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Abstract

As new and emerging markets, crypto(-currency/-token) markets are susceptible to manipulation and
illiquidity. The theory of market economics, offers market makers that bear the promise of bootstrap-
ping/stabilizing such markets and boosting their liquidity. In order, however, to achieve these goals,
the market maker operator (typically an exchange) is assumed trusted against manipulations. Common
attempts to remove/weaken this trust assumption require several on-chain rounds per trade or use ex-
pensive MPC machinery, and/or are susceptible to manipulative market-maker operators that perform
informed front-running attacks—i.e., manipulate the sequence of trades using future trade information.
Our work proposes a market-maker-based exchange which is resilient against a wide class of front-running
(in particular, reordering attacks). When instantiated with a monopolistic profit seeking market maker
our system yields a market where the trading price of crypto-tokens converges to a bid-ask spread cen-
tered around their true valuation. Importantly, after an initial setup of appropriate smart contracts, the
trades are done in an off-chain fashion and smart contracts are invoked asynchronously to the trades.
Our methodology yields a highly efficient exchange, where the market maker’s compliance is ensured
by a combination of a rational market analysis, cryptographic mechanisms, and smart-contract-based
collaterals. We have implemented our exchange in Ethereum and showcase its competitive throughput,
its performance under attack, and the associate gas costs.

1 Introduction

Markets, even mature ones, are susceptible to price manipulation, namely (possibly legal) strategies that
results in trading away from the commodity’s real valuation.1 Naturally, this is a bigger issue for emerging
markets such as cryptocurrency/token exchanges. Market makers (in short, MMs) are an market-economics
tool to stabilize, reduce manipulation, and increase liquidity. A market maker specifies the way/algorithm
by which the exchange-rate (price) is decided,2 and is a key differentiator of exchanges, whether of tokens,
cryptocurrencies, fiat-currency, or stocks.

The most common market maker in the cryptocurrency arena is via an order book: Assume the MM
allows for traders to buy/sell two assets t1 and t2; the MM receives orders in which a party Pi, i ∈ {1, 2},

∗Work done in part while the author was at the University of Edinburgh.
1See e.g., https://www.cnbc.com/2021/01/27/gamestop-mania-explained-how-the-reddit-retail-trading-crowd-ran-over-wall-

street-pros.html.
2The term market maker is often used to refer to the algorithm or to the exchange/operator. Here, whenever clear from the

context, we will use the term both to refer to the exchange/operator and to the algorithm.
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specifies an amount of ti and a price (in t3−i) that the party is willing to trade at. When two parties P1

and P2 have matching orders—i.e., P1 is willing to buy the quantity that P2 offers at a price matching or
exceeding P2’s offer—then a trade is facilitated between the two. An order book MM is very simple and
intuitive but it is known to result in illiquidity on emerging immature markets (i.e., if no one is willing to buy
at the lowest selling price, the market halts). A number of different, more intelligent algorithms e.g., [BP09]
have, therefore, been proposed, which in addition to increased liquidity have desirable properties for the
market maker (e.g., maximizing its profit) or the market itself (e.g., creating forces that drive the traders
towards reporting their real evaluation of the goods thereby stabilizing the market (cf. Section 1.2 for a
more detailed discussion).

In addition to the traditional question of which market-makers is most suitable, the decentralisation
paradigm has put in the spotlight the question of trust to the MM. Traditionally, crypto exchanges have
been made mostly through dedicated exchange platforms, which operate similar to a standard money-market
exchange broker. These platforms are typically opaque and to boost throughput process trades off-chain and
do not report them on the corresponding ledger(s). For example, exchanging an Ethereum [Woo14] token
for ETH on an off-chain exchange, e.g., Coinbase, will not result in a transaction posted on the Ethereum
blockchain unless. Stated simply, these exchanges maintain their own off-chain private ledger, similar to how
banks keep account balances.

More recently, several exchanges started using the blockchain itself towards a more transparent and
auditable exchange mechanism. Example vary from the most transparent (but less scalable) solution of
running the exchange completely on chain, as a smart contract [Uni18, WB17, Air18, Del18, Ban, IDE18,
Kyb18], to running it off-chain by using the blockchain ledger for accountability, via posting (typically
NIZK) publicly verifiable succinct proofs of compliance. Despite, however, a number of novel ideas in such
systems, front running by the market maker remains a sticky point [DGK+20] (unless one employs multi-
party computation MPC [BDF21], which is both expensive and requires additional trust assumptions, cf.
Section 1.2). In a front running attack, the MM uses the information that it has on the incoming bids to
manipulate the price, typically by reordering the different trade requests in a way that increases its own
profit.

In this work we propose and analyze a market-maker-based exchange of tokens on a smart-contract-
enabled blockchain, e.g., Ethereum tokens, with built-in cryptographic defences agains a wide class of front-
running. Combining, in a non-trivial manner, our new defences with ideas from optimistic fair exchange,
game theory, and market analysis, we get a market-maker that is resilient to front-running, while driving the
market to convergence to a bid-ask spread centered around the assets’ true valuation. Our proposed system
is scalable and highly efficient, as demonstrated by our experiments, and might have applications beyond
block-based crypto-assets, such as on standard fiat-currency or stock exchanges, where front-running is a
long-standing unresolved problem.

1.1 Our Contributions

The first step towards our MM is what we call a Σ-trade protocol. Intuitively, this is a fair-exchange protocol
with the following structure: It consists of an off-chain and on-chain phase. During the off-chain phase (which
consists of three messages, similarly the Σ-protocols from the interactive-proofs literature) the buyer and the
seller agree on the amount and the type of assets, and exchange the information required to create a special
transaction trx. If the off-chain phase is successful, then (only) the seller can post on the blockchain trx

(during the on-chain phase) and make effective the agreed trade. We note that although one could extract
a protocol with the above properties from the fair-exchange literature (see Section 1.2), we consider our
abstraction of Σ-trade protocolan intuitive step towards a modular design and analysis of MMs which could
be of independent interest. In particular, it allows us to present the different components of our construction
independent of which Σ-trade protocolis used. For completeness we include a simple Σ-trade protocolwhich
we use in our benchmarks in Section 4.

The second step is to instantiate the seller in the Σ-trade protocolwith a deterministic market-maker
whose execution is verifiable. Informally, verifiability comes from the deterministic nature of the MM: anyone
that sees a sequence of trades can check whether or not the prices quoted in this sequence are consistent with
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what the (publicly known) algorithm the MM is supposed to run. We take advantage of this verifiability as
follows: In a setup-phase, the MM instantiates a smart contract that has its algorithm hardwired, and locks
a large amount of an asset owned by the MM (e.g., ETH) as collateral. Upon being called, this contract will
observe the sequence of trades posted by the market maker and verify compliance—by simulating the MM’s
internal state (including the bid-ask spread) and comparing it to the price quoted in the trade sequence.
If a discrepancy is observed, the contract “burns” (most of) the collateral. In particular, to improve the
efficiency and avoid DDoS attacks, the contract is executed only upon request (i.e., accusation) by a party
P and using gas/fees provided by P , which are returned to P if the accusation is verified augmented by a
generous bonus. This mode ensures that parties have an incentive to invoke the contract if and only the
MM misbehaved—as any invalid accusation results in the accuser waisting gas on running the contract (see
Section 2.2 for a more detailed discussion).

