
Hyperproofs:
Aggregating and Maintaining Proofs in Vector Commitments

Shravan Srinivasan

University of Maryland

Alexander Chepurnoy

Ergo Platform

Charalampos Papamanthou

University of Maryland

Alin Tomescu

VMware Research

Yupeng Zhang

Texas A&M University

ABSTRACT
We present Hyperproofs, the first vector commitment (VC) scheme

that is efficiently maintainable and aggregatable. Similar to Merkle

proofs, our proofs form a tree that can be efficiently maintained: up-

dating all 𝑛 proofs in the tree after a single leaf change only requires

𝑂 (log𝑛) time. Importantly, unlike Merkle proofs, Hyperproofs are

efficiently aggregatable, anywhere from 10× to 100× faster than

SNARK-based aggregation of Merkle proofs. At the same time, an

individual Hyperproof consists of only log𝑛 algebraic hashes (e.g.,

32-byte elliptic curve points) and an aggregation of 𝑏 such proofs

is only 𝑂 (log (𝑏 log𝑛))-sized. Hyperproofs are also reasonably fast

to update when compared to Merkle trees with SNARK-friendly

hash functions.

As another added benefit over Merkle trees, Hyperproofs are

homomorphic: digests (and proofs) for two vectors can be homo-

morphically combined into a digest (and proofs) for their sum.

Homomorphism is very useful in emerging applications such as

stateless cryptocurrencies. First, it enables unstealability, a novel
property that incentivizes proof computation. Second, it makes

digests and proofs much more convenient to update.

Finally, Hyperproofs have certain limitations: they are not trans-

parent, have linear-sized public parameters, are slower to verify,

and have larger aggregated proofs than SNARK-based approaches.

Nonetheless, end-to-end, aggregation and verification in Hyper-

proofs is 10× to 100× faster than SNARK-based Merkle trees.

1 INTRODUCTION
Vector commitment (VC) schemes [17, 29] such as Merkle trees [30]

are fundamental building blocks in many protocols. In a VC scheme,

a prover computes a succinct digest 𝑑 of a vector a = [𝑎1, . . . , 𝑎𝑛]
and proofs 𝜋1, . . . , 𝜋𝑛 for each position. A verifier who has the

digest 𝑑 can later verify a proof 𝜋𝑖 that 𝑎𝑖 is the correct value at

position 𝑖 . Some VCs, such as Merkle trees, are maintainable: when
the vector changes all proofs can be efficiently updated in sublinear

time, rather than recomputed from scratch in linear time. Other

VCs, such as Pointproofs [21], are aggregatable: the prover can take

several proofs 𝜋𝑖 for 𝑖 ∈ 𝐼 and efficiently aggregate them into a

single, succinct proof 𝜋𝐼 .

Unfortunately, no current VC scheme is both maintainable and

aggregatable; at least not efficiently. Yet emerging applications such

as stateless cryptocurrencies [11, 18, 21, 31, 41, 46, 49] rely on dedi-

cated nodes to efficiently maintain all proofs and also on miners to

efficiently aggregate proofs. While generic argument systems (e.g.,

SNARKs [23, 39]) can be used to add aggregation to maintainable

VCs such as Merkle trees, this is too slow in practice (see §5.2). This

brings us to this paper’s main concern: Can we build an efficient

VC that is both maintainable and aggregatable? In this paper, we

answer this positively and present Hyperproofs. Similar to Merkle

trees, Hyperproofs are log𝑛-sized and determine a tree. This makes

updating all proofs very efficient in logarithmic time. However,

Hyperproofs are built from polynomial commitments [24, 37] rather
than hash functions such as SHA-256. This enables a natural ag-

gregation algorithm that is 10× to 100× faster than “SNARKing"

multiple Merkle proofs.

In addition to aggregation andmaintainability, Hyperproofs have

another very useful property: homomorphism. Specifically, trees

(and digests) for two vectors can be combined into a single tree (and

digest) for their sum. This has several applications. First, homo-

morphism allows us to obtain unstealability, a new property which

incentivizes proof computation in applications such as stateless

cryptocurrencies. In a nutshell, unstealability allows a prover to

cryptographically bind the proofs she computes with her identity, in an
irreversible manner. This way, honest provers can be rewarded for

the proofs they compute while malicious provers cannot steal other
provers’ proofs. Second, homomorphism makes updating digests

(and Hyperproofs) more convenient than updating Merkle roots

(and proofs), which requires having the proof(s) for the changed po-

sition(s) in the vector. Third, homomorphism allows authenticating

data in a streaming setting [38].

Challenges. In designing Hyperproofs, we surmount three key

challenges. First, computing𝑛 proofs in Papamanthou-Shi-Tamassia

(PST) polynomial commitments [37] takes 𝑂 (𝑛2) time and is too

slow. Second, aggregation of PST proofs is difficult without generic

SNARKs [23, 39], which would be too expensive. Third, making

proofs unstealable is not enough: such proofs must remain main-

tainable, aggregatable and verifiable with respect to the same digest.

Evaluation. In §5.1, we show Hyperproofs are small (1.44 KiB),

they verify quickly (17.4 milliseconds) and are fast to maintain (2.6

milliseconds per update). In §5.2, we show Hyperproof aggregation

is much faster than Merkle proof aggregation: 10× faster when

using Poseidon hashes [22], which likely need more cryptanaly-

sis, and 100× faster when using provably-secure Pedersen hashes.

However, our faster aggregation comes at a cost of slower verifica-

tion for aggregated proofs and a larger 52 KiB aggregate proof size.

Nonetheless, when considering both aggregation and verification

time, Hyperproofs remain 10× to 100× faster. Lastly, in §5.3, when

we benchmark the overhead of agreeing on a block in a stateless

cryptocurrency, Hyperproofs are 32× faster than Merkle trees.

Limitations. To commit to a vector of size 𝑛, Hyperproofs requires

public parameters consisting of 2𝑛 − 1 group elements, which must

1

Scheme Agg
reg

ata
ble

Ma
inta

ina
ble

Hom
om

orp
hic

Uns
teal

abl
e

Tra
nsp

are
nt

Merkle [30] ×† ✓ × × ✓

Bilinear𝑂 (1) [17, 21, 47, 49] ✓ × ✓ × ×

Bilinear
log𝑛 [48, 50] × ✓ ✓ × ×

RSA [11, 16, 17, 27] ✓ × ✓ × ×∗

Lattice [38, 40] × ✓ ✓ × ✓

Hyperproofs ✓ ✓ ✓ ✓ ×

†: Merkle proofs can be aggregated via SNARKs [23], but are too slow (see §5.2).

∗
: RSA-based VCs from class groups [13] are transparent but much slower.

Table 1:Comparisonwith other VCs;more details in the appendix in Table 4.

be generated via a trusted setup, typically decentralized via multi-

party computation protocols [12]. In future work, we hope to have

a transparent setup by using assumptions in hidden-order groups.

We also do not explore the subtleties of fully-integrating unsteal-

able proofs into a statelessly-validated cryptocurrency. Lastly, our

macrobenchmarks only measure the computational overhead of

VCs that arises on the critical path to a consensus decision. While

our results show Hyperproofs lead to 32× faster decisions, we do
not claim this is sufficient to make the stateless setting practical.

1.1 Overview of Techniques

Vectors as multilinear extensions (MLEs).We build upon pre-

vious work [56, 57] that represents a vector of size 𝑛 = 2
ℓ
as a

multilinear extension (MLE) polynomial. For example, the MLE of

a = [5, 2, 8, 3] is 𝑓 (𝑥2, 𝑥1) = 5(1−𝑥2) (1−𝑥1) +2(1−𝑥2)𝑥1+8𝑥2 (1−
𝑥1) + 3𝑥2𝑥1. Note that 𝑓 correctly “selects” the right 𝑎𝑖 given the

binary expansion of 𝑖 as input: 𝑓 (0, 0) = 5, 𝑓 (0, 1) = 2, 𝑓 (1, 0) = 8

and 𝑓 (1, 1) = 3.

PST commitments to MLEs. To commit to a vector, we com-

pute a Papamanthou-Shi-Tamassia (PST) commitment (see §2.2) to

its MLE. For example, the PST commitment to 𝑓 above is C =

𝑔
𝑓 (𝑠1,𝑠2)
1

∈ G1, where (𝑠1, 𝑠2) ∈ Z2𝑝 are secret points encoded

in the public parameters of the scheme and 𝑔1 is the generator

of G1. For vectors of size 4, these public parameters consist of

𝑔
𝑠1
1
, 𝑔
𝑠2
1
, 𝑔
(1−𝑠2) (1−𝑠1)
1

, 𝑔
(1−𝑠2)𝑠1
1

, 𝑔
𝑠2 (1−𝑠1)
1

, 𝑔
𝑠2𝑠1
1

. Importantly, we show

that the selectively-secure variant of PST commitments is actually

adaptively-secure when restricted to only proving evaluations on

the Boolean hypercube {0, 1}ℓ . This reduces our proof size com-

pared to previous work based on PST [56, 57].

Multilinear trees. To prove that 𝑎𝑖 is the 𝑖th value in the vec-

tor a = [𝑎0, . . . , 𝑎𝑛−1], we compute a PST evaluation proof for

𝑓 (𝑖ℓ , . . . , 𝑖1) = 𝑎𝑖 w.r.t. the commitment C, where (𝑖ℓ , . . . , 𝑖1) is the
binary representation of 𝑖 . Unfortunately, this takes 𝑂 (𝑛) time per
position. Thus, computing all 𝑛 proofs would take𝑂 (𝑛2) time which

is prohibitive. We reduce this to 𝑂 (𝑛 log𝑛) by computing a novel

multilinear tree (MLT) of proofs using a divide-and-conquer ap-

proach. Importantly, our MLT is maintainable: updating all proofs

after a change to the vector only requires 𝑂 (log𝑛) time.

Proof aggregation. A proof for 𝑎𝑖 consists of PST commitments

(𝑤𝑖,ℓ , . . . ,𝑤𝑖,1) ∈ Gℓ
1
, such that the following pairing equation holds:

𝑒 (C/𝑔𝑎𝑖
1
, 𝑔2) =

∏
𝑗 ∈[ℓ]

𝑒 (𝑤𝑖, 𝑗 , 𝑔
𝑠 𝑗−𝑖 𝑗
2
) , (1)

where 𝑒 : G1 × G2 → G𝑇 is a pairing and 𝑔
𝑠 𝑗
2
’s are additional

𝑂 (ℓ)-sized PST public parameters in G2. To aggregate 𝑏 proofs, we

prove knowledge of PST commitments that pass Eq. 1 for each 𝑖 ,

resulting in a succinct 𝑂 (log (𝑏ℓ)) aggregated proof size. Our key

ingredient is an inner-product argument (IPA) by Bünz et al. [15] for
proving several pairing equations hold.

Homomorphism and unstealablity. As we mentioned, Hyper-

proofs are homomorphic: exponentiating a PST evaluation proof

(𝑤𝑖,ℓ , . . . ,𝑤𝑖,1) by a constant 𝛼 yields a proof for position 𝑖 but

in a vector whose values are multiplied by 𝛼 . We observe that

if 𝛼 is the secret key of a proof-serving node (PSN), this makes

the proof unstealable by other nodes who do not have 𝛼 . Impor-

tantly, the proof can still be verified against the digest C, except
the verifier must also give the node’s corresponding public key 𝑔𝛼

2
:

𝑒 (C/𝑔𝑎𝑖
1
, 𝑔𝛼

2
) = ∏

𝑗 ∈[ℓ] 𝑒 (𝑤𝛼𝑖,𝑗 , 𝑔
𝑠 𝑗−𝑖 𝑗
2
). As an optimization, proof-

serving nodes can exponentiate the PST public parameters by 𝛼

before computing proofs. This way, when computing a multilinear

tree (MLT) with these parameters, all proofs are implicitly unsteal-

able and the MLT remains maintainable.

1.2 Related work
Below, we relate our VC to previous work and summarize in Table 1.

Merkle trees. A Hyperproof consists of log𝑛 (algebraic) hashes,

which can be as small as Merkle hashes if using 256-bit elliptic

curves [5]. Hyperproofs are orders of magnitude slower to compute

and update, when compared to normal Merkle trees hashed with

SHA-256. However, when compared to aggregatable Merkle trees

that use SNARK-friendly hash functions (e.g., Poseidon-128 [22]),

Hyperproofs are only slightly slower (see §5.3) and make up for it

with much faster aggregation, homomorphism and unstealability.

SNARK-based works. Ozdemir et al. [35] explore using SNARKs

to prove knowledge of changes that update a vector with digest 𝑑

into a new vector with digest 𝑑 ′. Lee et al. [28] also use SNARKs to

prove correctness of state transitions in replicated state machines,

without having to send the state changes. Neither work explores

unstealability nor maintaining and aggregating proofs efficiently.

Algebraic VCs. Zhang et al. [56, 57] were the first to build VCs

from PST commitments to MLEs. However, their 𝑂 (log𝑛)-sized
proofs are concretely larger and do not support updates. Some VCs

have 𝑂 (1)-sized proofs [11, 16, 17, 21, 25, 27, 49], which inherently

require Θ(𝑛) time to update all proofs after a change. Aggregation

and verification in these VCs is concretely, and sometimes asymp-

totically, faster (see Table 4). They also have smaller aggregated

proofs. However, these VCs are not efficiently maintainable.

Previous maintainable VCs [38, 40, 48, 50] do not support aggre-

gation; at least not without expensive generic argument systems

(e.g., SNARKs). The lattice-based construction from [38, 40] is also

homomorphic and additionally transparent, with constant-sized

2

public parameters. However, it is too slow for practice and non-

aggregatable. The authenticated multipoint evaluation tree (AMT)
construction from [48, 50] can be viewed as the dual to our con-

struction, but from univariate polynomials rather than multivariate.

Unfortunately, it is non-aggregatable, its trusted setup requires

𝑂 (𝑛2) time and it has larger 𝑂 (𝑛 log𝑛)-sized public parameters.

Recent work [3, 11, 51] enhances VCs into key-value commit-
ments (KVCs), where arbitrary keys (rather than vector positions)

are mapped to values. Unfortunately, all of these constructions

have constant-sized proofs and are thus not maintainable. Some

VCs have transparent setup [11, 16, 27], support incremental aggre-

gation [16], have a “specialiazable” CRS [16] and provide time/space

trade-offswhen computing proofs [11, 16]. Hyperproofs do not have

any of these features. Lastly, no previous VC scheme is unstealable,

although some (e.g., aSVCs [49] and AMTs [50]) can be made so

using our techniques.

2 PRELIMINARIES

Notation. Let [0, 𝑛) = {0, 1, . . . , 𝑛−1}. An ℓ-bit number 𝑖 has binary
representation i = (𝑖ℓ , . . . , 𝑖1) if, and only if, 𝑖 =

∑ℓ−1
𝑘=0

𝑖𝑘+12
𝑘
. Note

that 𝑖ℓ is the MSB of 𝑖 and 𝑖1 is the LSB. We often use i as 𝑖’s binary
representation and 𝑖𝑘 as its 𝑘th bit, without explicit definition. Let

𝑟 ∈𝑅 𝑆 denote picking an element from 𝑆 uniformly at random.

Pairings. (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← BilGen(1_) denotes generat-
ing groups G1, G2 and G𝑇 of prime order 𝑝 , with 𝑔𝑖 a generator of

G𝑖 , and a pairing 𝑒 : G1 ×G2 → G𝑇 such that ∀𝑢 ∈ G1,𝑤 ∈ G2 and
𝑎, 𝑏 ∈ Z𝑝 , 𝑒 (𝑢𝑎,𝑤𝑏) = 𝑒 (𝑢,𝑤)𝑎𝑏 . A useful property of 𝑒 (·, ·) is that
𝑒 (𝑢,ℎ)𝑒 (𝑣, ℎ) = 𝑒 (𝑢𝑣, ℎ),∀𝑢, 𝑣, ℎ ∈ G2

1
×G2. In this paper, we assume

Type III bilinear groups (i.e., without efficiently-computable homo-

morphisms between G1 and G2 or viceversa), which are needed by

the inner-product argument from §2.4 and are also more efficient in

practice. Let 1G denote the identity in a group G.

Vectors. Bolded, lower-case symbols such as a = [𝑎0, . . . , 𝑎𝑛−1] ∈
Z𝑛𝑝 typically denote vectors of field elements. Bolded, upper-case

symbols such as A = [𝐴1, . . . , 𝐴𝑚] ∈ G𝑚 typically denote vec-

tors of group elements. |A| denotes the size of the vector A. A𝑥 =

[𝐴𝑥
1
, . . . , 𝐴𝑥𝑚], 𝑥 ∈ Z𝑝 ,A◦B = [𝐴1𝐵1, 𝐴2𝐵2, . . . , 𝐴𝑚𝐵𝑚], and ⟨A,B⟩ =∏𝑚

𝑗=1 𝑒 (𝐴 𝑗 , 𝐵 𝑗) denotes a pairing product. Let A𝐿 = [𝐴1, . . . , 𝐴𝑚/2]
and A𝑅 = [𝐴𝑚/2+1, . . . , 𝐴𝑚] denote the left and right halves of A.
Let A| |1G denote a vector of size 2|A| that “extends” A to the right

with the identity of G. (Similarly, 1G | |A “extends” A to the left.)

