Hyperproofs:
 Aggregating and Maintaining Proofs in Vector Commitments

Shravan Srinivasan
University of Maryland

Alexander Chepurnoy
Ergo Platform

Charalampos Papamanthou
University of Maryland

Alin Tomescu
VMware Research

Yupeng Zhang
Texas A\&M University

Abstract

We present Hyperproofs, the first vector commitment (VC) scheme that is efficiently maintainable and aggregatable. Similar to Merkle proofs, our proofs form a tree that can be efficiently maintained: updating all n proofs in the tree after a single leaf change only requires $O(\log n)$ time. Importantly, unlike Merkle proofs, Hyperproofs are efficiently aggregatable, anywhere from $10 \times$ to $100 \times$ faster than SNARK-based aggregation of Merkle proofs. At the same time, an individual Hyperproof consists of only $\log n$ algebraic hashes (e.g., 32-byte elliptic curve points) and an aggregation of b such proofs is only $O(\log (b \log n))$-sized. Hyperproofs are also reasonably fast to update when compared to Merkle trees with SNARK-friendly hash functions.

As another added benefit over Merkle trees, Hyperproofs are homomorphic: digests (and proofs) for two vectors can be homomorphically combined into a digest (and proofs) for their sum. Homomorphism is very useful in emerging applications such as stateless cryptocurrencies. First, it enables unstealability, a novel property that incentivizes proof computation. Second, it makes digests and proofs much more convenient to update.

Finally, Hyperproofs have certain limitations: they are not transparent, have linear-sized public parameters, are slower to verify, and have larger aggregated proofs than SNARK-based approaches. Nonetheless, end-to-end, aggregation and verification in Hyperproofs is $10 \times$ to $100 \times$ faster than SNARK-based Merkle trees.

1 INTRODUCTION

Vector commitment (VC) schemes [17, 29] such as Merkle trees [30] are fundamental building blocks in many protocols. In a VC scheme, a prover computes a succinct digest d of a vector $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]$ and proofs π_{1}, \ldots, π_{n} for each position. A verifier who has the digest d can later verify a proof π_{i} that a_{i} is the correct value at position i. Some VCs, such as Merkle trees, are maintainable: when the vector changes all proofs can be efficiently updated in sublinear time, rather than recomputed from scratch in linear time. Other VCs, such as Pointproofs [21], are aggregatable: the prover can take several proofs π_{i} for $i \in I$ and efficiently aggregate them into a single, succinct proof π_{I}.

Unfortunately, no current VC scheme is both maintainable and aggregatable; at least not efficiently. Yet emerging applications such as stateless cryptocurrencies [11, 18, 21, 31, 41, 46, 49] rely on dedicated nodes to efficiently maintain all proofs and also on miners to efficiently aggregate proofs. While generic argument systems (e.g., SNARKs [23, 39]) can be used to add aggregation to maintainable VCs such as Merkle trees, this is too slow in practice (see §5.2). This brings us to this paper's main concern: Can we build an efficient

VC that is both maintainable and aggregatable? In this paper, we answer this positively and present Hyperproofs. Similar to Merkle trees, Hyperproofs are $\log n$-sized and determine a tree. This makes updating all proofs very efficient in logarithmic time. However, Hyperproofs are built from polynomial commitments [24, 37] rather than hash functions such as SHA-256. This enables a natural aggregation algorithm that is $10 \times$ to $100 \times$ faster than "SNARKing" multiple Merkle proofs.
In addition to aggregation and maintainability, Hyperproofs have another very useful property: homomorphism. Specifically, trees (and digests) for two vectors can be combined into a single tree (and digest) for their sum. This has several applications. First, homomorphism allows us to obtain unstealability, a new property which incentivizes proof computation in applications such as stateless cryptocurrencies. In a nutshell, unstealability allows a prover to cryptographically bind the proofs she computes with her identity, in an irreversible manner. This way, honest provers can be rewarded for the proofs they compute while malicious provers cannot steal other provers' proofs. Second, homomorphism makes updating digests (and Hyperproofs) more convenient than updating Merkle roots (and proofs), which requires having the proof(s) for the changed position(s) in the vector. Third, homomorphism allows authenticating data in a streaming setting [38].

Challenges. In designing Hyperproofs, we surmount three key challenges. First, computing n proofs in Papamanthou-Shi-Tamassia (PST) polynomial commitments [37] takes $O\left(n^{2}\right)$ time and is too slow. Second, aggregation of PST proofs is difficult without generic SNARKs [23, 39], which would be too expensive. Third, making proofs unstealable is not enough: such proofs must remain maintainable, aggregatable and verifiable with respect to the same digest.

Evaluation. In §5.1, we show Hyperproofs are small (1.44 KiB), they verify quickly (17.4 milliseconds) and are fast to maintain (2.6 milliseconds per update). In §5.2, we show Hyperproof aggregation is much faster than Merkle proof aggregation: $10 \times$ faster when using Poseidon hashes [22], which likely need more cryptanalysis, and $100 \times$ faster when using provably-secure Pedersen hashes. However, our faster aggregation comes at a cost of slower verification for aggregated proofs and a larger 52 KiB aggregate proof size. Nonetheless, when considering both aggregation and verification time, Hyperproofs remain $10 \times$ to $100 \times$ faster. Lastly, in $\S 5.3$, when we benchmark the overhead of agreeing on a block in a stateless cryptocurrency, Hyperproofs are $32 \times$ faster than Merkle trees.

Limitations. To commit to a vector of size n, Hyperproofs requires public parameters consisting of $2 n-1$ group elements, which must

Table 1: Comparison with other VCs; more details in the appendix in Table 4.
be generated via a trusted setup, typically decentralized via multiparty computation protocols [12]. In future work, we hope to have a transparent setup by using assumptions in hidden-order groups. We also do not explore the subtleties of fully-integrating unstealable proofs into a statelessly-validated cryptocurrency. Lastly, our macrobenchmarks only measure the computational overhead of VCs that arises on the critical path to a consensus decision. While our results show Hyperproofs lead to $32 \times$ faster decisions, we do not claim this is sufficient to make the stateless setting practical.

1.1 Overview of Techniques

Vectors as multilinear extensions (MLEs). We build upon previous work [56,57] that represents a vector of size $n=2^{\ell}$ as a multilinear extension (MLE) polynomial. For example, the MLE of $\mathbf{a}=[5,2,8,3]$ is $f\left(x_{2}, x_{1}\right)=5\left(1-x_{2}\right)\left(1-x_{1}\right)+2\left(1-x_{2}\right) x_{1}+8 x_{2}(1-$ $\left.x_{1}\right)+3 x_{2} x_{1}$. Note that f correctly "selects" the right a_{i} given the binary expansion of i as input: $f(0,0)=5, f(0,1)=2, f(1,0)=8$ and $f(1,1)=3$.

PST commitments to MLEs. To commit to a vector, we compute a Papamanthou-Shi-Tamassia (PST) commitment (see §2.2) to its MLE. For example, the PST commitment to f above is $\mathrm{C}=$ $g_{1}^{f\left(s_{1}, s_{2}\right)} \in \mathbb{G}_{1}$, where $\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{p}^{2}$ are secret points encoded in the public parameters of the scheme and g_{1} is the generator of \mathbb{G}_{1}. For vectors of size 4 , these public parameters consist of $g_{1}^{s_{1}}, g_{1}^{s_{2}}, g_{1}^{\left(1-s_{2}\right)\left(1-s_{1}\right)}, g_{1}^{\left(1-s_{2}\right) s_{1}}, g_{1}^{s_{2}\left(1-s_{1}\right)}, g_{1}^{s_{2} s_{1}}$. Importantly, we show that the selectively-secure variant of PST commitments is actually adaptively-secure when restricted to only proving evaluations on the Boolean hypercube $\{0,1\}^{\ell}$. This reduces our proof size compared to previous work based on PST [56, 57].

Multilinear trees. To prove that a_{i} is the i th value in the vector $\mathbf{a}=\left[a_{0}, \ldots, a_{n-1}\right]$, we compute a PST evaluation proof for $f\left(i_{\ell}, \ldots, i_{1}\right)=a_{i}$ w.r.t. the commitment C , where $\left(i_{\ell}, \ldots, i_{1}\right)$ is the binary representation of i. Unfortunately, this takes $O(n)$ time per position. Thus, computing all n proofs would take $O\left(n^{2}\right)$ time which is prohibitive. We reduce this to $O(n \log n)$ by computing a novel multilinear tree (MLT) of proofs using a divide-and-conquer approach. Importantly, our MLT is maintainable: updating all proofs after a change to the vector only requires $O(\log n)$ time.

Proof aggregation. A proof for a_{i} consists of PST commitments $\left(w_{i, \ell}, \ldots, w_{i, 1}\right) \in \mathbb{G}_{1}^{\ell}$, such that the following pairing equation holds:

$$
\begin{equation*}
e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}\right)=\prod_{j \in[\ell]} e\left(w_{i, j}, g_{2}^{s_{j}-i_{j}}\right), \tag{1}
\end{equation*}
$$

where $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ is a pairing and $g_{2}^{s_{j}}$,s are additional $O(\ell)$-sized PST public parameters in \mathbb{G}_{2}. To aggregate b proofs, we prove knowledge of PST commitments that pass Eq. 1 for each i, resulting in a succinct $O(\log (b \ell))$ aggregated proof size. Our key ingredient is an inner-product argument (IPA) by Bünz et al. [15] for proving several pairing equations hold.

Homomorphism and unstealablity. As we mentioned, Hyperproofs are homomorphic: exponentiating a PST evaluation proof ($w_{i, \ell}, \ldots, w_{i, 1}$) by a constant α yields a proof for position i but in a vector whose values are multiplied by α. We observe that if α is the secret key of a proof-serving node (PSN), this makes the proof unstealable by other nodes who do not have α. Importantly, the proof can still be verified against the digest C, except the verifier must also give the node's corresponding public key g_{2}^{α} : $e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}^{\alpha}\right)=\prod_{j \in[\ell]} e\left(w_{i, j}^{\alpha}, g_{2}^{s_{j}-i_{j}}\right)$. As an optimization, proofserving nodes can exponentiate the PST public parameters by α before computing proofs. This way, when computing a multilinear tree (MLT) with these parameters, all proofs are implicitly unstealable and the MLT remains maintainable.

1.2 Related work

Below, we relate our VC to previous work and summarize in Table 1.
Merkle trees. A Hyperproof consists of $\log n$ (algebraic) hashes, which can be as small as Merkle hashes if using 256 -bit elliptic curves [5]. Hyperproofs are orders of magnitude slower to compute and update, when compared to normal Merkle trees hashed with SHA-256. However, when compared to aggregatable Merkle trees that use SNARK-friendly hash functions (e.g., Poseidon-128 [22]), Hyperproofs are only slightly slower (see §5.3) and make up for it with much faster aggregation, homomorphism and unstealability.

SNARK-based works. Ozdemir et al. [35] explore using SNARKs to prove knowledge of changes that update a vector with digest d into a new vector with digest d^{\prime}. Lee et al. [28] also use SNARKs to prove correctness of state transitions in replicated state machines, without having to send the state changes. Neither work explores unstealability nor maintaining and aggregating proofs efficiently.

Algebraic VCs. Zhang et al. [56,57] were the first to build VCs from PST commitments to MLEs. However, their $O(\log n)$-sized proofs are concretely larger and do not support updates. Some VCs have $O(1)$-sized proofs [11, 16, 17, 21, 25, 27, 49], which inherently require $\Theta(n)$ time to update all proofs after a change. Aggregation and verification in these VCs is concretely, and sometimes asymptotically, faster (see Table 4). They also have smaller aggregated proofs. However, these VCs are not efficiently maintainable.

Previous maintainable VCs [38, 40, 48, 50] do not support aggregation; at least not without expensive generic argument systems (e.g., SNARKs). The lattice-based construction from $[38,40]$ is also homomorphic and additionally transparent, with constant-sized
public parameters. However, it is too slow for practice and nonaggregatable. The authenticated multipoint evaluation tree (AMT) construction from $[48,50]$ can be viewed as the dual to our construction, but from univariate polynomials rather than multivariate. Unfortunately, it is non-aggregatable, its trusted setup requires $O\left(n^{2}\right)$ time and it has larger $O(n \log n)$-sized public parameters.

Recent work [3, 11,51] enhances VCs into key-value commitments (KVCs), where arbitrary keys (rather than vector positions) are mapped to values. Unfortunately, all of these constructions have constant-sized proofs and are thus not maintainable. Some VCs have transparent setup [11, 16, 27], support incremental aggregation [16], have a "specialiazable" CRS [16] and provide time/space trade-offs when computing proofs [11, 16]. Hyperproofs do not have any of these features. Lastly, no previous VC scheme is unstealable, although some (e.g., aSVCs [49] and AMTs [50]) can be made so using our techniques.

2 PRELIMINARIES

Notation. Let $[0, n)=\{0,1, \ldots, n-1\}$. An ℓ-bit number i has binary representation $\mathbf{i}=\left(i_{\ell}, \ldots, i_{1}\right)$ if, and only if, $i=\sum_{k=0}^{\ell-1} i_{k+1} 2^{k}$. Note that i_{ℓ} is the MSB of i and i_{1} is the LSB. We often use \mathbf{i} as i 's binary representation and i_{k} as its k th bit, without explicit definition. Let $r \in_{R} S$ denote picking an element from S uniformly at random.
Pairings. $\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right) \leftarrow \operatorname{BilGen}\left(1^{\lambda}\right)$ denotes generating groups $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} of prime order p, with g_{i} a generator of \mathbb{G}_{i}, and a pairing $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ such that $\forall u \in \mathbb{G}_{1}, w \in \mathbb{G}_{2}$ and $a, b \in \mathbb{Z}_{p}, e\left(u^{a}, w^{b}\right)=e(u, w)^{a b}$. A useful property of $e(\cdot, \cdot)$ is that $e(u, h) e(v, h)=e(u v, h), \forall u, v, h \in \mathbb{G}_{1}^{2} \times \mathbb{G}_{2}$. In this paper, we assume Type III bilinear groups (i.e., without efficiently-computable homomorphisms between \mathbb{G}_{1} and \mathbb{G}_{2} or viceversa), which are needed by the inner-product argument from $\S 2.4$ and are also more efficient in practice. Let $1_{\mathbb{G}}$ denote the identity in a group \mathbb{G}.
Vectors. Bolded, lower-case symbols such as $\mathbf{a}=\left[a_{0}, \ldots, a_{n-1}\right] \in$ \mathbb{Z}_{p}^{n} typically denote vectors of field elements. Bolded, upper-case symbols such as $\mathbf{A}=\left[A_{1}, \ldots, A_{m}\right] \in \mathbb{G}^{m}$ typically denote vectors of group elements. $|\mathbf{A}|$ denotes the size of the vector $\mathbf{A} . \mathbf{A}^{x}=$ $\left[A_{1}^{x}, \ldots, A_{m}^{x}\right], x \in \mathbb{Z}_{p}, \mathbf{A} \circ \mathbf{B}=\left[A_{1} B_{1}, A_{2} B_{2}, \ldots, A_{m} B_{m}\right]$, and $\langle\mathbf{A}, \mathbf{B}\rangle=$ $\prod_{j=1}^{m} e\left(A_{j}, B_{j}\right)$ denotes a pairing product. Let $\mathbf{A}_{L}=\left[A_{1}, \ldots, A_{m / 2}\right]$ and $\mathbf{A}_{R}=\left[A_{m / 2+1}, \ldots, A_{m}\right]$ denote the left and right halves of \mathbf{A}. Let $\mathbf{A}\left|\mid 1_{\mathbb{G}}\right.$ denote a vector of size 2$| \mathbf{A} \mid$ that "extends" \mathbf{A} to the right with the identity of \mathbb{G}. (Similarly, $1_{\mathbb{G}}| | \mathbf{A}$ "extends" \mathbf{A} to the left.)

2.1 Multilinear extension (MLE) of a vector

Let $n=2^{\ell}$ and $\mathbf{x}=\left(x_{\ell}, \ldots, x_{1}\right)$. A vector $\mathbf{a}=\left[a_{0}, \ldots, a_{n-1}\right] \in \mathbb{Z}_{p}^{n}$ can be represented as a multilinear extension polynomial $f: \mathbb{Z}_{p}^{\ell} \rightarrow$ \mathbb{Z}_{p} which maps each position i to a_{i} :

$$
\begin{equation*}
f(\mathbf{i})=f\left(i_{\ell}, \ldots, i_{2}, i_{1}\right)=a_{i}, \forall i \in[0, n) \tag{2}
\end{equation*}
$$

For example, the MLE of $\mathbf{a}=[5,2,8,3]$ is $f\left(x_{2}, x_{1}\right)$ defined as:

$$
\begin{equation*}
5\left(1-x_{2}\right)\left(1-x_{1}\right)+2\left(1-x_{2}\right) x_{1}+8 x_{2}\left(1-x_{1}\right)+3 x_{2} x_{1} \tag{3}
\end{equation*}
$$

In general, the unique multilinear extension f of \mathbf{a} is [45, Fact 3.5]:

$$
\begin{equation*}
f(\mathbf{x})=f\left(x_{\ell}, \ldots, x_{1}\right)=\sum_{j=0}^{n-1} a_{j} \mathcal{S}_{j, \ell}\left(x_{\ell}, \ldots, x_{1}\right)=\sum_{j=0}^{n-1} a_{j} \mathcal{S}_{j, \ell}(\mathbf{x}) \tag{4}
\end{equation*}
$$

where $\mathcal{S}_{j, \ell}, j \in\left[0,2^{\ell}\right)$ are selector multinomials defined as:

$$
\mathcal{S}_{j, \ell}(\mathbf{x})=\prod_{k=1}^{\ell} \operatorname{sel}_{j_{k}}\left(x_{k}\right), \text { s.t. } \operatorname{sel}_{j_{k}}\left(x_{k}\right)=\left\{\begin{array}{ll}
x_{k}, & \text { if } j_{k}=1 \tag{5}\\
1-x_{k}, & \text { if } j_{k}=0
\end{array},\right.
$$

with $S_{0,0}(\mathbf{x})=1$. In our example from Eq. 3, we have $\ell=2$ and so: $\mathcal{S}_{0,2}(\mathbf{x})=\left(1-x_{2}\right)\left(1-x_{1}\right), \mathcal{S}_{1,2}(\mathbf{x})=\left(1-x_{2}\right) x_{1}, \mathcal{S}_{2,2}(\mathbf{x})=x_{2}\left(1-x_{1}\right)$ and $\mathcal{S}_{3,2}(\mathbf{x})=x_{2} x_{1}$. We often refer to sel $j_{j_{k}}$ as a selector monomial. Importantly, note that:

$$
\mathcal{S}_{j, \ell}\left(i_{\ell}, \ldots, i_{1}\right)=\mathcal{S}_{j, \ell}(\mathbf{i})\left\{\begin{array}{ll}
1, & i=j \tag{6}\\
0, & i \neq j
\end{array}, \forall i \in\left[0,2^{\ell}\right)\right.
$$

By these properties above, we can see why Eq. 2 holds for any i :

$$
\begin{equation*}
f(\mathbf{i})=\sum_{j=0}^{n-1} a_{j} \mathcal{S}_{j, \ell}(\mathbf{i})=a_{i} \mathcal{S}_{i, \ell}(\mathbf{i})+\sum_{j=1, j \neq i}^{n-1} a_{j} \mathcal{S}_{j, \ell}(\mathbf{i})=a_{i} \cdot 1+0 \tag{7}
\end{equation*}
$$

In other words, an MLE f acts as a "multiplexer", choosing the right a_{i} based on the input position i, given as \mathbf{i} in binary.
MLE decomposition. An MLE of size $n=2^{\ell}$ can be decomposed into two MLEs of size $n / 2$ [57]. For example, split a from Eq. 3 into its left and right halves $\mathbf{a}_{0}=[5,2]$ and $\mathbf{a}_{1}=[8,3]$, with MLEs $f_{0}=5\left(1-x_{1}\right)+2 x_{1}$ and $f_{1}=8\left(1-x_{1}\right)+3 x_{1}$, respectively. Then, observe that the MLE f for \mathbf{a} is a combination of f_{0} and f_{1} : i.e., $f=\left(1-x_{2}\right) f_{0}+x_{2} f_{1}$. In general, the MLE f of any a decomposes as:

$$
\begin{equation*}
f(\mathbf{x})=\left(1-x_{\ell}\right) f_{0}\left(x_{\ell-1}, \ldots, x_{1}\right)+x_{\ell} f_{1}\left(x_{\ell-1}, \ldots, x_{1}\right) \tag{8}
\end{equation*}
$$

Note that for $\mathbf{a}=\left[a_{0}, a_{1}\right]$ of size 2, the MLEs f_{0}, f_{1} are trivial (i.e., of size 1) and are simply set to a_{0} and a_{1}, respectively. When decomposing larger MLEs, we use $f_{b_{f}, \ldots, b_{k}}$ to denote the MLE of the $\mathbf{a}_{b_{\ell}, \ldots, b_{k}}$ subvector, which is a vector over a_{i} 's with $i_{\ell}=$ $b_{\ell}, i_{\ell-1}=b_{\ell-1}, \ldots, i_{k}=b_{k}($ sorted by $i)$. For example, in a vector $\mathbf{a}=\left[a_{1}, \ldots, a_{8}\right], f_{01}$ is the MLE of \mathbf{a}_{01}, which contains all indices i whose first two bits are 01: i.e., $\mathbf{a}_{01}=\left[a_{2}, a_{3}\right]$.