The above mechanism does not prevent a deviating MM from a front-running attack which first looks
at the trade information of the multiple buyers and decides accordingly which trade to consider first. As a
third step, we provide a cryptographic mechanism that prevents such attacks by forcing the MM to verifiably
sequentialize its interactions with the buyers. We view this as the major contribution of the paper as it
solves a congenital issue of centralized exchanges/market-makers—where the reordering of transactions is
inherrently possible—while maintaining the same transparency of a decentrilzed market maker. In fact, as we
show, by instantiating our system with a monopolistic profit seeking market maker algorithm [Das05, DMI08]
(see Section 1.2), we can ensure that the worst the MM might do without sacrificing its collateral or lowering
its expected profit is stop responding (i.e., shutdown the system at its will) but with no trader loses money by
this action. We prove this by a novel combination of cryptographic and market-economics arguments, which
show that such an MM does gains neither by front-running nor by collaborating with traders to manipulate
the price. In fact, as a worst-case fallback guarantee, even if our MM decides, irrationally, to sacrifice its
collateral, the honest traders will still not lose money, but in that case they might become susceptible to
front-running.

We have implemented and benchmarked our MM. We show that the throughput of our system (see
Fig. 9) is extremely competitive, despite the trades being processed sequentially. In particular, we achieve
a throughput of over 200 trades/minute when running the off-chain part on a relatively weak, consumer
laptop.3 It is already more than twice the throughput of e.g. P2DEX [BDF21] (an MPC-based off-chain
exchange with front-running defenses) in the practical setting, and about ≈ 50% higher than the maximum
daily volume of Uniswap (see Section 9.2). We have also compared the performance of FairMM with Uniswap
[Uni18], and demonstrate the superiority of our approach in Section Section 9.2.

1.2 Comparison with Existing Works

Market Makers for Crypto-token Markets New emerging markets, e.g. prediction markets [WZ04] or
crypto-token markets, are typically thin and illiquid and often have to be bootstrapped through intelligent
market makers to provide liquidity and price discovery [PS07]. A market maker algorithm typically aims
to maximize liquidity in the market (which ensures that there are constantly open trades being executed)
and/or to maximize its own profit. The zero-profit competitive market maker model [Glo89, Das05, GM85]
considers multiple MMs that compete with each other by lowering their marginal profit in order to eliminate
competition—such a system converges to a zero-profit. The monopolist market-maker, has been shown to
provide greater liquidity than zero-profit competitive market makers [Glo89, Das05, GM85, DMI08]. In the
model of monopolist market-makers, the market is viewed as a process which only involves a single market
maker that is trying to maximize its profit and the market liquidity. The Glosten and Milgrom model [GM85]
has become a standard in modeling monopolist market makers: The market maker is considered environment
oblivious (aka zero-knowledge), i.e., is assumed to have no independent knowledge of the market (other than
a mild prior over the market value) and only receives information from the trades it executes against informed
traders. We adopt the extension by Das [Das05]: The idea of such an MM is that for each pair of assets

3A commercial off-chain MM would be usually deployed on high end servers which are far superior than our test machine
and could significantly improve the throughput.
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A1 and A2, the MM preserves a bid price, representing the MM’s estimate of the value of A1, and an ask
price, representing the MM’s estimate of the value of A2. (The bid and the ask price need not match in
which case there is a bid-ask spread.) In this model, every asset has a true price (value) V , which is however
unknown to the MM. The goal is to design an MM, which facilitates price discovery through the trading of
informed traders against the MM. The traders have independent estimates randomly distributed around the
true value V and will trade with the MM as long as the price is favorable to them. Every trade allows the
MM to learn about the true value. Hence, by learning from the trades, the MM adapts the price (bid and
ask) after each trade and as a result, quickly converges to the true market value.

In [DMI08] the authors show that monopolistic profit seeking MMs, in seeking to make long term profit,
can provide more liquidity and faster price discovery than even zero-profit market-makers. This is because
MM makes more profit when the true value is inside the bid-ask spread, hence the MM has a strong incentive
to quickly converge to the true-value by encouraging more trades (liquidity) even at a small cost. Thereafter,
since the MM makes most money when the true value is inside the bid-ask spread, this means that a rational
MM will have no incentive to manipulate the price away from the true value and this true value is solely
determined by the information brought by the arriving traders. The result is a liquid sequential trading
process with fast price discovery in which a MM learns as it trades. For more details on such MM algorithms
and convergence/price discover, we refer to [Das05, DMI08]. Most importantly, the automated profit-seeking
monopolistic market makers can significantly increase liquidity, speed up price discovery and are rationally
incentivized to not manipulate the price (bid ask) away from the true value because that is where they make
most money.

Fair Exchange and Blockchains There is a large amount of literature on fair exchange dating all the
way to the early MPC works [Yao86, GMW87, ASW98, CC00, KL10], which has been reignited with the
adoption of blockchains and cryptocurrencies [BK14, KZZ16, Wik18, BDM16, CGGN17, Fuc19]. Due to the
relevance of these works to ours, we include a detailed review in Appendix A. However, these works are not
suitable for reuse in our design. Informally, the reason is that in our setting, fair exchange is a subroutine
of the Market Maker (MM) protocol, and MM needs to settle trades instantly. Therefore, we designed our
own fair exchange protocol, in fact a Σ-trade protocol, that we proved amenable to such composition.

Decentralized exchanges Closer to our goals is the work on decentralized exchange—e.g. Uniswap,
Kyber, etc. However, the relation to them is mostly limitted to the fact that aim to solve the same problem.
First, recall that none of these works solves front-running attacks. Indeed, there is evidence [DGK+20]
that such front-running attacks are not only actively launched, they are also very profitable. In fact, it
can be argued that no front-running defense is possible with on-chain solutions due to inherently public
nature of the mainstream blockchains. Secondly, these exchanges are inherently susceptible to manipulation
by the miners. Moreover, since running computations on the blockchain is expensive and market making
computations happens on-chain, these transactions induce higher costs. Finally, the trade execution delay is
at least as high as the block delay of the blockchain. In contrast, we prevent front running, settle the trades
instantly and, in the honest case (no dispute resolution), the only transactions that hit the blockchain are
mostly the ones that move funds which are cheaper. Ordering of trades (and therefore pricing) is decided
by our protocol off-chain, hence the miners may include the resulting transactions in any order but they will
not be able to influence actual ordering of the trades (or more precisely, the exchange rates decided during
the off-chain phase of the protocol) .

More recently, Baum et al. [BDF21] propose P2DEX, a decentralized cryptocurrency exchange that aims
at solving the front running problem. It does so by deploying an off-chain MPC protocol emulating an
order-book MM. As discussed above, exchanges based on order books cannot provide liquidity when no such
matches are found. Our approach based on market-making algorithms helps mitigating both these problems.
More importantly, to prevent front-running P2DEX relies on the security of an MPC run among a set of
off-chain servers which adds an extra trust assumption: If all the servers are colluding, then it is easy for
the servers to front-run honest traders (without the being detected). Our work avoid such trust assumption
by a combination of cryptographic, game-theoretic, and market-economics arguments. Finally, in terms of
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performance, P2DEX’s throughput of ≈ 100 orders per minute (in the only realistic setting of WAN) is less
than 50% of what we achieve on a consumer grade computer.

2 Technical Overview

Before getting in the guts of our MM construction we provide a more detailed overview of the techniques
used our MM construction. For simplicity we focus the discussion to the case, where there are just two
exchangeable Ethereum tokens/assets t1 and t2; however, our protocol trivially allows to exchange arbitrary
such assets and can be used with any smart-contract-enabled blockchain that supports the contracts we
describe here.