2.1 Multilinear extension (MLE) of a vector
Let 𝑛 = 2

ℓ
and x = (𝑥ℓ , . . . , 𝑥1). A vector a = [𝑎0, . . . , 𝑎𝑛−1] ∈ Z𝑛𝑝

can be represented as a multilinear extension polynomial 𝑓 : Zℓ𝑝 →
Z𝑝 which maps each position 𝑖 to 𝑎𝑖 :

𝑓 (i) = 𝑓 (𝑖ℓ , . . . , 𝑖2, 𝑖1) = 𝑎𝑖 ,∀𝑖 ∈ [0, 𝑛) (2)

For example, the MLE of a = [5, 2, 8, 3] is 𝑓 (𝑥2, 𝑥1) defined as:

5(1 − 𝑥2) (1 − 𝑥1) + 2(1 − 𝑥2)𝑥1 + 8𝑥2 (1 − 𝑥1) + 3𝑥2𝑥1 (3)

In general, the unique multilinear extension 𝑓 of a is [45, Fact 3.5]:

𝑓 (x) = 𝑓 (𝑥ℓ , . . . , 𝑥1) =
𝑛−1∑
𝑗=0

𝑎 𝑗S𝑗,ℓ (𝑥ℓ , . . . , 𝑥1) =
𝑛−1∑
𝑗=0

𝑎 𝑗S𝑗,ℓ (x) (4)

where S𝑗,ℓ , 𝑗 ∈ [0, 2ℓ) are selector multinomials defined as:

S𝑗,ℓ (x) =
ℓ∏
𝑘=1

sel𝑗𝑘 (𝑥𝑘), s.t. sel𝑗𝑘 (𝑥𝑘) =
{
𝑥𝑘 , if 𝑗𝑘 = 1

1 − 𝑥𝑘 , if 𝑗𝑘 = 0

, (5)

with 𝑆0,0 (x) = 1. In our example from Eq. 3, we have ℓ = 2 and so:

S0,2 (x) = (1−𝑥2) (1−𝑥1),S1,2 (x) = (1−𝑥2)𝑥1,S2,2 (x) = 𝑥2 (1−𝑥1)
and S3,2 (x) = 𝑥2𝑥1. We often refer to sel𝑗𝑘 as a selector monomial.
Importantly, note that:

S𝑗,ℓ (𝑖ℓ , . . . , 𝑖1) = S𝑗,ℓ (i)
{
1, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
,∀𝑖 ∈ [0, 2ℓ) (6)

By these properties above, we can see why Eq. 2 holds for any 𝑖:

𝑓 (i) =
𝑛−1∑
𝑗=0

𝑎 𝑗S𝑗,ℓ (i) = 𝑎𝑖S𝑖,ℓ (i) +
𝑛−1∑
𝑗=1, 𝑗≠𝑖

𝑎 𝑗S𝑗,ℓ (i) = 𝑎𝑖 · 1 + 0 (7)

In other words, an MLE 𝑓 acts as a “multiplexer”, choosing the right

𝑎𝑖 based on the input position 𝑖 , given as i in binary.

MLE decomposition. An MLE of size 𝑛 = 2
ℓ
can be decomposed

into two MLEs of size 𝑛/2 [57]. For example, split a from Eq. 3

into its left and right halves a0 = [5, 2] and a1 = [8, 3], with MLEs

𝑓0 = 5(1 − 𝑥1) + 2𝑥1 and 𝑓1 = 8(1 − 𝑥1) + 3𝑥1, respectively. Then,
observe that the MLE 𝑓 for a is a combination of 𝑓0 and 𝑓1: i.e.,

𝑓 = (1 − 𝑥2) 𝑓0 + 𝑥2 𝑓1. In general, the MLE 𝑓 of any a decomposes

as:

𝑓 (x) = (1 − 𝑥ℓ) 𝑓0 (𝑥ℓ−1, . . . , 𝑥1) + 𝑥ℓ 𝑓1 (𝑥ℓ−1, . . . , 𝑥1) (8)

Note that for a = [𝑎0, 𝑎1] of size 2, the MLEs 𝑓0, 𝑓1 are trivial (i.e.,
of size 1) and are simply set to 𝑎0 and 𝑎1, respectively. When

decomposing larger MLEs, we use 𝑓𝑏ℓ ,...,𝑏𝑘 to denote the MLE

of the a𝑏ℓ ,...,𝑏𝑘 subvector, which is a vector over 𝑎𝑖 ’s with 𝑖ℓ =

𝑏ℓ , 𝑖ℓ−1 = 𝑏ℓ−1, . . . , 𝑖𝑘 = 𝑏𝑘 (sorted by 𝑖). For example, in a vector

a = [𝑎1, . . . , 𝑎8], 𝑓01 is the MLE of a01, which contains all indices 𝑖

whose first two bits are 01: i.e., a01 = [𝑎2, 𝑎3].

2.2 PST commitments to MLEs
Papamanthou, Shi and Tamassia [37] extend Kate-Zaverucha-Goldberg

(KZG) univariate polynomial commitments [24] to multivariate

ones. We refer to their scheme as PST and restrict its use to multi-

linear extensions (MLEs), introduced above.

Commitments. PST works over a bilinear group obtained via

BilGen. The PST commitment to a multilinear extension 𝑓 for a

vector a of size 𝑛 = 2
ℓ
is a single group element in G1:

pst(𝑓) = 𝑔𝑓 (𝑠ℓ ,...,𝑠1)
1

= 𝑔

∑𝑛−1
𝑗=0 𝑎 𝑗 S𝑗,ℓ (s)

1
=

𝑛−1∏
𝑗=0

(
𝑔
S𝑗,ℓ (s)
1

)𝑎 𝑗
(9)

Here, s = (𝑠ℓ , . . . , 𝑠1) are trapdoors generated via a trusted setup that
outputs𝑛-sized public parameters:𝑔S𝑗,ℓ (s)

1
= 𝑔
S𝑗,ℓ (𝑠ℓ ,...,𝑠1)
1

,∀𝑗 ∈ [0, 2ℓ).
Importantly, the setup discards s, since knowledge of it directly
breaks PST’s security [36]. We stress that pst(𝑓) can be computed

without knowing s, as per Eq. 9. Lastly, PST commitments are

homomorphic, with pst(𝑓 + 𝑓 ′) = pst(𝑓)pst(𝑓 ′) for any MLEs 𝑓 , 𝑓 ′.

Evaluation proofs. Papamanthou, Shi and Tamassia give a way

to prove evaluations 𝑓 (i) against pst(𝑓) [37], where i is the binary
3

PST.Prove(𝑓 , ℓ, i = (𝑖ℓ , . . . , 𝑖1)) → 𝜋𝑖 :

1. If ℓ = 0 (i.e., 𝑓 is a constant), return ∅.
2. Otherwise, divide 𝑓 by 𝑥ℓ − 𝑖ℓ , obtaining quotient 𝑞ℓ (𝑥ℓ−1, . . . , 𝑥1) and

remainder 𝑟ℓ (𝑥ℓ−1, . . . , 𝑥1) such that 𝑓 = 𝑞ℓ · (𝑥ℓ − 𝑖ℓ) + 𝑟ℓ .
3. Return

(
𝑔
𝑞ℓ (s)
1

, PST.Prove(𝑟ℓ , ℓ − 1, (𝑖ℓ−1, . . . , 𝑖1))
)

Figure 1:𝑂 (𝑛)-time algorithm for computing a single PST evaluation proof

𝜋𝑖 for 𝑓 (i) w.r.t. an MLE 𝑓 of size 𝑛 = 2
ℓ
.

representation of 𝑖 ∈ [0, 𝑛). Their key observation, which we refer

to as the PST decomposition, is that:

𝑓 (i) = 𝑧 ⇔ ∃𝑞 𝑗 ’s, 𝑓 (x) − 𝑧 =
∑
𝑗 ∈[ℓ]

𝑞 𝑗 (𝑥 𝑗−1, . . . , 𝑥1) · (𝑥 𝑗 − 𝑖 𝑗) (10)

This yields a PST evaluation proof for 𝑓 (i) = 𝑧 consisting of commit-

ments𝑤 𝑗 = 𝑔
𝑞 𝑗 (s)
1

to these quotient polynomials 𝑞 𝑗 . To compute the

𝑞 𝑗 ’s, the prover first divides 𝑓 by 𝑥ℓ − 𝑖ℓ , obtaining 𝑞ℓ and a remain-

der 𝑟ℓ . Then, the prover continues recursively on the remainder 𝑟ℓ ,

which no longer has variable 𝑥ℓ . Specifically, the prover divides 𝑟ℓ
by 𝑥ℓ−1 − 𝑖ℓ−1, obtaining 𝑞ℓ−1 and 𝑟ℓ−1. And so on, until he obtains

the last quotient 𝑞1 with remainder 𝑟1 = 𝑓 (i) (see Fig. 1 and [36,

Lemma 1]). Overall, this takes 𝑇 (𝑛) = 𝑂 (𝑛) +𝑇 (𝑛/2) = 𝑂 (𝑛) time,

including the time to commit to the 𝑞 𝑗 ’s.

Note that the 𝑞 𝑗 ’s are actually MLEs of size 𝑛/2, 𝑛/4, . . . , 1. As a
result, PST’s actual public parameters are 𝑔

S𝑗,𝑘 (s)
1

,∀𝑘 ∈ [0, ℓ],∀𝑗 ∈
[0, 2𝑘), so as to also be able to commit to these quotient MLEs.

Lastly, the parameters form a tree (see Fig. 2) and are thus of size

2𝑛 − 1 G1 elements.

A verifier who has the commitment pst(𝑓), the claimed evalua-

tion (𝑖, 𝑓 (i) = 𝑧) and a logarithmic-sized, publicly-known verifica-
tion key 𝑔𝑠 𝑗

2
,∀𝑗 ∈ [ℓ] can verify the proof using ℓ + 1 pairings:

𝑒 (pst(𝑓)/𝑔𝑧
1
, 𝑔2) =

∏
𝑗 ∈[ℓ]

𝑒 (𝑤 𝑗 , 𝑔
𝑠 𝑗−𝑖 𝑗
2
) (11)

Selective security. The check above ensures Eq. 10 holds when

x = s, which is sufficient for security since s is random and secret.

Indeed, Papamanthou et al. prove security under ℓ-SDH (see As-

sumption A.2), but only in a selective sense, where the adversary
picks the evaluation point i = (𝑖ℓ , . . . , 𝑖1) before the PST public

parameters are generated [36, Appendix C.1]. In contrast, we prove

adaptive security for any points on the Boolean hypercube (see

Appendix D.3). Lastly, note that an adversary who knows s can
forge proofs by solving for the 𝑞 𝑗 (s)’s that satisfy Eq. 10 at x = s.
This is why the trusted setup must discard s.

2.3 Vector Commitments (VCs)
We formalize VCs below, similar to Catalano and Fiore [17].

Definition 2.1 (VC). A VC scheme is a set of ppt algorithms:

(1) Gen(1_, 𝑛) → pp: Given security parameter _ and maximum
vector size 𝑛, outputs randomly-generated public parameters pp.

(2) Compp (a) → C: Outputs digest C of a = [𝑎0, . . . , 𝑎𝑛−1] ∈ Z𝑛𝑝 .
(3) Openpp (𝑖, a) → 𝜋𝑖 : Outputs a proof 𝜋𝑖 for position 𝑖 in a.

(4) OpenAllpp (a) → (𝜋0, . . . , 𝜋𝑛−1): Outputs all proofs 𝜋𝑖 for a.

𝑔1

𝑔
(1−𝑠1)
1

𝑔
(1−𝑠1) (1−𝑠2)
1

𝑔
(1−𝑠1) (1−𝑠2) (1−𝑠3)
1

𝑔
(1−𝑠1) (1−𝑠2)𝑠3
1

𝑔
(1−𝑠1)𝑠2
1

𝑔
(1−𝑠1)𝑠2 (1−𝑠3)
1

𝑔
(1−𝑠1)𝑠2𝑠3
1

𝑔
𝑠1
1

𝑔
𝑠1 (1−𝑠2)
1

𝑔
𝑠1 (1−𝑠2) (1−𝑠3)
1

𝑔
𝑠1 (1−𝑠2)𝑠3
1

𝑔
𝑠1𝑠2
1

𝑔
𝑠1𝑠2 (1−𝑠3)
1

𝑔
𝑠1𝑠2𝑠3
1

Figure 2: PST (and Hyperproofs) public parameters. The 𝑢th path in this

tree is actually the update key upk𝑢 from Eq. 17.

(5) Aggpp (𝐼 , (𝑎𝑖 , 𝜋𝑖)𝑖∈𝐼) → 𝜋𝐼 : Combines individual proofs 𝜋𝑖 for
values 𝑎𝑖 into an aggregated proof 𝜋𝐼 .

(6) Verpp (C, 𝐼 , (𝑎𝑖)𝑖∈𝐼 , 𝜋𝐼) → {0, 1}: Verifies proof 𝜋𝐼 that each posi-
tion 𝑖 ∈ 𝐼 has value 𝑎𝑖 against digest C.

(7) UpdDigpp (𝑢, 𝛿,C) → C′: Updates digest C to C′ to reflect posi-
tion 𝑢 changing by 𝛿 ∈ Z𝑝 .

(8) UpdAllProofspp (𝑢, 𝛿, 𝜋0, . . . , 𝜋𝑛−1) → (𝜋 ′0, . . . , 𝜋
′
𝑛−1): Updates

all proofs 𝜋𝑖 to 𝜋 ′𝑖 to reflect position 𝑢 changing by 𝛿 ∈ Z𝑝 .
(9) UpdProofpp (𝑢, 𝛿, 𝜋𝑖) → 𝜋 ′

𝑖
: Updates proof 𝜋𝑖 to 𝜋 ′𝑖 to reflect

position 𝑢 changing by 𝛿 ∈ Z𝑝 .

Observations: For simplicity, we give our algorithms oracle access to

the public parameters pp of the scheme. This way, each algorithm

can easily access the subset of the parameters it needs.

We formalize OpenAll and UpdAllProofs since, in some VCs,

these algorithms are faster than 𝑛 calls to Open and UpdProof, re-
spectively. In this sense, we stress that the UpdAllProofs algorithm
canwork in sublinear time, since it does not necessarily need to read

all input or write all output (e.g., in Merkle trees,UpdAllProofs only
reads log𝑛 sibling hashes and overwrites another log𝑛 hashes).

Definition 2.2 (VC Correctness). A VC is correct, if for all
_ ∈ N and 𝑛 = poly(_), for all pp ← Gen(1_, 𝑛), for all vectors
a = [𝑎0, . . . , 𝑎𝑛−1], if C = Compp (a) and 𝜋𝑖 = Openpp (𝑖, a),∀𝑖 ∈
[0, 𝑛) (or from OpenAllpp (a)), then, for any polynomial number of
updates (𝑢, 𝛿) resulting in a new vector a′, if C′ and 𝜋 ′

𝑖
, for all 𝑖 , are

the updated digest and proofs obtained via calls to UpdDigpp and
UpdProofpp (or to UpdAllProofspp) respectively, then (1) Pr[1 ←
Verpp (C′, {𝑖}, 𝑎′𝑖 , 𝜋

′
𝑖
)] = 1 for all 𝑖 ; (2) ∀𝐼 ⊆ [𝑛], Pr[1← Verpp (C′, 𝐼 ,

(𝑎′
𝑖
)𝑖∈𝐼 , Aggpp (𝐼 , (𝑎′𝑖 , 𝜋

′
𝑖
)𝑖∈𝐼))] = 1.

Definition 2.3 (VC Soundness). ∀ ppt adversaries A,

Pr

pp← Gen(1_, 𝑛),
(C, 𝐼 , 𝐽 , (𝑎𝑖)𝑖∈𝐼 , (𝑎′𝑗) 𝑗 ∈𝐽 , 𝜋𝐼 , 𝜋

′
𝐽
) ← A(1_, pp) :

1← Verpp (C, 𝐼 , (𝑎𝑖)𝑖∈𝐼 , 𝜋𝐼) ∧
1← Verpp (C, 𝐽 , (𝑎′𝑗) 𝑗 ∈𝐽 , 𝜋

′
𝐽
) ∧

∃𝑘 ∈ 𝐼 ∩ 𝐽 s.t. 𝑎𝑘 ≠ 𝑎′
𝑘

≤ negl(_) .

Observation: This soundness definition allows the digest C to be

produced adversarially. This is stronger than what is required in our

cryptocurrency setting from §4, where the digest is produced cor-

rectly from the agreed transactions. Nonetheless, having a stronger

definition makes our VC from §3 more widely useful.

4

2.4 Inner Product Arguments (IPA)
In this subsection, we describe a non-interactive inner-product

argument (IPA) by Bünz et al. [15] where a prover convinces a

verifier, who has a commitment key ck and a commitment C, that
the prover can open C to A ∈ G𝑚

1
,B ∈ G𝑚

2
and 𝑍 ∈ G𝑇 such that

𝑍 = ⟨A,B⟩ = ∏𝑚
𝑗=1 𝑒 (𝐴 𝑗 , 𝐵 𝑗). More formally, this is an argument

for the language:

L𝑚IPA =
{
(ck,C)

�� ∃A ∈ G𝑚
1
,B ∈ G𝑚

2
, s.t.C = CM(ck;A,B, ⟨A,B⟩)

}
Commitments to group elements. Above, CM denotes the com-

mitment scheme by Abe et al. [1] for vectors A,B ∈ G𝑚
1
× G𝑚

2

and their pairing product 𝑍 = ⟨A,B⟩ = ∏𝑚
𝑖=1 𝑒 (𝐴𝑖 , 𝐵𝑖). It uses a

randomly-generated commitment key ck = (v,w) ∈ G𝑚
1
×G𝑚

2
. The

commitment C ∈ G3
𝑇
to A,B and 𝑍 is:

C = CM(ck;A,B, 𝑍) = (⟨A, v⟩, ⟨w,B⟩, 𝑍) def= (𝐶1,𝐶2,𝐶3) (12)

This commitment scheme is not hiding but is binding under SXDH

(see Assumption A.1) [1, 2].

IPA algorithms. For ease of presentation, Fig. 3 describes the

interactive variant of the IPA, where the prover interacts with the

verifier over log𝑚 rounds. This interactive IPA is knowledge-sound

assuming Abe et al. commitments are binding [15, Theorem 1]. It

is made non-interactive via the Fiat-Shamir transform [19] and

proved secure in a new algebraic commitment model and in the

random oracle model (ROM) [15, Appendix D.2]. Our work uses this

non-interactive variant, whose algorithms we give below:

(1) GIPA (1_,𝑚) → (𝑃𝐾,𝑉𝐾): Returns 𝑃𝐾 = 𝑉𝐾 = ⟨BilGen(1_),ck =

(v ∈𝑅 G𝑚
2
,w ∈𝑅 G𝑚

1
)⟩.

