and ω − 1 are the smallest integers that satisfy the inequality(n
x
)
≥ 2d.
Further, and as argued previously, the probability that a random weight-ω polynomial with nonzero

constant term and degree at most n equals a weight-ωmultiple of P with nonzero constant term and degree
at most n is

( n
ω−1

)−1
NM, whereNM is the number of such multiples which equals

( n
ω−1

)
2−d.

Therefore, for a pair (p, q) ∈R T
2 and an odd ω

Pr[(p, q) is a Type 1 collision] = Pr[W ∧M] = Pr[W] Pr[M |W] = 2−d Pr[W]

This implies that we have heuristically NType1−collisions = |T |22−d Pr[W] many Type 1 collisions. The probability
ptype1−collisions of finding such collisions is given by the ratio of NType1−collisions and the total number of f
collisions, estimated by |T |22−d−1,

ptype1−collisions =
|T |

22−d Pr[W]
|T |22−d−1

≈ Θ

2n
(
ωn+(1−ωn)H

(
ωn

2(1−ωn )

)
−H(ωn)

) 8(1 − ωn)√
2πnωn(2 − 3ωn)


Each collision costsΘ(2d/2), therefore, the expected number of function calls before the algorithm terminates
is Θ(2Ct Poly1(n)):

Ct =
d
2

+ n
(
−ωn − (1 − ωn)H

(
ωn

2(1 − ωn)

)
+ H(ωn)

)
and Poly1(n) =

√
2πnωn(2 − 3ωn)

8(1 − ωn)

Type 2 collisions. When ω is even, the algorithm produces a Type 2 collision (p, q), characterized by:
(i)weight(p + q) = ω, (ii) (p + q)1...i = 0 . . . 01, where i is the largest integer such that there exists a weight-ω
multiple of P with nonzero constant term and degree n − i, and (iii) X(p + q) is a weight-ω multiple of P of
degree at most n − i + 1.
For a pair (p, q) ∈R T

2, consider the events W and P j defined earlier in this subsection, in addition to the
event M : ” f | X ∗ (p + q)”. Therefore

Pr[(p, q) is a Type 2 collision] =

i∑
j=1

Pr[W ∧ P j ∧M] =

i∑
j=1

Pr[W ∧ P j] Pr[M |W,P j]

Again, the probability that a random weight-ω polynomial with nonzero constant term and degree n − i
equals a weight-ω multiple of P with nonzero constant term and degree n − i is

( n−i
ω−1

)−1
N
′
M, where N ′M is

the number of such multiples which equals
( n−i
ω−1

)
2−d. Therefore Pr[M |W,P j] = 2−d for j ∈ [1, i]. Furthermore,

according to Fact 4, we have:

Pr[(p, q) is a Type 2 collision] = 2−d
i∑

j=1

Pr[W ∧ P j] ≥ 2−di Pr[W]
ω

n − i + 1

( n
n − i + 1

)ω
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With

Pr[W] =

(
φ

ω/2

)(
n − φ
ω/2

)/(n
φ

)
=

(
ω − 1
ω/2

)(
n − ω + 1
ω/2

)/( n
ω − 1

)
Using

(n−1
k
)

= n−k
n

(n
k
)

and
( n

k−1
)

=
(n

k
) k

n−k+1 , we get:

Pr[W] ≈
(n − ω + 1)2

ω(2n − 3ω + 2)
· 2n

(
ωn+(1−ωn)H

(
ωn

2(1−ωn )

)
−H(ωn)

)
·

4(1 − ωn)√
2πnωn(2 − 3ωn)

By proceeding in the same way as for Type 1 collisions, we show that Algorithm 2 produces Type 2 collisions
in Θ(2Ct Poly2(n)):

Ct =
d
2

+ n (−H2(ωn) + H(ωn)) with H2(ωn) = ωn + (1 − ωn)H
(

ωn

2(1 − ωn)

)
and

Poly2(n) =
(2n − 3ω + 2)
(n − ω + 1)2 ·

√
2πnωn(2 − 3ωn)

8(1 − ωn)
n − i + 1

i

(n − i + 1
n

)ω
Note that

(
n−i+1

n

)ω
≤ 1, thus Poly2(n) is indeed polynomial in n. ut

4.4 Experimental results

We consider the same test polynomial in Subsection 3.4 for the same range of values n ∈ [20, 600]; the results
are depicted in Figure 4. Note that we used the Θ̃ notation for the estimated time, which explains the slight
differences between the estimates and the experiments.
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Fig. 4. Averaged function calls T for Algorithm 2