2.1 Σ-trade protocol

Our Σ-trade protocol involves a seller that wants to sell assets of type, say t2 and a buyer that has assets t1
that he wishes to exchange with type-t2 assets. (In this work, we consider assets to be Ethereum tokens or
ETH.) The buyer has an amount of type-t1 assets deposited in a smart contract SCB , which is set up once
and be used for multiple exchanges assuming sufficient funds/assets are held by it.

Our protocol borrows ideas from the blockchain-aided optimistic fair-exchange literature [Wik20a,
Wik20b, Her18, ZHL+19, HLY19, Gug20, DH20, HLS19, DEF18, EFS20]. It proceeds in three rounds
and operates similar to a one-sided exchange scheme: In the first round, the buyer B sends a message to S
expressing that he wants to trade. In the second round, the seller gives the buyer a quoted price (number
of t1 assets per t2 assets) at which he is willing to sell, along with the address pkS . In the third round, if
the buyer disagrees with the quote, then he sends a ⊥; otherwise, the buyer issues a (signed) certificate c
of purchase that includes the quantity y of t2 he wished to buy and the quoted price (including the seller’s
signature from Round 2). In addition to that, B sends his wallet address pkB and SCB ’s address.

The certificate output to the seller can be used as input of the contract SCB to transfer the amount of
assets of type t1 (corresponding to y and the agreed exchange rate) from the buyer’s wallet to its own wallet.
More precisely, in order for SCB to accept c and perform the transfer of the type-t1 assets to the seller’s
possession, the contract checks that a transfer of the corresponding amount of type-t2 from the (seller’s)
address indicated in Round 2, to the (buyer’s) address indicated in Round 1 has already been processed
and settled on the blockchain. It is this property of SCB that makes the exchange fair: only the seller can
utilize the certificate, and can only receive its asset if it has already sent the buyer the bought asset. An
important feature to note, however, is that the certificate creation occurs entirely off-chain. In that sense,
the certificate can be thought of as the digital analogue of a conditional “cashier’s check” that can be cashed
in by the seller at any point after the protocol terminates but only after having transferred the sold items
to the buyer and until the contract SCB is valid.

2.2 Turning a Σ-trade protocol to a Verifiable MM

We employ a deterministic MM as the seller to make the above Σ-trade protocol verifiable—anyone that sees
a sequence of trades can check whether or not the prices quoted in this sequence are consistent with what
the algorithm would produce—and combine it with a collateral mechanism to restrict the MM’s cheating
strategies. The idea is to require the market maker, as part of its setup, to instantiate the following smart
contract SCMM1: The smart contract has the code of the MM algorithm hardwired and has a large amount
of asset owned by the MM (e.g., ETH) locked as collateral; intuitively, SCMM1 monitors all the trades
made by the market maker, simulates its internal state (including the bid-ask spread) after every such trade,
and compares it to price quoted in the trade sequence.4 If a discrepancy is observed, SCMM1 burns the
collateral. We note that the above SCMM1 is costly in terms of gas; however, we can easily turn it into a
contract that is only invoked upon misbehavior by simply requiring the market maker to post the identifiers

4Note that the trades are executed on the same blockchain on which SCMM1 lives, i.e., SCB and SCMM1 are on the same
blockchain.
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of the executed transactions on the blockchain every fixed number of rounds (denoted with ∆). In this way,
anyone (even a smart contract) can check that the exchange rates used in the transactions that involve the
exchange’s public key are consistent with what the MM algorithm would output.

Clearly if the collateral in SCMM1 is high-enough, the exchange will not post transactions and rates that
deviate from what an honest execution of the MM algorithm would yield. Thus, although the trades occur
off-chain, just by observing the sequence of trades and comparing it with what the MM algorithm would
produce, the traders can verify compliance of the MM with the algorithm.

However, given that now SCMM1 needs to be invoked in order to penalize the MM, we need to specify
who covers the gas costs required to run it. We first note that an honest MM should never be penalized,
neither pay for the gas required to run the contract that checks if MM was proposing the correct prices.
On the other hand, we do not want an honest trader to pay the fee required to run SCMM1 as this party
has nothing to gain by invoking the contract rather than the satisfaction of knowing that the misbehaving
MM will lose the collateral. To solve both these problems, we modify SCMM1 as follows. Whoever invokes
SCMM1 needs to cover for the gas costs (let us say C), and if SCMM1 detects a malicious behaviour of the
MM, a generous portion of the collateral, say 10C, goes to the caller of SCMM1 and the remaining part is
burned as before. We note a MM is never incentivized to invoke SCMM1 if the amount of burn collateral
is higher than 10C + α, where α is the potential gain of a market maker that decides to not follow the
market-making algorithm. Moreover, the first party that notices that MM is misbehaving is incentivized in
invoking SCMM1 to get the reward.

Unfortunately, there are still certain attacks that a cheating MM could perform. We discuss these attacks
and how we defend against them in the following two sections.

2.3 Trade Reordering

The first attack is reordering. Concretely, if the market maker knows the details (token-type to be spent
and amounts) of a number of different pending trades, then he could potentially benefit by processing them
in an out-of-order manner. We note that such re-ordering attacks are even present in standard (non-crypto)
markets, in particular within high-frequency trading. Here is how we counter this attack in our setting: At
his response to the first message of the Σ-trade protocol, the MM attaches a signed hash of the outcome
(certificate) of the previous trade. Thus, this message works both as a quote, and as a “ticket” that puts
this trader in the queue for the next trade. This ticket is then also included by the trader on his third round
message.

It is not hard to verify that this mechanism prevents reordering attacks: Indeed, the above “ticket”-
issuing mechanism forces the MM to sequentialize the trading process, in a way that does not allow it to
process new trades before the one with the current ticket is completed—since a next trade would require
the MM to provide a hash of the completion certificate—or a timeout occurs. As before, this method makes
reordering publicly detectable: Assume that order A from PA comes before order B from PB ; PA will receive
a ticket that includes H(cA−1, pkA), where H is a collision-resistant hash-function, e.g., SHA256, cA−1 is
the previous-trade certificate (i.e., the Round-3 message of the trade that occurred before PA showed up
), and pkA is A’s wallet address (that the MM received in the first round of the Σ-trade protocol). Now
for PB to perform a trade, he needs to be issued a previous-trade certificate as well. However, the tickets
and the corresponding trades create a hash-chain that forces the MM to comply with the order they are
processed. In particular the market maker has two choices: (1) either complete the trade with PA, get the
corresponding certificate cA and issue to PB the next ticket H(cA, pkB), or (2) ignore the trade of PA and
hand PB a ticket H(cA−1, pkB).

In the first case, if the MM tries to post the two trades in an out-of-order fashion to manipulate the
price, this will be observable as the hash-chain will appear inconsistant (unless a collision is found on H(·)).
Hence, similar to how we turned the Σ-trade protocol into a verifiable protocol, we can force the MM to
comply with a consistent order by having him create, once and for all in a setup phase, a smart contract
SCMM2 with a large locked collateral, which checks that the posted transactions (in fact their tickets and
certificates) form an actual hash chain; if deviation is observed SCMM2 destroys the collateral. (As in the
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case of SCMM1 to save on gas we can make the contract opt-in, and allow users that observe a discrepancy
to trigger it).

The second case is somewhat trickier as it relates to robustness: The MM might decide to ignore a trade
and move on to the next one. We discuss this attack in the following section, as well as our mechanism to
mitigate it. In a nutshell, we can employ a profit-maximizing market-maker to ensure that it is not rational
to launch such an attack. We stress that this last part below is the only mitigation which depends on the
rational properties of the actual MM algorithm. In particular, the compliance and non-reordering defences
discussed above restrict/deter the front-running attack surface for any exchange as long as the collateral is
high enough. To our knowledge, even just the above level of front-running defence is a drastic improvement
over the state of the art which simply allows any type of front-running.