2.2 PST commitments to MLEs

Papamanthou, Shi and Tamassia [37] extend Kate-Zaverucha-Goldberg (KZG) univariate polynomial commitments [24] to multivariate ones. We refer to their scheme as PST and restrict its use to multilinear extensions (MLEs), introduced above.

Commitments. PST works over a bilinear group obtained via BilGen. The PST commitment to a multilinear extension f for a vector a of size $n=2^{\ell}$ is a single group element in \mathbb{G}_{1} :

$$
\begin{equation*}
\operatorname{pst}(f)=g_{1}^{f\left(s_{\ell}, \ldots, s_{1}\right)}=g_{1}^{\sum_{j=0}^{n-1} a_{j} \mathcal{S}_{j, \ell}(\mathbf{s})}=\prod_{j=0}^{n-1}\left(g_{1}^{\mathcal{S}_{j, \ell}(\mathbf{s})}\right)^{a_{j}} \tag{9}
\end{equation*}
$$

Here, $\mathbf{s}=\left(s_{\ell}, \ldots, s_{1}\right)$ are trapdoors generated via a trusted setup that outputs n-sized public parameters: $g_{1}^{\mathcal{S}_{j, \ell}(\mathbf{s})}=g_{1}^{\mathcal{S}_{j, \ell}\left(s_{\ell}, \ldots, s_{1}\right)}, \forall j \in\left[0,2^{\ell}\right)$. Importantly, the setup discards \mathbf{s}, since knowledge of it directly breaks PST's security [36]. We stress that $\operatorname{pst}(f)$ can be computed without knowing s, as per Eq. 9. Lastly, PST commitments are homomorphic, with $\operatorname{pst}\left(f+f^{\prime}\right)=\operatorname{pst}(f) \operatorname{pst}\left(f^{\prime}\right)$ for any MLEs f, f^{\prime}.
Evaluation proofs. Papamanthou, Shi and Tamassia give a way to prove evaluations $f(\mathbf{i})$ against $\operatorname{pst}(f)$ [37], where \mathbf{i} is the binary

```
\(\operatorname{PST}\).Prove \(\left(f, \ell, \mathbf{i}=\left(i_{\ell}, \ldots, i_{1}\right)\right) \rightarrow \pi_{i}\) :
    If \(\ell=0\) (i.e., \(f\) is a constant), return \(\varnothing\).
    . Otherwise, divide \(f\) by \(x_{\ell}-i_{\ell}\), obtaining quotient \(q_{\ell}\left(x_{\ell-1}, \ldots, x_{1}\right)\) and
    remainder \(r_{\ell}\left(x_{\ell-1}, \ldots, x_{1}\right)\) such that \(f=q_{\ell} \cdot\left(x_{\ell}-i_{\ell}\right)+r_{\ell}\).
    3. Return \(\left(g_{1}^{q_{\ell}(\mathbf{s})}\right.\), PST.Prove \(\left.\left(r_{\ell}, \ell-1,\left(i_{\ell-1}, \ldots, i_{1}\right)\right)\right)\)
```

Figure 1: $O(n)$-time algorithm for computing a single PST evaluation proof π_{i} for $f(\mathbf{i})$ w.r.t. an MLE f of size $n=2^{\ell}$.
representation of $i \in[0, n)$. Their key observation, which we refer to as the PST decomposition, is that:

$$
\begin{equation*}
f(\mathbf{i})=z \Leftrightarrow \exists q_{j} ’ s, f(\mathbf{x})-z=\sum_{j \in[\ell]} q_{j}\left(x_{j-1}, \ldots, x_{1}\right) \cdot\left(x_{j}-i_{j}\right) \tag{10}
\end{equation*}
$$

This yields a PST evaluation proof for $f(\mathbf{i})=z$ consisting of commitments $w_{j}=g_{1}^{q_{j}(\mathbf{s})}$ to these quotient polynomials q_{j}. To compute the q_{j} 's, the prover first divides f by $x_{\ell}-i_{\ell}$, obtaining q_{ℓ} and a remainder r_{ℓ}. Then, the prover continues recursively on the remainder r_{ℓ}, which no longer has variable x_{ℓ}. Specifically, the prover divides r_{ℓ} by $x_{\ell-1}-i_{\ell-1}$, obtaining $q_{\ell-1}$ and $r_{\ell-1}$. And so on, until he obtains the last quotient q_{1} with remainder $r_{1}=f(\mathbf{i})$ (see Fig. 1 and [36, Lemma 1]). Overall, this takes $T(n)=O(n)+T(n / 2)=O(n)$ time, including the time to commit to the q_{j} 's.

Note that the q_{j} 's are actually MLEs of size $n / 2, n / 4, \ldots, 1$. As a result, PST's actual public parameters are $g_{1}^{\mathcal{S}_{j, k}(\mathbf{s})}, \forall k \in[0, \ell], \forall j \in$ $\left[0,2^{k}\right)$, so as to also be able to commit to these quotient MLEs. Lastly, the parameters form a tree (see Fig. 2) and are thus of size $2 n-1 \mathbb{G}_{1}$ elements.

A verifier who has the commitment $\operatorname{pst}(f)$, the claimed evaluation $(i, f(\mathbf{i})=z)$ and a logarithmic-sized, publicly-known verification key $g_{2}^{s_{j}}, \forall j \in[\ell]$ can verify the proof using $\ell+1$ pairings:

$$
\begin{equation*}
e\left(\operatorname{pst}(f) / g_{1}^{z}, g_{2}\right)=\prod_{j \in[\ell]} e\left(w_{j}, g_{2}^{s_{j}-i_{j}}\right) \tag{11}
\end{equation*}
$$

Selective security. The check above ensures Eq. 10 holds when $\mathbf{x}=\mathbf{s}$, which is sufficient for security since \mathbf{s} is random and secret. Indeed, Papamanthou et al. prove security under ℓ-SDH (see Assumption A.2), but only in a selective sense, where the adversary picks the evaluation point $\mathbf{i}=\left(i_{\ell}, \ldots, i_{1}\right)$ before the PST public parameters are generated [36, Appendix C.1]. In contrast, we prove adaptive security for any points on the Boolean hypercube (see Appendix D.3). Lastly, note that an adversary who knows s can forge proofs by solving for the $q_{j}(\mathbf{s})$'s that satisfy Eq. 10 at $\mathbf{x}=\mathbf{s}$. This is why the trusted setup must discard \mathbf{s}.

2.3 Vector Commitments (VCs)

We formalize VCs below, similar to Catalano and Fiore [17].
Definition 2.1 (VC). A VC scheme is a set of PPT algorithms:
(1) $\operatorname{Gen}\left(1^{\lambda}, n\right) \rightarrow \mathrm{pp}:$ Given security parameter λ and maximum vector size n, outputs randomly-generated public parameters pp .
(2) $\mathrm{Com}_{\mathrm{pp}}(\boldsymbol{a}) \rightarrow \mathrm{C}:$ Outputs digest C of $\boldsymbol{a}=\left[a_{0}, \ldots, a_{n-1}\right] \in \mathbb{Z}_{p}^{n}$.
(3) Open $_{\mathrm{pp}}(i, \boldsymbol{a}) \rightarrow \pi_{i}:$ Outputs a proof π_{i} for position i in \boldsymbol{a}.
(4) OpenAll ${ }_{\mathrm{pp}}(\mathbf{a}) \rightarrow\left(\pi_{0}, \ldots, \pi_{n-1}\right):$ Outputs all proofs π_{i} for \boldsymbol{a}.

Figure 2: PST (and Hyperproofs) public parameters. The u th path in this tree is actually the update key upk ${ }_{u}$ from Eq. 17.
(5) $\operatorname{Agg}_{\mathrm{pp}}\left(I,\left(a_{i}, \pi_{i}\right)_{i \in I}\right) \rightarrow \pi_{I}$: Combines individual proofs π_{i} for values a_{i} into an aggregated proof π_{I}.
(6) $\operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, I,\left(a_{i}\right)_{i \in I}, \pi_{I}\right) \rightarrow\{0,1\}$: Verifies proof π_{I} that each position $i \in I$ has value a_{i} against digest C .
(7) UpdDig ${ }_{\mathrm{pp}}(u, \delta, \mathrm{C}) \rightarrow \mathrm{C}^{\prime}$: Updates digest C to C^{\prime} to reflect position u changing by $\delta \in \mathbb{Z}_{p}$.
(8) UpdAllProofs ${ }_{p p}\left(u, \delta, \pi_{0}, \ldots, \pi_{n-1}\right) \rightarrow\left(\pi_{0}^{\prime}, \ldots, \pi_{n-1}^{\prime}\right):$ Updates all proofs π_{i} to π_{i}^{\prime} to reflect position u changing by $\delta \in \mathbb{Z}_{p}$.
(9) UpdProof $_{\mathrm{pp}}\left(u, \delta, \pi_{i}\right) \rightarrow \pi_{i}^{\prime}$: Updates proof π_{i} to π_{i}^{\prime} to reflect position u changing by $\delta \in \mathbb{Z}_{p}$.
Observations: For simplicity, we give our algorithms oracle access to the public parameters pp of the scheme. This way, each algorithm can easily access the subset of the parameters it needs.

We formalize OpenAll and UpdAllProofs since, in some VCs, these algorithms are faster than n calls to Open and UpdProof, respectively. In this sense, we stress that the UpdAllProofs algorithm can work in sublinear time, since it does not necessarily need to read all input or write all output (e.g., in Merkle trees, UpdAllProofs only reads $\log n$ sibling hashes and overwrites another $\log n$ hashes).

Definition 2.2 (VC Correctness). A VC is correct, if for all $\lambda \in \mathbb{N}$ and $n=\operatorname{poly}(\lambda)$, for all $\mathrm{pp} \leftarrow \operatorname{Gen}\left(1^{\lambda}, n\right)$, for all vectors $\mathbf{a}=\left[a_{0}, \ldots, a_{n-1}\right]$, if $\mathrm{C}=\operatorname{Com}_{\mathrm{pp}}(\mathbf{a})$ and $\pi_{i}=\operatorname{Open}_{\mathrm{pp}}(i, \mathbf{a}), \forall i \in$ $[0, n)\left(\right.$ or from OpenAll $\left.{ }_{p p}(\mathbf{a})\right)$, then, for any polynomial number of updates (u, δ) resulting in a new vector \mathbf{a}^{\prime}, if C^{\prime} and π_{i}^{\prime}, for all i, are the updated digest and proofs obtained via calls to UpdDig ${ }_{p p}$ and UpdProof $_{\mathrm{pp}}$ (or to UpdAllProofs ${ }_{\mathrm{pp}}$) respectively, then (1) $\operatorname{Pr}[1 \leftarrow$ $\left.\operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}^{\prime},\{i\}, a_{i}^{\prime}, \pi_{i}^{\prime}\right)\right]=1$ for all $i ;(2) \forall I \subseteq[n], \operatorname{Pr}\left[1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}^{\prime}, I\right.\right.$, $\left.\left.\left(a_{i}^{\prime}\right)_{i \in I}, \operatorname{Agg}_{p p}\left(I,\left(a_{i}^{\prime}, \pi_{i}^{\prime}\right)_{i \in I}\right)\right)\right]=1$.

Definition 2.3 (VC Soundness). \forall ppt adversaries \mathcal{A},
$\operatorname{Pr}\left[\begin{array}{c}\operatorname{pp} \leftarrow \operatorname{Gen}\left(1^{\lambda}, n\right), \\ \left(\mathrm{C}, I, J,\left(a_{i}\right)_{i \in I},\left(a_{j}^{\prime}\right)_{j \in J}, \pi_{I}, \pi_{J}^{\prime}\right) \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{pp}\right): \\ 1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, I,\left(a_{i}\right)_{i \in I}, \pi_{I}\right) \wedge \\ 1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, J,\left(a_{j}^{\prime}\right)_{j \in J}, \pi_{J}^{\prime}\right) \wedge \\ \exists k \in I \cap J \text { s.t. } a_{k} \neq a_{k}^{\prime}\end{array}\right] \leq \operatorname{negl}(\lambda)$.
Observation: This soundness definition allows the digest C to be produced adversarially. This is stronger than what is required in our cryptocurrency setting from $\S 4$, where the digest is produced correctly from the agreed transactions. Nonetheless, having a stronger definition makes our VC from $\S 3$ more widely useful.

2.4 Inner Product Arguments (IPA)

In this subsection, we describe a non-interactive inner-product argument (IPA) by Bünz et al. [15] where a prover convinces a verifier, who has a commitment key $\mathbf{c k}$ and a commitment \mathbf{C}, that the prover can open \mathbf{C} to $\mathbf{A} \in \mathbb{G}_{1}^{m}, \mathbf{B} \in \mathbb{G}_{2}^{m}$ and $Z \in \mathbb{G}_{T}$ such that $Z=\langle\mathbf{A}, \mathbf{B}\rangle=\prod_{j=1}^{m} e\left(A_{j}, B_{j}\right)$. More formally, this is an argument for the language:
$\mathcal{L}_{\text {IPA }}^{m}=\left\{(\mathbf{c k}, \mathbf{C}) \mid \exists \mathbf{A} \in \mathbb{G}_{1}^{m}, \mathbf{B} \in \mathbb{G}_{2}^{m}\right.$, s.t. $\left.\mathbf{C}=\mathrm{CM}(\mathbf{c k} ; \mathbf{A}, \mathbf{B},\langle\mathbf{A}, \mathbf{B}\rangle)\right\}$
Commitments to group elements. Above, CM denotes the commitment scheme by Abe et al. [1] for vectors A, $\mathbf{B} \in \mathbb{G}_{1}^{m} \times \mathbb{G}_{2}^{m}$ and their pairing product $Z=\langle\mathbf{A}, \mathbf{B}\rangle=\prod_{i=1}^{m} e\left(A_{i}, B_{i}\right)$. It uses a randomly-generated commitment key $\mathbf{c k}=(\mathbf{v}, \mathbf{w}) \in \mathbb{G}_{1}^{m} \times \mathbb{G}_{2}^{m}$. The commitment $\mathbf{C} \in \mathbb{G}_{T}^{3}$ to \mathbf{A}, \mathbf{B} and Z is:

$$
\begin{equation*}
\mathbf{C}=\mathrm{CM}(\mathbf{c k} ; \mathbf{A}, \mathbf{B}, Z)=(\langle\mathbf{A}, \mathbf{v}\rangle,\langle\mathbf{w}, \mathbf{B}\rangle, Z) \stackrel{\text { def }}{=}\left(C_{1}, C_{2}, C_{3}\right) \tag{12}
\end{equation*}
$$

This commitment scheme is not hiding but is binding under SXDH (see Assumption A.1) [1, 2].

IPA algorithms. For ease of presentation, Fig. 3 describes the interactive variant of the IPA, where the prover interacts with the verifier over $\log m$ rounds. This interactive IPA is knowledge-sound assuming Abe et al. commitments are binding [15, Theorem 1]. It is made non-interactive via the Fiat-Shamir transform [19] and proved secure in a new algebraic commitment model and in the random oracle model (ROM) [15, Appendix D.2]. Our work uses this non-interactive variant, whose algorithms we give below:
(1) $\mathcal{G}_{\mathrm{IPA}}\left(1^{\lambda}, m\right) \rightarrow(P K, V K)$: Returns $P K=V K=\left\langle\operatorname{BilGen}\left(1^{\lambda}\right)\right.$, $\mathbf{c k}=$ $\left.\left(\mathbf{v} \in_{R} \mathbb{G}_{2}^{m}, \mathbf{w} \epsilon_{R} \mathbb{G}_{1}^{m}\right)\right\rangle$.
(2) $\mathcal{P}_{\text {IPA }}(P K, \mathbf{A}, \mathbf{B}) \rightarrow \pi$: Runs the Fiat-Shamir transformation of the interactive prover $\mathcal{P}_{\mathrm{IPA}}^{\leftrightarrow}$ from Fig. 3 on input (ck; A, B), obtaining a transcript π. Returns the transcript π as the proof.
(3) $\mathcal{V}_{\text {IPA }}(V K, \mathbf{C}, \pi) \rightarrow\{0,1\}$: Runs the Fiat-Shamir transformation of the interactive verifier $\mathcal{V}_{\text {IPA }}^{\leftrightarrow}$ from Fig. 3 on input (ck; \mathbf{C}, π), obtaining a success bit b. Returns b.