(2) PIPA (𝑃𝐾,A,B) → 𝜋 : Runs the Fiat-Shamir transformation of

the interactive prover P↔IPA from Fig. 3 on input (ck;A,B), ob-
taining a transcript 𝜋 . Returns the transcript 𝜋 as the proof.

(3) VIPA (𝑉𝐾,C, 𝜋) → {0, 1}: Runs the Fiat-Shamir transformation

of the interactive verifierV↔IPA from Fig. 3 on input (ck;C, 𝜋),
obtaining a success bit 𝑏. Returns 𝑏.

Faster verification in IPA. Bünz et al. show that both PIPA and

VIPA take 𝑂 (𝑚) time and the proof size is |𝜋 | = 𝑂 (log𝑚). They
also show how to reduceVIPA time by using a “structured” com-

mitment key ck = (v,w), similar to a 𝑞-SDH common reference

string (see Assumption A.2) This allows the verifier to outsource

the computations of v′ and w′ to the untrusted prover and reduces

verification time from 𝑂 (𝑚) to 𝑂 (log𝑚). However, this comes at

the cost of additionally relying on the 𝑞-SDH assumption (see As-

sumption A.2) and the 𝑞-ASDBP assumption (see Assumption A.4).

Our work implicitly assumes this optimizedVIPA, which we later

implement in §5. We refer the reader to [15, Section 5] for the details

of this optimization, which is beyond the scope of this paper.

3 HYPERPROOFS
In this section, we intuitively explain how Hyperproofs work, often

referring to a prover who computes the vector’s digest, as well
as proofs, and to a verifier who verifies proofs against this digest.
Without loss of generality, our discussionwill assume vectors of size

P↔IPA (ck = (v,w) ;A,B) : V↔IPA (ck = (v,w) ;C) → {0, 1}:

If𝑚 = 1

A = [𝐴1],B = [𝐵1]

Return 1 iff.

C ?

= CM(ck; [𝐴1], [𝐵1], 𝑒 (𝐴1, 𝐵1))

Else (i.e., if𝑚 ≥ 2)

𝑍𝐿 = ⟨A𝑅,B𝐿 ⟩
C𝐿 = CM(ck;A𝑅 | |1G1 , 1G2 | |B𝐿, 𝑍𝐿)
𝑍𝑅 = ⟨A𝐿,B𝑅 ⟩
C𝑅 = CM(ck; 1G1 | |A𝐿,B𝑅 | |1G2 , 𝑍𝑅)

C𝐿,C𝑅

𝑥 ∈𝑅 Z𝑝

A′ = A𝐿 ◦ (A𝑅)𝑥

v′ = v𝐿 ◦ (v𝑅) (𝑥
−1)

B′ = B𝐿 ◦ (B𝑅) (𝑥
−1)

Computes v′,w′ just like the prover
w′ = w𝐿 ◦ (w𝑅)𝑥 C′ = (C𝐿)𝑥 ◦ C ◦ (C𝑅) (𝑥

−1)

Recurse on (ck′ = (v′,w′),A′,B′) Recurse on (ck′ = (v′,w′),C′)

Figure 3: The interactive IPA by Bünz et al. for𝑚 = 2
𝑘
(wlog). Its non-

interactive counterpart is in §2.4, denoted by PIPA and VIPA. The prover

convinces the verifier that he knows (A,B) ∈ G𝑚
1
× G𝑚

2
such that A,B, 𝑍

are committed in C (under commitment keyck) and that 𝑍 = ⟨A,B⟩. See
§2 for IPA-specific notation such as 1G𝑏 ,A𝐿,A ◦ B,CM,A𝑅 | |1G or A𝑥

𝐿
.

exactly 𝑛 = 2
ℓ
. Hyperproofs represents a vector a = [𝑎0, . . . , 𝑎𝑛−1]

as a multilinear extension (MLE):

𝑓 (x) =
𝑛−1∑
𝑖=0

𝑎𝑖S𝑖,ℓ (x) ,

where S𝑖,ℓ are selector multinomials as per Eq. 5. The digest of the
vector a is, a Papamanthou-Shi-Tamassia (PST) commitment to 𝑓 :

pst(𝑓) = 𝑔𝑓 (s)
1

,

where s is the PST trapdoor (see §2.2). Thus, our public parameters

are the same as PST’s parameters depicted in Fig. 2.

3.1 Multilinear trees (MLTs)
A Hyperproof for position 𝑖 is just a PST evaluation proof (see §2.2)

for 𝑓 (i). Unfortunately, if one uses the PST.Prove algorithm from

Fig. 1 to compute all PST evaluation proofs, this takes 𝑂 (𝑛2) time.

Below, we show how to compute all 𝑛 proofs faster, in 𝑂 (𝑛 log𝑛)
time, by avoiding unnecessary computations (see Fig. 5).

Denote the proof for 𝑓 (i) as 𝜋𝑖 = (𝜋𝑖,ℓ , . . . , 𝜋𝑖,1). Next, observe
that if we compute all proofs 𝜋𝑖 via 𝑛 calls to:

PST.Prove(𝑓 , ℓ, (𝑖ℓ , . . . , 𝑖1)),∀𝑖 ∈ [𝑛] ,

they actually all have the same first quotient 𝑞ℓ committed in 𝜋𝑖,ℓ !

This is because all 𝑛 PST.Prove calls initially divide 𝑓 by 𝑥ℓ − 𝑖ℓ ,
which actually yields the same quotient, independent of 𝑖ℓ . To see

this, recall the MLE decomposition from Eq. 8 and reorganize it in

5

𝑓1 − 𝑓0

𝑓01 − 𝑓00

𝑓001 − 𝑓000

𝑓000

= 𝑎0

𝑓001

= 𝑎1

𝑓011 − 𝑓010

𝑓010

= 𝑎2

𝑓011

= 𝑎3

𝑓11 − 𝑓10

𝑓101 − 𝑓100

𝑓100

= 𝑎4

𝑓101

= 𝑎5

𝑓111 − 𝑓110

𝑓110

= 𝑎6

𝑓111

= 𝑎7

Figure 4: A multilinear tree (MLT) of size 8. Recall from §2 that 𝑓𝑏ℓ ,...,𝑏𝑘
denotes the MLE of a𝑏ℓ ,...,𝑏𝑘 . Each node stores a PST commitment to the

depicted MLE: e.g., root stores pst(𝑓1 − 𝑓0) , not 𝑓1 − 𝑓0. The proof for 𝑎𝑖
consists of all nodes along 𝑎𝑖 ’s path to the root (e.g., for 𝑎4, the boxed

nodes). Sibling leaves [𝑎2𝑗 , 𝑎2𝑗+1] have the same proof. If, say, 𝑎4 changes,

all pink-colored MLEs change, and all boxed commitments must be updated.

two ways as:

𝑓 = (1 − 𝑥ℓ) · 𝑓0 + 𝑥ℓ · 𝑓1 ⇔
𝑓 = (𝑓1 − 𝑓0) · (𝑥ℓ − 1) + 𝑓1 (13)

= (𝑓1 − 𝑓0) · 𝑥ℓ + 𝑓0 , (14)

where 𝑓0 is the MLE for the left half a0 of a and 𝑓1 is the MLE for the

right half a1 (recall from §2). Since both divisions yield the same

𝑞ℓ = 𝑓1 − 𝑓0 quotient, all 𝜋𝑖 ’s share the same 𝜋𝑖,ℓ commitment to 𝑞ℓ !

We depict this 𝑞ℓ as the root of a multilinear tree (MLT) in Fig. 4.

Next, recall that each one of the 𝑛 PST.Prove calls recurses on
its remainder, which we saw above was either 𝑓0 or 𝑓1. Specifi-

cally, the first 𝑛/2 calls for 𝑖 ∈ [0, 𝑛/2) (i.e., 𝑖ℓ = 0) recurse on

PST.Prove(𝑓0, ℓ − 1, (𝑖ℓ−1, . . . , 𝑖1)), and the other 𝑛/2 calls for 𝑖 ∈
[𝑛/2+1, 𝑛) (i.e., 𝑖ℓ = 1) recurse on PST.Prove(𝑓1, ℓ−1, (𝑖ℓ−1, . . . , 𝑖1)).
But by the same argument above, each group of𝑛/2 calls returns the
same first quotient commitment. For example, for the first group,

we have quotient 𝑓01 − 𝑓00:

𝑓0 = (𝑓01 − 𝑓00) (𝑥ℓ−1 − 1) + 𝑓01 (15)

= (𝑓01 − 𝑓00)𝑥ℓ−1 + 𝑓00 , (16)

Similarly, for the second group, the quotient will be 𝑓11 − 𝑓10. Both
quotients are depicted as the children of the root in Fig. 4. Contin-

uing recursively in this fashion yields our multilinear tree (MLT)
from Fig. 4. We describe the algorithm for computing it in Fig. 5

and we argue correctness of MLT proofs in Appendix D.1.

3.2 Updates and homomorphism

Updating digests andMLTs. Suppose 𝑎4 changes by 𝛿 in ourMLT

from Fig. 4. Then, by Eq. 4, we know that a’s MLE will change to:

𝑓 ′ = 𝑓 + 𝑥3 (1 − 𝑥2) (1 − 𝑥1)𝛿 = 𝑓 + S4,3 (x)𝛿

MLT.Compute(𝑓 , ℓ) → [𝑡1, . . . , 𝑡2ℓ−1]:

1. If ℓ = 0 (i.e., 𝑓 is a constant), return ∅.
2. Otherwise, ∀𝑏 ∈ {0, 1}, divide 𝑓 by 𝑥ℓ − 𝑏, obtaining quotient 𝑓1 − 𝑓0

and remainder 𝑓𝑏 such that 𝑓 = (𝑓1 − 𝑓0) · (𝑥ℓ − 𝑏) + 𝑓𝑏 .
3. Return

(
𝑔
(𝑓1−𝑓0) (s)
1

,MLT.Compute(𝑓0, ℓ − 1),MLT.Compute(𝑓1, ℓ − 1)
)

Figure 5:Computes anMLT in𝑂 (𝑛 log𝑛) time consisting of PST evaluation

proofs for all 𝑓 (i) w.r.t. an MLE 𝑓 of a of size 𝑛 = 2
ℓ
. In contrast, 𝑛 naive

calls to PST.Prove would take𝑂 (𝑛2) . Recall that 𝑓0 and 𝑓1 are MLEs for the

left and right halves of a. Returns the tree stored in preorder in an array.

But what about the MLT? The following highlighted MLEs from

Fig. 4 will be updated to:

𝑓 ′
100

= 𝑓100 + 𝛿
𝑓 ′
10

= 𝑓10 + (1 − 𝑥1)𝛿
𝑓 ′
1
= 𝑓1 + (1 − 𝑥2) (1 − 𝑥1)𝛿

𝑓 ′ = 𝑓 + 𝑥3 (1 − 𝑥2) (1 − 𝑥1)𝛿

These MLEs changing affect the MLEs along 𝑎4’s path. For example,

the root MLE 𝑓1 − 𝑓0 also changes by the same amount as 𝑓1: i.e., by

+ (1−𝑥2) (1−𝑥1)𝛿 . Furthermore, their corresponding commitments

are easy to update via the PST homomorphism. For example, the

new root will be pst(𝑓1 − 𝑓0) · 𝑔 (1−𝑠2) (1−𝑠1)𝛿
1

. However, note that

updating commitments requires knowing 𝑔
(1−𝑠2) (1−𝑠1)
1

, which is

referred to as an update key. We delve into this next.

Update keys. Recall thatS𝑢,𝑘 (x) is the selector multinomial for po-

sition𝑢 ∈ [0, 2𝑘) in an MLE of size 2
𝑘
(see Eq. 5). However, to easily

reason about updates, it is useful to define S𝑢,𝑘 even when 𝑢 ≥ 2
𝑘

as S𝑢,𝑘 = S𝑢 mod 2
𝑘 ,𝑘 . As explained above, updating the MLT after

𝑎𝑢 changes by 𝛿 requires some auxiliary information referred to as

an update key for position 𝑢. This consists of commitments to all

selector multinomials for 𝑢 in MLEs of size 1, 2, . . . , 2ℓ :

upk𝑢 =

{
𝑔
S𝑢,𝑘 (s)
1

: 𝑘 ∈ [0, ℓ]
}
=
{
upk𝑢,𝑘 : 𝑘 ∈ [0, ℓ]

}
(17)

Recall that S𝑢,0 (x) = 1, so that upk𝑢,0 = 𝑔1,∀𝑢 ∈ [0, 2ℓ). Then, the
MLT commitments (𝑤𝑢,ℓ , . . . ,𝑤𝑢,1) along 𝑢’s path are updated as:

𝑤 ′
𝑢,𝑘

= 𝑤𝑢,𝑘 · (upk𝑢,𝑘−1)𝛿 = 𝑤𝑢,𝑘 · (𝑔
S𝑢,𝑘−1 (s)
1

)𝛿 ,∀𝑘 ∈ [ℓ] (18)

Note that this implies that any proof 𝜋𝑖 = (𝑤𝑖,ℓ , . . . ,𝑤𝑖,1) can be

updated after a change at 𝑢: one simply has to identify the “in-

tersection” of 𝑢’s proof with 𝑖’s proof and apply the update as

above, as if updating a pruned MLT consisting of just 𝜋𝑖 . More

formally, suppose 𝑖 and 𝑢 have the same 𝑡 most significant bits (i.e.,

𝑖𝑘 = 𝑢𝑘 ,∀𝑘 ∈ {ℓ, ℓ − 1, . . . , ℓ − 𝑡 + 1}). Then, the updated proof 𝜋 ′𝑖 is
initially set to 𝜋𝑖 and (partially) updated as:

𝑤 ′
𝑖,𝑘

= 𝑤𝑖,𝑘 · (upk𝑢,𝑘−1)𝛿 ,∀𝑘 ∈ {ℓ, . . . , ℓ − 𝑡}, 1 ≤ 𝑘 ≤ ℓ (19)

The digest updates more simply as:

pst(𝑓 ′) = pst(𝑓) · 𝑔S𝑢,ℓ (s)
1

= pst(𝑓) ·
(
upk𝑢,ℓ

)𝛿
(20)

Lastly, we note that the update keys actually coincide with our

public parameters (see Fig. 2).

6

GBATCH (1_, 𝑏, ℓ) → (𝑃𝐾,𝑉𝐾) : Return GIPA (1_, 𝑏 · ℓ)

PBATCH (𝑃𝐾, (A𝑖 ,B𝑖)𝑖∈[𝑏]) → 𝜋 :

1. Let A = [A1 | |A2 | | . . . | |A𝑏] and B = [B1 | |B2 | | . . . | |B𝑏]
2. Let𝐶1 = ⟨A, v⟩ (i.e., 1st component of CM(ck;A,B′, 1G𝑇))
3. Let 𝑟𝑖 = 𝐻 (𝐶1,B, 𝑖) ∈ Z𝑝 for 𝑖 = 1, . . . , 𝑏

4. Let B′ = [B𝑟1
1
| |B𝑟2

2
| | . . . | |B𝑟𝑏

𝑏
]

5. Let 𝜋∗ = PIPA (ck,A,B′) and return 𝜋 = (𝐶1, 𝜋
∗) .

VBATCH (𝑉𝐾, (B𝑖 , 𝑍𝑖)𝑖∈[𝑏] , 𝜋) → {0, 1}:

1. Parse the proof 𝜋 = (𝐶1, 𝜋
∗)

2. Let 𝑟𝑖 = 𝐻 (𝐶1,B, 𝑖) ∈ Z𝑝 for 𝑖 = 1, . . . , 𝑏

3. Let B′ = [B𝑟1
1
| |B𝑟2

2
| | . . . | |B𝑟𝑏

𝑏
] and 𝑍 ′ = ∏𝑏

𝑖=1 𝑍
𝑟𝑖
𝑖

4. Let𝐶2 = ⟨w,B′⟩ (i.e., 2nd component of CM(ck;A,B′, 1G𝑇))
5. Let C = (𝐶1,𝐶2, 𝑍

′) and return VIPA (ck,C, 𝜋∗) .

Figure 6: Our argument for L𝑏,ℓ
BATCH used to aggregate Hyperproofs. 𝐻 is

a random oracle and (GIPA, PIPA,VIPA) is the Bünz et al. IPA from §2.4.

MLTs are homomorphic. Since our multilinear tree stores an

MLE commitment at each node, we observe that the MLT itself is

homomorphic: theMLT for a+b can be obtained by “multiplying” a’s
MLT with b’s MLT. In other words, every node𝑤 in the new MLT

is the product of the nodes𝑤 in the MLTs for a and b. Specifically,
pst(𝑓 ′′𝑤) = pst(𝑓𝑤+ 𝑓 ′𝑤) = pst(𝑓𝑤)pst(𝑓 ′𝑤), where 𝑓𝑤 , 𝑓 ′𝑤 , 𝑓 ′′𝑤 denote

the MLE stored at node𝑤 in the MLT for a, b and a+b, respectively.
This enables our unstealability construction from §3.4 and has other

applications to authenticating data in the streaming setting [38].

3.3 Aggregating proofs
Recall that a proof (𝑤1, . . . ,𝑤ℓ) for 𝑎𝑖 in the vector a of size 𝑛 = 2

ℓ

is just an ℓ-sized PST evaluation proof (see §2.2) and verifies as:

𝑒 (C/𝑔𝑎𝑖
1
, 𝑔2) =

ℓ∏
𝑘=1

𝑒 (𝑤𝑘 , 𝑔
𝑠𝑘−𝑖𝑘
2
) , (21)

where C is the digest and (𝑔𝑠𝑘−𝑖𝑘
2
)𝑘∈[ℓ] is position 𝑖’s public verifi-

cation key.