2.4 Private Manipulation and Aborting/Erasures

We have argued that neither the market maker nor a trader can provoke an unfair outcome (i.e., receive the
other’s asset without transferring their own), and that the market maker cannot perform an informed—i.e.,
based on their order size—reordering attack against trades from honest traders, i.e., has to process trades
sequentially and in the order they are queued. However, there are still two types of attacks that are not
covered by the above: (1) Disregarding/ignoring a trade before posting any following trade (i.e., one that
would depend on it), and (2) injecting trades created by the MM—i.e., trading with himself or, equivalently,
inject trades in collusion with a malicious trader.

Notwithstanding, we show in Section 7 that a rational (profit-seeking) oblivious MM in our setting cannot
increase his expected profit by performing any of these attacks. Informally, the reason is that as discussed
in the previous section, the MM makes maximum expected profit when it trades around the real value of
the goods at the bid/ask prices implied by the MM-algorithm. Since the only information available for the
market maker to learn this value is based on the traders trading around their informative signals [Das05],
a rational market-maker cannot gain by injecting uninformed (self) trades. Further, MM will not ignore
real trades because its sequence of actions (bid-ask prices) are monitored/dictated to be compliant by the
SCMM2, so by ignoring real trades, the MM will simply be trading at an inferior price away from the most
current estimate of the value V . That is, by excluding from its learning/price-discovery process these real
trades (and or their associated profits), expected profits are lower and convergence to V is slower. This in
turns produces lower long-term profit, because, as we already discussed, MM makes most profit by trading
around the true value V .

Note that, to our knowledge, prior to our work, the only proposed alternative to protecting against the
first attack (disregarding a trade) was by means of an expensive on-chain mechanism, where the cheated side
complains to some smart-contract, the MM is given the chance to counter, and if he does not he is penalized.
This mechanism, however, is clearly unacceptable in a fast-trading market-makers situation, where the trades
would have to either have long enough time-outs (several seconds in the Ethereum case) for this on-chain
dispute-and-resolution process, or the MM would have to adjust the bid-ask spread independently of such
disputes which creates a separate attack surface. Thus, to our knowledge, this is the first attempt to solve
this problem by using principles from the economic markets theory and can be of independent interest.

3 Preliminaries and Notation

We use “=” to check equality of two different elements (i.e. a = b then...) and “←” as the assigning operator

(e.g. to assign to a the value of b we write a← b). A randomized assignment is denoted with a
$←− A, where

A is a randomized algorithm and the randomness used by A is not explicit. We call a function ν : N→ R+

negligible if for every positive polynomial p(λ) a λ0 ∈ N exists, such that for all λ > λ0 : ν(λ) < 1/p(λ).
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3.1 Signatures

Definition 1 (Signature scheme [Can03]). A triple of ppt algorithms (Gen, Sign, Ver) is called a signature
scheme if it satisfies the following properties.

Completeness: For every pair (s, v)
$←− Gen(1λ), and every m ∈ {0, 1}λ, we have that

Pr[Ver(v,m, Sign(s,m)) = 0] < ν(λ).

Consistency (non-repudiation): For any m, the probability that Gen(1λ) generates (s, v) and Ver(v,m, σ)
generates two different outputs in two independent invocations is smaller than ν(λ).

Unforgeability: For every ppt A, there exists a negligible function ν, such that for all auxiliary input
z ∈ {0, 1}? it holds that:

Pr[(s, v)
$←− Gen(1λ); (m,σ)

$←− ASign(s,·)(z, v)∧
Ver(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A to the oracle Sign(s, ·).

3.2 Blockhain and Smart-Contracts

Ethereum is arguably the most popular blockchain for smart-contracts. The Ethereum protocol keeps track
of each address’ balance. Transactions are used to move funds between the addresses and to execute code
of the smart-contracts. A Smart-Contract is some code that lives on the blockchain. Storing and running
contracts requires resources from the miners. In order to pay them for their expenses, Ethereum has the
concept of Gas. Each instruction in a smart-contract costs some gas units proportional to what it does.
Transaction senders can specify the amount of Wei they are willing to pay per gas unit. This is called Gas
Price.

Bulletin board. For convenience, whenever the blockchain is just used for recording events, we treat it
as a bulletin board (BB). The bulletin board has a sequential-writing pattern where every string published on
the bulletin board has a counter (its position) associated to it. We do not make any assumptions about the
order in which issued transactions are recorded, other than what is implied by the standard chain quality
and transaction liveness properties of ledgers (cf. [GKL15, PSs17, BMTZ17]. We assume familiarity with
this notion and refer to B.2 for more detail.

3.3 Security framework

The Universal Composability (UC) framework introduced by Canetti in [Can01] is a security model capturing
the security of a protocol Π under the concurrent execution of arbitrary other protocols. All those other
protocols and processes not related to the protocol Π go through an environment Z. The environment has
the power to decide the input that the parties should use to run the Π, and to see the output of these
parties. In this framework there is also an adversary A for the protocol Π that decides the parties to be
corrupted and can communicate with Z (who knows which parties have been corrupted by A). The security
in this model is captured by the simulation-based paradigm. Let F be the ideal functionality that should
be realized by Π. The ideal functionality F can be seen as a trusted party that handles the entire protocol
execution and tells the parties what they would output if they executed the protocol correctly. We consider
the ideal process where the parties simply pass on inputs from the environment to F and hand what they
receive to the environment. In the ideal process, we have an ideal process adversary S. S does not learn
the content of messages sent from F to the parties, but is in control of when, if ever, a message from F
is delivered to the designated party. S can corrupt parties and at the time of corruption it will learn all
inputs the party has received and all outputs it has sent to the environment. As the real world adversary,
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S can freely communicate with the environment. We compare running the real protocol with running the
ideal process and say that Π UC-realizes F if no environment can distinguish between the two worlds. This
means that the protocol is secure, if for any polynomial time A running in the real world with Π, there exists
a polynomial time S running in the ideal process with F , so no non-uniform polynomial time environment
can distinguish the two worlds.

For our formal security arguments we use the simulation paradigm. The advantage of using simulation
based security is that it supports composition which allows us to employ a constructive approach to protocol
design.Our constructions are secure in Canetti’s Universal Composability (UC) framework [Can01] (in fact,
its synchronous version from [KMTZ13, KZZ16, BMTZ17].) Nonetheless to make the presentation more
accessible to a non-UC expert we often use the convention and language similar to [Can00]. Concretely,
we assume that all protocols proceed in rounds, where in each round: the uncorrupted parties generate
their messages for the current round, as described in the protocol; then the messages addressed to the
corrupted parties become known to the adversary; then the adversary generates the messages to be sent by
the corrupted parties in this round; and finally, each uncorrupted party receives all the messages sent in this
round. At the end of the computation all parties locally generate their outputs. Using [KMTZ13] it is easy
to project our statement to (synchronous) UC.