Faster verification in IPA. Bünz et al. show that both $\mathcal{P}_{\text {IPA }}$ and $\mathcal{V}_{\text {IPA }}$ take $O(m)$ time and the proof size is $|\pi|=O(\log m)$. They also show how to reduce $\mathcal{V}_{\text {IPA }}$ time by using a "structured" commitment key $\mathbf{c k}=(\mathbf{v}, \mathbf{w})$, similar to a q-SDH common reference string (see Assumption A.2) This allows the verifier to outsource the computations of \mathbf{v}^{\prime} and \mathbf{w}^{\prime} to the untrusted prover and reduces verification time from $O(m)$ to $O(\log m)$. However, this comes at the cost of additionally relying on the q-SDH assumption (see Assumption A.2) and the q-ASDBP assumption (see Assumption A.4). Our work implicitly assumes this optimized $\mathcal{V}_{\text {IPA }}$, which we later implement in $\S 5$. We refer the reader to [15 , Section 5] for the details of this optimization, which is beyond the scope of this paper.

3 HYPERPROOFS

In this section, we intuitively explain how Hyperproofs work, often referring to a prover who computes the vector's digest, as well as proofs, and to a verifier who verifies proofs against this digest. Without loss of generality, our discussion will assume vectors of size

$\underline{\mathcal{P}_{\text {IPA }}^{\leftrightarrow}}(\mathbf{c k}=(\mathbf{v}, \mathbf{w}) ; \mathbf{A}, \mathbf{B}): ~$	$\mathcal{V}_{\text {IPA }}^{\leftrightarrow}(\mathbf{c k}=(\mathbf{v}, \mathbf{w}) ; \mathbf{C}) \rightarrow\{0,1\}:$		
	$=1$		
$\mathbf{A}=\left[A_{1}\right], \mathbf{B}=\left[B_{1}\right]$ Return 1 iff. $\mathbf{C} \stackrel{?}{=} \mathrm{CM}\left(\mathbf{c k} ;\left[A_{1}\right],\left[B_{1}\right], e\left(A_{1}, B_{1}\right)\right)$			
Else (i.e., if $m \geq 2$)			
$Z_{L}=\left\langle\mathbf{A}_{R}, \mathbf{B}_{L}\right\rangle$			
$\mathbf{C}_{L}=\mathrm{CM}\left(\mathbf{c k} ; \mathbf{A}_{R}\| \| 1_{\mathbb{G}_{1}}, 1_{\mathbb{G}_{2}}\| \| \mathbf{B}_{L}, Z_{L}\right)$			
$Z_{R}=\left\langle\mathbf{A}_{L}, \mathbf{B}_{R}\right\rangle$			
$\mathbf{C}_{R}=\mathrm{CM}\left(\mathbf{c k} ; 1_{\mathbb{G}_{1}}\left\\|\mathbf{A}_{L}, \mathbf{B}_{R}\right\\| 1_{\mathbb{G}_{2}}, Z_{R}\right)$			
$\mathrm{C}_{L}, \mathrm{C}_{R}$			
$x \in \mathcal{R}^{\mathbb{Z}_{p}}$			
$\mathbf{A}^{\prime}=\mathbf{A}_{L} \circ\left(\mathbf{A}_{R}\right)^{x}$	$\mathbf{v}^{\prime}=\mathbf{v}_{L} \circ\left(\mathbf{v}_{R}\right)^{\left(x^{-1}\right)}$		
$\mathbf{B}^{\prime}=\mathbf{B}_{L} \circ\left(\mathbf{B}_{R}\right)^{\left(x^{-1}\right)}$	Computes $\mathbf{v}^{\prime}, \mathbf{w}^{\prime}$ just like the prover		
$\mathbf{w}^{\prime}=\mathbf{w}_{L} \circ\left(\mathbf{w}_{R}\right)^{x}$	$\mathbf{C}^{\prime}=\left(\mathbf{C}_{L}\right)^{x} \circ \mathbf{C} \circ\left(\mathbf{C}_{R}\right)^{\left(x^{-1}\right)}$		
Recurse on (ck $\left.=\left(\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right), \mathbf{A}^{\prime}, \mathbf{B}^{\prime}\right)$	Recurse on $\left(\mathbf{c k}^{\prime}=\left(\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right), \mathbf{C}^{\prime}\right)$		

Figure 3: The interactive IPA by Bünz et al. for $m=2^{k}$ (wlog). Its noninteractive counterpart is in $\S 2.4$, denoted by $\mathcal{P}_{\text {IPA }}$ and $\mathcal{V}_{\text {IPA }}$. The prover convinces the verifier that he knows $(\mathbf{A}, \mathbf{B}) \in \mathbb{G}_{1}^{m} \times \mathbb{G}_{2}^{m}$ such that $\mathbf{A}, \mathbf{B}, Z$ are committed in \mathbf{C} (under commitment key ck) and that $Z=\langle\mathbf{A}, \mathbf{B}\rangle$. See $\S 2$ for IPA-specific notation such as $1_{G_{b}}, \mathbf{A}_{L}, \mathbf{A} \circ \mathbf{B}, C M, \mathbf{A}_{R} \| 1_{\mathbb{G}}$ or \mathbf{A}_{L}^{x}.
exactly $n=2^{\ell}$. Hyperproofs represents a vector $\mathbf{a}=\left[a_{0}, \ldots, a_{n-1}\right]$ as a multilinear extension (MLE):

$$
f(\mathbf{x})=\sum_{i=0}^{n-1} a_{i} \mathcal{S}_{i, \ell}(\mathbf{x})
$$

where $\mathcal{S}_{i, \ell}$ are selector multinomials as per Eq. 5 . The digest of the vector a is, a Papamanthou-Shi-Tamassia (PST) commitment to f :

$$
\operatorname{pst}(f)=g_{1}^{f(\mathbf{s})}
$$

where \boldsymbol{s} is the PST trapdoor (see $\S 2.2$). Thus, our public parameters are the same as PST's parameters depicted in Fig. 2.

3.1 Multilinear trees (MLTs)

A Hyperproof for position i is just a PST evaluation proof (see §2.2) for $f(\mathbf{i})$. Unfortunately, if one uses the PST.Prove algorithm from Fig. 1 to compute all PST evaluation proofs, this takes $O\left(n^{2}\right)$ time. Below, we show how to compute all n proofs faster, in $O(n \log n)$ time, by avoiding unnecessary computations (see Fig. 5).

Denote the proof for $f(\mathbf{i})$ as $\pi_{i}=\left(\pi_{i, \ell}, \ldots, \pi_{i, 1}\right)$. Next, observe that if we compute all proofs π_{i} via n calls to:

$$
\operatorname{PST} . \operatorname{Prove}\left(f, \ell,\left(i_{\ell}, \ldots, i_{1}\right)\right), \forall i \in[n],
$$

they actually all have the same first quotient q_{ℓ} committed in $\pi_{i, \ell}$! This is because all n PST. Prove calls initially divide f by $x_{\ell}-i_{\ell}$, which actually yields the same quotient, independent of i_{ℓ}. To see this, recall the MLE decomposition from Eq. 8 and reorganize it in

Figure 4: A multilinear tree (MLT) of size 8. Recall from §2 that $f_{b_{\ell}, \ldots, b_{k}}$ denotes the MLE of $\mathbf{a}_{b_{\ell}, \ldots, b_{k}}$. Each node stores a PST commitment to the depicted MLE: e.g., root stores $\operatorname{pst}\left(f_{1}-f_{0}\right)$, not $f_{1}-f_{0}$. The proof for a_{i} consists of all nodes along a_{i} 's path to the root (e.g., for a_{4}, the boxed nodes). Sibling leaves [$a_{2 j}, a_{2 j+1}$] have the same proof. If, say, a_{4} changes, all pink-colored MLEs change, and all boxed commitments must be updated.
two ways as:

$$
\begin{align*}
f & =\left(1-x_{\ell}\right) \cdot f_{0}+x_{\ell} \cdot f_{1} \Leftrightarrow \\
f & =\left(f_{1}-f_{0}\right) \cdot\left(x_{\ell}-1\right)+f_{1} \tag{13}\\
& =\left(f_{1}-f_{0}\right) \cdot x_{\ell}+f_{0} \tag{14}
\end{align*}
$$

where f_{0} is the MLE for the left half \mathbf{a}_{0} of \mathbf{a} and f_{1} is the MLE for the right half \mathbf{a}_{1} (recall from §2). Since both divisions yield the same $q_{\ell}=f_{1}-f_{0}$ quotient, all π_{i} 's share the same $\pi_{i, \ell}$ commitment to q_{ℓ} ! We depict this q_{ℓ} as the root of a multilinear tree (MLT) in Fig. 4.

Next, recall that each one of the n PST.Prove calls recurses on its remainder, which we saw above was either f_{0} or f_{1}. Specifically, the first $n / 2$ calls for $i \in\left[0, n / 2\right.$) (i.e., $i_{\ell}=0$) recurse on PST.Prove $\left(f_{0}, \ell-1,\left(i_{\ell-1}, \ldots, i_{1}\right)\right)$, and the other $n / 2$ calls for $i \in$ $[n / 2+1, n)\left(\right.$ i.e., $\left.i_{\ell}=1\right)$ recurse on PST.Prove $\left(f_{1}, \ell-1,\left(i_{\ell-1}, \ldots, i_{1}\right)\right)$. But by the same argument above, each group of $n / 2$ calls returns the same first quotient commitment. For example, for the first group, we have quotient $f_{01}-f_{00}$:

$$
\begin{align*}
f_{0} & =\left(f_{01}-f_{00}\right)\left(x_{\ell-1}-1\right)+f_{01} \tag{15}\\
& =\left(f_{01}-f_{00}\right) x_{\ell-1}+f_{00}, \tag{16}
\end{align*}
$$

Similarly, for the second group, the quotient will be $f_{11}-f_{10}$. Both quotients are depicted as the children of the root in Fig. 4. Continuing recursively in this fashion yields our multilinear tree (MLT) from Fig. 4. We describe the algorithm for computing it in Fig. 5 and we argue correctness of MLT proofs in Appendix D.1.

3.2 Updates and homomorphism

Updating digests and MLTs. Suppose a_{4} changes by δ in our MLT from Fig. 4. Then, by Eq. 4, we know that a's MLE will change to:

$$
f^{\prime}=f+x_{3}\left(1-x_{2}\right)\left(1-x_{1}\right) \delta=f+\mathcal{S}_{4,3}(\mathbf{x}) \delta
$$

```
MLT.Compute \((f, \ell) \rightarrow\left[t_{1}, \ldots, t_{2} \ell_{-1}\right]:\)
    1. If \(\ell=0\) (i.e., \(f\) is a constant), return \(\varnothing\).
    2. Otherwise, \(\forall b \in\{0,1\}\), divide \(f\) by \(x_{\ell}-b\), obtaining quotient \(f_{1}-f_{0}\)
    and remainder \(f_{b}\) such that \(f=\left(f_{1}-f_{0}\right) \cdot\left(x_{\ell}-b\right)+f_{b}\).
    3. Return \(\left(g_{1}^{\left(f_{1}-f_{0}\right)(\mathbf{s})}, \operatorname{MLT} . C o m p u t e\left(f_{0}, \ell-1\right)\right.\), MLT.Compute \(\left.\left(f_{1}, \ell-1\right)\right)\)
```

Figure 5: Computes an MLT in $O(n \log n)$ time consisting of PST evaluation proofs for all $f(\mathbf{i})$ w.r.t. an MLE f of a of size $n=2^{\ell}$. In contrast, n naive calls to PST. Prove would take $O\left(n^{2}\right)$. Recall that f_{0} and f_{1} are MLEs for the left and right halves of \mathbf{a}. Returns the tree stored in preorder in an array.

But what about the MLT? The following highlighted MLEs from Fig. 4 will be updated to:

$$
\begin{aligned}
f_{100}^{\prime} & =f_{100}+\delta \\
f_{10}^{\prime} & =f_{10}+\left(1-x_{1}\right) \delta \\
f_{1}^{\prime} & =f_{1}+\left(1-x_{2}\right)\left(1-x_{1}\right) \delta \\
f^{\prime} & =f+x_{3}\left(1-x_{2}\right)\left(1-x_{1}\right) \delta
\end{aligned}
$$

These MLEs changing affect the MLEs along a_{4} 's path. For example, the root MLE $f_{1}-f_{0}$ also changes by the same amount as f_{1} : i.e., by $+\left(1-x_{2}\right)\left(1-x_{1}\right) \delta$. Furthermore, their corresponding commitments are easy to update via the PST homomorphism. For example, the new root will be $\operatorname{pst}\left(f_{1}-f_{0}\right) \cdot g_{1}^{\left(1-s_{2}\right)\left(1-s_{1}\right) \delta}$. However, note that updating commitments requires knowing $g_{1}^{\left(1-s_{2}\right)\left(1-s_{1}\right)}$, which is referred to as an update key. We delve into this next.
Update keys. Recall that $\mathcal{S}_{u, k}(\mathbf{x})$ is the selector multinomial for position $u \in\left[0,2^{k}\right.$) in an MLE of size 2^{k} (see Eq. 5). However, to easily reason about updates, it is useful to define $\mathcal{S}_{u, k}$ even when $u \geq 2^{k}$ as $\mathcal{S}_{u, k}=\mathcal{S}_{u \bmod 2^{k}, k}$. As explained above, updating the MLT after a_{u} changes by δ requires some auxiliary information referred to as an update key for position u. This consists of commitments to all selector multinomials for u in MLEs of size $1,2, \ldots, 2^{\ell}$:

$$
\begin{equation*}
\operatorname{upk}_{u}=\left\{g_{1}^{\mathcal{S}_{u, k}(\mathbf{s})}: k \in[0, \ell]\right\}=\left\{\text { upk }_{u, k}: k \in[0, \ell]\right\} \tag{17}
\end{equation*}
$$

Recall that $\mathcal{S}_{u, 0}(\mathbf{x})=1$, so that upk $u_{u, 0}=g_{1}, \forall u \in\left[0,2^{\ell}\right)$. Then, the MLT commitments ($w_{u, \ell}, \ldots, w_{u, 1}$) along u 's path are updated as:

$$
\begin{equation*}
w_{u, k}^{\prime}=w_{u, k} \cdot\left(\operatorname{upk}_{u, k-1}\right)^{\delta}=w_{u, k} \cdot\left(g_{1}^{\mathcal{S}_{u, k-1}(\mathbf{s})}\right)^{\delta}, \forall k \in[\ell] \tag{18}
\end{equation*}
$$

Note that this implies that any proof $\pi_{i}=\left(w_{i, \ell}, \ldots, w_{i, 1}\right)$ can be updated after a change at u : one simply has to identify the "intersection" of u 's proof with i 's proof and apply the update as above, as if updating a pruned MLT consisting of just π_{i}. More formally, suppose i and u have the same t most significant bits (i.e., $\left.i_{k}=u_{k}, \forall k \in\{\ell, \ell-1, \ldots, \ell-t+1\}\right)$. Then, the updated proof π_{i}^{\prime} is initially set to π_{i} and (partially) updated as:

$$
\begin{equation*}
w_{i, k}^{\prime}=w_{i, k} \cdot\left(\mathrm{upk}_{u, k-1}\right)^{\delta}, \forall k \in\{\ell, \ldots, \ell-t\}, 1 \leq k \leq \ell \tag{19}
\end{equation*}
$$

The digest updates more simply as:

$$
\begin{equation*}
\operatorname{pst}\left(f^{\prime}\right)=\operatorname{pst}(f) \cdot g_{1}^{\mathcal{S}_{u, \ell}(\mathbf{s})}=\operatorname{pst}(f) \cdot\left(\operatorname{upk}_{u, \ell}\right)^{\delta} \tag{20}
\end{equation*}
$$

Lastly, we note that the update keys actually coincide with our public parameters (see Fig. 2).

```
\(\underline{\mathcal{G}_{\mathrm{BATCH}}\left(1^{\lambda}, b, \ell\right) \rightarrow(P K, V K): \text { Return } \mathcal{G}_{\mathrm{IPA}}\left(1^{\lambda}, b \cdot \ell\right)}\)
\(\underline{\mathcal{P}_{\text {BATCH }}\left(P K,\left(\mathbf{A}_{i}, \mathbf{B}_{i}\right)_{i \in[b]}\right) \rightarrow \pi}\)
    1. Let \(\mathbf{A}=\left[\mathbf{A}_{1}\left\|\mathbf{A}_{2}\right\| \ldots \| \mathbf{A}_{b}\right]\) and \(\mathbf{B}=\left[\mathbf{B}_{1}| | \mathbf{B}_{2} \| \ldots| | \mathbf{B}_{b}\right]\)
    2. Let \(C_{1}=\langle\mathbf{A}, \mathbf{v}\rangle\) (i.e., 1 st component of \(\left.\mathrm{CM}\left(\mathrm{ck} ; \mathbf{A}, \mathrm{B}^{\prime}, 1_{\mathbb{G}_{T}}\right)\right)\)
    3. Let \(r_{i}=H\left(C_{1}, \mathbf{B}, i\right) \in \mathbb{Z}_{p}\) for \(i=1, \ldots, b\)
    4. Let \(\mathbf{B}^{\prime}=\left[\mathbf{B}_{1}^{r_{1}}\left\|\mathbf{B}_{2}^{r_{2}}\right\| \ldots \| \mathbf{B}_{b}^{r_{b}}\right]\)
    5. Let \(\pi^{*}=\mathcal{P}_{\mathrm{IPA}}\left(\mathbf{c k}, \mathbf{A}, \mathbf{B}^{\prime}\right)\) and return \(\pi=\left(C_{1}, \pi^{*}\right)\).
\(\mathcal{V}_{\text {BATCH }}\left(V K,\left(\mathbf{B}_{i}, Z_{i}\right)_{i \in[b]}, \pi\right) \rightarrow\{0,1\}:\)
    1. Parse the proof \(\pi=\left(C_{1}, \pi^{*}\right)\)
    Let \(r_{i}=H\left(C_{1}, \mathbf{B}, i\right) \in \mathbb{Z}_{p}\) for \(i=1, \ldots, b\)
    Let \(\mathbf{B}^{\prime}=\left[\mathbf{B}_{1}^{r_{1}}\left\|\mathbf{B}_{2}^{r_{2}}\right\| \ldots \| \mathbf{B}_{b}^{r_{b}}\right]\) and \(Z^{\prime}=\prod_{i=1}^{b} Z_{i}^{r_{i}}\)
    Let \(C_{2}=\left\langle\mathbf{w}, \mathbf{B}^{\prime}\right\rangle\) (i.e., 2nd component of \(\left.\mathrm{CM}\left(\mathbf{c k} ; \mathbf{A}, \mathrm{B}^{\prime}, 1_{\mathbb{G}_{T}}\right)\right)\)
    Let \(\mathbf{C}=\left(C_{1}, C_{2}, Z^{\prime}\right)\) and return \(\mathcal{V}_{\text {IPA }}\left(\mathbf{c k}, \mathbf{C}, \pi^{*}\right)\).
```

Figure 6: Our argument for $\mathcal{L}_{\text {BATCH }}^{b, \ell}$ used to aggregate Hyperproofs. H is a random oracle and ($\left.\mathcal{G}_{\mathrm{IPA}}, \mathcal{P}_{\mathrm{IPA}}, \mathcal{V}_{\mathrm{IPA}}\right)$ is the Bünz et al. IPA from $\S 2.4$.