Warm-up: Compressing proofs. It is useful to first discuss com-

pressing a size-ℓ proof for 𝑎𝑖 to size log ℓ via the IPA from §2.4. For

this, we letA = [𝑤1 . . .𝑤ℓ],B = [𝑔𝑠1−𝑖1
2

. . . 𝑔
𝑠ℓ−𝑖ℓ
2
],𝑍 = 𝑒 (C/𝑔𝑎𝑖

1
, 𝑔2)

and prove that (𝑍,B) is in the following language:

LℓPROD =
{
𝑍 ∈ G𝑇 ,B ∈ Gℓ2

�� ∃A ∈ Gℓ
1
, 𝑍 = ⟨A,B⟩

}
(22)

Next, we can use the IPA from §2.4. Specifically, assume our LPROD
prover and verifier share a commitment key ck = (v,w). First,
the prover gives 𝐶1 = ⟨A, v⟩ to the verifier. Second, the verifier

computes 𝐶2 = ⟨w,B⟩ and lets 𝐶3 = 𝑍 . Thus, the verifier now has

a commitment C = (𝐶1,𝐶2,𝐶3) to A,B and 𝑍 . Third, the prover

simply runs PIPA from §2.4 and convinces the verifier that the

committed values satisfy 𝑍 = ⟨A,B⟩ and thus that the Hyperproof

verifies as per Eq. 21.

Aggregating proofs. Next, we observe that aggregating many

proofs (𝜋1, . . . , 𝜋𝑏), each for a position 𝑝𝑖 in a, reduces to proving

Gen(1_, 𝑛) → pp: Let (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← BilGen(1_) . Let s =

(𝑠1, . . . , 𝑠ℓ) ∈𝑅 Zℓ𝑝 , where 𝑛 = 2
ℓ
. Let pp consist of

• pst(S𝑗,𝑘) = 𝑔
S𝑗,𝑘 (s)
1

, ∀𝑘 ∈ [0, ℓ], ∀𝑗 ∈ [0, 2𝑘) ;
• 𝑔𝑠𝑘

2
, ∀𝑘 ∈ [ℓ];

• (𝑃𝐾,𝑉𝐾) ← GBATCH (1_, 𝑏, ℓ) .
We refer to (𝑔𝑠𝑘−𝑖𝑘

2
)𝑘∈[ℓ] as position 𝑖’s verification key.

Compp (a) → C: Let C = pst(𝑓) = 𝑔𝑓 (s)
1

= 𝑔
𝑓 (𝑠1,...,𝑠ℓ)
1

, where 𝑓 is a’s MLE.

OpenAllpp (a) → (𝜋0, . . . , 𝜋𝑛−1) : Return the MLT as per §3.1.

Openpp (𝑖, a) → 𝜋𝑖 : Compute only the 𝑖th path in the MLT and return it.

Aggpp (𝐼 , {𝑎𝑖 , 𝜋𝑖 }𝑖∈𝐼) → 𝜋𝐼 : Let 𝑚 = |𝐼 | and let A1,A2, . . . ,A𝑚 denote

proofs (𝜋𝑖)𝑖∈𝐼 , ordered by 𝑖 , and B1, . . . ,B𝑚 denote their corresponding

verification keys. Return PBATCH (𝑃𝐾, (𝐴𝑘 , 𝐵𝑘)𝑘∈[𝑚]) .
Verpp (C, 𝐼 , {𝑎𝑖 }𝑖∈𝐼 , 𝜋𝐼) → {0, 1}: If 𝐼 = {𝑖 }, parse 𝜋𝐼 = (𝑤1, . . . , 𝑤ℓ) and
ensure that

𝑒 (C/𝑔𝑎𝑖
1
, 𝑔2) =

ℓ∏
𝑗=1

𝑒 (𝑤𝑗 , 𝑔
𝑠 𝑗−𝑖 𝑗
2
) .

Otherwise, let 𝑚 = |𝐼 | and B1, . . . ,B𝑚 denote the verification keys

for the proofs, ordered by their position 𝑖 . Let 𝑍1, 𝑍2, . . . , 𝑍𝑚 be all the

𝑒 (C/𝑔𝑎𝑖
1
, 𝑔2)’s, also ordered by 𝑖 . Return VBATCH (𝑉𝐾, (𝐵𝑘 , 𝑍𝑘)𝑘∈[𝑚] , 𝜋𝐼) .

UpdDigpp (𝑢, 𝛿,C) → C′: Let C′ = C · (𝑔S𝑢,ℓ (s)
1

)𝛿 .

UpdAllProofspp (𝑢, 𝛿, 𝜋0, . . . , 𝜋𝑛−1) → (𝜋 ′0, . . . , 𝜋 ′𝑛−1) : Assume 𝑢’s MLT

path is (𝑤1, . . . , 𝑤ℓ) . Update this path as 𝑤′
𝑘

= 𝑤𝑘 · (upk𝑢,𝑘−1)𝛿 (for

𝑘 = 1, . . . , ℓ) as per Eq. 18.

UpdProofpp (𝑢, 𝛿, 𝜋𝑖) → 𝜋 ′
𝑖
: Update viaUpdAllProofs as if 𝜋𝑖 was a pruned,

single-path MLT (see Eq. 19).

Figure 7: Algorithms for Hyperproofs, implicitly parameterized by the max

number of proofs 𝑏 that can be aggregated into a single proof.

membership in LℓPROD for each (𝑍𝑖 ,B𝑖), where 𝑍𝑖 = 𝑒 (C/𝑔
𝑎𝑝𝑖
1
, 𝑔2)

and B𝑖 is position 𝑝𝑖 ’s verification key. But doing this naively would
result in a large, 𝑂 (𝑏 log ℓ) aggregated proof size. Instead, we seek

a more succinct argument for the following new language:

L𝑏,ℓ

BATCH =
{
(𝑍𝑖 ∈ G𝑇 ,B𝑖 ∈ Gℓ

2
)𝑖∈[𝑏]

�� ((𝑍𝑖 ,B𝑖) ∈ Lℓ
PROD)𝑖∈[𝑏]

}
(23)

=
{
(𝑍𝑖 ∈ G𝑇 ,B𝑖 ∈ Gℓ

2
)𝑖∈[𝑏]

�� (∃A𝑖 ∈ Gℓ
1
, 𝑍𝑖 = ⟨A𝑖 ,B𝑖 ⟩)𝑖∈[𝑏]

}
In otherwords, membership inL𝑏,ℓBATCH guarantees that∀𝑖 ∈ [𝑏], ∃A𝑖 :

𝑍𝑖 =

ℓ∏
𝑗=1

𝑒 (𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗), (24)

where 𝐴𝑖, 𝑗 is the 𝑗 th entry of A𝑖 . Note that we cannot use the TIPP
argument from [15] to prove membership in LBATCH, since it can

only prove that ∀𝑖, 𝑍𝑖 = ⟨𝑋𝑖 , 𝑌𝑖 ⟩, where (𝑋𝑖 , 𝑌𝑖) ∈ G1 × G2. Instead,
we design a new argument for L𝑏,ℓBATCH (see Fig. 6) which uses a

random linear combination to combine the ℓ-sized equations from

above into a single 𝑏ℓ-sized one:

𝑏∏
𝑖=1

𝑍
𝑟𝑖
𝑖

=

𝑏∏
𝑖=1

©«
ℓ∏
𝑗=1

𝑒 (𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗)
ª®¬
𝑟𝑖

(25)

7

It is well known that, if the 𝑟𝑖 ’s are uniformly random, verify-

ing the combined equation above is sufficient (see Lemma C.1).

As a result, our argument for L𝑏,ℓBATCH uses the IPA from §2.4

on this combined equation in a black-box manner. (This is sim-

ilar to the previous LℓPROD argument, except it involves larger

vectors and randomization.) We give a precise description of its

(GBATCH,PBATCH,VBATCH) algorithms in Fig. 6, show how it fits

in our VC construction in Fig. 7, and prove security in Appendix C.3.

Aggregation time and proof size. It is easy to see from Fig. 6

that the PBATCH time (i.e., the time to aggregate 𝑏 proofs) is𝑂 (𝑏 · ℓ)
and theVBATCH time (i.e., the time to verify the aggregated proof)

is𝑂 (𝑏 · ℓ). Unfortunately, even though our L𝑏,ℓBATCH argument uses

the IPA with fast, 𝑂 (log (𝑏 · ℓ))-time KZG-based verification (see

§2.4), theVBATCH verifier still needs to do 𝑂 (𝑏 · ℓ) work on the B𝑖
vectors. (Note that this 𝑂 (𝑏 · ℓ) verifier work seems inherent for

processing the 𝑏 verification keys.) Lastly, the argument size (i.e.,

the aggregated proof size) is 𝑂 (log (𝑏 · ℓ)) = 𝑂 (log𝑏 + log ℓ).

Cross-aggregation. In addition to aggregating proofs w.r.t. the

some commitment C, we can also cross-aggregate proofs w.r.t. dif-
ferent commitments [21]. Specifically, suppose we have 𝑏 proofs

𝜋𝑖 for positions 𝑝𝑖 , each w.r.t. a (potentially-different) digest C𝑖 for
a vector with MLE 𝑓𝑖 . Then, we can use the same PBATCH prover

from Fig. 6 to cross-aggregate these proofs. To verify, the verifier

now computes the 𝑍𝑖 ’s from Eq. 24 by using the right commitment

and evaluation point: i.e., 𝑍𝑖 = 𝑒 (𝐶𝑖/𝑔𝑓𝑖 (𝑝𝑖)
1

, 𝑔2). For simplicity, we

do not formalize VCs with cross-aggregation, but our soundness

proofs from Appendix D.3 can easily carry over to this setting.

3.4 Unstealable proofs
In this subsection, we show how to incentivize proof computation

by allowing provers, who store the vector and maintain proofs, to

watermark the proofs they compute. Such watermarked proofs are

cryptographically-bound to their prover’s identity, which means

the prover can be monetarily rewarded for having computed them

(e.g., in cryptocurrencies). Importantly, this cryptographic bind-

ing cannot be undone by adversaries. In other words, “stealing” a

proof by replacing its watermark with your own, is no easier than

computing the proof from scratch like everyone else. We call such

watermarked proofs unstealable, formalize and prove their secu-

rity and make Hyperproofs unstealable. We show unstealability of

proofs is useful in the cryptocurrency setting in §4 and we envision

other applications could benefit from it.

Strawman: unstealability via digital signatures. Note that a

digital signature on the VC proof will not make it unstealable. This

is because the signature, which is appended to the VC proof, can be

simply removed by the adversary and replaced with his own signa-

ture. Instead, we need a different approach that somehow embeds

the signature into the proof itself so that it cannot be removed.

Unstealability via exponentiations.Wemake a proof𝝅𝑖 = (𝑤𝑖,ℓ ,
. . . ,𝑤𝑖,1) unstealable by exponentiating it with 𝛼 as:

𝝅𝛼𝑖 = (𝑤𝛼𝑖,ℓ , . . . ,𝑤
𝛼
𝑖,1)

def
= (�̂�𝑖,ℓ , . . . , �̂�𝑖,1) , (26)

where 𝛼 is the prover’s watermarking secret key (WSK). The cor-
responding watermarking public key (WPK) is 𝑔𝛼

2
together with a

zero-knowledge proof of knowledge (ZKPoK) of 𝛼 (e.g., a Schnorr

proof [42] as per Appendix B). To verify a proof watermarked with

𝑔𝛼
2
, one first checks that the ZKPoK of 𝛼 verifies. Second, one checks

the proof as normal as per Eq. 21, but accounts for the WPK 𝑔𝛼
2
:

𝑒 (𝐶/𝑔𝑎𝑖
1
, 𝑔𝛼

2
) ?

=
∏
𝑘∈[ℓ]

𝑒 (�̂�𝑖,𝑘 , 𝑔
𝑠𝑘−𝑖𝑘
2
) (27)

The key intuition is that an adversary can no longer remove 𝛼 from

the watermarked proof, since this seems to require exponentiating

by 𝛼−1, which the adversary does not know. Indeed, in Appen-

dix D.5, we prove that no ppt adversary can steal proofs under

ℓ-DHI (see Assumption A.3).

Aggregation-preserving unstealability. One important prop-

erty of our unstealable proofs is that they remain aggregatable

via a call to Agg from Fig. 7. Intuitively, this is because the right-

hand side of the watermarked verification from Eq. 27 remains the

same as for normal verification in Eq. 21. However, the left-hand

side changes. Thus, when verifying an aggregated proof via Ver (see
Fig. 7), the verifier has to account for the WPKs when computing

the 𝑍𝑖 ’s. In other words, the verifier needs to have these WPKs.

In our application setting from §4, we anticipate the verifier will

already have all of the WPKs, instead of receiving them with the

aggregated proof.

Homomorphism-preserving unstealability. Our approach to

watermarking proofs preserves the PST and MLT homomorphisms.

This has a few advantages. First, watermarked proofs can still be

updated. Specifically, assuming position 𝑢 changed by 𝛿 , the wa-

termarked proof 𝝅𝛼
𝑖
from Eq. 26 can be updated as before (see

Eq. 19) if one uses watermarked update keys (upk𝑢,𝑘)𝛼 . Second, an
MLT of watermarked proofs can be computed directly, if the prover

uses watermarked public parameters. The prover can obtain these

in a one-time pre-processing step that exponentiates all parameters

from Fig. 2 with the WSK 𝛼 :(
𝑔
S𝑢,𝑘 (s)
1

)𝛼
= 𝑔

𝛼S𝑢,𝑘 (s)
1

def
= 𝑔
S𝑢,𝑘 (s)
1

,∀𝑘 ∈ [0, ℓ],∀𝑢 ∈ [0, 2𝑘) (28)

Importantly, these are still valid Hyperproofs parameters, except

under a new base 𝑔1 = 𝑔𝛼
1
. As a result, the prover can directly

compute a watermarked MLT using these new parameters. This is

important, as it allows precomputing watermarked proofs, ensuring

that serving such proofs is as efficient as serving normal proofs.

Third, a watermarked MLT is efficiently maintainable, just like a

normal MLT. This follows from the updatability of watermarked

proofs argued above.

New UVC algorithms.We must slightly change our VC API from

Definition 2.1 into an unstealable VC (UVC) API that accounts for
watermarked proofs and watermarking key-pairs. First, we intro-

duce two new algorithms:

1. WtrmkGen(1_) → (wsk,wpk): Generates a random (wsk,wpk)
watermarking key pair.

2. WtrmkParams(pp,wsk) → wpp: Returns watermarked public

parameters wpp, under wsk, as per Eq. 28.

Second, the verification algorithm Verpp (𝐶, 𝐼, (𝑎𝑖 ,wpk𝑖)𝑖∈𝐼 , 𝜋𝐼) ad-
ditionally takes as input the watermarking PKwpk𝑖 that each proof

𝜋𝑖 is watermarked with. Third, the algorithms for creating and

8

updating proofs now operate on watermarked public parameters.

In the interest of brevity, we give the full UVC API, with a new

correctness definition, in the appendix in Definition D.1.

UVC soundness. We model UVC soundness similar to VC sound-

ness, except we account for watermarked proofs (see Definition D.3

in the appendix). Informally, we prevent adversaries from creating

two inconsistent proofs for the same index 𝑘 , even if those proofs

are watermarked with different, adversarially-generated WPKs.

UVC unstealability. We also need to formally define our new

unstealability notion, which we only explained intuitively so far.

We do this via a game where an adversary sees a commitment to

an unknown vector and up to 𝑛 − 1 watermarked proofs for the

vector. His goal is to output a new proof watermarked under a

WPK he knows. We restrict ourselves to individual proofs only (see

Definition 3.1), but generalize to aggregated proofs in the appendix

(see Definition D.4).

Definition 3.1 (UVC Unstealability for individual proofs).

∀ ppt adversaries A = (A0,A1),

Pr

pp← Gen(1_, 𝑛),
(wsk,wpk) ←WtrmkGenpp (1_),
wpp←WtrmkParams(pp,wsk),
C← Compp (a), where 𝑎𝑖 ∈𝑅 Z𝑝 ,
(𝐼 ⊊ [𝑛], st) ← A0 (1_, pp,C,wpk),(

𝜋𝑖 ← Openwpp (𝑖, a)
)
𝑖∈𝐼

,

(𝑗 ∈ [𝑛], 𝜋 ′,wpk′) ← A1 (1_, st, (𝑎𝑖 , 𝜋𝑖)𝑖∈𝐼) :
Verpp (C, { 𝑗}, (𝑎 𝑗 ,wpk′), 𝜋 ′) = 1 ∧ wpk ≠ wpk′

≤ negl(_) .

Observation: “Stealing” proofs implicitly assumes A does not

have (and cannot predict) the vector. This is why a is randomly

picked: to discount non-attacks such as A computing a proof from

scratch (via knowledge of the vector) and watermarking it.

3.5 Analysis

Correctness and security. Correctness follows by inspection, but
we do argue correctness of the MLT in Appendix D.1. We prove our

VC is sound as per Definition 2.3 in Appendix D.3. We prove our

unstealable VC is (1) sound as per Definition D.3 in Appendix D.4

and (2) unstealable as per Definition 3.1 in Appendix D.5.

Asymptotics. Gen can compute all 𝑂 (𝑛) public parameters from

Fig. 2 in 𝑂 (𝑛) time, since it knows the trapdoors (𝑠1, . . . , 𝑠ℓ). Com
runs in time𝑂 (𝑛), requiring one exponentiation per vector element.