4 Σ-Trade Protocols

In this section we introduce the notion of Σ-trade protocols. A Σ-trade protocol is a protocol for the fair
exchange of tokens that lives on a blockchain E.5 More precisely, a Σ-trade protocol consists of three rounds
of off-chain interaction between a buyer and a seller that are used to 1) agree on the exchange rate of the
tokens and 2) generate the information required to create the on-chain transactions that will move the tokens
from the buyer to the seller (and vice-versa) according to the agreed price. One important property of a
Σ-trade protocol is that the seller has the power to decide whether to make the trade effective (by posting
an appropriate transaction on the blockchain E) or not. More precisely, there is a bounded amount of time
T decided by the buyer, before which the seller has to decide whether or not to make the trade effective.
This asymmetry between the buyer and the sender will become important when the Σ-trade protocol is
used by a market-maker that acts as the seller. Indeed, we need the maker-maker to know exactly what
kind of trades will or will not be effective almost immediately (independently from the performance of the
underlying blockchain). More details on this are provided in the next section. We now provide a more formal
abstraction of a Σ-trade protocol.

A Σ-trade protocol Π is an interactive protocol run by a seller S and potentially many buyers B1, . . . , Bm,
where m might be unknown to the the seller S. We assume that there are only two tokens t1 and t2, and
that each buyer wants to buy tokens of type t2 in exchange of tokens of type t1. Moreover, each buyer Bi
has an upper bound of type t1 tokens that can spend which we denote with zi.

The exact amount of t2 tokens the buyer wants to buy can be decided adaptively in the last round of
interaction. A Σ-trade protocol Π consists of the following steps:

1. Each buyer Bi creates a smart contract SCi on E that locks zi tokens of type t1 (more details on SCi
are provided later).

2. Bi and S exchange three off-chain messages, where Bi speaks first. In the first message Bi sends a
trading request to the seller S. We note that in this phase Bi does not disclose anything about the
trade he would like to do.

3. In the second round S proposes the exchange rate for the tokens he owns, let us call this information
askedPrice.

4. Let y be the quantity of tokens of type t2 that the buyer wants to buy that is such that y ·askedPrice ≤
zi. If Bi agrees with the exchange rate indicated in askedPrice, then Bi sends a certificate c. c can

5We can think of E as the Ethereum blockchain.
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SCi

State: ziΞ locked for time Ti, the public keys (pkΞ
S , pk

T
S ), (pkΞ

i , pk
T
i ) and an initially empty list of identifier

usedIDs

Input: x, y, ID, σ1, σ2. If ID /∈ usedIDs and Ver(pkΞ
i , σ1, x||y||pkΞ

S ||ID) = 1 and Ver(pkΞ
S , σ2, x||y||pkΞ

i ||ID) = 1

and there is a transaction with the identifier ID in its payload that moves yŤ from pkŤS to pkŤi then move xΞ
from pkΞ

i to pkΞ
S , set zi ← zi − x and add ID to usedIDs.

Figure 1: Smart contract SCi for the case where Bi wants to buy Ť for Ξ. The time Ti has to be set in such
a way that the seller has time to create a transaction that pays Bi and to invoke the contract to get the Ξ
from Bi

be used by S to invoke SCi and withdraw x = y · askedPrice tokens of type t1 from the account of Bi.
However, SCi will move the x tokens from Bi’s account only under the condition that S has moved to
Bi’s account y tokens of type t2. At a very high level, SCi ensures atomic transactions pre-agreed by
the seller and the buyer, but it can be triggered only by the seller.

We will argue that any abstraction of Σ-trade protocol can be used in combination with our protocol
that prevents the reordering of transactions, and that guarantees that askedPrice is computed according to
a publicly known market-maker algorithm. For completeness, we now show an example of how to instantiate
a Σ-trade protocol for the case where the buyers wants to buy tokens Ť for ethereums Ξ.

4.1 Selling tokens for ethers

For a buyer Bi we denote with (skCi , pk
C
i ) the pair of signing-verification keys associated to the account

C ∈ {E, Ť}, where E represents Ethereum and Ť a token that lives in Ethereum. We also denote with Ξ the
Ethereum currency. Analogously, for the seller S we denote with (skCS , pk

C
S ) the pair of signing-verification

keys associated to the account C ∈ {E, Ť}.
In Fig. 1 and Fig. 2 we provide the formal description of the smart-contract and our protocol Π respec-

tively, and provide here the intuitions about how they work. The smart contract SCi locks for Ti rounds ziΞ
and manages a list of transaction identifiers. Upon receiving an input (x, y, ID) that has been authenticated
by both the buyer and the seller, SCi moves xΞ to the account of the seller under the conditions that 1)
a transaction trx that moves yŤ from the seller’s account to the buyer’s account has been made, 2) trx

contains the identifier ID in its payload and 3) ID does not appear in the list of transaction identifiers. In
addition, when such conditions verify, SCi stores ID in the list of identifiers. This is required to prevent that
the same transaction trx is used to withdraw money from SCi multiple times. We note that the same con-
tract SCi can be used for multiple trades if zi is big enough. We are now ready to describe how our protocol
works. The buyer sends a trade request to the seller, which replies with the exchange rate between Ξ and
Ť that we denote with askedPrice. If the buyer agrees with askedPrice, then he generates an identifier
ID, converts y in Ξ using askedPrice thus obtaining x, and signs x||y||ID. Then the buyer sends the signed
values (with their signature) to the buyer. The seller, in order to withdraw xΞ from SCi needs to 1) post a
transaction trx that pays yŤ into the account of the buyer, where trx contains in its payload the identifier
ID and 2) sign x||y||ID, and use the resulting signature, and the signature received from the buyer to run
the contract SCi. We note that the seller could post trx and contextually sends it to the buyer. Therefore,
the buyer can be sure that the trade will eventually occur, as if the seller does not post trx within a certain
time-frame, the buyer will do that (by broadcasting trx).
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Π

Bi’s initial state:(pkΞ
S , pk

Ť
S ), (pkΞ

i , pk
Ť
i ), (skΞ

i , sk
Ť
i ), the smart contract SCi (see Fig. 1) and a transaction

identifier ID initialized to 0.
S’s initial state: (pkΞ

S , pk
Ť
S ), (skΞ

S , sk
Ť
S ).

Bi. Let y be the amount of Ť that Bi wants buy using Ξ. Send trade-request to S

S. Let askedPrice be the price at which S is willing to sell Ť for Ξ (i.e., 1Ť = askedPriceΞ). Send
askedPrice to Bi.

Bi. Upon receiving askedPrice from S, if askedPrice represents a good price (w.r.t. the strategy of Bi) then
do the following steps, otherwise send NO-TRADE to S.

– Compute ID← ID + 1 and x← y · askedPrice and σ1
$←− Sign(skΞ

i , x||y||pkΞ
S ||ID)

– Send x, y, ID, σ1, pk
Ť
i , pk

Ξ
i to S.

S. Upon receiving (x, y, ID, σ1, pk
Ť
i , pk

Ξ
i ) from Bi do the following steps.

– If Bi has created a contract according to Fig. 1 then continue, otherwise stop interacting with Bi.

– If Ver(pkΞ
i , σ1, x||y||pkΞ

S ||ID) = 1 and x = y · askedPrice then continue with the following steps,
ignore the message of Bi otherwise.

– Compute σ2
$←− Sign(skΞ

S , x||y||pkΞ
i ||ID).

– Post a transaction trx with the identifier ID in its payload that moves yŤ from pkŤS toward pkŤi .

– Invoke SCi using the input (x, y, ID, σ1, σ2).

Figure 2: Π, Bi wants to sell Ξ for Ť .