MLTs are homomorphic. Since our multilinear tree stores an MLE commitment at each node, we observe that the MLT itself is homomorphic: the MLT for $\mathbf{a}+\mathbf{b}$ can be obtained by "multiplying" a's MLT with b's MLT. In other words, every node w in the new MLT is the product of the nodes w in the MLTs for \mathbf{a} and \mathbf{b}. Specifically, $\operatorname{pst}\left(f_{w}^{\prime \prime}\right)=\operatorname{pst}\left(f_{w}+f_{w}^{\prime}\right)=\operatorname{pst}\left(f_{w}\right) \operatorname{pst}\left(f_{w}^{\prime}\right)$, where $f_{w}, f_{w}^{\prime}, f_{w}^{\prime \prime}$ denote the MLE stored at node w in the MLT for \mathbf{a}, \mathbf{b} and $\mathbf{a}+\mathbf{b}$, respectively. This enables our unstealability construction from $\S 3.4$ and has other applications to authenticating data in the streaming setting [38].

3.3 Aggregating proofs

Recall that a proof $\left(w_{1}, \ldots, w_{\ell}\right)$ for a_{i} in the vector a of size $n=2^{\ell}$ is just an ℓ-sized PST evaluation proof (see $\S 2.2$) and verifies as:

$$
\begin{equation*}
e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}\right)=\prod_{k=1}^{\ell} e\left(w_{k}, g_{2}^{s_{k}-i_{k}}\right), \tag{21}
\end{equation*}
$$

where C is the digest and $\left(g_{2}^{s_{k}-i_{k}}\right)_{k \in[\ell]}$ is position i 's public verification key.

Warm-up: Compressing proofs. It is useful to first discuss compressing a size- ℓ proof for a_{i} to size $\log \ell$ via the IPA from §2.4. For this, we let $\mathbf{A}=\left[w_{1} \ldots w_{\ell}\right], \mathbf{B}=\left[g_{2}^{s_{1}-i_{1}} \ldots g_{2}^{s_{\ell}-i_{\ell}}\right], Z=e\left(\mathbf{C} / g_{1}^{a_{i}}, g_{2}\right)$ and prove that (Z, \mathbf{B}) is in the following language:

$$
\begin{equation*}
\mathcal{L}_{\text {PROD }}^{\ell}=\left\{Z \in \mathbb{G}_{T}, \mathbf{B} \in \mathbb{G}_{2}^{\ell} \mid \exists \mathbf{A} \in \mathbb{G}_{1}^{\ell}, Z=\langle\mathbf{A}, \mathbf{B}\rangle\right\} \tag{22}
\end{equation*}
$$

Next, we can use the IPA from §2.4. Specifically, assume our $\mathcal{L}_{\text {PROD }}$ prover and verifier share a commitment key $\mathbf{c k}=(\mathbf{v}, \mathbf{w})$. First, the prover gives $C_{1}=\langle\mathbf{A}, \mathbf{v}\rangle$ to the verifier. Second, the verifier computes $C_{2}=\langle\mathbf{w}, \mathbf{B}\rangle$ and lets $C_{3}=Z$. Thus, the verifier now has a commitment $\mathbf{C}=\left(C_{1}, C_{2}, C_{3}\right)$ to \mathbf{A}, \mathbf{B} and Z. Third, the prover simply runs $\mathcal{P}_{\text {IPA }}$ from $\S 2.4$ and convinces the verifier that the committed values satisfy $Z=\langle\mathbf{A}, \mathbf{B}\rangle$ and thus that the Hyperproof verifies as per Eq. 21.
Aggregating proofs. Next, we observe that aggregating many proofs $\left(\pi_{1}, \ldots, \pi_{b}\right)$, each for a position p_{i} in a, reduces to proving
$\operatorname{Gen}\left(1^{\lambda}, n\right) \rightarrow \mathrm{pp}:$ Let $\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right) \leftarrow \operatorname{BilGen}\left(1^{\lambda}\right)$. Let $\mathbf{s}=$ $\overline{\left(s_{1}, \ldots, s_{\ell}\right) \in_{R} \mathbb{Z}_{p}^{\ell}}$, where $n=2^{\ell}$. Let pp consist of

- $\operatorname{pst}\left(\mathcal{S}_{j, k}\right)=g_{1}^{\mathcal{S}_{j, k}(\mathbf{s})}, \forall k \in[0, \ell], \forall j \in\left[0,2^{k}\right)$;
- $g_{2}^{s_{k}}, \forall k \in[\ell] ;$
- $(P K, V K) \leftarrow \mathcal{G}_{\text {BATCH }}\left(1^{\lambda}, b, \ell\right)$.

We refer to $\left(g_{2}^{s_{k}-i_{k}}\right)_{k \in[\ell]}$ as position i 's verification key.
$\operatorname{Com}_{\mathrm{pp}}(\mathbf{a}) \rightarrow \mathrm{C}$: Let $\mathrm{C}=\operatorname{pst}(f)=g_{1}^{f(\mathbf{s})}=g_{1}^{f\left(s_{1}, \ldots, s_{\ell}\right)}$, where f is a's MLE. OpenAll $_{\text {pp }}(\boldsymbol{a}) \rightarrow\left(\pi_{0}, \ldots, \pi_{n-1}\right)$: Return the MLT as per §3.1.
Open $_{\mathrm{pp}}(i, \mathbf{a}) \rightarrow \pi_{i}$: Compute only the i th path in the MLT and return it.
$\operatorname{Agg}_{\mathrm{pp}}\left(I,\left\{a_{i}, \pi_{i}\right\}_{i \in I}\right) \rightarrow \pi_{I}$: Let $m=|I|$ and let $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{m}$ denote
 verification keys. Return $\mathcal{P}_{\mathrm{BATCH}}\left(P K,\left(A_{k}, B_{k}\right)_{k \in[m]}\right)$.
$\operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, I,\left\{a_{i}\right\}_{i \in I}, \pi_{I}\right) \rightarrow\{0,1\}:$ If $I=\{i\}$, parse $\pi_{I}=\left(w_{1}, \ldots, w_{\ell}\right)$ and ensure that

$$
e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}\right)=\prod_{j=1}^{\ell} e\left(w_{j}, g_{2}^{s_{j}-i_{j}}\right)
$$

Otherwise, let $m=|I|$ and $\mathbf{B}_{1}, \ldots, \mathbf{B}_{m}$ denote the verification keys for the proofs, ordered by their position i. Let $Z_{1}, Z_{2}, \ldots, Z_{m}$ be all the $e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}\right)$'s, also ordered by i. Return $\mathcal{V}_{\mathrm{BATCH}}\left(V K,\left(B_{k}, Z_{k}\right)_{k \in[m]}, \pi_{I}\right)$. $\operatorname{UpdDig}_{\mathrm{pp}}(u, \delta, \mathrm{C}) \rightarrow \mathrm{C}^{\prime}$: Let $\mathrm{C}^{\prime}=\mathrm{C} \cdot\left(g_{1}^{\mathcal{S}_{u, \ell}(\mathbf{s})}\right)^{\delta}$.
UpdAllProofs $_{\mathrm{pp}}\left(u, \delta, \pi_{0}, \ldots, \pi_{n-1}\right) \rightarrow\left(\pi_{0}^{\prime}, \ldots, \pi_{n-1}^{\prime}\right)$: Assume u 's MLT path is $\left(w_{1}, \ldots, w_{\ell}\right)$. Update this path as $w_{k}^{\prime}=w_{k} \cdot\left(\operatorname{upk}_{u, k-1}\right)^{\delta}$ (for $k=1, \ldots, \ell)$ as per Eq. 18.
UpdProof $_{\mathrm{pp}}\left(u, \delta, \pi_{i}\right) \rightarrow \pi_{i}^{\prime}$: Update via UpdAllProofs as if π_{i} was a pruned, single-path MLT (see Eq. 19).

Figure 7: Algorithms for Hyperproofs, implicitly parameterized by the max number of proofs b that can be aggregated into a single proof.
membership in $\mathcal{L}_{\text {PROD }}^{\ell}$ for each $\left(Z_{i}, \mathbf{B}_{i}\right)$, where $Z_{i}=e\left(\mathrm{C} / g_{1}^{a_{p_{i}}}, g_{2}\right)$ and \mathbf{B}_{i} is position p_{i} 's verification key. But doing this naively would result in a large, $O(b \log \ell)$ aggregated proof size. Instead, we seek a more succinct argument for the following new language:

$$
\begin{aligned}
\mathcal{L}_{\text {BATCH }}^{b, \ell} & =\left\{\left(Z_{i} \in \mathbb{G}_{T}, \mathbf{B}_{i} \in \mathbb{G}_{2}^{\ell}\right)_{i \in[b]} \mid\left(\left(Z_{i}, \mathbf{B}_{i}\right) \in \mathcal{L}_{\text {PROD }}^{\ell}\right)_{i \in[b]}\right\} \text { (23) } \\
& =\left\{\left(Z_{i} \in \mathbb{G}_{T}, \mathbf{B}_{i} \in \mathbb{G}_{2}^{\ell}\right)_{i \in[b]} \mid\left(\exists \mathbf{A}_{i} \in \mathbb{G}_{1}^{\ell}, Z_{i}=\left\langle\mathbf{A}_{i}, \mathbf{B}_{i}\right\rangle\right)_{i \in[b]}\right\}
\end{aligned}
$$

In other words, membership in $\mathcal{L}_{\text {BATCH }}^{b, \ell}$ guarantees that $\forall i \in[b], \exists \mathbf{A}_{i}$:

$$
\begin{equation*}
Z_{i}=\prod_{j=1}^{\ell} e\left(A_{i, j}, B_{i, j}\right), \tag{24}
\end{equation*}
$$

where $A_{i, j}$ is the j th entry of \mathbf{A}_{i}. Note that we cannot use the TIPP argument from [15] to prove membership in $\mathcal{L}_{\text {BATCH }}$, since it can only prove that $\forall i, Z_{i}=\left\langle X_{i}, Y_{i}\right\rangle$, where $\left(X_{i}, Y_{i}\right) \in \mathbb{G}_{1} \times \mathbb{G}_{2}$. Instead, we design a new argument for $\mathcal{L}_{\text {BATCH }}^{b, \ell}$ (see Fig. 6) which uses a random linear combination to combine the ℓ-sized equations from above into a single $b \ell$-sized one:

$$
\begin{equation*}
\prod_{i=1}^{b} Z_{i}^{r_{i}}=\prod_{i=1}^{b}\left(\prod_{j=1}^{\ell} e\left(A_{i, j}, B_{i, j}\right)\right)^{r_{i}} \tag{25}
\end{equation*}
$$

It is well known that, if the r_{i} 's are uniformly random, verifying the combined equation above is sufficient (see Lemma C.1). As a result, our argument for $\mathcal{L}_{\text {BATCH }}^{b, \ell}$ uses the IPA from $\S 2.4$ on this combined equation in a black-box manner. (This is similar to the previous $\mathcal{L}_{\text {PROD }}^{\ell}$ argument, except it involves larger vectors and randomization.) We give a precise description of its $\left(\mathcal{G}_{\text {BATCH }}, \mathcal{P}_{\text {BATCH }}, \mathcal{V}_{\text {BATCH }}\right)$ algorithms in Fig. 6, show how it fits in our VC construction in Fig. 7, and prove security in Appendix C.3.

Aggregation time and proof size. It is easy to see from Fig. 6 that the $\mathcal{P}_{\text {BATCH }}$ time (i.e., the time to aggregate b proofs) is $O(b \cdot \ell)$ and the $\mathcal{V}_{\text {BATCH }}$ time (i.e., the time to verify the aggregated proof) is $O(b \cdot \ell)$. Unfortunately, even though our $\mathcal{L}_{\mathrm{BATCH}}^{b, \ell}$ argument uses the IPA with fast, $O(\log (b \cdot \ell))$-time KZG-based verification (see §2.4), the $\mathcal{V}_{\mathrm{BATCH}}$ verifier still needs to do $O(b \cdot \ell)$ work on the \mathbf{B}_{i} vectors. (Note that this $O(b \cdot \ell)$ verifier work seems inherent for processing the b verification keys.) Lastly, the argument size (i.e., the aggregated proof size) is $O(\log (b \cdot \ell))=O(\log b+\log \ell)$.

Cross-aggregation. In addition to aggregating proofs w.r.t. the some commitment C, we can also cross-aggregate proofs w.r.t. different commitments [21]. Specifically, suppose we have b proofs π_{i} for positions p_{i}, each w.r.t. a (potentially-different) digest C_{i} for a vector with MLE f_{i}. Then, we can use the same $\mathcal{P}_{\text {BATCH }}$ prover from Fig. 6 to cross-aggregate these proofs. To verify, the verifier now computes the Z_{i} 's from Eq. 24 by using the right commitment and evaluation point: i.e., $Z_{i}=e\left(C_{i} / g_{1}^{f_{i}\left(p_{i}\right)}, g_{2}\right)$. For simplicity, we do not formalize VCs with cross-aggregation, but our soundness proofs from Appendix D. 3 can easily carry over to this setting.

3.4 Unstealable proofs

In this subsection, we show how to incentivize proof computation by allowing provers, who store the vector and maintain proofs, to watermark the proofs they compute. Such watermarked proofs are cryptographically-bound to their prover's identity, which means the prover can be monetarily rewarded for having computed them (e.g., in cryptocurrencies). Importantly, this cryptographic binding cannot be undone by adversaries. In other words, "stealing" a proof by replacing its watermark with your own, is no easier than computing the proof from scratch like everyone else. We call such watermarked proofs unstealable, formalize and prove their security and make Hyperproofs unstealable. We show unstealability of proofs is useful in the cryptocurrency setting in §4 and we envision other applications could benefit from it.
Strawman: unstealability via digital signatures. Note that a digital signature on the VC proof will not make it unstealable. This is because the signature, which is appended to the VC proof, can be simply removed by the adversary and replaced with his own signature. Instead, we need a different approach that somehow embeds the signature into the proof itself so that it cannot be removed.

Unstealability via exponentiations. We make a proof $\boldsymbol{\pi}_{i}=\left(w_{i, \ell}\right.$, $\ldots, w_{i, 1}$) unstealable by exponentiating it with α as:

$$
\begin{equation*}
\pi_{i}^{\alpha}=\left(w_{i, \ell}^{\alpha}, \ldots, w_{i, 1}^{\alpha}\right) \stackrel{\text { def }}{=}\left(\hat{w}_{i, \ell}, \ldots, \hat{w}_{i, 1}\right) \tag{26}
\end{equation*}
$$

where α is the prover's watermarking secret key (WSK). The corresponding watermarking public key (WPK) is g_{2}^{α} together with a
zero-knowledge proof of knowledge (ZKPoK) of α (e.g., a Schnorr proof [42] as per Appendix B). To verify a proof watermarked with g_{2}^{α}, one first checks that the ZKPoK of α verifies. Second, one checks the proof as normal as per Eq. 21, but accounts for the WPK g_{2}^{α} :

$$
\begin{equation*}
e\left(C / g_{1}^{a_{i}}, g_{2}^{\alpha}\right) \stackrel{?}{=} \prod_{k \in[\ell]} e\left(\hat{w}_{i, k}, g_{2}^{s_{k}-i_{k}}\right) \tag{27}
\end{equation*}
$$

The key intuition is that an adversary can no longer remove α from the watermarked proof, since this seems to require exponentiating by α^{-1}, which the adversary does not know. Indeed, in Appendix D.5, we prove that no PPT adversary can steal proofs under ℓ-DHI (see Assumption A.3).

Aggregation-preserving unstealability. One important property of our unstealable proofs is that they remain aggregatable via a call to Agg from Fig. 7. Intuitively, this is because the righthand side of the watermarked verification from Eq. 27 remains the same as for normal verification in Eq. 21. However, the left-hand side changes. Thus, when verifying an aggregated proof via Ver (see Fig. 7), the verifier has to account for the WPKs when computing the Z_{i} 's. In other words, the verifier needs to have these WPKs. In our application setting from §4, we anticipate the verifier will already have all of the WPKs, instead of receiving them with the aggregated proof.
Homomorphism-preserving unstealability. Our approach to watermarking proofs preserves the PST and MLT homomorphisms. This has a few advantages. First, watermarked proofs can still be updated. Specifically, assuming position u changed by δ, the watermarked proof π_{i}^{α} from Eq. 26 can be updated as before (see Eq. 19) if one uses watermarked update keys $\left(\text { upk }_{u, k}\right)^{\alpha}$. Second, an MLT of watermarked proofs can be computed directly, if the prover uses watermarked public parameters. The prover can obtain these in a one-time pre-processing step that exponentiates all parameters from Fig. 2 with the WSK α :

$$
\begin{equation*}
\left(g_{1}^{\mathcal{S}_{u, k}(\mathbf{s})}\right)^{\alpha}=g_{1}^{\alpha S_{u, k}(\mathbf{s})} \stackrel{\text { def }}{=} \hat{g}_{1}^{\mathcal{S}_{u, k}(\mathbf{s})}, \forall k \in[0, \ell], \forall u \in\left[0,2^{k}\right) \tag{28}
\end{equation*}
$$

Importantly, these are still valid Hyperproofs parameters, except under a new base $\hat{g}_{1}=g_{1}^{\alpha}$. As a result, the prover can directly compute a watermarked MLT using these new parameters. This is important, as it allows precomputing watermarked proofs, ensuring that serving such proofs is as efficient as serving normal proofs. Third, a watermarked MLT is efficiently maintainable, just like a normal MLT. This follows from the updatability of watermarked proofs argued above.

New UVC algorithms. We must slightly change our VC API from Definition 2.1 into an unstealable VC (UVC) API that accounts for watermarked proofs and watermarking key-pairs. First, we introduce two new algorithms:

1. WtrmkGen $\left(1^{\lambda}\right) \rightarrow$ (wsk, wpk): Generates a random (wsk, wpk) watermarking key pair.
2. WtrmkParams(pp, wsk) \rightarrow wpp: Returns watermarked public parameters wpp, under wsk, as per Eq. 28.
Second, the verification algorithm $\operatorname{Ver}_{\mathrm{pp}}\left(C, I,\left(a_{i}, \mathrm{wpk}_{i}\right)_{i \in I}, \pi_{I}\right)$ additionally takes as input the watermarking PK wpk ${ }_{i}$ that each proof π_{i} is watermarked with. Third, the algorithms for creating and
updating proofs now operate on watermarked public parameters. In the interest of brevity, we give the full UVC API, with a new correctness definition, in the appendix in Definition D.1.
UVC soundness. We model UVC soundness similar to VC soundness, except we account for watermarked proofs (see Definition D. 3 in the appendix). Informally, we prevent adversaries from creating two inconsistent proofs for the same index k, even if those proofs are watermarked with different, adversarially-generated WPKs.
UVC unstealability. We also need to formally define our new unstealability notion, which we only explained intuitively so far. We do this via a game where an adversary sees a commitment to an unknown vector and up to $n-1$ watermarked proofs for the vector. His goal is to output a new proof watermarked under a WPK he knows. We restrict ourselves to individual proofs only (see Definition 3.1), but generalize to aggregated proofs in the appendix (see Definition D.4).