OpenAll takes𝑇 (𝑛) = 2𝑇 (𝑛/2)+𝑂 (𝑛) = 𝑂 (𝑛 log𝑛) exponentiations,
since it must commit to all MLEs in Fig. 4. Open only takes 𝑇 (𝑛) =
𝑇 (𝑛/2) +𝑂 (𝑛) = 𝑂 (𝑛) exponentiations, since it must commit to one

path of MLEs from Fig. 4. UpdDig takes one exponentiation as per

Eq. 20 and UpdProof takes ℓ exponentiations as per Eq. 19. Finally,
Agg takes 𝑂 (𝑏ℓ) time, where 𝑏 is the number of proofs that are

aggregated, outputting a proof of size𝑂 (log𝑏 + log ℓ), which can be

verified by Ver in 𝑂 (𝑏ℓ) time. A detailed asymptotic comparison of

our VC with other works can be found in the appendix in Table 4.

4 HYPERPROOFS FOR CRYPTOCURRENCIES
In this section, we discuss how Hyperproofs can be used to speed

up validation in payment-only stateless cryptocurrencies.

Stateless validation. In account-based cryptocurrencies [53], val-
idators such as miners and P2P nodes store a large amount of state
to validate transactions and blocks in the consensus protocol. This

state consists of each user’s account balance and can be represented

as a vector that maps each user’s public key to their balance. Recent

work [11, 18, 21, 31, 41, 46, 49] trades off storage of the state with

additional bandwidth and computation. This approach, known as

stateless validation, commits to the state using a vector commitment

(VC) scheme and allows validators to store only the digest rather

than the full state. Next, transactions and blocks are augmented

with proofs for the accessed state, so validators can check validity

against the digest, instead of storing the full state.

Challenges. There are several challenges in stateless validation.

First, when creating a transaction, the sending user needs to include

a proof that they have enough balance. In this sense, users should

be able to fetch their proof from proof-serving nodes (PSNs) [41, 49],
who maintain (a subset of) all proofs. Thus, PSNs should be able to
efficiently update all proofs, as new blocks are confirmed. Second,

PSNs should be incentivized to maintain proofs. Third, a miner must

now include each transaction’s proof in a proposed block, so that

other miners can statelessly validate this block. This calls for proofs
to be efficiently aggregatable, to save block space. Finally, when

validating a block, miners must now verify such an aggregated

proof. Thus, aggregated proofs should verify fast.

Why rely on proof-serving nodes? In theory, each user can

maintain their proof locally by keeping up with all confirmed trans-

actions and updating their proof (e.g., as per Eq. 19). However, this

overwhelms users with large computation (i.e., updating proofs)

and large communication (i.e., downloading new blocks). This is

why well-incentivized, efficient proof-serving nodes (PSNs) are im-

portant: they eliminate this burden from users by allowing them to

fetch their latest proof.

Hyperproofs for stateless validation As described above, in the

stateless validation setting, it is important to minimize the time for

(1) PSNs to update all proofs to reflect the latest block, (2) miners to

propose a new block, with aggregated proofs and (3) other miners

to verify this block, including its aggregated proof. In §5.3, we show

experimentally that Hyperproofs outperforms other VCs in this

task. This is because VCs with𝑂 (1)-sized proofs [16, 17, 21, 27, 49]
require 𝑂 (𝑛) time to update all proofs, while Hyperproofs only

requires 𝑂 (log𝑛). Furthermore, when compared to Merkle trees,

aggregation is 10× to 100× faster in Hyperproofs (see §5.2).

5 EVALUATION
In this section, we measure the performance of Hyperproofs and

explore their applicability for stateless validation. We do not com-

pare to VCs with constant-sized proofs due to their impractical

𝑂 (𝑛) cost to update all proofs. Instead, we focus on Merkle trees

with SNARK-based aggregation. We use the Golang bindings of the

mcl library [33] to implement Hyperproofs. We use BLS12-381, a

pairing-friendly elliptic curve, which offers 128 bits of security. A

serialized G1,G2 and G𝑇 element in mcl takes 48, 96, and 576 bytes,
respectively. A single exponentiation takes 106 `s in G1 and 250 `s

inG2. Each experiment ran single-threaded on an Intel Core i7-4770

CPU @ 3.40GHz with 8 cores and 32 GiB of RAM. Unless stated

9

ℓ = log
2
𝑛 22 24 26 28 30

Com (min) 3.15 12.61 50.44 201.79
*

807.19
*

OpenAll (hrs) 0.644 2.78 12.06
*

52.19
*

225.80
*

UpdDig 47.76 `s

UpdAllProofs (ms) 1.74 1.96 2.15 2.37 2.58

Indiv. Ver (ms) 8.15 8.22 9.10 10.09 10.93

Agg (s) 105.14 109.49 114.03 118.31 122.62

Aggr. Ver (s) 12.94 14.06 15.11 16.22 17.41

Indiv. proof size (KiB) 1.06 1.15 1.25 1.34 1.44

Aggr. proof size (KiB) 51.6

Table 2: Single-threaded microbenchmarks for Hyperproofs. Running times

with an asterisk symbol (*) are too long and have been interpolated. We

measure aggregation of 1024 proofs. OpenAll and Com are only measured

once. UpdDig and UpdAllProofs times are averages after a batch of 1024

changes to the vector. All algorithms are parallelizable.

otherwise, we perform 4 runs of each experiment and report their

average. Also, vectors in this section are of size 𝑛 = 2
ℓ
.

5.1 Microbenchmarks
We microbenchmark Hyperproofs in Table 2. All microbenchmarks

pick vectors and updates randomly and are single-threaded, but
trivially parallelizable.

Public parameters. To commit to vectors of size 𝑛, Hyperproofs

needs a large proving key consisting of 2𝑛−1G1 elements depicted in

Fig. 2. For ℓ = 28, this requires around 24 GiB of space (see Table 5).

Verification keys are all derived from (𝑔𝑠𝑘
2
)𝑘∈[ℓ] . Furthermore, to

aggregate 𝑏 proofs, Abe et al. commitment keys [2] are needed

consisting of ℓ ·𝑏 G1 and ℓ ·𝑏 G2 elements. For ℓ = 28 and 𝑏 = 1024,

this only adds 3.94 MiB. Watermarking the public parameters as

per §3.4 requires 2𝑛−1 exponentiations inG1. For ℓ = 28, this takes

15.87 hours. However, this is a one-time cost.

Committing and computing multilinear trees.We commit to

a vector of size𝑛 via an𝑂 (𝑛)-sized multi-exponentiation. For ℓ = 28,

this takes 202minutes. Computing amultilinear tree (MLT) involves

committing to the MLEs in each node via a multi-exponentiation

(see Fig. 4). For ℓ = 28, this takes 52.2 hours (or 1.63 hours with

32 threads). We expect to at least double performance via faster

multi-exponentiation algorithms, which mcl lacks.

Updating the digest and the multilinear tree. For updating the
digest, we measure the time to apply a batch of 1024 updates via

a multi-exponentiation, divide this time by 1024 and obtain an

average time of 48 `s per update. For the MLT, we also measure

the time to apply a batch of 1024 updates. This way, we can use

multi-exponentiations when updating nodes in the tree. Dividing

the total time by 1024, gives us an average time of 1.74 (ℓ = 22) to
2.58 milliseconds (ℓ = 30) per update. Recall from §3.4 that updates

will be just as fast for watermarked multilinear trees.

Proof size and verification time. Individual proof size is ℓ G1
elements and is competitive with Merkle trees (e.g., for ℓ = 30,

1.44 KiB in MLTs versus 960 bytes in MHTs). Verifying a proof

requires ℓ + 1 pairings, which we optimize into a multi-pairing (i.e.,

first compute ℓ + 1 Miller loops and then compute a single final

exponentiation). This way, verifying a proof ranges from 8.2 (ℓ = 22)

to 11 milliseconds (ℓ = 30). If the proof is watermarked, we discount

the WPK from the proof size, since the verifier could already have

theWPK, depending on the application. Furthermore, this overhead

would be acceptable: 224 bytes (see Appendix B). Lastly, verifying

the ZKPoK for the WPK requires two G2 exponentiations, which
adds around 500 `s to the proof verification time.

Proof aggregation. Let 𝐼 be the set of transactions to be aggregated
via Aggpp, which calls PBATCH from Fig. 6. In our benchmarks,

𝑏 = |𝐼 | = 1024. As shown in Table 2, aggregating 1024 transactions

takes between 105 (ℓ = 22) to 123 seconds (ℓ = 30). Verifying such

an aggregated proof takes between 13 (ℓ = 22) to 17.5 (ℓ = 30)

seconds. These times are not affected by watermarking. In §5.2, we

show our aggregation is 10× to 100× faster than SNARKs.

Aggregated proof size. Our aggregated proof size is 52 KiB for

any ℓ = 22, . . . , 30. This is an artifact of the IPA proof size depending

on the smallest power of two ≥ log(𝑏 · ℓ), which is the same for all

ℓ’s above when 𝑏 = 1024. As with individual proofs, watermarking

does not affect proof size when the verifier has the WPKs.

5.2 Comparison with SNARKs
In this subsection, we show that Hyperproof aggregation is any-

where from 10× to 100× faster than Merkle proof aggregation via

SNARKs (see Fig. 8), depending on the choice of hash function. This

comes at the cost of larger proofs (52 KiB versus 192 bytes) and

slower verification. Nonetheless, the end-to-end time to prove-and-

verify remains around 10× to 100× faster in Hyperproofs.

Experimental setup. We fix the height of both the Merkle tree

and our MLT to ℓ = 30, and measure performance when aggregat-

ing 𝑏 ∈ {22, 24, . . . , 214} proofs. We compare to an implementation

by Ozdemir et al. [35] in Rust [34] which uses the state-of-the-art

SNARK by Groth [23] to prove knowledge of changes to a Merkle

tree, updating it from digest 𝑑 to digest 𝑑 ′. To benchmark proof

aggregation, we notice that proof aggregation would involve half

of the work done by the Ozdemir et al. prover, and directly use their
code. This is because proving knowledge of 𝑏 changes involves first

verifying𝑏 Merkle proofs for the original values “inside the SNARK”

and then updating the Merkle root with the changes, which also

involves 𝑏 Merkle path verifications. For the SNARK verifier, we di-

rectly measure its work, which involves a G1 multi-exponentiation

linear in the number of proofs aggregated and 3 pairings.

Choice of Merkle hash function. Choosing a “SNARK-friendly”

hash function for theMerkle tree can significantly reduce the prover

time. In this sense, we use the recently-proposed Poseidon-128

hash function [22], which only requires 316 R1CS constraints per

invocation inside the SNARK, but lacks sufficient cryptanalysis. As

a more secure choice, we also use the Pedersen hash function [54]

used in Zcash [7], which is collision-resistant under the hardness

of discrete log, but requires 2753 constraints per invocation [35].

Proving time. The SNARK prover time is dominated by several

multi-exponentiations and Fast Fourier Transforms (FFTs) of size

linear in the number of R1CS constraints. For example, when aggre-

gating 𝑏 = 2
10

proofs in a Poseidon-hashed Merkle tree of height

10

2 4 6 8 10 12 14

100

101

102

103

104

105

Hyperproofs
Merkle (Poseidon)
Merkle (Pedersen)

(a) Aggregation time (seconds)

2 4 6 8 10 12 14

10−2

10−1

100

101

102
Hyperproofs
Merkle

(b) Verification time (seconds)

2 4 6 8 10 12 14

100

101

102

103

104

105

Hyperproofs
Merkle (Poseidon)
Merkle (Pedersen)

(c) Aggregation plus verification time (seconds)

Figure 8: SNARK-based Merkle proof aggregation versus Hyperproof aggregation. The 𝑥-axis is log
2
(# of proofs being aggregated) . Dotted lines are

extrapolated, due to the SNARK prover running out of memory. We use the 128-bit secure variant of Poseidon.

ℓ = 30, the number of constraints is 10 million. As a result, SNARK

aggregation is very slow, taking 1224 seconds. In contrast, when

aggregating 𝑏 Hyperproofs, also in a height ℓ MLT, our IPA-based

prover from Fig. 6 only computes 𝑂 (𝑏ℓ) pairings and 𝑂 (𝑏ℓ) G1,G2
and G𝑇 exponentiations. This only takes 123 seconds. On aver-

age, as shown in Fig. 8(a), aggregating Hyperproofs is 10× faster

than aggregating Merkle-Poseidon proofs and 100× faster than

Merkle-Pedersen.

Provermemory. The SNARK prover also requires memory at least

linear in the number of constraints. As a result, on our machine

with 32 GiB of RAM, SNARK aggregation runs out of memory

when aggregating ≥ 2
11

proofs with Poseidon hashing (20 million

constraints) or ≥ 2
8
proofs with Pedersen (23 million constraints).

Nonetheless, we extrapolate the proving times in Fig. 8. In contrast,

our IPA-based aggregation from Fig. 6 has a much lower memory

footprint and never runs out of memory.

Verification time. In general, verifying a SNARK proof requires 3

pairings and a G1 multi-exponentiation of size equal to the number

of verifier-provided inputs [23]. In particular, when aggregating 𝑏

Merkle proofs, this multi-exponentiation will be of size 2𝑏 + 1, since
the verifier must input the digest and the 𝑏 leaves (𝑖, 𝑣𝑖)𝑖∈𝐼 being
verified. We implement verification in Golang using mcl [33] and
report the times in Fig. 8(b). (We cannot use the Ozdemir et al. code,

since the verifier only inputs two digests and checks knowledge of
𝑏 changes to the Merkle tree.) When aggregating 𝑏 = 2

10
proofs,

it takes 0.11 seconds to verify a SNARK proof and 17.4 seconds

to verify an aggregated Hyperproof. While verification is slower

in Hyperproofs, when accounting for both the time to prove and

verify in Fig. 8(c), Hyperproofs are faster.

SNARKs without trusted setup. Recent SNARKs [14, 44, 55] are
transparent (i.e., do not need a trusted setup). Even better, these

SNARKs often have faster provers than pairing-based SNARKs.

However, compared to Hyperproofs, they are still too slow, have

larger proof sizes and consume too much memory. For example,

aggregating 𝑏 = 2
14

Merkle proofs requires 2
28

R1CS constraints

if using Poseidon hashes. The prover time would be around 2.58

hours using Spartan [44, Figure 7] and 1.53 hours using Virgo [55].

This is close to 5× and 3× slower than Hyperproofs, respectively.

The proof size would be around 1.83 MiB using Spartan and 350 KiB

using Virgo (estimated using the open-source code of [55]). This is

around 36× and 7× bigger than Hyperproofs, respectively. The per-

formance is even worse if we use Pedersen hashes. Moreover, these

transparent SNARKs are not as memory-efficient as Hyperproofs:

Virgo scales to 2
24

constraints, similar to pairing-based SNARKs

(i.e., fails aggregating when 𝑏 ≥ 2
11

proofs) while Spartan scales to

2
26

constraints (i.e., fails for 𝑏 ≥ 2
13
). Lastly, other transparent ar-

guments (e.g., STARKs [6], Aurora [8], Hyrax [52], Ligero [4]) have

similar drawbacks. We defer to [44, 55] for a detailed discussion on

trade-offs.

5.3 Macrobenchmarks
Our single-threaded experiments measure the VC-induced over-

heads of statelessly reaching consensus on a new block (see §4),

which consist of: (1) aggregating proofs during block proposal,

(2) verifying an aggregated proof during block validation and (3)

proof-serving nodes (PSNs) updating all proofs after a new block,

so that the next proposed block can use these proofs. In Table 3,

we show Hyperproofs are 32× faster than Poseidon-hashed Merkle

trees when proposing and validating blocks and remain compet-

itive in terms of proof maintenance cost. Interestingly, stateless

validation involves a more complex SNARK, which worsens the

10× slowdown of Merkle trees from §5.2. We assume MLTs and

Merkle trees of height ℓ = 30 and blocks of 1024 transactions. We

do not compare to VCs with 𝑂 (1)-sized proofs, due to their large

proof maintenance cost (i.e., 2
ℓ G1 exponentiations, or 31.7 hours).

Limitations: Our macrobenchmarks do not account for all the sub-

tleties that would arise in a full prototype, such as communication

overheads, or miners needing to update the proofs in the current

block they are working on due to another competing block. They

also do not account for the overhead of signature verification, which

is not affected by the chosen VC scheme. Instead, they focus on the

three key operations whose overheads should be minimized: block

proposal, block validation and proof maintenance. Lastly, while we

show Hyperproofs are faster than other VCs for stateless validation,

we do not claim they make the stateless setting practical.

Block transitions with Hyperproofs versus Merkle trees. In
a stateless cryptocurrency, the 𝑖th block stores the digest 𝑑𝑖 of all

users’ balances at that point in time. When block 𝑖 + 1 arrives, it
11

Scheme Hyperproofs

Merkle tree with

Poseidon-128 + SNARK

Block proposal 2.23 min 80.78 min

Block validation 17.51 sec 0.18 sec

Proof maintenance 5.14 sec 4.7 sec

Table 3: Single-threaded, stateless cryptocurrency macrobenchmarks that

measure the time to prepare a block for proposal, to validate a proposed

block and to update all proofs after a new block is seen. Trees have height

ℓ = 30 and blocks have 1024 transactions. A Poseidon-128 hash takes 113

`s using the go-iden3-crypto library [20].

must prove that its new digest 𝑑𝑖+1 correctly reflects the updated

balances, after applying its transactions. With Hyperproofs, the

block includes an aggregated proof for the balance of each user

sending money. This way, a validator can ensure that a block is

spending valid coins and then can compute𝑑𝑖+1 from𝑑𝑖 viaUpdDig,
subtracting coins from each sending user’s account and adding

coins to each receiving user.

With SNARK-based Merkle trees, it is not possible to update the

digest 𝑑𝑖+1 given the old digest 𝑑𝑖 , the SNARK aggregation proof,

and the changes in balances: the Merkle proofs for all the changed

leaves are also needed as auxiliary information. But including these

Merkle proofs in the block would defeat the point of aggregating

them via SNARKs! Therefore, the SNARK circuit must be extended

to also verify the transition between 𝑑𝑖 and 𝑑𝑖+1. Specifically, the
circuit additionally proves that 𝑑𝑖+1 is obtained by applying the

changes in the block to 𝑑𝑖 . A block of 𝑏 transactions involves 2𝑏

changes to the Merkle tree, and each change requires two Merkle

path verifications inside the circuit. Therefore, the circuit involves

4 · 𝑏 Merkle path verifications (4× more expensive than the aggre-

gation circuit from §5.2).