5 (Fair) Ordering of Transactions

In this section we describe the trade functionality Ftrade relying on the UC framework. The trade function-
ality describes the only ways in which the market maker can reorder the trades to, for example, manipulate
the market in his favour. For simplicity, we assume that there are only two assets: Ξ and Ť . We denote
with priceŤ→Ξ (and priceΞ→Ť ) the price at which MM sells Ť (Ξ) in exchange for Ξ (Ť ). We assume that
the information that describes the trade of a party Pi is encoded in tradei. That is, tradei describes the
type and the amount of assets, the prices of the assets, the type of the trade (sell or buy) and might contain
an additional payload. We also assume that all the parties share the procedure MMalgorithm (the MM
algorithm), which on input of a trade and the current prices, outputs the updated prices (the new values for

priceŤ→Ξ and priceΞ→Ť ). At a high level, Ftrade works as follows. Upon receiving a request from a trader
Pi, Ftrade sends the prices of the assets to Pi, and signal to MM that Pi wants to trade. If Pi agrees with
these prices, he sends the information regarding the trade tradei to Ftrade. Upon receiving tradei, Ftrade

forwards tradei to MM which has only two choices: 1) to decide not to trade with Pi by sending a command
NO-TRADE to Ftrade, or 2) to accept to trade with Pi. If MM does any other action before doing one these two
(e.g., MM starts trading with a party other than Pi), Ftrade would allow that, but it would also set a special
flag abort to 1. This means that if the traders query Ftrade with the command getTrades (to get the list
of trades accepted by MM), Ftrade would return a special symbol ⊥, to denote that MM has misbehaved. A
corrupted MM can also decide to set the output of Ftrade always to ⊥. This capture the fact that MM can
decide to stop working at his will. Moreover, MM can decide to add any trade of a corrupted party to the
list of trades using the command setAdvTrade, but this can be done only after that MM has concluded the
trading phase with any honest traders, as specified above.
Ftrade is parametrized by ∆, which denotes the maximum number of rounds per epoch. In each epoch MM
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should allow the other parties to see the entire list of trades. MM can make the list of trade accessible via a
special command setOutput. In the case where MM does not send such a command at least every ∆ rounds,
then Ftrade would return ⊥ to any honest party that requests to see the full list of trades (thus noticing that
MM is not responsive). This mechanism capture the fact that MM might trade with multiple traders without
making the list of trade public for at most ∆ round.

We stress that Ftrade allows the adversarial MM to misbehave (e.g., by completely reordering the trades)
but this misbehavior will be notified to the honest parties. Moreover, the MM cannot modify the trades
(e.g., change the quantity that a party Pi is willing to sell/buy). Therefore, even if the adversary reorders the
trades (at the cost of being detected), all the trades will be anyway consistent with the prices that Ftrade sent
to the traders. We observe that the market maker still has the power to decide with what parties he wants
to trade first, however, this decision has to be taken obliviously of the trade information of the honest party.
Luckily, we can also argue that for a relevant class of market-making algorithms, this does not constitute
an additional useful power. We finally note that Ftrade does not allow any real exchange of assets between
the parties and the market maker. However, as we will argue in the next section, if the output of Ftrade is
posted on a blockchain and the trades are defined properly (according to the language of the blockchain),
then the MM can use the trades to trigger events on the blockchain that move the assets between the market
maker and the parties according to what is described by Ftrade. We can also disincentivize any malicious
behavior of the adversary by means of the compensation paradigm over the blockchain. Indeed, given that
in our protocol all the honest parties can detect a malicious behavior without using any private state, the
same can be done by a smart contract.

To simplify the description of our protocol, we make use of the procedure checkTrade and checkPrices.
checkTrade takes as input trade, priceŤ→Ξ and priceΞ→Ť , and outputs 1 if the description of a trade

trade is consistent with the prices defined by (priceŤ→Ξ, priceΞ→Ť ). checkPrices takes as input a list
of trades and checks that the prices involved in each trade are computed accordingly to the market-making
algorithm (we refer to Fig. 4 for the formal description of these procedures). In Fig. 3 we propose the formal
description of Ftrade.

5.1 Our Protocol: how to realize Ftrade

We assume that the parties have access to a bulletin board BB and have a public key for a signature scheme.
We also assume that all the parties know the MM’s public key and share the knowledge of the same procedure
MMalgorithm. At a very high level, our protocol that realizes Ftrade works as follow. MM maintains a hash
chain that starts with a special value that we denote with hstart (it can be the all-zero string) that all the
traders know. Any time that MM receives a request from a trader Pi, he adds to the hash chain the public key
of Pi, signs the head of the hash chain (let us say hi), the public key of Pi and the current price of the assets.
We call this set of information a ticket. The MM then hands over the ticket to the trader. The trader checks
that the signature is valid under the MM’s public key, and if it is the case then Pi defines the trade tradei,
signs it thus obtaining σi, and sends (tradei, σi) to MM (the signature σi guarantees that MM cannot change
tradei). MM, upon receiving tradei and its signature, checks if tradei is well formed (i.e., the prices used
to describe tradei are consistent with what MM sent in the previous round). If this is the case then MM adds
to the hash chain tradei, adds tradei with its signature σi to a list requests, run MMalgorithm on input
tradei and the current prices to get the new prices, and waits to receive another request from a new trader.
In every epoch (one epoch lasts a most ∆ rounds) we require MM to publish on the bulletin board the head
of the hash chain h and the list requests, all authenticated with his signing key. (If MM that does not post
such authenticated information within ∆ rounds then all the traders will understand this as an abort and
output ⊥). Each honest party that has access to the BB now does the following: 1) checks that each trade
in requests is either NO-TRADE or a correctly signed trade; 2) checks that all the prices used to construct
a trade in requests have been computed according to MMalgorithm and that the hash chain that starts at
hstart and finishes at h can be constructed using the trades in requests (this can be done by recomputing
the hash chain using the information contained in requests); 3) checks if the hash value hi (received as part
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Functionality Ftrade

Ftrade is parametrized by party-set P1, . . . , Pm and the market maker MM. The functionality also manages a flag
abort← 0 and an initially empty list Trades. It is also parametrized by τ , timer (with timer initialized to −τ),

the starting prices SPŤ→Ξ and SPΞ→Ť at which MM is willing to sell (and respectively buy) Ť for Ξ, respectively, the

integers ∆, R, and the epoch index e. The functionality initializes priceΞ→Ť ← SPΞ→Ť , priceŤ→Ξ ← SPŤ→Ξ,
R← ∆, e← 0.
Let Tnow be the current round (Tnow > 0), upon receiving any message from any party or from the adversary A
act as follows:

• Upon receiving (request, sid) from a party Pi

– If MM is corrupted then send (new-request, Pi) to A else

– If Tnow − timer > τ thena send (priceΞ→Ť , priceŤ→Ξ) to Pi, send (new-request, Pi) to MM, set
activep← Pi and timer← Tnow else ignore the command.

• Upon receiving (setPrice, sid, Pi, price
Ξ→Ť , priceŤ→Ξ) from a corrupted MM then send

(priceΞ→Ť , priceŤ→Ξ) to Pi. If there is no entry (Pj ,⊥) with j ∈ [m] in Trades then add the
entry (Pi,⊥) to the list Trades, otherwise set abort← 1.

• Upon receiving (ok, sid, tradei) from Pi

– If MM is corrupted then send (Pi, tradei) to A
– else if Pi 6= activep then ignore the input, else

If checkTrade(tradei, price
Ξ→Ť , priceŤ→Ξ) = 1 then add (Pi, tradei) to Trades and send ok

to Pi else add (Pi, NO-TRADE) to Trades and send (ko) to Pi.