Definition 3.1 (UVC Unstealability for individual proofs). $\forall \mathrm{ppt}$ adversaries $\mathcal{A}=\left(\mathcal{A}_{0}, \mathcal{A}_{1}\right)$,

```
\(\left[\begin{array}{rl}\mathrm{pp} & \leftarrow \operatorname{Gen}\left(1^{\lambda}, n\right), \\ (\text { wsk, wpk }) & \leftarrow \operatorname{WtrmkGen} \mathrm{pp}\left(1^{\lambda}\right),\end{array}\right.\)
    \(\mathrm{wpp} \leftarrow\) WtrmkParams(pp, wsk),
                \(\mathrm{C} \leftarrow \operatorname{Com}_{\mathrm{pp}}(\boldsymbol{a})\), where \(a_{i} \in_{R} \mathbb{Z}_{p}\),
Pr
                \(\mathrm{C} \leftarrow \operatorname{Com}_{\mathrm{pp}}(\boldsymbol{a})\), where \(a_{i} \in_{R} \mathbb{Z}_{p}\),
\((I \subsetneq[n], \mathrm{st}) \leftarrow \mathcal{A}_{0}\left(1^{\lambda}, \mathrm{pp}, \mathrm{C}, \mathrm{wpk}\right)\),
    \(\leq \operatorname{neg}(\lambda)\).
        \(\left(\pi_{i} \leftarrow \operatorname{Open}_{\mathrm{wpp}}(i, \boldsymbol{a})\right)_{i \in I}\),
    \(\left(j \in[n], \pi^{\prime}, \mathrm{wpk}^{\prime}\right) \leftarrow \mathcal{A}_{1}\left(1^{\lambda}, \mathrm{st},\left(a_{i}, \pi_{i}\right)_{i \in I}\right):\)
    \(\operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C},\{j\},\left(a_{j}, \mathrm{wpk}^{\prime}\right), \pi^{\prime}\right)=1 \wedge \mathrm{wpk} \neq \mathrm{wpk}^{\prime}\)
```

Observation: "Stealing" proofs implicitly assumes \mathcal{A} does not have (and cannot predict) the vector. This is why a is randomly picked: to discount non-attacks such as \mathcal{A} computing a proof from scratch (via knowledge of the vector) and watermarking it.

3.5 Analysis

Correctness and security. Correctness follows by inspection, but we do argue correctness of the MLT in Appendix D.1. We prove our VC is sound as per Definition 2.3 in Appendix D.3. We prove our unstealable VC is (1) sound as per Definition D. 3 in Appendix D. 4 and (2) unstealable as per Definition 3.1 in Appendix D.5.
Asymptotics. Gen can compute all $O(n)$ public parameters from Fig. 2 in $O(n)$ time, since it knows the trapdoors (s_{1}, \ldots, s_{ℓ}). Com runs in time $O(n)$, requiring one exponentiation per vector element. OpenAll takes $T(n)=2 T(n / 2)+O(n)=O(n \log n)$ exponentiations, since it must commit to all MLEs in Fig. 4. Open only takes $T(n)=$ $T(n / 2)+O(n)=O(n)$ exponentiations, since it must commit to one path of MLEs from Fig. 4. UpdDig takes one exponentiation as per Eq. 20 and UpdProof takes ℓ exponentiations as per Eq. 19. Finally, Agg takes $O(b \ell)$ time, where b is the number of proofs that are aggregated, outputting a proof of size $O(\log b+\log \ell)$, which can be verified by Ver in $O(b \ell)$ time. A detailed asymptotic comparison of our VC with other works can be found in the appendix in Table 4.

4 HYPERPROOFS FOR CRYPTOCURRENCIES

In this section, we discuss how Hyperproofs can be used to speed up validation in payment-only stateless cryptocurrencies.

Stateless validation. In account-based cryptocurrencies [53], validators such as miners and P2P nodes store a large amount of state to validate transactions and blocks in the consensus protocol. This state consists of each user's account balance and can be represented as a vector that maps each user's public key to their balance. Recent work [11, 18, 21, 31, 41, 46, 49] trades off storage of the state with additional bandwidth and computation. This approach, known as stateless validation, commits to the state using a vector commitment (VC) scheme and allows validators to store only the digest rather than the full state. Next, transactions and blocks are augmented with proofs for the accessed state, so validators can check validity against the digest, instead of storing the full state.

Challenges. There are several challenges in stateless validation. First, when creating a transaction, the sending user needs to include a proof that they have enough balance. In this sense, users should be able to fetch their proof from proof-serving nodes (PSNs) [41, 49], who maintain (a subset of) all proofs. Thus, PSNs should be able to efficiently update all proofs, as new blocks are confirmed. Second, PSNs should be incentivized to maintain proofs. Third, a miner must now include each transaction's proof in a proposed block, so that other miners can statelessly validate this block. This calls for proofs to be efficiently aggregatable, to save block space. Finally, when validating a block, miners must now verify such an aggregated proof. Thus, aggregated proofs should verify fast.

Why rely on proof-serving nodes? In theory, each user can maintain their proof locally by keeping up with all confirmed transactions and updating their proof (e.g., as per Eq. 19). However, this overwhelms users with large computation (i.e., updating proofs) and large communication (i.e., downloading new blocks). This is why well-incentivized, efficient proof-serving nodes (PSNs) are important: they eliminate this burden from users by allowing them to fetch their latest proof.

Hyperproofs for stateless validation As described above, in the stateless validation setting, it is important to minimize the time for (1) PSNs to update all proofs to reflect the latest block, (2) miners to propose a new block, with aggregated proofs and (3) other miners to verify this block, including its aggregated proof. In $\S 5.3$, we show experimentally that Hyperproofs outperforms other VCs in this task. This is because VCs with $O(1)$-sized proofs [16, 17, 21, 27, 49] require $O(n)$ time to update all proofs, while Hyperproofs only requires $O(\log n)$. Furthermore, when compared to Merkle trees, aggregation is $10 \times$ to $100 \times$ faster in Hyperproofs (see §5.2).

5 EVALUATION

In this section, we measure the performance of Hyperproofs and explore their applicability for stateless validation. We do not compare to VCs with constant-sized proofs due to their impractical $O(n)$ cost to update all proofs. Instead, we focus on Merkle trees with SNARK-based aggregation. We use the Golang bindings of the mcl library [33] to implement Hyperproofs. We use BLS12-381, a pairing-friendly elliptic curve, which offers 128 bits of security. A serialized $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} element in mcl takes 48,96 , and 576 bytes, respectively. A single exponentiation takes $106 \mu \mathrm{~s}$ in \mathbb{G}_{1} and $250 \mu \mathrm{~s}$ in \mathbb{G}_{2}. Each experiment ran single-threaded on an Intel Core i7-4770 CPU @ 3.40 GHz with 8 cores and 32 GiB of RAM. Unless stated

$\ell=\log _{2} n$	$\mathbf{2 2}$	$\mathbf{2 4}$	$\mathbf{2 6}$	$\mathbf{2 8}$	$\mathbf{3 0}$
Com (min)	3.15	12.61	50.44	201.79^{*}	807.19^{*}
OpenAll (hrs)	0.644	2.78	12.06^{*}	52.19^{*}	225.80^{*}
UpdDig			$47.76 \mu \mathrm{~s}$		
UpdAllProofs (ms)	1.74	1.96	2.15	2.37	2.58
Indiv. Ver (ms)	8.15	8.22	9.10	10.09	10.93
Agg (s)	105.14	109.49	114.03	118.31	122.62
Aggr. Ver (s)	12.94	14.06	15.11	16.22	17.41
Indiv. proof size (KiB)	1.06	1.15	1.25	1.34	1.44
Aggr. proof size (KiB)			51.6		

Table 2: Single-threaded microbenchmarks for Hyperproofs. Running times with an asterisk symbol (*) are too long and have been interpolated. We measure aggregation of 1024 proofs. OpenAll and Com are only measured once. UpdDig and UpdAllProofs times are averages after a batch of 1024 changes to the vector. All algorithms are parallelizable.
otherwise, we perform 4 runs of each experiment and report their average. Also, vectors in this section are of size $n=2^{\ell}$.

5.1 Microbenchmarks

We microbenchmark Hyperproofs in Table 2. All microbenchmarks pick vectors and updates randomly and are single-threaded, but trivially parallelizable.
Public parameters. To commit to vectors of size n, Hyperproofs needs a large proving key consisting of $2 n-1 \mathbb{G}_{1}$ elements depicted in Fig. 2. For $\ell=28$, this requires around 24 GiB of space (see Table 5). Verification keys are all derived from $\left(g_{2}^{s_{k}}\right)_{k \in[\ell]}$. Furthermore, to aggregate b proofs, Abe et al. commitment keys [2] are needed consisting of $\ell \cdot b \mathbb{G}_{1}$ and $\ell \cdot b \mathbb{G}_{2}$ elements. For $\ell=28$ and $b=1024$, this only adds 3.94 MiB . Watermarking the public parameters as per $\S 3.4$ requires $2 n-1$ exponentiations in \mathbb{G}_{1}. For $\ell=28$, this takes 15.87 hours. However, this is a one-time cost.

Committing and computing multilinear trees. We commit to a vector of size n via an $O(n)$-sized multi-exponentiation. For $\ell=28$, this takes 202 minutes. Computing a multilinear tree (MLT) involves committing to the MLEs in each node via a multi-exponentiation (see Fig. 4). For $\ell=28$, this takes 52.2 hours (or 1.63 hours with 32 threads). We expect to at least double performance via faster multi-exponentiation algorithms, which mcl lacks.

Updating the digest and the multilinear tree. For updating the digest, we measure the time to apply a batch of 1024 updates via a multi-exponentiation, divide this time by 1024 and obtain an average time of $48 \mu \mathrm{~s}$ per update. For the MLT, we also measure the time to apply a batch of 1024 updates. This way, we can use multi-exponentiations when updating nodes in the tree. Dividing the total time by 1024 , gives us an average time of $1.74(\ell=22)$ to 2.58 milliseconds $(\ell=30)$ per update. Recall from $\S 3.4$ that updates will be just as fast for watermarked multilinear trees.
Proof size and verification time. Individual proof size is $\ell \mathbb{G}_{1}$ elements and is competitive with Merkle trees (e.g., for $\ell=30$, 1.44 KiB in MLTs versus 960 bytes in MHTs). Verifying a proof
requires $\ell+1$ pairings, which we optimize into a multi-pairing (i.e., first compute $\ell+1$ Miller loops and then compute a single final exponentiation). This way, verifying a proof ranges from $8.2(\ell=22)$ to 11 milliseconds $(\ell=30)$. If the proof is watermarked, we discount the WPK from the proof size, since the verifier could already have the WPK, depending on the application. Furthermore, this overhead would be acceptable: 224 bytes (see Appendix B). Lastly, verifying the ZKPoK for the WPK requires two \mathbb{G}_{2} exponentiations, which adds around $500 \mu \mathrm{~s}$ to the proof verification time.
Proof aggregation. Let I be the set of transactions to be aggregated via $\mathrm{Agg}_{\text {pp }}$, which calls $\mathcal{P}_{\text {BATCH }}$ from Fig. 6. In our benchmarks, $b=|I|=1024$. As shown in Table 2, aggregating 1024 transactions takes between $105(\ell=22)$ to 123 seconds $(\ell=30)$. Verifying such an aggregated proof takes between $13(\ell=22)$ to $17.5(\ell=30)$ seconds. These times are not affected by watermarking. In §5.2, we show our aggregation is $10 \times$ to $100 \times$ faster than SNARKs.
Aggregated proof size. Our aggregated proof size is 52 KiB for any $\ell=22, \ldots, 30$. This is an artifact of the IPA proof size depending on the smallest power of two $\geq \log (b \cdot \ell)$, which is the same for all ℓ 's above when $b=1024$. As with individual proofs, watermarking does not affect proof size when the verifier has the WPKs.

5.2 Comparison with SNARKs

In this subsection, we show that Hyperproof aggregation is anywhere from $10 \times$ to $100 \times$ faster than Merkle proof aggregation via SNARKs (see Fig. 8), depending on the choice of hash function. This comes at the cost of larger proofs (52 KiB versus 192 bytes) and slower verification. Nonetheless, the end-to-end time to prove-andverify remains around $10 \times$ to $100 \times$ faster in Hyperproofs.
Experimental setup. We fix the height of both the Merkle tree and our MLT to $\ell=30$, and measure performance when aggregating $b \in\left\{2^{2}, 2^{4}, \ldots, 2^{14}\right\}$ proofs. We compare to an implementation by Ozdemir et al. [35] in Rust [34] which uses the state-of-the-art SNARK by Groth [23] to prove knowledge of changes to a Merkle tree, updating it from digest d to digest d^{\prime}. To benchmark proof aggregation, we notice that proof aggregation would involve half of the work done by the Ozdemir et al. prover, and directly use their code. This is because proving knowledge of b changes involves first verifying b Merkle proofs for the original values "inside the SNARK" and then updating the Merkle root with the changes, which also involves b Merkle path verifications. For the SNARK verifier, we directly measure its work, which involves a \mathbb{G}_{1} multi-exponentiation linear in the number of proofs aggregated and 3 pairings.
Choice of Merkle hash function. Choosing a "SNARK-friendly" hash function for the Merkle tree can significantly reduce the prover time. In this sense, we use the recently-proposed Poseidon-128 hash function [22], which only requires 316 R1CS constraints per invocation inside the SNARK, but lacks sufficient cryptanalysis. As a more secure choice, we also use the Pedersen hash function [54] used in Zcash [7], which is collision-resistant under the hardness of discrete log, but requires 2753 constraints per invocation [35].
Proving time. The SNARK prover time is dominated by several multi-exponentiations and Fast Fourier Transforms (FFTs) of size linear in the number of R1CS constraints. For example, when aggregating $b=2^{10}$ proofs in a Poseidon-hashed Merkle tree of height

Figure 8: SNARK-based Merkle proof aggregation versus Hyperproof aggregation. The x-axis is $\log _{2}$ (\# of proofs being aggregated). Dotted lines are extrapolated, due to the SNARK prover running out of memory. We use the 128 -bit secure variant of Poseidon.
$\ell=30$, the number of constraints is 10 million. As a result, SNARK aggregation is very slow, taking 1224 seconds. In contrast, when aggregating b Hyperproofs, also in a height ℓ MLT, our IPA-based prover from Fig. 6 only computes $O(b \ell)$ pairings and $O(b \ell) \mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} exponentiations. This only takes 123 seconds. On average, as shown in Fig. 8(a), aggregating Hyperproofs is $10 \times$ faster than aggregating Merkle-Poseidon proofs and $100 \times$ faster than Merkle-Pedersen.

Prover memory. The SNARK prover also requires memory at least linear in the number of constraints. As a result, on our machine with 32 GiB of RAM, SNARK aggregation runs out of memory when aggregating $\geq 2^{11}$ proofs with Poseidon hashing (20 million constraints) or $\geq 2^{8}$ proofs with Pedersen (23 million constraints). Nonetheless, we extrapolate the proving times in Fig. 8. In contrast, our IPA-based aggregation from Fig. 6 has a much lower memory footprint and never runs out of memory.
Verification time. In general, verifying a SNARK proof requires 3 pairings and a \mathbb{G}_{1} multi-exponentiation of size equal to the number of verifier-provided inputs [23]. In particular, when aggregating b Merkle proofs, this multi-exponentiation will be of size $2 b+1$, since the verifier must input the digest and the b leaves $\left(i, v_{i}\right)_{i \in I}$ being verified. We implement verification in Golang using mcl [33] and report the times in Fig. 8(b). (We cannot use the Ozdemir et al. code, since the verifier only inputs two digests and checks knowledge of b changes to the Merkle tree.) When aggregating $b=2^{10}$ proofs, it takes 0.11 seconds to verify a SNARK proof and 17.4 seconds to verify an aggregated Hyperproof. While verification is slower in Hyperproofs, when accounting for both the time to prove and verify in Fig. 8(c), Hyperproofs are faster.
SNARKs without trusted setup. Recent SNARKs $[14,44,55]$ are transparent (i.e., do not need a trusted setup). Even better, these SNARKs often have faster provers than pairing-based SNARKs. However, compared to Hyperproofs, they are still too slow, have larger proof sizes and consume too much memory. For example, aggregating $b=2^{14}$ Merkle proofs requires 2^{28} R1CS constraints if using Poseidon hashes. The prover time would be around 2.58 hours using Spartan [44, Figure 7] and 1.53 hours using Virgo [55]. This is close to $5 \times$ and $3 \times$ slower than Hyperproofs, respectively. The proof size would be around 1.83 MiB using Spartan and 350 KiB
using Virgo (estimated using the open-source code of [55]). This is around $36 \times$ and $7 \times$ bigger than Hyperproofs, respectively. The performance is even worse if we use Pedersen hashes. Moreover, these transparent SNARKs are not as memory-efficient as Hyperproofs: Virgo scales to 2^{24} constraints, similar to pairing-based SNARKs (i.e., fails aggregating when $b \geq 2^{11}$ proofs) while Spartan scales to 2^{26} constraints (i.e., fails for $b \geq 2^{13}$). Lastly, other transparent arguments (e.g., STARKs [6], Aurora [8], Hyrax [52], Ligero [4]) have similar drawbacks. We defer to $[44,55]$ for a detailed discussion on trade-offs.

5.3 Macrobenchmarks

Our single-threaded experiments measure the VC-induced overheads of statelessly reaching consensus on a new block (see §4), which consist of: (1) aggregating proofs during block proposal, (2) verifying an aggregated proof during block validation and (3) proof-serving nodes (PSNs) updating all proofs after a new block, so that the next proposed block can use these proofs. In Table 3, we show Hyperproofs are $32 \times$ faster than Poseidon-hashed Merkle trees when proposing and validating blocks and remain competitive in terms of proof maintenance cost. Interestingly, stateless validation involves a more complex SNARK, which worsens the $10 \times$ slowdown of Merkle trees from $\S 5.2$. We assume MLTs and Merkle trees of height $\ell=30$ and blocks of 1024 transactions. We do not compare to VCs with $O(1)$-sized proofs, due to their large proof maintenance cost (i.e., $2^{\ell} \mathbb{G}_{1}$ exponentiations, or 31.7 hours).