Block overhead. As described above, stateless cryptocurrency

blocks additionally store the digest of the state and an aggregated

proof for all transactions. Both Merkle trees and Hyperproofs have

similar digest sizes (i.e., 32 bytes versus 48 bytes). However, aggre-

gated Hyperproofs are 52 KiB, whereas SNARK-aggregated Merkle

proofs are only 192 bytes. Nonetheless, relative to the size of the

full block, Hyperproof overhead is modest and only decreases with

larger blocks. Furthermore, we foresee optimizing the IPA from

Fig. 3 to reduce the proof size. Lastly, using unstealability to in-

centivize proof-serving nodes (which Merkle trees do not support)

adds 224 bytes of WPK overhead per PSN involved in the block.

As an alternative, if the set of PSNs is fixed or grows slowly, then

WPKs can be stored as part of the public parameters of the system.

Transaction overhead.Transactions propagating through the P2P
network in a stateless cryptocurrency need to include proofs. With

Hyperproofs, this only requires a 1.44 KiB proof for the sender’s

balance. With Poseidon-hashed Merkle trees, this requires two 960

byte proofs, or 1.875 KiB, one for the sender and one for the receiver.

This is because, to update the Merkle root, the miner also needs

the receiver’s Merkle proof as auxiliary information, whereas in

Hyperproofs the digest can be updated homomorphically.

Block proposal. With Hyperproofs, a miner proposing a block

with 1024 transactions has to (1) verify 1024 individual Hyperproofs,

(2) aggregate these proofs, (3) and update the digest. With Merkle

trees, this remains the same, except steps (2) and (3) are done in the

SNARK. Table 3 shows block proposal is 36× faster in Hyperproofs

than in SNARKs due to faster aggregation/digest updates.

Block validation. To validate an incoming block, a miner has to

verify its aggregated proof and check its commitment was computed

correctly via UpdDig. In Table 3, we see that SNARKs are much

faster to verify than 𝑏 aggregated Hyperproofs (97×), which require

𝑂 (𝑏ℓ) G1,G2 andG𝑇 exponentiations to verify. While SNARKs also

incur 𝑂 (𝑏) cost, this only involves a fast G1 multi-exponentiation.

Nonetheless, when considering the time to propose and validate a

block, Hyperproofs remains 32× faster.

Proof maintenance. Recall that having updated proofs ready to

be served is important in stateless cryptocurrencies, since users

need to fetch and include their proofs when sending a transaction

to a miner. Fortunately, a PSN can update all proofs in𝑂 (ℓ) time in

both Hypeproofs and Merkle trees. Table 3 gives the concrete batch
update time after 1024 transactions (or 2048 changes to the tree).

Batch-updating Merkle trees is slightly faster than applying each

update sequentially, because each node in the Merkle tree need

only be updated once, by recomputing a Poseidon-128 hash, which

takes 113`𝑠 . In contrast, when batch-updating MLTs, each node

still needs to be updated several times to account for all the leaves

that changed underneath it, as per Eq. 19. While we optimize this

using a multi-exponentiation, MLTs will be slightly slower.

6 CONCLUSION
We presented Hyperproofs, a new VC that supports efficientlymain-
taining and aggregating proofs. We showed Hyperproofs aggrega-

tion is 10× to 100× faster than SNARK-based Merkle trees, depend-

ing on choice of hash function, and are only slightly slower when

maintaining proofs. Although aggregatedHyperproofs are slower to

verify, they are overall faster when used to statelessly propose and

validate blocks in cryptocurrencies due to their faster aggregation.

Hyperproofs is also the first unstealable VC, allowing proof-serving
nodes to efficiently precompute proofs watermarked with their

identity so they can be rewarded for their work. Importantly, these

watermarked proofs remain updatable and aggregatable.

Future work. It would be interesting to apply our aggregation

and unstealability techniques to Verkle trees [26, 29], which are

𝑞-ary rather than binary Merkle trees. This would also help extend

Hypeproofs into a key-value commitment (KVC) scheme that maps

arbitrary keys to values. Building Hyperproofs from assumptions in

hidden-order groups would eliminate the large public parameters

and, potentially, the trusted setup. Using more malleable inner-

product arguments would allow us to update aggregated proofs

too. Lastly, optimizing the arguments from Figs. 3 and 6 for our

Hyperproof setting could speed up aggregation and verification

times as well as reduce proof size.

Open source implementation. Our code will be available at:
https://github.com/hyperproofs/hyperproofs

12

https://github.com/hyperproofs/hyperproofs

REFERENCES
[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, KristiyanHaralambiev, andMiyako

Ohkubo. 2010. Structure-Preserving Signatures and Commitments to Group

Elements. In Advances in Cryptology – CRYPTO 2010, Tal Rabin (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 209–236.

[2] Masayuki Abe, Georg Fuchsbauer, Jens Groth, KristiyanHaralambiev, andMiyako

Ohkubo. 2016. Structure-Preserving Signatures and Commitments to Group

Elements. Journal of Cryptology 29, 2 (01 Apr 2016), 363–421. https://doi.org/10.

1007/s00145-014-9196-7

[3] Shashank Agrawal and Srinivasan Raghuraman. 2020. KVaC: Key-Value Com-

mitments for Blockchains and Beyond. In Advances in Cryptology – ASIACRYPT
2020, Shiho Moriai and Huaxiong Wang (Eds.). Springer International Publishing,

Cham, 839–869.

[4] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venkitasubrama-

niam. 2017. Ligero. In Proceedings of the 2017 ACMSIGSACConference on Computer
and Communications Security. ACM. https://doi.org/10.1145/3133956.3134104

[5] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic

Curves of Prime Order. In Selected Areas in Cryptography, Bart Preneel and
Stafford Tavares (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 319–331.

[6] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology

ePrint Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[7] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.

2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In 2014 IEEE
Symposium on Security and Privacy. 459–474. https://doi.org/10.1109/SP.2014.36

[8] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for

R1CS. In Advances in Cryptology – EUROCRYPT 2019, Yuval Ishai and Vincent

Rijmen (Eds.). Springer International Publishing, Cham, 103–128.

[9] Dan Boneh and Xavier Boyen. 2004. Efficient Selective-ID Secure Identity-Based

Encryption Without Random Oracles. In Advances in Cryptology - EUROCRYPT
2004, Christian Cachin and Jan L. Camenisch (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 223–238.

[10] Dan Boneh and Xavier Boyen. 2004. Short signatures without random oracles. In

International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 56–73.

[11] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for Accu-

mulators with Applications to IOPs and Stateless Blockchains. In CRYPTO’19.
[12] Sean Bowe, Ariel Gabizon, and IanMiers. 2017. Scalable Multi-party Computation

for zk-SNARK Parameters in the Random Beacon Model. https://eprint.iacr.org/

2017/1050.

[13] Johannes Buchmann, Tsuyoshi Takagi, and Ulrich Vollmer. 2004. Number Field

Cryptography. In High Primes & Misdemeanors: Lectures in Honour of the 60th
Birthday of Hugh Cowie. American Mathematical Society, 111–125.

[14] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bullet-

proofs: Short Proofs for Confidential Transactions and More. In Proceedings of
the Symposium on Security and Privacy (SP), 2018, Vol. 00. 319–338.

[15] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. 2019.

Proofs for Inner Pairing Products and Applications. Cryptology ePrint Archive,

Report 2019/1177. https://eprint.iacr.org/2019/1177.

[16] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Niz-

zardo. 2020. Incrementally Aggregatable Vector Commitments and Applications

to Verifiable Decentralized Storage. In Advances in Cryptology – ASIACRYPT
2020, Shiho Moriai and Huaxiong Wang (Eds.). Springer International Publishing,

Cham, 3–35.

[17] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their Appli-

cations. In Public-Key Cryptography - PKC 2013 - 16th International Conference
on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 -
March 1, 2013. Proceedings. 55–72.

[18] Thaddeus Dryja. 2019. Utreexo: A dynamic hash-based accumulator optimized

for the Bitcoin UTXO set. https://eprint.iacr.org/2019/611.

[19] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology — CRYPTO’
86, Andrew M. Odlyzko (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

186–194.

[20] go-iden3 crypto. 2020. go-iden3-crypto. https://github.com/iden3/go-iden3-

crypto/.

[21] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. 2020. Point-

proofs: Aggregating Proofs for Multiple Vector Commitments. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security
(Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York,

NY, USA, 2007–2023. https://doi.org/10.1145/3372297.3417244

[22] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association. https://www.usenix.org/conference/usenixsecurity21/presentation/

grassi

[23] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II. 305–326.

[24] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT’10.
[25] Johannes Krupp, Dominique Schröder, Mark Simkin, Dario Fiore, Giuseppe Ate-

niese, and Stefan Nürnberger. 2016. Nearly Optimal Verifiable Data Streaming.

In Public-Key Cryptography - PKC 2016 - 19th IACR International Conference on
Practice and Theory in Public-Key Cryptography, Taipei, Taiwan. 417–445.

[26] John Kuszmaul. 2018. Verkle Trees: V(ery short M)erkle Trees. In MIT PRIMES
Conference ’18. https://math.mit.edu/research/highschool/primes/materials/2018/

Kuszmaul.pdf

[27] Russell W. F. Lai and Giulio Malavolta. 2019. Subvector Commitments with

Application to Succinct Arguments. In Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part I. 530–560.

[28] J. Lee, K. Nikitin, and S. Setty. 2020. Replicated state machines without replicated

execution. In 2020 IEEE Symposium on Security and Privacy (SP). 119–134. https:

//doi.org/10.1109/SP40000.2020.00068

[29] Benoît Libert and Moti Yung. 2010. Concise Mercurial Vector Commitments and

Independent Zero-Knowledge Sets with Short Proofs. In TCC’10.
[30] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption

Function. In CRYPTO ’87, Carl Pomerance (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 369–378.

[31] Andrew Miller. 2012. Storing UTXOs in a balanced Merkle tree (zero-trust nodes

with O(1)-storage). https://bitcointalk.org/index.php?topic=101734.msg1117428.

[32] Shigeo; Mitsunari, Ryuichi Sakai, and Masao Kasahara. 2002. A New Traitor

Tracing. In IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E85-A. 481–484.

[33] Mitsunari Shigeo. 2015. mcl: a portable and fast pairing-based cryptography

library. https://github.com/herumi/mcl/. Accessed: 2020-10-14.

[34] Alex Ozdemir. 2020. bellman-bignat. https://github.com/alex-ozdemir/bellman-

bignat.

[35] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling

Verifiable Computation Using Efficient Set Accumulators. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 2075–2092. https://www.

usenix.org/conference/usenixsecurity20/presentation/ozdemir

[36] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. 2011. Signatures

of Correct Computation. Cryptology ePrint Archive, Report 2011/587. https:

//eprint.iacr.org/2011/587.

[37] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. 2013. Signatures

of Correct Computation. In TCC’13.
[38] Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. 2013.

Streaming Authenticated Data Structures. In EUROCRYPT 2013, Thomas Johans-

son and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

353–370.

[39] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 238–252.

[40] Yi Qian, Yupeng Zhang, Xi Chen, and Charalampos Papamanthou. 2014. Stream-

ing Authenticated Data Structures: Abstraction and Implementation. In ACM
CCSW’14. ACM Press. https://doi.org/10.1145/2664168.2664177

[41] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. 2017.

Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocur-

rencies. In FC’17.
[42] C. P. Schnorr. 1990. Efficient Identification and Signatures for Smart Cards. In

Advances in Cryptology — CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Springer
New York, New York, NY, 239–252.

[43] Jacob T Schwartz. 1979. Probabilistic algorithms for verification of polynomial

identities. In International Symposium on Symbolic and Algebraic Manipulation.
Springer, 200–215.

[44] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without

Trusted Setup. In Advances in Cryptology – CRYPTO 2020, Daniele Micciancio and

Thomas Ristenpart (Eds.). Springer International Publishing, Cham, 704–737.

[45] Justin Thaler. 2020. Proofs, Arguments, and Zero-Knowledge. https://people.cs.

georgetown.edu/jthaler/ProofsArgsAndZK.pdf.

[46] Peter Todd. 2016. Making UTXO set growth irrelevant with low-latency delayed

TXO commitments. https://petertodd.org/2016/delayed-txo-commitments.

[47] Alin Tomescu. 2020. How to compute all Pointproofs. Cryptology ePrint Archive,

Report 2020/1516. https://eprint.iacr.org/2020/1516.

[48] Alin Tomescu. 2020. How to Keep a Secret and Share a Public Key (Using Polyno-
mial Commitments). Ph.D. Dissertation. Massachusetts Institute of Technology,

Cambridge, MA, USA.

[49] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and

Dmitry Khovratovich. 2020. Aggregatable Subvector Commitments for Stateless

Cryptocurrencies. In Security and Cryptography for Networks, Clemente Galdi

and Vladimir Kolesnikov (Eds.). Springer International Publishing, Cham, 45–64.

13

https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/611
https://github.com/iden3/go-iden3-crypto/
https://github.com/iden3/go-iden3-crypto/
https://doi.org/10.1145/3372297.3417244
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://doi.org/10.1109/SP40000.2020.00068
https://doi.org/10.1109/SP40000.2020.00068
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://github.com/herumi/mcl/
https://github.com/alex-ozdemir/bellman-bignat
https://github.com/alex-ozdemir/bellman-bignat
https://www.usenix.org/conference/usenixsecurity20/ presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity20/ presentation/ozdemir
https://eprint.iacr.org/2011/587
https://eprint.iacr.org/2011/587
https://doi.org/10.1145/2664168.2664177
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://petertodd.org/2016/delayed-txo-commitments
https://eprint.iacr.org/2020/1516

[50] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,

Guy Golan Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold

Cryptosystems. In IEEE S&P’20.
[51] Alin Tomescu, Yu Xia, and Zachary Newman. 2020. Authenticated Dictionaries

with Cross-Incremental Proof (Dis)aggregation. Cryptology ePrint Archive,

Report 2020/1239. https://eprint.iacr.org/2020/1239.

[52] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. 2018. Doubly-Efficient

zkSNARKs Without Trusted Setup. In 2018 IEEE Symposium on Security and
Privacy (SP). 926–943. https://doi.org/10.1109/SP.2018.00060

[53] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. https://gavwood.com/paper.pdf.

[54] Zcash. 2017. What is Jubjub? https://z.cash/technology/jubjub/.

[55] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent

Polynomial Delegation and Its Applications to Zero Knowledge Proof. In IEEE
S&P 2020.

[56] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. [n.d.].

vRAM: Faster Verifiable RAM With Program-Independent Preprocessing. In

2018 IEEE Symposium on Security and Privacy (SP), Vol. 00. 203–220. https:

//doi.org/10.1109/SP.2018.00013

[57] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. 2017. vSQL:

Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases. In 2017
IEEE Symposium on Security and Privacy (SP). 863–880.

[58] Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Interna-
tional Symposium on Symbolic and Algebraic Manipulation. Springer, 216–226.

14

https://eprint.iacr.org/2020/1239
https://doi.org/10.1109/SP.2018.00060
https://gavwood.com/paper.pdf
https://z.cash/technology/jubjub/
https://doi.org/10.1109/SP.2018.00013
https://doi.org/10.1109/SP.2018.00013

A ASSUMPTIONS
Our work builds upon the inner product argument (IPA) by Bünz

et al. (see §2.4), which in turn relies on Abe et al. commitments to

group elements [1], which are secure under the Symmetric-eXternal
Diffie-Hellman (SXDH) assumption defined below.

AssumptionA.1 (SXDH). Let (𝑝,G1,G2,G𝑇 , 𝑒 ,𝑔1,𝑔2) ← BilGen(1_).
The Decisional Diffie-Hellman (DDH) problem inG is to decide whether
𝑐 = 𝑎𝑏, given (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐) where 𝑔 ∈𝑅 G. The SXDH assumption is
that DDH holds in both G1 and G2.

We prove Hyperproofs satisfy soundness, as per Definition 2.3,

under 𝑞-Strong Diffie-Hellman (𝑞-SDH) assumption, defined below.

Assumption A.2 (𝑞-SDH [10]). For any ppt adversary A,

Pr

(𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← BilGen(1_), 𝑠 ∈𝑅 Z∗𝑝 ,
pp = ((𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2), 𝑔𝑠

2
, 𝑔𝑠

1
, . . . , 𝑔𝑠

𝑞

1
) :

(𝑎,𝑔
1

𝑠+𝑎
1
) ← A(1_, pp)

 ≤ negl(_)

In addition to VC soundness, we prove Hyperproofs have unsteal-

ability, as per Definition 3.1, under the 𝑞-Diffie-Hellman Inversion
(𝑞-DHI) assumption [9, 32], defined below.

Assumption A.3 (𝑞-DHI). For any ppt adversary A,

Pr

(𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← BilGen(1_), 𝑠 ∈𝑅 Z∗𝑝 ,
pp = ((𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2), 𝑔𝑠

2
, 𝑔𝑠

1
, . . . , 𝑔𝑠

𝑞

1
) :

𝑔
1/𝑠
1
← A(1_, pp)

 ≤ negl(_)

The faster verifier for the Bünz et al. IPA from §2.4 relies on a

modified Abe et al. commitment scheme which uses “structured”

commitment keys. This modified commitment scheme is binding un-

der the𝑞-Auxiliary Structured Double Pairing (𝑞-ASDBP) assumption

in G1 and G2 introduced in [15]. First, we present this assumption

in G2 below.