• Upon receiving (setTrade, sid, Pi, y) from A do:

- If the entry (Pi,⊥) is on the top of the list Trades and (ok, tradei) has been received from Pi then

- if y = 1 then replace (Pi,⊥) with (Pi, tradei) in Trades, otherwise replace (Pi,⊥) with
(Pi, NO-TRADE)

- else set abort← 1.

• Upon receiving (setAdvTrade, sid, Pi, trade) from A, if Pi is not a corrupted party then ignore the
message, otherwise do the following:

– if there is an entry (Pj ,⊥) with j ∈ [m] on the top of the list then set abort← 1 else

– add (Pi, trade) to Trades.

• Upon receiving (getTrades, sid) from a party Pi at round Tnow do the following steps.

– If Tnow ≤ R and output = 0 then ignore the input of Pi.

– If Tnow ≥ R and output = 0 then return ⊥ else

– If output = 1 and abort = 0 and checkPrices(SPŤ→Ξ, SPΞ→Ť , Trades) = 1 and there is no entry
(Pj ,⊥) in Trades then return (Trades?, e) (where Trades? is a copy of Trades with the expection
that each entry (P, trade) is replaced with trade in Trades?) and set R ← Tnow + ∆, e ← e + 1,
output = 0.

– else return ⊥.

aThis condition lets the functionality ignore any new request for at most τ rounds. Note that the first time the
functionality receives the commnad request the condition trivially holds.

Figure 3: The trades functionality Ftrade.
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Auxiliary procedures

verifyPrices(Trades)

Constants: SPŤ→Ξ, SPΞ→Ť

Set p1 ← SPŤ→Ξ, p2 ← SPΞ→Ť and for j ← 1, . . . , |Trades|

If checkTrade(tradej , p1, p2) = 0 then return 0.a

Compute p1, p2 ← MMalgorithm(p1, p2, tradej).

return 1.

verification(hstart, h
′, h, pk, requests)

Set found← 0.

Set h1 ← hstart and for j ← 1, . . . , |requests|

Parse requests[j] as (pkj , tradej , σj).

Compute h2 ← H(h1||pkj), h1 ← H(h2||tradej).
If h2 = h and pk = pkj then

found← 1.

If trade 6= NO-TRADE and Ver(pkj , σj , trade) 6= 1 then return 0.b

If h′ 6= h1 or found = 0 then return 0.

Return 1.

checkBB(hstart, h
′, requests, pkMM, e)

Set found← 1.

For any value ti := (hi, σi, pki, e) that appears on the BB (posted on the behalf of a party which is not
MM) do the following.

If Ver(pkMM, hi||pki||e, σi) = 0 then ignore ti else found ← found ∧
verification(hstart, h

′, hi, pki, requests)

Return found.

checkPrices(SPŤ→Ξ, SPΞ→Ť , Trades)

Initialize p1 ← SPŤ→Ξ, p2 ← SPΞ→Ť and flag← 1.

For j ← 1, . . . , |Trades|

parse Trades[j] as (P, trade).

if checkTrade(tradej , p1, p2) = 0 then flag← 0.

compute p1, p2 ← MMalgorithm(p1, p2, trade).

Return flag

aIn this case, everybody will detect an invalid computation of the prices since the algorithm MMalgorithm is public.
bAlso in this case, everybody will detect an invalid signature and abort.

Figure 4: Auxiliary procedures
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of the ticket) is part of the hash chain that starts at hstart and ends at h.
We observe that anyone can check if the first and the second conditions hold (even a party that did

not interact with MM at all). Hence, if either the first or the second condition does not hold, then all the
honest traders output a special symbol ⊥ (to claim that MM has misbehaved). The third condition instead
can be checked only by a trader that received a ticket. However, if a trader detects that the third condition
does not hold, then he can post his ticket (which we recall has been authenticated by MM) on the bulletin
board, in such a way that all the parties that have access to the BB can detect that MM misbehaved and
output ⊥. Intuitively, our protocol realizes Ftrade because once that MM has send a ticket to a trader, he
has also committed to a set of trades. Hence, as long as MM cannot generate collisions for the hash function,
he cannot include new trades in the hash chain depending on the amount of assets that the new traders
wants to sell/buy. We denote our protocol with Πtrade and provides its formal description in Fig. 5. In the
protocol MM maintains h← 0λ, an initially empty list requests and four integers R, τ and ∆. ∆ represents
the maximum number of rounds after which MM has to post the trades on the BB, τ represents the upper
bound on the time (i.e., number or rounds) that a party has to reply to MM (this is to avoid DoS attack) and

R is initialized to ∆. Let also SPŤ→Ξ and SPΞ→Ť be the starting price at which MM is willing to sell (and
respectively buy) Ť for Ξ. MM maintains an integer that we call epoch index and denote with e (each epoch

lasts at most ∆ rounds). MM initializes priceΞ→Ť ← SPΞ→Ť and priceŤ→Ξ ← SPŤ→Ξ and e = 0. Each
party maintains and initially empty list Trades, h0 ← 0λ and a view of the current epoch index which we
denote by ei (initialized to 0).

To simplify the description of the protocol, we have described the procedures used to check whether or
not MM is misbehaving in Fig. 4. A brief overview on what these procedures do follows:

• verifyPrices takes as input a list of trades and checks that the prices involved in each trade are
computed accordingly to the market-making algorithm.

• verification takes as input the ticket received by a trader, the head of the hash chain and the list
of trades posted at the end of an epoch on the BB by MM. It checks whether the ticket information
appears in the hash chain and is consistent with the list of trades.

• checkBB looks on the BB for valid tickets (a ticked is valid if is signed by MM), and for each valid
ticket runs the procedure verification. If verification outputs 0 (hence one of the ticket posted
by a trader proves that MM was trying to cheat) the procedure outputs 0.

To not overburden the notation, the parties will just use an hash function instead of querying the random
oracle functionality (RO) FRO. Moreover, whenever a party P wants to post a value x, or look for a value
x on the bulletin board we will just write, respectively P posts x on the BB and P looks for a value x on
the BB.

In Appendix C.1 we formally prove the following theorem.

Theorem 1. If there exists a signature scheme (accordingly to Definition 1) then Πtrade realizes Ftrade in
the (FRO, BB)-hybrid model.

6 Combining Ftrade with Σ-Exchange Protocols.

We observe that if in the realization of Ftrade we replace the BB with a blockchain which supports smart
contracts, then we could have also a smart contract acting as a party registered to Ftrade that in every round
queries Ftrade with the command getTrades. We can program this smart contract in such a way that if the
output of Ftrade is ⊥ then the MM is penalized. In our final protocol the traders and MM will be running a
Σ-trade protocol Π and in parallel invoke Ftrade using as input the same information (prices, quantity and
the type of the trades) used in the execution of Π. Once that the output of Ftrade is generated, we can rely
on a smart contract to check that the trades are consistent with the transactions generated by Π. If this is
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Πtrade

1) Pi: creation of a request. Upon receiving (request, sid), send (request, pki) to MM.

2) MM: waiting for a request. Upon receiving (request, pki) from the party Pi do the following.

• Compute h′ ← H(h||pki) and set h← h′ and σ ← Sign(skMM, h||pki||e).

• Send ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ, pki) to Pi and ignore any request that comes from any
party Pj 6= Pi for τ rounds.