Limitations: Our macrobenchmarks do not account for all the subtleties that would arise in a full prototype, such as communication overheads, or miners needing to update the proofs in the current block they are working on due to another competing block. They also do not account for the overhead of signature verification, which is not affected by the chosen VC scheme. Instead, they focus on the three key operations whose overheads should be minimized: block proposal, block validation and proof maintenance. Lastly, while we show Hyperproofs are faster than other VCs for stateless validation, we do not claim they make the stateless setting practical.
Block transitions with Hyperproofs versus Merkle trees. In a stateless cryptocurrency, the i th block stores the digest d_{i} of all users' balances at that point in time. When block $i+1$ arrives, it

Scheme	Hyperproofs	Merkle tree with Poseidon-128 + SNARK
Block proposal	2.23 min	80.78 min
Block validation	17.51 sec	0.18 sec
Proof maintenance	5.14 sec	4.7 sec

Table 3: Single-threaded, stateless cryptocurrency macrobenchmarks that measure the time to prepare a block for proposal, to validate a proposed block and to update all proofs after a new block is seen. Trees have height $\ell=30$ and blocks have 1024 transactions. A Poseidon-128 hash takes 113 $\mu \mathrm{s}$ using the go-iden3-crypto library [20].
must prove that its new digest d_{i+1} correctly reflects the updated balances, after applying its transactions. With Hyperproofs, the block includes an aggregated proof for the balance of each user sending money. This way, a validator can ensure that a block is spending valid coins and then can compute d_{i+1} from d_{i} via UpdDig, subtracting coins from each sending user's account and adding coins to each receiving user.

With SNARK-based Merkle trees, it is not possible to update the digest d_{i+1} given the old digest d_{i}, the SNARK aggregation proof, and the changes in balances: the Merkle proofs for all the changed leaves are also needed as auxiliary information. But including these Merkle proofs in the block would defeat the point of aggregating them via SNARKs! Therefore, the SNARK circuit must be extended to also verify the transition between d_{i} and d_{i+1}. Specifically, the circuit additionally proves that d_{i+1} is obtained by applying the changes in the block to d_{i}. A block of b transactions involves $2 b$ changes to the Merkle tree, and each change requires two Merkle path verifications inside the circuit. Therefore, the circuit involves $4 \cdot b$ Merkle path verifications ($4 \times$ more expensive than the aggregation circuit from §5.2).
Block overhead. As described above, stateless cryptocurrency blocks additionally store the digest of the state and an aggregated proof for all transactions. Both Merkle trees and Hyperproofs have similar digest sizes (i.e., 32 bytes versus 48 bytes). However, aggregated Hyperproofs are 52 KiB , whereas SNARK-aggregated Merkle proofs are only 192 bytes. Nonetheless, relative to the size of the full block, Hyperproof overhead is modest and only decreases with larger blocks. Furthermore, we foresee optimizing the IPA from Fig. 3 to reduce the proof size. Lastly, using unstealability to incentivize proof-serving nodes (which Merkle trees do not support) adds 224 bytes of WPK overhead per PSN involved in the block. As an alternative, if the set of PSNs is fixed or grows slowly, then WPKs can be stored as part of the public parameters of the system.

Transaction overhead. Transactions propagating through the P2P network in a stateless cryptocurrency need to include proofs. With Hyperproofs, this only requires a 1.44 KiB proof for the sender's balance. With Poseidon-hashed Merkle trees, this requires two 960 byte proofs, or 1.875 KiB , one for the sender and one for the receiver. This is because, to update the Merkle root, the miner also needs the receiver's Merkle proof as auxiliary information, whereas in Hyperproofs the digest can be updated homomorphically.
Block proposal. With Hyperproofs, a miner proposing a block with 1024 transactions has to (1) verify 1024 individual Hyperproofs,
(2) aggregate these proofs, (3) and update the digest. With Merkle trees, this remains the same, except steps (2) and (3) are done in the SNARK. Table 3 shows block proposal is $36 \times$ faster in Hyperproofs than in SNARKs due to faster aggregation/digest updates.
Block validation. To validate an incoming block, a miner has to verify its aggregated proof and check its commitment was computed correctly via UpdDig. In Table 3, we see that SNARKs are much faster to verify than b aggregated Hyperproofs ($97 \times$), which require $O(b \ell) \mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} exponentiations to verify. While SNARKs also incur $O(b)$ cost, this only involves a fast \mathbb{G}_{1} multi-exponentiation. Nonetheless, when considering the time to propose and validate a block, Hyperproofs remains $32 \times$ faster.

Proof maintenance. Recall that having updated proofs ready to be served is important in stateless cryptocurrencies, since users need to fetch and include their proofs when sending a transaction to a miner. Fortunately, a PSN can update all proofs in $O(\ell)$ time in both Hypeproofs and Merkle trees. Table 3 gives the concrete batch update time after 1024 transactions (or 2048 changes to the tree). Batch-updating Merkle trees is slightly faster than applying each update sequentially, because each node in the Merkle tree need only be updated once, by recomputing a Poseidon- 128 hash, which takes $113 \mu \mathrm{~s}$. In contrast, when batch-updating MLTs, each node still needs to be updated several times to account for all the leaves that changed underneath it, as per Eq. 19. While we optimize this using a multi-exponentiation, MLTs will be slightly slower.

6 CONCLUSION

We presented Hyperproofs, a new VC that supports efficiently maintaining and aggregating proofs. We showed Hyperproofs aggregation is $10 \times$ to $100 \times$ faster than SNARK-based Merkle trees, depending on choice of hash function, and are only slightly slower when maintaining proofs. Although aggregated Hyperproofs are slower to verify, they are overall faster when used to statelessly propose and validate blocks in cryptocurrencies due to their faster aggregation. Hyperproofs is also the first unstealable VC, allowing proof-serving nodes to efficiently precompute proofs watermarked with their identity so they can be rewarded for their work. Importantly, these watermarked proofs remain updatable and aggregatable.

Future work. It would be interesting to apply our aggregation and unstealability techniques to Verkle trees [26, 29], which are q-ary rather than binary Merkle trees. This would also help extend Hypeproofs into a key-value commitment (KVC) scheme that maps arbitrary keys to values. Building Hyperproofs from assumptions in hidden-order groups would eliminate the large public parameters and, potentially, the trusted setup. Using more malleable innerproduct arguments would allow us to update aggregated proofs too. Lastly, optimizing the arguments from Figs. 3 and 6 for our Hyperproof setting could speed up aggregation and verification times as well as reduce proof size.
Open source implementation. Our code will be available at:
https://github.com/hyperproofs/hyperproofs

REFERENCES

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. 2010. Structure-Preserving Signatures and Commitments to Group Elements. In Advances in Cryptology - CRYPTO 2010, Tal Rabin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 209-236.
[2] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. 2016. Structure-Preserving Signatures and Commitments to Group Elements. Journal of Cryptology 29, 2 (01 Apr 2016), 363-421. https://doi.org/10 1007/s00145-014-9196-7
[3] Shashank Agrawal and Srinivasan Raghuraman. 2020. KVaC: Key-Value Commitments for Blockchains and Beyond. In Advances in Cryptology - ASIACRYPT 2020, Shiho Moriai and Huaxiong Wang (Eds.). Springer International Publishing, Cham, 839-869.
[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. 2017. Ligero. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM. https://doi.org/10.1145/3133956.3134104
[5] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic Curves of Prime Order. In Selected Areas in Cryptography, Bart Preneel and Stafford Tavares (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 319-331.
6] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046. https://eprint.iacr.org/2018/046.
[7] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. 2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. 459-474. https://doi.org/10.1109/SP.2014.36
[8] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for R1CS. In Advances in Cryptology - EUROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer International Publishing, Cham, 103-128.
[9] Dan Boneh and Xavier Boyen. 2004. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In Advances in Cryptology - EUROCRYPT 2004, Christian Cachin and Jan L. Camenisch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 223-238.
[10] Dan Boneh and Xavier Boyen. 2004. Short signatures without random oracles. In International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 56-73.
[11] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains. In CRYPTO 19.
[12] Sean Bowe, Ariel Gabizon, and Ian Miers. 2017. Scalable Multi-party Computation for zk-SNARK Parameters in the Random Beacon Model. https://eprint.iacr.org/ 2017/1050.
[13] Johannes Buchmann, Tsuyoshi Takagi, and Ulrich Vollmer. 2004. Number Field Cryptography. In High Primes \& Misdemeanors: Lectures in Honour of the 60th Birthday of Hugh Cowie. American Mathematical Society, 111-125.
[14] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and More. In Proceedings of the Symposium on Security and Privacy (SP), 2018, Vol. 00. 319-338.
[15] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. 2019. Proofs for Inner Pairing Products and Applications. Cryptology ePrint Archive, Report 2019/1177. https://eprint.iacr.org/2019/1177.
[16] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo. 2020. Incrementally Aggregatable Vector Commitments and Applications to Verifiable Decentralized Storage. In Advances in Cryptology - ASIACRYPT 2020, Shiho Moriai and Huaxiong Wang (Eds.). Springer International Publishing, Cham, 3-35.
[17] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their Applications. In Public-Key Cryptography - PKC 2013-16th International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 March 1, 2013. Proceedings. 55-72.
[18] Thaddeus Dryja. 2019. Utreexo: A dynamic hash-based accumulator optimized for the Bitcoin UTXO set. https://eprint.iacr.org/2019/611.
[19] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to Identification and Signature Problems. In Advances in Cryptology - CRYPTO' 86, Andrew M. Odlyzko (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 186-194.
[20] go-iden3 crypto. 2020. go-iden3-crypto. https://github.com/iden3/go-iden3crypto/.
[21] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. 2020. Pointproofs: Aggregating Proofs for Multiple Vector Commitments. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (Virtual Event, USA) (CCS '20). Association for Computing Machinery, New York, NY, USA, 2007-2023. https://doi.org/10.1145/3372297.3417244
[22] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association. https://www.usenix.org/conference/usenixsecurity21/presentation/ grassi
[23] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In Advances in Cryptology-EUROCRYPT 2016-35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. 305-326
[24] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size Commitments to Polynomials and Their Applications. In ASIACRYPT'10.
[25] Johannes Krupp, Dominique Schröder, Mark Simkin, Dario Fiore, Giuseppe Ateniese, and Stefan Nürnberger. 2016. Nearly Optimal Verifiable Data Streaming. In Public-Key Cryptography - PKC 2016-19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan. 417-445.
[26] John Kuszmaul. 2018. Verkle Trees: V(ery short M)erkle Trees. In MIT PRIMES Conference '18. https://math.mit.edu/research/highschool/primes/materials/2018/ Kuszmaul.pdf
[27] Russell W. F. Lai and Giulio Malavolta. 2019. Subvector Commitments with Application to Succinct Arguments. In Advances in Cryptology - CRYPTO 2019 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I. 530-560.
[28] J. Lee, K. Nikitin, and S. Setty. 2020. Replicated state machines without replicated execution. In 2020 IEEE Symposium on Security and Privacy (SP). 119-134. https: //doi.org/10.1109/SP40000.2020.00068
[29] Benoît Libert and Moti Yung. 2010. Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets with Short Proofs. In TCC'10.
[30] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption Function. In CRYPTO '87, Carl Pomerance (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 369-378.
[31] Andrew Miller. 2012. Storing UTXOs in a balanced Merkle tree (zero-trust nodes with O(1)-storage). https://bitcointalk.org/index.php?topic=101734.msg1117428.
[32] Shigeo; Mitsunari, Ryuichi Sakai, and Masao Kasahara. 2002. A New Traitor Tracing. In IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E85-A. 481-484.
[33] Mitsunari Shigeo. 2015. mcl: a portable and fast pairing-based cryptography library. https://github.com/herumi/mcl/. Accessed: 2020-10-14.
[34] Alex Ozdemir. 2020. bellman-bignat. https://github.com/alex-ozdemir/bellmanbignat.
[35] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling Verifiable Computation Using Efficient Set Accumulators. In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association, 2075-2092. https://www. usenix.org/conference/usenixsecurity20/presentation/ozdemir
[36] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. 2011. Signatures of Correct Computation. Cryptology ePrint Archive, Report 2011/587. https: //eprint.iacr.org/2011/587.
[37] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. 2013. Signatures of Correct Computation. In TCC'13.
[38] Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. 2013. Streaming Authenticated Data Structures. In EUROCRYPT 2013, Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 353-370.
[39] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio: Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 238-252.
[40] Yi Qian, Yupeng Zhang, Xi Chen, and Charalampos Papamanthou. 2014. Streaming Authenticated Data Structures: Abstraction and Implementation. In ACM CCSW'14. ACM Press. https://doi.org/10.1145/2664168.2664177
[41] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. 2017. Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies. In FC'17.
[42] C. P. Schnorr. 1990. Efficient Identification and Signatures for Smart Cards. In Advances in Cryptology - CRYPTO' 89 Proceedings, Gilles Brassard (Ed.). Springer New York, New York, NY, 239-252.
[43] Jacob T Schwartz. 1979. Probabilistic algorithms for verification of polynomial identities. In International Symposium on Symbolic and Algebraic Manipulation. Springer, 200-215.
[44] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup. In Advances in Cryptology - CRYPTO 2020, Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International Publishing, Cham, 704-737.
[45] Justin Thaler. 2020. Proofs, Arguments, and Zero-Knowledge. https://people.cs. georgetown.edu/jthaler/ProofsArgsAndZK.pdf.
[46] Peter Todd. 2016. Making UTXO set growth irrelevant with low-latency delayed TXO commitments. https://petertodd.org/2016/delayed-txo-commitments.
[47] Alin Tomescu. 2020. How to compute all Pointproofs. Cryptology ePrint Archive, Report 2020/1516. https://eprint.iacr.org/2020/1516.
[48] Alin Tomescu. 2020. How to Keep a Secret and Share a Public Key (Using Polynomial Commitments). Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA.
[49] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich. 2020. Aggregatable Subvector Commitments for Stateless Cryptocurrencies. In Security and Cryptography for Networks, Clemente Galdi and Vladimir Kolesnikov (Eds.). Springer International Publishing, Cham, 45-64.
[50] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold Cryptosystems. In IEEE S\&P'20.
[51] Alin Tomescu, Yu Xia, and Zachary Newman. 2020. Authenticated Dictionarie with Cross-Incremental Proof (Dis)aggregation. Cryptology ePrint Archive, Report 2020/1239. https://eprint.iacr.org/2020/1239.
[52] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. 2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Symposium on Security and Privacy (SP). 926-943. https://doi.org/10.1109/SP.2018.00060
[53] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. https://gavwood.com/paper.pdf.
[54] Zcash. 2017. What is Jubjub? https://z.cash/technology/jubjub/.
[55] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent Polynomial Delegation and Its Applications to Zero Knowledge Proof. In IEEE S\&P 2020.
[56] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. [n.d.]. vRAM: Faster Verifiable RAM With Program-Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy (SP), Vol. 00. 203-220. https //doi.org/10.1109/SP.2018.00013
[57] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy (SP). 863-880.
[58] Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In International Symposium on Symbolic and Algebraic Manipulation. Springer, 216-226.

A ASSUMPTIONS

Our work builds upon the inner product argument (IPA) by Bünz et al. (see §2.4), which in turn relies on Abe et al. commitments to group elements [1], which are secure under the Symmetric-eXternal Diffie-Hellman (SXDH) assumption defined below.

Assumption A. $1(\mathrm{SXDH}) . \operatorname{Let}\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right) \leftarrow \operatorname{BilGen}\left(1^{\lambda}\right)$. The Decisional Diffie-Hellman (DDH) problem in \mathbb{G} is to decide whether $c=a b$, given $\left(g, g^{a}, g^{b}, g^{c}\right)$ where $g \in_{R} \mathbb{G}$. The SXDH assumption is that DDH holds in both \mathbb{G}_{1} and \mathbb{G}_{2}.

We prove Hyperproofs satisfy soundness, as per Definition 2.3, under q-Strong Diffie-Hellman ($q-S D H$) assumption, defined below.

Assumption A. 2 (q-SDH [10]). For any ppt adversary \mathcal{A},
$\operatorname{Pr}\left[\begin{array}{c}\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right) \leftarrow \operatorname{BilGen}\left(1^{\lambda}\right), s \in_{R} \mathbb{Z}_{p}^{*}, \\ \operatorname{pp}=\left(\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), g_{2}^{s}, g_{1}^{s}, \ldots, g_{1}^{s^{q}}\right): \\ \left(a, g_{1}^{\frac{1}{s+a}}\right) \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{pp}\right)\end{array}\right] \leq \operatorname{negl}(\lambda)$
In addition to VC soundness, we prove Hyperproofs have unstealability, as per Definition 3.1, under the q-Diffie-Hellman Inversion (q-DHI) assumption [9, 32], defined below.

Assumption A. 3 (q-DHI). For any ppt adversary \mathcal{A},

$$
\operatorname{Pr}\left[\begin{array}{c}
\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right) \leftarrow \operatorname{BilGen}\left(1^{\lambda}\right), s \in \in_{R} \mathbb{Z}_{p}^{*}, \\
\operatorname{pp}=\left(\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), g_{2}^{s}, g_{1}^{s}, \ldots, g_{1}^{s^{q}}\right): \\
g_{1}^{1 / s} \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{pp}\right)
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

The faster verifier for the Bünz et al. IPA from $\S 2.4$ relies on a modified Abe et al. commitment scheme which uses "structured" commitment keys. This modified commitment scheme is binding under the q-Auxiliary Structured Double Pairing (q-ASDBP) assumption in \mathbb{G}_{1} and \mathbb{G}_{2} introduced in [15]. First, we present this assumption in \mathbb{G}_{2} below.

Assumption A. $4\left(q-\operatorname{ASDBP}_{\mathbb{G}_{2}}\right)$. For any ppt adversary \mathcal{A},
$\operatorname{Pr}\left[\begin{array}{c}\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right) \leftarrow \operatorname{BilGen}\left(1^{\lambda}\right), \beta \in_{R} \mathbb{Z}_{p}^{*}, \\ \operatorname{pp}=\left(\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), g_{1}^{\beta},\left(g_{2}^{\beta^{2 i}}\right)_{i \in[1, q)}\right. \\ \left(A_{0}, \ldots, A_{q-1}\right) \leftarrow \mathcal{A}\left(1_{1}^{\lambda}, \mathrm{pp}\right): \\ \left(A_{0}, \ldots, A_{q-1}\right) \neq \mathbf{1}_{\mathbb{G}_{1}} \wedge 1_{\mathbb{G}_{T}} \neq \prod_{i=1}^{q-1} e\left(A_{i}, g_{2}^{\beta^{2 i}}\right)\end{array}\right] \leq \operatorname{negl}(\lambda)$
Second, the \mathbb{G}_{1} variant of q-ASDBP is defined similarly by swapping \mathbb{G}_{2} with \mathbb{G}_{1}. Third, the q-ASDBP assumption holds in the generic group model [15].

B ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE

Recall from $\S 3.4$ that a watermarking public key (WPK) g_{2}^{α} must come with a zero-knowledge proof of knowledge (ZKPoK) of α. For this, we rely on Schnorr ZKPoKs of α [42], defined as zkpok ${ }_{\alpha}=$ $(z, y) \in \mathbb{G}_{2} \times \mathbb{Z}_{p}$, where:

$$
\begin{align*}
& y=g_{2}^{c}, \text { where } c \in_{R} \mathbb{Z}_{p} \tag{29}\\
& z=c+H\left(g_{2}, g_{2}^{\alpha}, y\right) \alpha \tag{30}
\end{align*}
$$

To verify $z^{2 k p o k}{ }_{\alpha}$, one checks if:

$$
\begin{equation*}
g_{2}^{z} \stackrel{?}{=} y\left(g_{2}^{\alpha}\right)^{H\left(g_{2}, g_{2}^{\alpha}, y\right)}=g_{2}^{c} g_{2}^{H\left(g_{2}, g_{2}^{\alpha}, y\right) \alpha}=g_{2}^{c+H\left(g_{2}, g_{2}^{\alpha}, y\right) \alpha} \tag{31}
\end{equation*}
$$

where $H(\cdot)$ is modeled as a random oracle.

C INNER PRODUCT ARGUMENT (IPA)

C. 1 Non-interactive arguments of knowledge

Let \mathcal{L} be an NP relation such that $\mathbf{x} \in \mathcal{L}$ if, and only if, there exists a witness \mathbf{w} such that $\mathcal{L}(\mathbf{x} ; \mathbf{w})=1$. A non-interactive argument of knowledge for \mathcal{L} (e.g., SNARKs [39]) allows a verifier to efficiently verify that $\mathbf{x} \in \mathcal{L}$, without using \mathbf{w}, but via a (small) proof provided by an untrusted prover. A non-interactive argument of knowledge consists of three PPT algorithms, $(\mathcal{G}, \mathcal{P}, \mathcal{V})$:
(1) $(P K, V K) \leftarrow \mathcal{G}\left(1^{\lambda}, \mathcal{L}\right)$: Generates the proving and verification key for the program \mathcal{L}.
(2) $\pi \leftarrow \mathcal{P}(P K, \mathbf{x} ; \mathbf{w}):$ Generates a proof π to prove that there exists \mathbf{w} such that $\mathcal{L}(\mathbf{x} ; \mathbf{w})=1$.
(3) $\{0,1\} \leftarrow \mathcal{V}(V K, \pi, \mathbf{x})$: Checks if the proof π is valid for \mathbf{x} using the verification key $V K$.

The main property of arguments of knowledge is knowledge soundness, formalized in Definition C.1. The intuition is that, if the verifier accepts a proof for \mathbf{x}, then the prover must "know" a witness \mathbf{w} for \mathbf{x} and therefore $\mathbf{x} \in \mathcal{L}$. Knowledge is modeled by an extractor \mathcal{E} that can output such a \mathbf{w} by inspecting the prover's tape.

Definition C. 1 (Knowledge soundness). We say that an argument of knowledge $(\mathcal{G}, \mathcal{P}, \mathcal{V})$ for NP relation \mathcal{L} has knowledge soundness if, for any ppt \mathcal{A}, there is a Ppt extractor \mathcal{E} such that:

$$
\operatorname{Pr}\left[\begin{array}{c|c}
& (P K, V K) \leftarrow \mathcal{G}\left(1^{\lambda}, \mathcal{R}\right), \\
1 \leftarrow \mathcal{V}(V K, \pi, \mathbf{x}) & (\pi, \mathbf{x}) \leftarrow \mathcal{A}(P K, V K), \\
\mathbf{w} \leftarrow \mathcal{E}(P K, V K, \pi, \mathbf{x}), \\
\mathcal{L}(\mathbf{x} ; \mathbf{w}) \neq 1
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

C. 2 Random linear combinations lemma

Lemma C.1. Let $Z_{i} \in \mathbb{G}_{T}, \mathbf{A}_{i} \in \mathbb{G}_{1}^{m}$ and $\mathbf{B}_{i} \in \mathbb{G}_{2}^{m}$ for $i=1, \ldots, N$. Assume each r_{i} is chosen uniformly at random from \mathbb{Z}_{p}. Then, with probability at least $1-1$ p p, all Eq. 24 are satisfied iff. Eq. 25 is satisfied.

Proof sketch. Clearly if Eq. 24 are satisfied then Eq. 25 is also satisfied. For the other direction, by the Schwartz-Zippel lemma [43, 58], if at least one equation from Eq. 24 does not hold, Eq. 25 holds at randomly selected values r_{i} with probability $1 / p$, completing the proof.

C. 3 Security proof for $\mathcal{L}_{\text {BATCH }}^{b, \ell}$ argument

Theorem C.1. ($\left.\mathcal{G B A T C H}, \mathcal{P}_{\mathrm{BATCH}}, \mathcal{V}_{\mathrm{BATCH}}\right)$ from Fig. 6 is a noninteractive argument of knowledge for $\mathcal{L}_{\mathrm{BATCH}}^{b, \ell}$ from Eq. 23 that has knowledge soundness according to Definition C. 1 under the same assumptions as the non-interactive IPA from $\$ 2.4$ (i.e., algebraic commitment model [15], the random oracle model, (2b $)-S D H,(b \ell)-A S D B P)$.

Proof sketch. This follows from Lemma C. 1 and the knowledge soundness of the Bünz et al. IPA, which is used in a black box fashion.

D HYPERPROOFS

D. 1 MLT correctness

We argue below why our multilinear tree from $\S 3.1$ yields correct proofs as per Definition 2.2. Formally, the quotients $q_{j}\left(x_{j}, \ldots, x_{1}\right)$,

Table 4: Comparison with other VCs, which are not simultaneously aggregatable and maintainable. Proof sizes are in terms of group elements. n is the size of the vector, π_{i} is a proof for position i and π_{I} is an aggregated proof for k positions. Times are in terms of group exponentiations and field operations. (In RSA-based VCs [11, 16, 17, 27], we count $O(\ell)$ group operations as an exponentiation, where ℓ is the size of VC elements.) All schemes* support UpdDig and UpdProof (see Definition 2.1). However, CF-CDH and Pointproofs have $O(n)$-sized update keys, which can be too large for some applications.

| Scheme | $\left\|\pi_{i}\right\|$ | $\left\|\pi_{I}\right\|$ | $\begin{aligned} & \text { OpenAll } \\ & \text { time } \end{aligned}$ | Agg
 time | UpdAllProofs time | Transparent? | Homomorphic? | Gen
 time | \|pp| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMT [48] | $\log n$ | \times | $n \log n$ | \times | $\log n$ | \times | \checkmark | n^{2} | $n \log n$ |
| aSVC [49] | 1 | 1 | $n \log n$ | $k \log ^{2} k$ | n | \times | \checkmark | $n \log n$ | n |
| BBF [11] | 1 | 1 | $n \log ^{2} n$ | $k \log n$ | $n \log n$ | \times^{\dagger} | \times | 1 | 1 |
| CF-CDH [17, 21, 27] | 1 | 1 | n^{2} | k | n | \times | \checkmark | n^{2} | n^{2} |
| CF-RSA [16, 17, 27] | 1 | 1 | $n \log n$ | $k \log ^{2} k$ | n | \times^{\dagger} | \checkmark | 1 | 1 |
| CFG+RSA [16] | 1 | 1 | $n \log ^{2} n$ | $k \log k \log n$ | n | \times^{\dagger} | \times | 1 | 1 |
| Lattice [38, 40] | $\log n$ | \times | n | \times | $\log n$ | \checkmark | \checkmark | 1 | $\log n$ |
| Merkle | $\log n$ | \times | n | \times | $\log n$ | \checkmark | \times | 1 | 1 |
| Merkle SNARK | $\log n$ | 1 | n | $k \log n \log (k \log n)$ | $\log n$ | \times | \times | 1 | 1 |
| Pointproofs [21] | 1 | 1 | $n \log n$ | k | n | \times | \checkmark | n | n |
| Hyperproofs | $\log n$ | $(k \log n)$ | $n \log n$ | $k \log n$ | $\log n$ | \times | \checkmark | n | n |

\dagger : BBF, CF-RSA and CFG+RSA avoid the trusted setup if instantiated using class groups of imaginary quadratic order, which are known to be slower than RSA groups.
*: Merkle trees, BBF VCs and CFG+RSA require dynamic update hints, rather than static update keys, for digest and proof updates. Also, only the weakly-binding variant of CFG+RSA supports digest updates.
$\forall j \in[\ell]$ for a proof π_{i} in our MLT from Fig. 4 are computed as:

$$
\begin{equation*}
q_{j}\left(x_{j-1}, \ldots, x_{1}\right)=f_{i_{\ell}, \ldots, i_{j+1}, 1}-f_{i_{\ell}, \ldots, i_{j+1}, 0} \tag{32}
\end{equation*}
$$

One can prove that that these quotients satisfy the PST decomposition from Eq. 10, and thus yield a correct proof, for any i via induction. Here, we just show this intuitively. Begin with the first term in the PST decomposition sum from Eq. 10 , which is $q_{\ell}(\mathbf{x})\left(x_{\ell}-i_{\ell}\right)$. By Eq. 32, this term is equal to:

$$
\begin{aligned}
q_{\ell}(\mathbf{x})\left(x_{\ell}-i_{\ell}\right) & =\left(f_{1}(\mathbf{x})-f_{0}(\mathbf{x})\right)\left(x_{\ell}-i_{\ell}\right) \\
& =x_{\ell} f_{1}(\mathbf{x})-i_{\ell} f_{1}(\mathbf{x})-x_{\ell} f_{0}(\mathbf{x})+i_{\ell} f_{0}(\mathbf{x}) \\
& =\left(1-x_{\ell}\right) f_{0}(\mathbf{x})+x_{\ell} f_{1}(\mathbf{x})-\left(1-i_{\ell}\right) f_{0}(\mathbf{x})-i_{\ell} f_{1}(\mathbf{x}) \\
& =f(\mathbf{x})-f_{i_{\ell}}(\mathbf{x})
\end{aligned}
$$

The next term in the sum from Eq. 10 would be $q_{\ell-1}(\mathbf{x})\left(x_{\ell-1}-\right.$ $\left.i_{\ell-1}\right)$ which, by similar reasoning, equals $f_{i_{\ell}}(\mathbf{x})-f_{i_{\ell}, i_{\ell-1}}(\mathbf{x})$. Adding these two terms up, the $f_{i_{\ell}}(\mathbf{x})$'s cancel out, leaving us with $f(\mathbf{x})-$ $f_{i_{\ell}, i_{\ell-1}}(\mathbf{x})$. Continuing with the other terms, everything cancels out except for $f(\mathbf{x})-f_{i^{\prime}, \ldots, i_{1}}(\mathbf{x})=f(\mathbf{x})-f(\mathbf{i})$, as per Eq. 10. Therefore, the quotients defined in our MLT from Fig. 4 are correct.

D. 2 UVC definitions

In §3.4, we glanced over how to change our VC API from Definition 2.1 to account for unstealability. In particular, we introduced a new notion of unstealability (see Definition 3.1), but we did not account for aggregated proofs. Also, we did not give a correctness definition. Below, we give our final unstealble VC (UVC) definitions, which account for aggregation. We also give the full API for an UVC, which we only sketched in $\S 3.4$. Changes from $\S 2.3$ are highlighted in blue.

Definition D. 1 (UVC). An unstealable VC (UVC) scheme consists of the following algorithms:
(1) Gen $\left(1^{\lambda}, n\right) \rightarrow \mathrm{pp}$: Given security parameter λ and vector length n, it outputs public parameters pp .
(2) WtrmkGen $\left(1^{\lambda}\right) \rightarrow$ (wsk, wpk): Outputs a randomly-generated watermarking secret key (WSK) wsk and its corresponding watermarking public key (WPK) wpk.
(3) WtrmkParams(pp, wsk) \rightarrow wpp: Returns watermarked public parameters that can be used to directly compute watermarked proofs under wsk.
(4) $\operatorname{Com}_{\mathrm{pp}}(\boldsymbol{a}) \rightarrow \mathrm{C}$: Outputs the digest C of $\boldsymbol{a}=\left(a_{0}, \ldots, a_{n-1}\right)$ $\in \mathbb{Z}_{p}^{n}$.
(5) $\operatorname{Open}_{\mathrm{wpp}}(i, \boldsymbol{a}) \rightarrow \pi_{i}:$ Outputs a proof π_{i} for index i in \boldsymbol{a}, watermarked with the WSK from wpp.
(6) OpenAll ${ }_{\text {wpp }}(\mathbf{a}) \rightarrow\left(\pi_{0}, \ldots, \pi_{n-1}\right)$: Outputs all proofs π_{i} for \boldsymbol{a}, watermarked with the WSK from wpp.
(7) $\operatorname{Agg}_{\mathrm{pp}}\left(I,\left(a_{i}, \pi_{i}\right)_{i \in I}\right) \rightarrow \pi_{I}$: Combines individual proofs π_{i} for values a_{i} into an aggregated proof π_{I}.
(8) $\operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, I,\left(a_{i}, \mathrm{wpk}_{i}\right)_{i \in I}, \pi_{I}\right) \rightarrow\{0,1\}:$ Verifies proof π_{I} that each index $i \in I$ has value a_{i} against digest C . Additionally checks that the proof for a_{i} was watermarked using wpk ${ }_{i}$.
(9) UpdDig $_{\mathrm{pp}}(u, \delta, \mathrm{C}) \rightarrow \mathrm{C}^{\prime}$: Updates digest C to C^{\prime} to reflect index u changing by $\delta \in \mathbb{Z}_{p}$.
(10) UpdAllProofs ${ }_{\text {wpp }}\left(u, \delta, \pi_{0}, \ldots, \pi_{n-1}\right) \rightarrow\left(\pi_{0}^{\prime}, \ldots, \pi_{n-1}^{\prime}\right):$ Updates all watermarked proofs π_{i} to π_{i}^{\prime} after changing index u by δ.
(11) $\operatorname{UpdProof}_{\mathrm{wpp}}\left(u, \delta, \pi_{i}\right) \rightarrow \pi_{i}^{\prime}$: Updates watermarked proof π_{i} to π_{i}^{\prime} after changing index u by δ.

Definition D. 2 (UVC Correctness). An unstealable VC (UVC) is correct, if for all $\lambda \in \mathbb{N}$ and $n=\operatorname{poly}(\lambda)$, for all $\mathrm{pp} \leftarrow \operatorname{Gen}\left(1^{\lambda}, n\right)$, for all vectors $\mathbf{a}=\left[a_{0}, \ldots, a_{n-1}\right]$, if $\mathrm{C}=\operatorname{Com}_{\mathrm{pp}}(\mathbf{a})$ and $\pi_{i}=$ $\operatorname{Open}_{\text {wpp }_{i}}(i, \mathbf{a}), \forall i \in[0, n)$, where wpp $i=$ WtrmkParams $\left(\mathrm{pp}\right.$, wsk $\left._{i}\right)$ and $\left(\right.$ wsk $\left._{i}, \mathrm{wpk}_{i}\right)=\mathrm{WtrmkGen}\left(1^{\lambda}\right)$ (or from any combination of OpenAll wpp $_{i}$ (a) calls, with different wpp_{i} 's), then, for any polynomial number of updates (u, δ) outputting a new vector \mathbf{a}^{\prime}, if C^{\prime} and π_{i}^{\prime}, for all i, are the updated digest and proofs via calls to UpdDig ${ }_{p p}$ and UpdProof wpp $_{i}\left(\right.$ or UpdAllProofs wpp $_{i}$) respectively, then:
(1) $\operatorname{Pr}\left[1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}^{\prime},\{i\},\left(a_{i}^{\prime}, \mathrm{wpk}_{i}\right), \pi_{i}^{\prime}\right)\right]=1$ for all i
(2) $\operatorname{Pr}\left[1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}^{\prime}, I,\left(a_{i}^{\prime}, \mathrm{wpk}_{i}\right)_{i \in I}, \operatorname{Agg}_{\mathrm{pp}}\left(I,\left(a_{i}^{\prime}, \pi_{i}^{\prime}\right)_{i \in I}\right)\right)\right]=$ $1, \forall I \subseteq[n]$.

Definition D. 3 (UVC Soundness). \forall ppt adversaries \mathcal{A}, the following probability
$\operatorname{Pr}\left[\begin{array}{c}\mathrm{pp} \leftarrow \operatorname{Gen}\left(1^{\lambda}, n\right), \\ \left(\mathrm{C}, I, J,\left(a_{i}, \mathrm{wpk}_{i}\right)_{i \in I},\left(a_{j}^{\prime}, \mathrm{wpk}_{j}\right)_{j \in J}, \pi_{I}, \pi_{J}^{\prime}\right) \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{pp}\right): \\ 1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, I,\left(a_{i}, \mathrm{wpk}_{i}\right)_{i \in I}, \pi_{I}\right) \wedge \\ 1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, J,\left(a_{j}^{\prime}, \mathrm{wpk}_{j}\right)_{j \in J}, \pi_{J}^{\prime}\right) \wedge \\ \exists k \in I \cap J \text { s.t. } a_{k} \neq a_{k}^{\prime}\end{array}\right]$
is negligible in λ.
Notation: Let $\operatorname{Open}_{\text {wpp }}(I, \mathbf{a})$ return an aggregated proof π_{I} for all $\left(a_{i}\right)_{i \in I}$, by first obtaining individual proofs $\pi_{i}=\operatorname{Open}_{\text {wpp }}(i, \mathbf{a})$ and then aggregating them via $\pi_{I}=\operatorname{Agg}_{\text {pp }}\left(I,\left(a_{i}, \pi_{i}\right)_{i \in I}\right)$.