Assumption A.4 (𝑞-ASDBPG2
). For any ppt adversary A,

Pr

(𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← BilGen(1_), 𝛽 ∈𝑅 Z∗𝑝 ,
pp = ((𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2), 𝑔

𝛽

1
,

(
𝑔
𝛽2𝑖

2

)
𝑖∈[1,𝑞)

(𝐴0, . . . , 𝐴𝑞−1) ← A(1_, pp) :
(𝐴0, . . . , 𝐴𝑞−1) ≠ 1G1

∧ 1G𝑇 ≠
∏𝑞−1
𝑖=1

𝑒 (𝐴𝑖 , 𝑔𝛽
2𝑖

2
)

≤ negl(_)

Second, the G1 variant of 𝑞-ASDBP is defined similarly by swap-

ping G2 with G1. Third, the 𝑞-ASDBP assumption holds in the

generic group model [15].

B ZERO-KNOWLEDGE PROOFS OF
KNOWLEDGE

Recall from §3.4 that a watermarking public key (WPK) 𝑔𝛼
2
must

come with a zero-knowledge proof of knowledge (ZKPoK) of 𝛼 . For

this, we rely on Schnorr ZKPoKs of 𝛼 [42], defined as zkpok𝛼 =

(𝑧,𝑦) ∈ G2 × Z𝑝 , where:
𝑦 = 𝑔𝑐

2
, where 𝑐 ∈𝑅 Z𝑝 (29)

𝑧 = 𝑐 + 𝐻 (𝑔2, 𝑔𝛼2 , 𝑦)𝛼 (30)

To verify zkpok𝛼 , one checks if:

𝑔𝑧
2

?

= 𝑦 (𝑔𝛼
2
)𝐻 (𝑔2,𝑔

𝛼
2
,𝑦) = 𝑔𝑐

2
𝑔
𝐻 (𝑔2,𝑔𝛼

2
,𝑦)𝛼

2
= 𝑔

𝑐+𝐻 (𝑔2,𝑔𝛼
2
,𝑦)𝛼

2
, (31)

where 𝐻 (·) is modeled as a random oracle.

C INNER PRODUCT ARGUMENT (IPA)
C.1 Non-interactive arguments of knowledge
Let L be an NP relation such that x ∈ L if, and only if, there exists

a witness w such that L(x;w) = 1. A non-interactive argument of

knowledge for L (e.g., SNARKs [39]) allows a verifier to efficiently

verify that x ∈ L, without usingw, but via a (small) proof provided

by an untrusted prover. A non-interactive argument of knowledge

consists of three ppt algorithms, (G,P,V):
(1) (𝑃𝐾,𝑉𝐾) ← G(1_,L): Generates the proving and verifica-

tion key for the program L.
(2) 𝜋 ← P(𝑃𝐾, x;w): Generates a proof 𝜋 to prove that there

exists w such that L(x;w) = 1.

(3) {0, 1} ← V(𝑉𝐾, 𝜋, x): Checks if the proof 𝜋 is valid for x
using the verification key 𝑉𝐾 .

The main property of arguments of knowledge is knowledge sound-
ness, formalized in Definition C.1. The intuition is that, if the verifier

accepts a proof for x, then the prover must “know" a witness w for

x and therefore x ∈ L. Knowledge is modeled by an extractor E
that can output such a w by inspecting the prover’s tape.

Definition C.1 (Knowledge soundness). We say that an ar-
gument of knowledge (G,P,V) for NP relation L has knowledge
soundness if, for any ppt A, there is a ppt extractor E such that:

Pr

 1←V(𝑉𝐾, 𝜋, x)

��������
(𝑃𝐾,𝑉𝐾) ← G(1_,R),
(𝜋, x) ← A(𝑃𝐾,𝑉𝐾),
w← E(𝑃𝐾,𝑉𝐾, 𝜋, x),
L(x;w) ≠ 1

 ≤ negl(_)

C.2 Random linear combinations lemma
Lemma C.1. Let 𝑍𝑖 ∈ G𝑇 ,A𝑖 ∈ G𝑚

1
and B𝑖 ∈ G𝑚

2
for 𝑖 = 1, . . . , 𝑁 .

Assume each 𝑟𝑖 is chosen uniformly at random from Z𝑝 . Then, with
probability at least 1−1/𝑝 , all Eq. 24 are satisfied iff. Eq. 25 is satisfied.

Proof sketch. Clearly if Eq. 24 are satisfied then Eq. 25 is also

satisfied. For the other direction, by the Schwartz-Zippel lemma [43,

58], if at least one equation from Eq. 24 does not hold, Eq. 25 holds

at randomly selected values 𝑟𝑖 with probability 1/𝑝 , completing the

proof. □

C.3 Security proof for L𝑏,ℓBATCH argument
Theorem C.1. (GBATCH,PBATCH,VBATCH) from Fig. 6 is a non-

interactive argument of knowledge for L𝑏,ℓBATCH from Eq. 23 that has
knowledge soundness according to Definition C.1 under the same as-
sumptions as the non-interactive IPA from §2.4 (i.e., algebraic commit-
ment model [15], the random oracle model, (2𝑏ℓ)-SDH, (𝑏ℓ)-ASDBP).

Proof sketch. This follows from Lemma C.1 and the knowl-

edge soundness of the Bünz et al. IPA, which is used in a black box

fashion. □

D HYPERPROOFS
D.1 MLT correctness
We argue below why our multilinear tree from §3.1 yields correct

proofs as per Definition 2.2. Formally, the quotients 𝑞 𝑗 (𝑥 𝑗 , . . . , 𝑥1),
15

Table 4: Comparison with other VCs, which are not simultaneously aggregatable and maintainable. Proof sizes are in terms of group elements. 𝑛 is the size of

the vector, 𝜋𝑖 is a proof for position 𝑖 and 𝜋𝐼 is an aggregated proof for 𝑘 positions. Times are in terms of group exponentiations and field operations. (In

RSA-based VCs [11, 16, 17, 27], we count𝑂 (ℓ) group operations as an exponentiation, where ℓ is the size of VC elements.) All schemes
∗
support UpdDig and

UpdProof (see Definition 2.1). However, CF-CDH and Pointproofs have𝑂 (𝑛)-sized update keys, which can be too large for some applications.

Scheme |𝜋𝑖 | |𝜋𝐼 |
OpenAll
time

Agg
time

UpdAllProofs
time

Trans-

parent?

Homo-

morphic?

Gen
time

|pp|

AMT [48] log𝑛 × 𝑛 log𝑛 × log𝑛 × ✓ 𝑛2 𝑛 log𝑛

aSVC [49] 1 1 𝑛 log𝑛 𝑘 log2 𝑘 𝑛 × ✓ 𝑛 log𝑛 𝑛

BBF [11] 1 1 𝑛 log2 𝑛 𝑘 log𝑛 𝑛 log𝑛 ×† × 1 1

CF-CDH [17, 21, 27] 1 1 𝑛2 𝑘 𝑛 × ✓ 𝑛2 𝑛2

CF-RSA [16, 17, 27] 1 1 𝑛 log𝑛 𝑘 log2 𝑘 𝑛 ×† ✓ 1 1

CFG+RSA [16] 1 1 𝑛 log2 𝑛 𝑘 log𝑘 log𝑛 𝑛 ×† × 1 1

Lattice [38, 40] log𝑛 × 𝑛 × log𝑛 ✓ ✓ 1 log𝑛

Merkle log𝑛 × 𝑛 × log𝑛 ✓ × 1 1

Merkle SNARK log𝑛 1 𝑛 𝑘 log𝑛 log (𝑘 log𝑛) log𝑛 × × 1 1

Pointproofs [21] 1 1 𝑛 log𝑛 𝑘 𝑛 × ✓ 𝑛 𝑛

Hyperproofs log𝑛 log(𝑘 log𝑛) 𝑛 log𝑛 𝑘 log𝑛 log𝑛 × ✓ 𝑛 𝑛

†: BBF, CF-RSA and CFG+RSA avoid the trusted setup if instantiated using class groups of imaginary quadratic order, which are known to be slower than RSA groups.

∗
: Merkle trees, BBF VCs and CFG+RSA require dynamic update hints, rather than static update keys, for digest and proof updates. Also, only the weakly-binding variant of

CFG+RSA supports digest updates.

∀𝑗 ∈ [ℓ] for a proof 𝜋𝑖 in our MLT from Fig. 4 are computed as:

𝑞 𝑗 (𝑥 𝑗−1, . . . , 𝑥1) = 𝑓𝑖ℓ ,...,𝑖 𝑗+1,1 − 𝑓𝑖ℓ ,...,𝑖 𝑗+1,0 (32)

One can prove that that these quotients satisfy the PST decomposi-

tion from Eq. 10, and thus yield a correct proof, for any 𝑖 via induc-

tion. Here, we just show this intuitively. Begin with the first term

in the PST decomposition sum from Eq. 10, which is 𝑞ℓ (x) (𝑥ℓ − 𝑖ℓ).
By Eq. 32, this term is equal to:

𝑞ℓ (x) (𝑥ℓ − 𝑖ℓ) = (𝑓1 (x) − 𝑓0 (x)) (𝑥ℓ − 𝑖ℓ)
= 𝑥ℓ 𝑓1 (x) − 𝑖ℓ 𝑓1 (x) − 𝑥ℓ 𝑓0 (x) + 𝑖ℓ 𝑓0 (x)
= (1 − 𝑥ℓ) 𝑓0 (x) + 𝑥ℓ 𝑓1 (x) − (1 − 𝑖ℓ) 𝑓0 (x) − 𝑖ℓ 𝑓1 (x)
= 𝑓 (x) − 𝑓𝑖ℓ (x)

The next term in the sum from Eq. 10 would be 𝑞ℓ−1 (x) (𝑥ℓ−1 −
𝑖ℓ−1) which, by similar reasoning, equals 𝑓𝑖ℓ (x) − 𝑓𝑖ℓ ,𝑖ℓ−1 (x). Adding
these two terms up, the 𝑓𝑖ℓ (x)’s cancel out, leaving us with 𝑓 (x) −
𝑓𝑖ℓ ,𝑖ℓ−1 (x). Continuing with the other terms, everything cancels out

except for 𝑓 (x) − 𝑓𝑖ℓ ,...,𝑖1 (x) = 𝑓 (x) − 𝑓 (i), as per Eq. 10. Therefore,
the quotients defined in our MLT from Fig. 4 are correct.

D.2 UVC definitions
In §3.4, we glanced over how to change our VC API from Defini-

tion 2.1 to account for unstealability. In particular, we introduced

a new notion of unstealability (see Definition 3.1), but we did not

account for aggregated proofs. Also, we did not give a correctness

definition. Below, we give our final unstealble VC (UVC) definitions,

which account for aggregation.We also give the full API for an UVC,

which we only sketched in §3.4. Changes from §2.3 are highlighted

in blue.

DefinitionD.1 (UVC). An unstealable VC (UVC) scheme consists
of the following algorithms:

(1) Gen(1_, 𝑛) → pp: Given security parameter _ and vector length
𝑛, it outputs public parameters pp.

(2) WtrmkGen(1_) → (wsk,wpk): Outputs a randomly-generated
watermarking secret key (WSK) wsk and its corresponding wa-
termarking public key (WPK) wpk.

(3) WtrmkParams(pp,wsk) → wpp: Returns watermarked public
parameters that can be used to directly compute watermarked
proofs under wsk.

(4) Compp (a) → C: Outputs the digest C of a = (𝑎0, . . . , 𝑎𝑛−1)
∈ Z𝑛𝑝 .

(5) Openwpp (𝑖, a) → 𝜋𝑖 : Outputs a proof 𝜋𝑖 for index 𝑖 in a, water-
marked with the WSK from wpp.

(6) OpenAllwpp (a) → (𝜋0, . . . , 𝜋𝑛−1): Outputs all proofs 𝜋𝑖 for a,
watermarked with the WSK from wpp.

(7) Aggpp (𝐼 , (𝑎𝑖 , 𝜋𝑖)𝑖∈𝐼) → 𝜋𝐼 : Combines individual proofs 𝜋𝑖 for
values 𝑎𝑖 into an aggregated proof 𝜋𝐼 .

(8) Verpp (C, 𝐼 , (𝑎𝑖 ,wpk𝑖)𝑖∈𝐼 , 𝜋𝐼) → {0, 1}: Verifies proof 𝜋𝐼 that each
index 𝑖 ∈ 𝐼 has value 𝑎𝑖 against digest C. Additionally checks that
the proof for 𝑎𝑖 was watermarked using wpk𝑖 .

(9) UpdDigpp (𝑢, 𝛿,C) → C′: Updates digest C to C′ to reflect index
𝑢 changing by 𝛿 ∈ Z𝑝 .

(10) UpdAllProofswpp (𝑢, 𝛿, 𝜋0, . . . , 𝜋𝑛−1) → (𝜋 ′0, . . . , 𝜋
′
𝑛−1): Updates

all watermarked proofs 𝜋𝑖 to 𝜋 ′𝑖 after changing index 𝑢 by 𝛿 .

(11) UpdProofwpp (𝑢, 𝛿, 𝜋𝑖) → 𝜋 ′
𝑖
: Updates watermarked proof 𝜋𝑖 to

𝜋 ′
𝑖
after changing index 𝑢 by 𝛿 .

16

Definition D.2 (UVC Correctness). An unstealable VC (UVC)
is correct, if for all _ ∈ N and 𝑛 = poly(_), for all pp← Gen(1_, 𝑛),
for all vectors a = [𝑎0, . . . , 𝑎𝑛−1], if C = Compp (a) and 𝜋𝑖 =

Openwpp𝑖 (𝑖, a),∀𝑖 ∈ [0, 𝑛), wherewpp𝑖 = WtrmkParams(pp,wsk𝑖)
and (wsk𝑖 ,wpk𝑖) = WtrmkGen(1_) (or from any combination of
OpenAllwpp𝑖 (a) calls, with different wpp𝑖 ’s), then, for any polyno-
mial number of updates (𝑢, 𝛿) outputting a new vector a′, if C′ and
𝜋 ′
𝑖
, for all 𝑖 , are the updated digest and proofs via calls to UpdDigpp

and UpdProofwpp𝑖 (or UpdAllProofswpp𝑖) respectively, then:

(1) Pr[1← Verpp (C′, {𝑖}, (𝑎′𝑖 ,wpk𝑖), 𝜋
′
𝑖
)] = 1 for all 𝑖

(2) Pr[1 ← Verpp (C′, 𝐼 , (𝑎′𝑖 ,wpk𝑖)𝑖∈𝐼 ,Aggpp (𝐼 , (𝑎
′
𝑖
, 𝜋 ′
𝑖
)𝑖∈𝐼))] =

1, ∀𝐼 ⊆ [𝑛].

Definition D.3 (UVC Soundness). ∀ ppt adversaries A, the
following probability

Pr

pp← Gen(1_, 𝑛),
(C, 𝐼 , 𝐽 , (𝑎𝑖 ,wpk𝑖)𝑖∈𝐼 , (𝑎′𝑗 ,wpk𝑗) 𝑗 ∈𝐽 , 𝜋𝐼 , 𝜋

′
𝐽
) ← A(1_, pp) :

1← Verpp (C, 𝐼 , (𝑎𝑖 ,wpk𝑖)𝑖∈𝐼 , 𝜋𝐼) ∧
1← Verpp (C, 𝐽 , (𝑎′𝑗 ,wpk𝑗) 𝑗 ∈𝐽 , 𝜋

′
𝐽
) ∧

∃𝑘 ∈ 𝐼 ∩ 𝐽 s.t. 𝑎𝑘 ≠ 𝑎′
𝑘

is negligible in _.

Notation: Let Openwpp (𝐼 , a) return an aggregated proof 𝜋𝐼 for all

(𝑎𝑖)𝑖∈𝐼 , by first obtaining individual proofs 𝜋𝑖 = Openwpp (𝑖, a) and
then aggregating them via 𝜋𝐼 = Aggpp (𝐼 , (𝑎𝑖 , 𝜋𝑖)𝑖∈𝐼).

Definition D.4 (UVC Unstealability). ∀ ppt adversaries A =

(A0,A1), the following probability

Pr

pp← Gen(1_, 𝑛),
(wsk,wpk) ←WtrmkGenpp (1_),
wpp←WtrmkParams(pp,wsk),
C← Compp (a), where 𝑎𝑖 ∈𝑅 Z𝑝 ,

(𝐼1, . . . , 𝐼𝑚, st) ← A0 (1_, pp,C,wpk) s.t.
𝐼1 ∪ . . . ∪ 𝐼𝑘 ⊊ [𝑛],(

𝜋𝐼𝑘 ← Openwpp (𝐼𝑘 , a)
)
𝑘∈[𝑚]

,

(𝐽 ⊊ [𝑛], 𝜋 𝐽 , (wpk𝑗) 𝑗 ∈𝐽) ← A1 (st, (𝑎𝐼𝑘)𝑘∈[𝑚] , (𝜋𝐼𝑘)𝑘∈[𝑚]) :
Verpp (C, 𝐽 , (𝑎 𝑗 ,wpk𝑗) 𝑗 ∈𝐽 , 𝜋 𝐽) = 1 ∧ ∃ 𝑗 ∈ 𝐽 ,wpk ≠ wpk𝑗

is negligible in _.

Observation: In Appendix D.5, we prove the weaker version of

this definition (i.e., Definition 3.1) holds under ℓ-DHI. However, our

proof can be easily generalized to the aggregated setting.

D.3 VC soundness proof
Below, we prove our Hyperproofs construction from §3 is sound

as per Definition 2.3. We first show soundness holds for individual

(non-aggregated) proofs, and then show how soundness of aggre-

gated proofs follows from that and the knownledge-soundness of

the LBATCH argument.

D.3.1 Soundness for individual Hyperproofs.

Theorem D.1. Our individual log𝑛-sized (non-aggregated) proofs
from §3.1 are sound as per Definition 2.3 under 𝑞-SDH (see Assump-
tion A.2).