Before moving on to the next section, we compare the performance of our algorithms with existing
memory-efficient methods for LWPM. According to Table 1, these lasts run in Θ̃(2d) or Θ̃(2nH(ωn)). Actually,
we discard the lattice method as it becomes inaccurate with increasing n (few hundreds). On other note, since
ω is the smallest integer such that

( n
ω−1

)
≥ 2d. We can assume that 2d

≈
( n
ω−1

)
= Θ̃(2nH(ωn)), where ωn = ω−1

n .
We conclude that existing memory-efficient methods for LWPM run in approximately Θ̃(2nH(ωn)). Using the
same approximation, Algorithm 1 runs in Θ̃(2n(− H(wn )

2 +H1(ωn))), whereas Algorithm 2 runs in Θ̃(2n( 3H(ωn )
2 −H2(ωn))).
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Figure 5 depicts the performance of our algorithms in comparison with the state-of-the-art methods. Note
that our algorithms apply to any polynomial, and do not use any precomputed tables of discrete logarithms,
unlike some existing memory-efficient methods (discrete-log-based ones).
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Fig. 5. Comparison between the efficient-memory techniques and our algorithms

5 Time-Memory Trade-off Variants

Our previously described algorithms allow fortunately for a time-memory trade-off, thanks to van Oorschot-
Wiener’s Parallel Collision Search (PCS) technique [21]. This technique has been extensively used in crypt-
analysis since its introduction; it allows to efficiently find multiple collisions, of a random function, at a low
amortized cost per collision. More precisely, let C be the time complexity to find a collision with polynomial
memory, then PCS finds 2m collisions in time Θ̃(2

m
2 C) using Θ̃(2m) memory.

In the following, we apply PCS to Algorithms 1 & 2 in order to decrease their time complexity at the
expense of memory.

Algorithm 1 Trade-off. According to the analysis in section 3, Algorithm 1 requires to find Θ̃(2n(−H(wn)+H1(ωn)))
collisions. In fact, this value corresponds to the number of examined collisions before coming across a
so-called useful collision, i.e. a collision that leads to a solution to the LWPM problem. Each collision comes
at the cost of Θ̃(2

d
2 ). Therefore, using Mtmto-1 = Θ̃(2n(−H(wn)+H1(ωn))) memory, the time complexity of the

trade-off variant of Algorithm 1 reduces to Ttmto-1 = Θ̃(2
n(−H(ωn )+H1(ωn ))

2 · 2
d
2 ).

Again, since ω is the smallest integer such that
( n
ω−1

)
≥ 2d. We can assume that 2d

≈
( n
ω−1

)
= Θ̃(2nH(ωn)), where

ωn = ω−1
n . Therefore Ttmto-1 ≈ Θ̃(2

nH1(ωn )
2 ).

Algorithm 2 Trade-off. Similarly, Algorithm 2 requires to find Θ̃(2n(H(ωn)−H2(ωn))) collisions, each at the cost of
Θ̃(2

d
2 ). Therefore, using Mtmto-2 = Θ̃(2n(H(ωn)−H2(ωn))) memory, the time complexity of the trade-off variant

of Algorithm 2 reduces to

Ttmto-2 = Θ̃(2
n(H(ωn)−H2(ωn ))

2 · 2
d
2 )

≈ Θ̃(2n(H(ωn)− H2(ωn )
2 ))

We depict in Figure 6 the comparison between the trade-off variants of Algorithms 1 & 2, and the classical
TMTO method whose time and memory complexity are Θ̃(2nH( ωn

2 )) and Θ̃(2nH( ωn
4 )) respectively.

Note that the time complexity depicted in Figure 6 upper estimates the time cost of our algorithms due
to the upper approximation of d by nH(ωn). In other words, our trade-off algorithms perform even better
in practice. As an illustration, we provide in Figure 7 the comparison results for the polynomial P, used
previously in the experiments.
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Fig. 6. Comparison between the classic TMTO and our algorithms after applying PCS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

δ
w
it
h
T

=
2n
δ

weight ωn

Algorithm 1
Algorithm 2
TMTO

Fig. 7. Time complexity of the classic TMTO and our trade-off algorithms when applied to Polynomial P

References
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