Definition D. 4 (UVC Unstealability). \forall ppt adversaries $\mathcal{A}=$ ($\mathcal{A}_{0}, \mathcal{A}_{1}$), the following probability
$\operatorname{Pr}\left[\begin{array}{c}\mathrm{pp} \leftarrow \operatorname{Gen}\left(1^{\lambda}, n\right), \\ (\mathrm{wsk}, \mathrm{wpk}) \leftarrow \operatorname{WtrmkGen} \mathrm{pp}\left(1^{\lambda}\right), \\ \mathrm{wpp} \leftarrow \mathrm{WtrmkParams}(\mathrm{pp}, \mathrm{wsk}), \\ \mathrm{C} \leftarrow \operatorname{Com}_{\mathrm{pp}}(\boldsymbol{a}), \text { where } a_{i} \in_{R} \mathbb{Z}_{p}, \\ \left(I_{1}, \ldots, I_{m}, \mathrm{st}\right) \leftarrow \mathcal{A}_{0}\left(1^{\lambda}, \mathrm{pp}, \mathrm{C}, \mathrm{wpk}\right) \text { s.t. } \\ I_{1} \cup \ldots I_{k} \subsetneq[n], \\ \left(\pi_{I_{k}} \leftarrow \operatorname{Open}_{\mathrm{wpp}}\left(I_{k}, \boldsymbol{a}\right)\right)_{k \in[m]}, \\ \left(J \subsetneq[n], \pi_{J},\left(\mathrm{wpk}_{j}\right)_{j \in J}\right) \leftarrow \mathcal{A}_{1}\left(\mathrm{st},\left(a_{I_{k}}\right){ }_{\left.k \in[m],\left(\pi_{I_{k}}\right)_{k \in[m]}\right)}\right) \\ \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, J,\left(a_{j}, \mathrm{wpk}_{j}\right)_{j \in J}, \pi_{J}\right)=1 \wedge \exists j \in J, \mathrm{wpk} \neq \mathrm{wpk}{ }_{j}\end{array}\right]$
is negligible in λ.
Observation: In Appendix D.5, we prove the weaker version of this definition (i.e., Definition 3.1) holds under ℓ-DHI. However, our proof can be easily generalized to the aggregated setting.

D. 3 VC soundness proof

Below, we prove our Hyperproofs construction from §3 is sound as per Definition 2.3. We first show soundness holds for individual (non-aggregated) proofs, and then show how soundness of aggregated proofs follows from that and the knownledge-soundness of the $\mathcal{L}_{\text {BATCH }}$ argument.

D.3.1 Soundness for individual Hyperproofs.

Theorem D.1. Our individual $\log n$-sized (non-aggregated) proofs from §3.1 are sound as per Definition 2.3 under q-SDH (see Assumption A.2).

Proof. Suppose there exists an adversary \mathcal{A} that breaks Definition 2.3. We show how to build another adversary \mathcal{B} that breaks the ℓ-SDH assumption (see Assumption A.2). We first assume \mathcal{A} returns individual (non-aggregated) proofs and then generalize to \mathcal{A} returning aggregated proofs.
\mathcal{B} is given ℓ-SDH public parameters $\mathrm{pp}=\left(\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right)\right.$, $g_{2}^{s}, g_{1}^{s}, \ldots, g_{1}^{s^{\ell}}$), and must (somehow) break ℓ-SDH by outputting $\left(a, g_{1}^{\frac{1}{s-a}}\right)$ for some $a \neq s$. For this, \mathcal{B} will leverage \mathcal{A} into helping him.

First, \mathcal{B} "guesses" the index i on which \mathcal{A} will forge, which he can do with probability $1 / \operatorname{poly}(\lambda)$, where λ is our security parameter. Second, \mathcal{B} "tweaks" the ℓ-SDH public parameters into the Hyperproofs public parameters from Fig. 2, which he then calls \mathcal{A} with. Specifically, \mathcal{B} sets $s_{k}-i_{k}=r_{k}\left(s-i_{1}\right), \forall k \in[\ell]$, where $r_{1}=1$, the rest of the r_{k} 's are random, and i_{ℓ}, \ldots, i_{1} is the binary representation of i. Importantly, note that \mathcal{B} can do this without knowledge of s, since \mathcal{B} can compute any product $g_{1}^{\prod_{i \in S} s_{i}}, S \in 2^{\{1,2, \ldots, \ell\}}$ from the $g_{1}^{s^{i}}$,s. Similarly, \mathcal{B} can compute any $g_{2}^{s_{k}}$ from g_{2}^{s}. Third, \mathcal{B} calls \mathcal{A} with the "tweaked" public parameters as input and obtains a commitment C and two inconsistent proofs $\pi=\left(w_{k}\right)_{k \in[\ell]}$, $\pi^{\prime}=\left(w_{k}^{\prime}\right)_{k \in[\ell]}$ for position i having values both v and v^{\prime}. (If \mathcal{A} outputs proofs for a different index $i^{\prime} \neq i, \mathcal{B}$ retries.)

Since both proofs verify, the following equations hold, where i_{ℓ}, \ldots, i_{1} is the binary expansion of the index i :

$$
\begin{align*}
& e\left(\mathrm{C} / g_{1}^{v}, g_{2}\right)=\prod_{k \in[\ell]} e\left(w_{k}, g_{2}^{s_{k}-i_{k}}\right) \tag{33}\\
& e\left(\mathrm{C} / g_{1}^{v^{\prime}}, g_{2}\right)=\prod_{k \in[\ell]} e\left(w_{k}^{\prime}, g_{2}^{s_{k}-i_{k}}\right) \tag{34}
\end{align*}
$$

Next, dividing the top equation by the bottom one and substitute $s_{k}-i_{k}=r_{k}\left(s-i_{1}\right), \forall k \in[\ell]:$

$$
\begin{align*}
& e\left(g_{1}^{v^{\prime}} / g_{1}^{v}, g_{2}\right)=\prod_{k \in[\ell]} e\left(w_{k} / w_{k}^{\prime}, g_{2}^{s_{k}-i_{k}}\right) \Leftrightarrow \tag{35}\\
& e\left(g_{1}^{v^{\prime}-v}, g_{2}\right)=\prod_{k \in[\ell]} e\left(w_{k} / w_{k}^{\prime}, g_{2}^{r_{k}\left(s-i_{1}\right)}\right) \Leftrightarrow \tag{36}\\
& e\left(g_{1}, g_{2}\right)^{v^{\prime}-v}=\left(\prod_{k \in[\ell]} e\left(w_{k} / w_{k}^{\prime}, g_{2}^{r_{k}}\right)\right)^{s-i_{1}} \Leftrightarrow \tag{37}\\
& e\left(g_{1}, g_{2}\right)^{\frac{1}{s-i_{1}}}=\left(\prod_{k \in[\ell]} e\left(w_{k} / w_{k}^{\prime}, g_{2}^{r_{k}}\right)\right)^{\frac{1}{v^{\prime}-v}} \Leftrightarrow \tag{38}\\
& e\left(g_{1}^{\frac{1}{s-i_{1}}}, g_{2}\right)=\prod_{k \in[\ell]} e\left(\left(w_{k} / w_{k}^{\prime}\right)^{\frac{r_{k}}{v^{\prime}-v}}, g_{2}\right) \Leftrightarrow \tag{39}\\
& e\left(g_{1}^{\frac{1}{s-i_{1}}}, g_{2}\right)=e\left(\prod_{k \in[\ell]}\left(w_{k} / w_{k}^{\prime}\right)^{\frac{r_{k}}{v^{\prime}-v}}, g_{2}\right) \Leftrightarrow \tag{40}
\end{align*}
$$

Thus, $g_{1}^{\frac{1}{s-i_{1}}}=\prod_{k \in[\ell]}\left(w_{k} / w_{k}^{\prime}\right)^{\frac{r_{k}}{v^{\prime}-v}}$ and \mathcal{B} can output $\left(i_{1}, g_{1}^{\frac{1}{s-i_{1}}}\right)$ and break ℓ-SDH.
D.3.2 Soundness for aggregated Hyperproofs.

Theorem D.2. Our aggregated proofs from $\S 3.3$ are sound as per Definition 2.3 under the knowledge-soundness of the $\mathcal{L}_{\mathrm{BATCH}}$ argument (see Theorem C.1).

Proof. Suppose there exists \mathcal{A} that outputs (C,I, J, $\left(a_{i}\right)_{i \in I},\left(a_{j}^{\prime}\right)_{j \in J}$, $\left.\pi_{I}, \pi_{J}^{\prime}\right)$ such that $1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}\left(\mathrm{C}, I,\left(a_{i}\right)_{i \in I}, \pi_{I}\right)$ and $1 \leftarrow \operatorname{Ver}_{\mathrm{pp}}(\mathrm{C}, J$, $\left.\left(a_{j}^{\prime}\right)_{j \in J}, \pi_{J}^{\prime}\right)$, while $\exists t \in I \cap J$ s.t. $a_{t} \neq a_{t}^{\prime}$. By Theorem C.1, there exist extractors that extract the individual $\log n$-sized proofs. Let $\boldsymbol{\pi}_{i}=\left(w_{i, 1}, \ldots, w_{i, \ell}\right)$ denote the extracted proofs for all $i \in I$ and $\pi_{j}^{\prime}=\left(w_{j, 1}^{\prime}, \ldots, w_{k, \ell}^{\prime}\right)$ denote the ones for all $j \in J$. Recall that for $t \in I \cap J, \pi_{t}$ verifies for a_{t} while $\boldsymbol{\pi}_{t}^{\prime}$ verifies for a different a_{t}^{\prime}. Thus, we have:

$$
\begin{align*}
& e\left(\mathrm{C} / g_{1}^{a_{t}}, g_{2}\right)=\prod_{k=1}^{\ell} e\left(w_{t, k}, g_{2}^{s_{k}-t_{k}}\right) \tag{41}\\
& e\left(\mathrm{C} / g_{1}^{a_{t}^{\prime}}, g_{2}\right)=\prod_{k=1}^{\ell} e\left(w_{t, k}^{\prime}, g_{2}^{s_{k}-t_{k}}\right) \tag{42}
\end{align*}
$$

By the same argument from Appendix D.3, this breaks $q-\mathrm{SDH}$.

D. 4 UVC soundness proof

Theorem D.3. The unstealable variant of Hyperproofs from $\S 3.4$ is sound as per (the updated) Definition D.3.

Proof sketch. We assume proofs are not aggregated, but the proof proceeds similar to Appendix D.3.2 when proofs are aggregated. The proof proceeds the same as in Appendix D.3, except the reduction \mathcal{B} that calls the adversary \mathcal{A} needs to know the WSKs α, β corresponding to wpk and wpk' respectively in order to output an ℓ-SDH solution $\left(i_{1}, g_{1}^{\frac{1}{s-i_{1}}}\right)$. Indeed, since the WPKs come with a ZKPoK, \mathcal{B} can extract α, β with non-negligible probability. Next, let $\pi=\left(w_{1}, \ldots, w_{\ell}\right)$ and $\pi^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{\ell}^{\prime}\right)$ be the two inconsistent proofs. Similar to the proof in Appendix D.3, \mathcal{B} knows that:

$$
\begin{align*}
& e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}^{\alpha}\right)=\prod_{k=1}^{\ell} e\left(w_{i, k}, g_{2}^{s_{k}-i_{k}}\right) \tag{43}\\
& e\left(\mathrm{C} / g_{1}^{a_{i}^{\prime}}, g_{2}^{\beta}\right)=\prod_{k=1}^{\ell} e\left(w_{i, k}^{\prime}, g_{2}^{s_{k}-i_{k}}\right) \tag{44}
\end{align*}
$$

Dividing the top by the bottom equation yields:

$$
\begin{align*}
e\left(g_{1}^{a_{i}^{\prime}-a_{i}}, g_{2}\right) & =\prod_{k \in[\ell]} e\left(w_{k}^{1 / \alpha} / w_{k}^{\prime 1 / \beta}, g_{2}^{s_{k}-i_{k}}\right) \tag{45}\\
& =\left(\prod_{k \in[\ell]} e\left(w_{k}^{1 / \alpha} / w_{k}^{\prime 1 / \beta}, g_{2}^{r_{k}}\right)\right)^{s-i_{1}} \tag{46}
\end{align*}
$$

Thus, \mathcal{B} can output the ℓ-SDH solution $\left(i_{1}, g_{1}^{\frac{1}{s-i_{1}}}\right)$ where $g_{1}^{\frac{1}{s-i_{1}}}=$ $\prod_{k \in[\ell]}\left(w_{k}^{1 / \alpha} / w_{k}^{\prime 1 / \beta}\right)^{\frac{r_{k}}{a_{i}^{\prime}-a_{i}}}$.

D. 5 UVC unstealability proof

Theorem D.4. Hyperproofs are unstealable as per Definition 3.1 under $\ell-D H I$.

Proof. If an adversary $\mathcal{A}=\left(\mathcal{A}_{0}, \mathcal{A}_{1}\right)$ exists that breaks Definition 3.1, we show how to build a reduction \mathcal{B} that breaks ℓ-DHI Assumption A.3. Specifically, \mathcal{B} will get $\left(h_{2}^{\alpha},\left(h_{1}^{\alpha^{k}}\right)_{k \in[0, \ell]}\right)$ as input and must output $h_{1}^{1 / \alpha}$.

First, \mathcal{B} randomizes the ℓ-DHI instance into $\left(g_{2}^{\alpha},\left(g_{1}^{\alpha^{k}}\right)_{k \in[0, \ell]}\right)$ where $g_{2}=h_{2}^{\gamma}$ and $g_{1}=h_{1}^{\gamma}$ for $\gamma \in_{R} \mathbb{Z}_{p}$. Note that a $g_{1}^{1 / \alpha}$ break on this instance can be immediately turned into a $h_{1}^{1 / \alpha}$ break on the original instance, since γ is known. Second, \mathcal{B} must generate random public parameters for Hyperproofs. For this, \mathcal{B} guesses the index j that \mathcal{A}_{1} outputs a re-watermarked proof π^{\prime} for and sets $s_{k}-j_{k}=\alpha r_{k}$ for $r_{k} \in_{R} \mathbb{Z}_{p}$. (Recall that \mathcal{B} can do this without knowing α, similar to Appendix D.3) \mathcal{B} also programs the random oracle $H(\cdot)$ for the Schnorr proof system and simulates a ZKPoK of α w.r.t. g_{2}^{α} denoted by zkpok $_{\alpha}$ and sets wpk $=\left(g_{2}^{\alpha}\right.$, zkpok $\left._{\alpha}\right)$. Specifically, \mathcal{B} picks $(z, c) \in_{R} \mathbb{Z}_{p}^{2}$, sets $y=g_{2}^{z} /\left(g_{2}^{\alpha}\right)^{c}$ and programs $H\left(g_{2}, g_{2}^{\alpha}, y\right)$ to return c. Third, \mathcal{B} picks $\left(u, r, a_{j}\right) \in_{R} \mathbb{Z}_{p}$ such that $r-a_{j} \neq 0$ and sets the commitment $\mathrm{C}=g_{1}^{\alpha u+r}$. Finally, \mathcal{B} calls $\mathcal{A}_{0}\left(1^{\lambda}\right.$, pp, C, wpk)

This way, if \mathcal{A}_{1} outputs a watermarked proof $\pi^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{\ell}^{\prime}\right)$, then \mathcal{B} can break ℓ-DHI as follows:

$$
\begin{align*}
e\left(\mathrm{C} / g_{1}^{a_{j}}, g_{2}^{\beta}\right) & =\prod_{k \in[\ell]} e\left(\left(w_{k}^{\prime}\right), g_{2}^{s_{k}-j_{k}}\right) \Leftrightarrow \tag{47}\\
\mathrm{C} / g_{1}^{a_{j}} & =\prod_{k \in[\ell]}\left(w_{k}^{\prime}\right)^{\frac{s_{k}-j_{k}}{\beta}} \Leftrightarrow \tag{48}\\
g_{1}^{\alpha u+r} / g_{1}^{a_{j}} & =\prod_{k \in[\ell]}\left(w_{k}^{\prime}\right)^{\frac{\alpha r_{k}}{\beta}} \Leftrightarrow \tag{49}\\
g_{1}^{u} g_{1}^{\frac{r-a_{j}}{\alpha}} & =\prod_{k \in[\ell]}\left(w_{k}^{\prime}\right)^{\frac{r_{k}}{\beta}} \Leftrightarrow \tag{50}\\
g_{1}^{\frac{1}{\alpha}} & =\left(g_{1}^{-u} \prod_{k \in[\ell]}\left(w_{k}^{\prime}\right)^{\frac{r_{k}}{\beta}}\right)^{\frac{1}{r-a_{j}}} \tag{51}
\end{align*}
$$

But before this can happen, \mathcal{A}_{0} might ask \mathcal{B} for proofs $\pi_{i}=$ $\left(w_{k}\right)_{k \in[\ell]}$ watermarked with α for arbitrary $i \in I . \mathcal{B}$ will simulate such a proof π_{i}, without knowing α as follows. First, \mathcal{B} computes random z_{k} 's in \mathbb{Z}_{p} such that $\sum_{k \in[\ell]} z_{k} r_{k}=u$. Specifically, \mathcal{B} picks random z_{k} 's for all $k \geq 2$ and sets $z_{1}=\frac{u-\sum_{k \in[2, \ell]} z_{k} r_{k}}{r_{1}}$. (Recall that u and the r_{k} 's were fixed before giving \mathcal{A}_{0} the commitment C and pp.). Second, \mathcal{B} computes $a_{i}=r-\sum_{k \in[\ell]} z_{k} \delta_{i, k}$, where $\delta_{i, k}=i_{k}-j_{k}, \forall k \in[\ell]$. (Note that a_{i} is uniform random both when $j=i$ and when $j \neq i$.) Finally, \mathcal{B} sets $w_{k}=g_{1}^{\alpha z_{k}}, \forall k \in[\ell]$. Note that this proof for a_{i} verifies against C and WSK α since:

$$
\begin{aligned}
e\left(\mathrm{C} / g_{1}^{a_{i}}, g_{2}^{\alpha}\right) & =\prod_{k \in[\ell]} e\left(w_{k}, g_{2}^{s_{k}-i_{k}}\right)=\prod_{k \in[\ell]} e\left(w_{k}^{\frac{s_{k}-i_{k}}{\alpha}}, g_{2}\right) \Leftrightarrow \\
g_{1}^{\alpha u+r-a_{i}} & =\prod_{k \in[\ell]} g_{1}^{z_{k}\left(s_{k}-j_{k}+\delta_{i, k}\right)}=\prod_{k \in[\ell]} g_{1}^{z_{k}\left(\alpha r_{k}+\delta_{i, k}\right)} \\
& =g_{1}^{\alpha \sum_{k \in[\ell]} z_{k} r_{k}+\sum_{k \in[\ell]} z_{k} \delta_{i, k}=g_{1}^{\alpha u+r-a_{i}}}
\end{aligned}
$$

Thus, \mathcal{B} can simulate proofs to \mathcal{A}_{1} and turn his outputted proof π^{\prime} into an q-DHI break. This completes our proof.

D. 6 Public parameter size

Table 5: The size of the public parameters from Fig. 2 for various values of $\ell=\log _{2} n$. Recall that the verification key consists of all selector monomial commitments $g_{2}^{s_{k}}, \forall k \in[\ell]$, while the proving key consists of all selector multinomial commitents ${g_{1}}^{\mathcal{S}_{j, k}(\mathbf{s})}, \forall k \in[0, \ell], j \in\left[0,2^{k}\right.$) (see Fig. 2).

$\ell=\log _{2} n$	Verification key	Proving key
$\mathbf{2 2}$	2.11 KiB	384 MiB
$\mathbf{2 4}$	2.3 KiB	1.5 GiB
$\mathbf{2 6}$	2.49 KiB	6 GiB
$\mathbf{2 8}$	2.68 KiB	24 GiB
$\mathbf{3 0}$	2.88 KiB	96 GiB