Proof. Suppose there exists an adversary A that breaks Defini-

tion 2.3. We show how to build another adversary B that breaks

the ℓ-SDH assumption (see Assumption A.2). We first assume A
returns individual (non-aggregated) proofs and then generalize to

A returning aggregated proofs.

B is given ℓ-SDHpublic parameters pp = ((𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2),
𝑔𝑠
2
, 𝑔𝑠

1
, . . . , 𝑔𝑠

ℓ

1
), and must (somehow) break ℓ-SDH by outputting

(𝑎,𝑔
1

𝑠−𝑎
1
) for some 𝑎 ≠ 𝑠 . For this, B will leverage A into helping

him.

First, B “guesses” the index 𝑖 on which A will forge, which he

can do with probability 1/poly(_), where _ is our security param-

eter. Second, B “tweaks” the ℓ-SDH public parameters into the

Hyperproofs public parameters from Fig. 2, which he then calls A
with. Specifically, B sets 𝑠𝑘 − 𝑖𝑘 = 𝑟𝑘 (𝑠 − 𝑖1),∀𝑘 ∈ [ℓ], where 𝑟1 = 1,

the rest of the 𝑟𝑘 ’s are random, and 𝑖ℓ , . . . , 𝑖1 is the binary repre-

sentation of 𝑖 . Importantly, note that B can do this without knowl-

edge of 𝑠 , since B can compute any product 𝑔

∏
𝑖∈𝑆 𝑠𝑖

1
, 𝑆 ∈ 2{1,2,...,ℓ }

from the 𝑔𝑠
𝑖

1
’s. Similarly, B can compute any 𝑔

𝑠𝑘
2

from 𝑔𝑠
2
. Third,

B calls A with the “tweaked” public parameters as input and ob-

tains a commitment C and two inconsistent proofs 𝜋 = (𝑤𝑘)𝑘∈[ℓ] ,
𝜋 ′ = (𝑤 ′

𝑘
)𝑘∈[ℓ] for position 𝑖 having values both 𝑣 and 𝑣 ′. (If A

outputs proofs for a different index 𝑖 ′ ≠ 𝑖 , B retries.)

Since both proofs verify, the following equations hold, where

𝑖ℓ , . . . , 𝑖1 is the binary expansion of the index 𝑖:

𝑒 (C/𝑔𝑣
1
, 𝑔2) =

∏
𝑘∈[ℓ]

𝑒 (𝑤𝑘 , 𝑔
𝑠𝑘−𝑖𝑘
2
) (33)

𝑒 (C/𝑔𝑣
′
1
, 𝑔2) =

∏
𝑘∈[ℓ]

𝑒 (𝑤 ′
𝑘
, 𝑔
𝑠𝑘−𝑖𝑘
2
) (34)

Next, dividing the top equation by the bottom one and substitute

𝑠𝑘 − 𝑖𝑘 = 𝑟𝑘 (𝑠 − 𝑖1),∀𝑘 ∈ [ℓ]:

𝑒 (𝑔𝑣
′
1
/𝑔𝑣

1
, 𝑔2) =

∏
𝑘∈[ℓ]

𝑒 (𝑤𝑘/𝑤 ′𝑘 , 𝑔
𝑠𝑘−𝑖𝑘
2
) ⇔ (35)

𝑒 (𝑔𝑣
′−𝑣
1

, 𝑔2) =
∏
𝑘∈[ℓ]

𝑒 (𝑤𝑘/𝑤 ′𝑘 , 𝑔
𝑟𝑘 (𝑠−𝑖1)
2

) ⇔ (36)

𝑒 (𝑔1, 𝑔2)𝑣
′−𝑣 =

©«
∏
𝑘∈[ℓ]

𝑒 (𝑤𝑘/𝑤 ′𝑘 , 𝑔
𝑟𝑘
2
)ª®¬
𝑠−𝑖1

⇔ (37)

𝑒 (𝑔1, 𝑔2)
1

𝑠−𝑖
1 =

©«
∏
𝑘∈[ℓ]

𝑒 (𝑤𝑘/𝑤 ′𝑘 , 𝑔
𝑟𝑘
2
)ª®¬

1

𝑣′−𝑣

⇔ (38)

𝑒 (𝑔
1

𝑠−𝑖
1

1
, 𝑔2) =

∏
𝑘∈[ℓ]

𝑒

((
𝑤𝑘/𝑤 ′𝑘

) 𝑟𝑘
𝑣′−𝑣

, 𝑔2

)
⇔ (39)

𝑒 (𝑔
1

𝑠−𝑖
1

1
, 𝑔2) = 𝑒

©«
∏
𝑘∈[ℓ]

(
𝑤𝑘/𝑤 ′𝑘

) 𝑟𝑘
𝑣′−𝑣

, 𝑔2
ª®¬⇔ (40)

Thus, 𝑔

1

𝑠−𝑖
1

1
=

∏
𝑘∈[ℓ]

(
𝑤𝑘/𝑤 ′𝑘

) 𝑟𝑘
𝑣′−𝑣

and B can output (𝑖1, 𝑔
1

𝑠−𝑖
1

1
)

and break ℓ-SDH. □

D.3.2 Soundness for aggregated Hyperproofs.
17

Theorem D.2. Our aggregated proofs from §3.3 are sound as
per Definition 2.3 under the knowledge-soundness of the LBATCH
argument (see Theorem C.1).

Proof. Suppose there existsA that outputs (C, 𝐼 , 𝐽 , (𝑎𝑖)𝑖∈𝐼 , (𝑎′𝑗) 𝑗 ∈𝐽 ,
𝜋𝐼 , 𝜋

′
𝐽
) such that 1 ← Verpp (C, 𝐼 , (𝑎𝑖)𝑖∈𝐼 , 𝜋𝐼) and 1 ← Verpp (C, 𝐽 ,

(𝑎′
𝑗
) 𝑗 ∈𝐽 , 𝜋 ′𝐽), while ∃𝑡 ∈ 𝐼 ∩ 𝐽 s.t. 𝑎𝑡 ≠ 𝑎′𝑡 . By Theorem C.1, there

exist extractors that extract the individual log𝑛-sized proofs. Let

𝝅𝑖 = (𝑤𝑖,1, . . . ,𝑤𝑖,ℓ) denote the extracted proofs for all 𝑖 ∈ 𝐼 and
𝝅 ′
𝑗
= (𝑤 ′

𝑗,1
, . . . ,𝑤 ′

𝑘,ℓ
) denote the ones for all 𝑗 ∈ 𝐽 . Recall that for

𝑡 ∈ 𝐼 ∩ 𝐽 , 𝝅𝑡 verifies for 𝑎𝑡 while 𝝅 ′𝑡 verifies for a different 𝑎′𝑡 . Thus,
we have:

𝑒 (C/𝑔𝑎𝑡
1
, 𝑔2) =

ℓ∏
𝑘=1

𝑒 (𝑤𝑡,𝑘 , 𝑔
𝑠𝑘−𝑡𝑘
2

) (41)

𝑒 (C/𝑔𝑎
′
𝑡

1
, 𝑔2) =

ℓ∏
𝑘=1

𝑒 (𝑤 ′
𝑡,𝑘
, 𝑔
𝑠𝑘−𝑡𝑘
2

) (42)

By the same argument from Appendix D.3, this breaks 𝑞-SDH. □

D.4 UVC soundness proof
Theorem D.3. The unstealable variant of Hyperproofs from §3.4

is sound as per (the updated) Definition D.3.

Proof sketch. We assume proofs are not aggregated, but the

proof proceeds similar to Appendix D.3.2 when proofs are aggre-

gated. The proof proceeds the same as in Appendix D.3, except the

reduction B that calls the adversary A needs to know the WSKs

𝛼, 𝛽 corresponding to wpk and wpk’ respectively in order to output

an ℓ-SDH solution (𝑖1, 𝑔
1

𝑠−𝑖
1

1
). Indeed, since the WPKs come with

a ZKPoK, B can extract 𝛼, 𝛽 with non-negligible probability. Next,

let 𝜋 = (𝑤1, . . . ,𝑤ℓ) and 𝜋 ′ = (𝑤 ′
1
, . . . ,𝑤 ′

ℓ
) be the two inconsistent

proofs. Similar to the proof in Appendix D.3, B knows that:

𝑒 (C/𝑔𝑎𝑖
1
, 𝑔𝛼

2
) =

ℓ∏
𝑘=1

𝑒 (𝑤𝑖,𝑘 , 𝑔
𝑠𝑘−𝑖𝑘
2
) (43)

𝑒 (C/𝑔𝑎
′
𝑖

1
, 𝑔
𝛽

2
) =

ℓ∏
𝑘=1

𝑒 (𝑤 ′
𝑖,𝑘
, 𝑔
𝑠𝑘−𝑖𝑘
2
) (44)

Dividing the top by the bottom equation yields:

𝑒 (𝑔𝑎
′
𝑖−𝑎𝑖

1
, 𝑔2) =

∏
𝑘∈[ℓ]

𝑒 (𝑤1/𝛼
𝑘
/𝑤 ′1/𝛽

𝑘
, 𝑔
𝑠𝑘−𝑖𝑘
2
) (45)

=
©«
∏
𝑘∈[ℓ]

𝑒 (𝑤1/𝛼
𝑘
/𝑤 ′1/𝛽

𝑘
, 𝑔
𝑟𝑘
2
)ª®¬
𝑠−𝑖1

(46)

Thus, B can output the ℓ-SDH solution (𝑖1, 𝑔
1

𝑠−𝑖
1

1
) where 𝑔

1

𝑠−𝑖
1

1
=∏

𝑘∈[ℓ]
(
𝑤
1/𝛼
𝑘
/𝑤 ′1/𝛽

𝑘

) 𝑟𝑘
𝑎′
𝑖
−𝑎𝑖

. □

D.5 UVC unstealability proof
Theorem D.4. Hyperproofs are unstealable as per Definition 3.1

under ℓ-DHI.

Proof. If an adversary A = (A0,A1) exists that breaks Defini-
tion 3.1, we show how to build a reduction B that breaks ℓ-DHI As-

sumption A.3. Specifically, B will get (ℎ𝛼
2
, (ℎ𝛼𝑘

1
)𝑘∈[0,ℓ]) as input

and must output ℎ
1/𝛼
1

.

First, B randomizes the ℓ-DHI instance into (𝑔𝛼
2
, (𝑔𝛼𝑘

1
)𝑘∈[0,ℓ])

where 𝑔2 = ℎ
𝛾

2
and 𝑔1 = ℎ

𝛾

1
for 𝛾 ∈𝑅 Z𝑝 . Note that a 𝑔1/𝛼

1
break

on this instance can be immediately turned into a ℎ
1/𝛼
1

break on

the original instance, since 𝛾 is known. Second, B must generate

random public parameters for Hyperproofs. For this, B guesses the

index 𝑗 that A1 outputs a re-watermarked proof 𝜋 ′ for and sets

𝑠𝑘 − 𝑗𝑘 = 𝛼𝑟𝑘 for 𝑟𝑘 ∈𝑅 Z𝑝 . (Recall that B can do this without

knowing 𝛼 , similar to Appendix D.3) B also programs the random

oracle 𝐻 (·) for the Schnorr proof system and simulates a ZKPoK

of 𝛼 w.r.t. 𝑔𝛼
2
denoted by zkpok𝛼 and sets wpk = (𝑔𝛼

2
, zkpok𝛼).

Specifically, B picks (𝑧, 𝑐) ∈𝑅 Z2𝑝 , sets 𝑦 = 𝑔𝑧
2
/(𝑔𝛼

2
)𝑐 and programs

𝐻 (𝑔2, 𝑔𝛼
2
, 𝑦) to return 𝑐 . Third, B picks (𝑢, 𝑟, 𝑎 𝑗) ∈𝑅 Z𝑝 such that

𝑟 − 𝑎 𝑗 ≠ 0 and sets the commitment C = 𝑔𝛼𝑢+𝑟
1

. Finally, B calls

A0 (1_, pp,C,wpk)
This way, if A1 outputs a watermarked proof 𝜋 ′ = (𝑤 ′

1
, . . . ,𝑤 ′

ℓ
),

then B can break ℓ-DHI as follows:

𝑒 (C/𝑔𝑎 𝑗
1
, 𝑔
𝛽

2
) =

∏
𝑘∈[ℓ]

𝑒 ((𝑤 ′
𝑘
), 𝑔𝑠𝑘−𝑗𝑘

2
) ⇔ (47)

C/𝑔𝑎 𝑗
1

=
∏
𝑘∈[ℓ]

(𝑤 ′
𝑘
)
𝑠𝑘−𝑗𝑘

𝛽 ⇔ (48)

𝑔𝛼𝑢+𝑟
1
/𝑔𝑎 𝑗

1
=

∏
𝑘∈[ℓ]

(𝑤 ′
𝑘
)
𝛼𝑟𝑘
𝛽 ⇔ (49)

𝑔𝑢
1
𝑔

𝑟−𝑎𝑗
𝛼

1
=

∏
𝑘∈[ℓ]

(𝑤 ′
𝑘
)
𝑟𝑘
𝛽 ⇔ (50)

𝑔
1

𝛼

1
=
©«𝑔−𝑢1

∏
𝑘∈[ℓ]

(𝑤 ′
𝑘
)
𝑟𝑘
𝛽
ª®¬

1

𝑟−𝑎𝑗

(51)

But before this can happen, A0 might ask B for proofs 𝜋𝑖 =

(𝑤𝑘)𝑘∈[ℓ] watermarked with 𝛼 for arbitrary 𝑖 ∈ 𝐼 . B will simulate

such a proof 𝜋𝑖 , without knowing 𝛼 as follows. First, B computes

random 𝑧𝑘 ’s in Z𝑝 such that

∑
𝑘∈[ℓ] 𝑧𝑘𝑟𝑘 = 𝑢. Specifically, B picks

random 𝑧𝑘 ’s for all 𝑘 ≥ 2 and sets 𝑧1 =
𝑢−∑𝑘∈[2,ℓ] 𝑧𝑘𝑟𝑘

𝑟1
. (Recall

that 𝑢 and the 𝑟𝑘 ’s were fixed before giving A0 the commitment

C and pp.). Second, B computes 𝑎𝑖 = 𝑟 − ∑
𝑘∈[ℓ] 𝑧𝑘𝛿𝑖,𝑘 , where

𝛿𝑖,𝑘 = 𝑖𝑘 − 𝑗𝑘 ,∀𝑘 ∈ [ℓ]. (Note that 𝑎𝑖 is uniform random both when

𝑗 = 𝑖 and when 𝑗 ≠ 𝑖 .) Finally, B sets 𝑤𝑘 = 𝑔
𝛼𝑧𝑘
1

,∀𝑘 ∈ [ℓ]. Note
that this proof for 𝑎𝑖 verifies against C and WSK 𝛼 since:

𝑒 (C/𝑔1𝑎𝑖 , 𝑔𝛼2) =
∏
𝑘∈[ℓ]

𝑒 (𝑤𝑘 , 𝑔
𝑠𝑘−𝑖𝑘
2
) =

∏
𝑘∈[ℓ]

𝑒 (𝑤
𝑠𝑘−𝑖𝑘

𝛼

𝑘
, 𝑔2) ⇔

𝑔
𝛼𝑢+𝑟−𝑎𝑖
1

=
∏
𝑘∈[ℓ]

𝑔
𝑧𝑘 (𝑠𝑘−𝑗𝑘+𝛿𝑖,𝑘)
1

=
∏
𝑘∈[ℓ]

𝑔
𝑧𝑘 (𝛼𝑟𝑘+𝛿𝑖,𝑘)
1

= 𝑔
𝛼
∑

𝑘∈[ℓ] 𝑧𝑘𝑟𝑘+
∑

𝑘∈[ℓ] 𝑧𝑘𝛿𝑖,𝑘
1

= 𝑔
𝛼𝑢+𝑟−𝑎𝑖
1

Thus, B can simulate proofs toA1 and turn his outputted proof 𝜋 ′

into an 𝑞-DHI break. This completes our proof. □

18

D.6 Public parameter size

Table 5: The size of the public parameters from Fig. 2 for various values of

ℓ = log
2
𝑛. Recall that the verification key consists of all selector monomial

commitments 𝑔
𝑠𝑘
2
, ∀𝑘 ∈ [ℓ], while the proving key consists of all selector

multinomial commitents 𝑔
S𝑗,𝑘 (s)
1

, ∀𝑘 ∈ [0, ℓ], 𝑗 ∈ [0, 2𝑘) (see Fig. 2).

ℓ = log
2
𝑛

Verification

key

Proving

key

22 2.11 KiB 384 MiB

24 2.3 KiB 1.5 GiB

26 2.49 KiB 6 GiB

28 2.68 KiB 24 GiB

30 2.88 KiB 96 GiB

19

	Abstract
	1 Introduction
	1.1 Overview of Techniques
	1.2 Related work

	2 Preliminaries
	2.1 Multilinear extension (MLE) of a vector
	2.2 PST commitments to MLEs
	2.3 Vector Commitments (VCs)
	2.4 Inner Product Arguments (IPA)

	3 Hyperproofs
	3.1 Multilinear trees (MLTs)
	3.2 Updates and homomorphism
	3.3 Aggregating proofs
	3.4 Unstealable proofs
	3.5 Analysis

	4 Hyperproofs for Cryptocurrencies
	5 Evaluation
	5.1 Microbenchmarks
	5.2 Comparison with SNARKs
	5.3 Macrobenchmarks

	6 Conclusion
	References
	A Assumptions
	B Zero-knowledge proofs of knowledge
	C Inner Product Argument (IPA)
	C.1 Non-interactive arguments of knowledge
	C.2 Random linear combinations lemma
	C.3 Security proof for LBATCHb, argument

	D Hyperproofs
	D.1 MLT correctness
	D.2 UVC definitions
	D.3 VC soundness proof
	D.4 UVC soundness proof
	D.5 UVC unstealability proof
	D.6 Public parameter size