3) Pi: finalizing the request. Upon receiving ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ, pki) from MM, if the re-
ceived prices are not satisfactory then send NO-TRADE. Else create trade with all the required information
with trade.p1 = priceΞ→Ť and trade.p2 = priceŤ→Ξ and do the following:

• If Ver(pkMM, σ, h||pki||ei) = 1 then compute σi ← Sign(ski, h||trade) and send (trade, σi) to MM, else
ignore the message received from MM

4) MM: reply to the request of Pi. If (trade, σi) is received from Pi within τ rounds such that

Ver(pki, σi, h||trade)) = 1 and checkTrade(tradei, price
Ξ→Ť , priceŤ→Ξ) = 1 then do the following.

• Compute h′ ← H(h||trade) and set h← h′.

• Add (pki, trade, σi) to requests.

• Run MMalgorithm(trade, priceΞ→Ť , priceŤ→Ξ) thus obtaining priceΞ→Ť ′, priceŤ→Ξ′ and set

priceΞ→Ť ← priceΞ→Ť ′, priceŤ→Ξ ← priceŤ→Ξ′.

else do the following

• Compute h′ ← H(h||NO-TRADE) and set h← h′ and add (pki, NO-TRADE, 0λ) to requests.

Start accepting new requests from any party (i.e., goto step 2).

5) MM: flush of the trades on the BB. If R rounds have passed, post (h, σ, requests, σ?, e) to the BB, where
σ ← Sign(skMM, h) and σ? ← Sign(skMM, requests||e). Set R← R+ ∆, update the epoch number e← e+ 1
and reinitialize requests.

6) Pi: checking the honest behavior of MM. In each round Pi does the following

- If no message (h′, σ′, requests, σ?, ei) has been posted on the BB within the last ∆ rounds such that
Ver(pkMM, σ

′, h′) = 1 and Ver(pkMM, σ
?, requests||ei) = 1 then output ⊥, else compute ei ← ei + 1 and

continue as follows.

- If Pi has not received a new ticket ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ, pki) during the epoch ei−1
then continue, else if verification(hei−1, h

′, h, pki, requests) = 0 then send (h, σ, pk, ei−1) to the BB
as a proof of cheating of MM and set outputi ← ⊥.

- Set hei ← h′.

7) Pi upon receiving (getTrades, sid), if outputi = ⊥ then return ⊥ else reinitialize Trades and do the
following.

- For each message (h′j , σ
′
j , requestsj , σ

?
j , j) with j ∈ {0, . . . , ei − 1} such that Ver(pkMM, σ

′
j , h
′
j) = 1 and

Ver(pkMM, σ
?
j , requestsj ||j) = 1 posted on the BB, if checkBB(hj , h

′
j , requestsj , pkMM, j)=0 then return ⊥,

else for each (pk, trade, σ) in requestsj add trade to Trades.

- If verifyPrices(Trades) = 1 then output (Trades, ei) else output ⊥.

Figure 5: Our protocol that realizes Ftrade.
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not the case then MM can be penalized. More precisely, to punish a misbehaving MM we require MM to create
a smart contract SCpenalize which locks a collateral z. SCpenalize, if queried by any party, will inspect the
output of Ftrade and if the output is ⊥ then SCpenalize will burn the collateral of MM. Otherwise SCpenalize
checks that the transactions in the list received from Ftrade are consistent with the transactions generated
by MM on the ethereum blockchain with respect to the MM’s wallet addresses (pkΞ

MM, pk
Ť
MM). If they are not

consistent, SCpenalize would (also in this case) burn the MM’s collateral. We note that this contract might be
expensive to execute (in terms of gas cost). However, if MM and the traders follow the protocol nobody will
ever invoke it. On the other hand, if MM misbehaves then a trader can detect that by looking at the output
of Ftrade and consequentially decide to invoke SCpenalize. As argued in the introductory part of the paper,
we can incentivize the honest parties to invoke SCpenalize (and cover the gas cost) in the case when MM is
misbehaving by transferring a small portion of the locked collateral to the calling party before burning the
rest of it.

To complete the description of our protocol we need to introduce yet another smart contract that we
denote with SCaccount and describe in Fig. 6. This contract is also created by MM, and it checks if the
transactions that pay the MM’s account exceed a certain value Y . If this is the case, then the contract would
block any additional payment towards MM. This contract limits the amount of commodities that MM can trade,
and the reason for doing that is to cope with a market-maker that is willing to be penalized (by for example
reordering the trades thus causing Ftrade to output ⊥) because the profit MM would gain by misbehaving
overcomes the collateral locked in SCpenalize.

We recall that no malicious (even irrational) MM could steal money from the traders, and that the worst
that MM can do in our protocol is to front-run the traders (by letting Ftrade output ⊥) or avoid posting
transactions that allow the settling of the trades. Hence, we just need to assume that the collateral locked
in SCpenalize could never be gained by MM through one of the mentioned actions. We denote the upper bound
on the commodity that MM can trade with Y . If we set Y to be smaller than the collateral of SCpenalize (that
we denote with z) then it is never convenient for a rational MM to be penalized by means of SCpenalize.

We call our protocol Πfull, and for sake of completeness we propose its formal description in Fig. 7.
We describe the case where there are only traders that want to buy Ť for Ξ, and assume that Y is big
enough, and that MM has enough funds to satisfy all the requests. This protocol simply combines together
the functionality Ftrade and the Σ-trade protocol of Section 4.1. We also propose a description of SCpenalize
in Fig. 8. We observe that we can assume that the smart-contract SCpenalize acts like a party registered to
Ftrade would act only because to realize Ftrade we replace the bulletin board with the blockchain that hosts
the contract SCpenalize. Let T be the number of round within the contract SCpenalize can be invoked, then
we can claim the following.

Theorem 2. If there is at least one honest party Pi then, within the first T rounds one of the following
occurs with overwhelming probability:

1. the Ftrade outputs ⊥ and the collateral locked in SCpenalize by MM is burned;

2. the Ftrade is not ⊥ but there is not a perfect correspondence between the trades contained in the output of
Ftrade and the transactions that appear on the blockchian E with respect to MM’s public keys. Moreover,
the collateral locked in SCpenalize is burned;

3. the Ftrade is not ⊥, there is a perfect correspondence between the trades contained in the output of
Ftrade and the transactions that appear on the blockchian E with respect to MM’s public keys. Moreover,
all the collateral remains locked in SCpenalize for T rounds.

If we set the smart contracts with the right parameters, and assume that the aim of the market-maker is
to maximize the amount of Ξ, we can argue that the first and the second case listed in Theorem 2 happen
with negligible probability. More precisely, let α be the gas cost required to run SCpenalize with the input
detected, and reward be reward that could be given to a party calling SCpenalize, let z be the locked collateral
in SCpenalize and let Y be the maximum amount of Ξ that MM can have on the account with address pkΞ

MM. In
this case, intuitively, if there is at least one honest party Pi, reward > α, and z > Y then a market-maker
that wants to maximize its profit would not let either the first or the second case of Theorem 2 to happen.
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SCaccount

State: The public key pkΞ
MM and the integer Y . The contract remains active until round TMM.

On any payment toward pkΞ
MM: If the balance of pkΞ

MM after the payment is less than Y then accept the payment,
else reject the payment.

Figure 6: The contract does not allow MM to gain more than Y Ξ,

We finally observe that multiple malicious traders could harm the throughput of the system by never
completing the protocol (by not even sending the NO-TRADE message). In a previous version of this work,
each trader had to send in the first round of the Σ-trade protocol his identity (which includes the public key
used for the creation of the contract SCi). In such a setting, it is easy for the market maker to distinguish
between bad traders (i.e., traders that often do not complete the execution of the protocol) from good traders
(i.e., trader that always completes the protocol honestly). Indeed, in this case the MM can ignore all the
requests that come from traders that have not created the contract SCi correctly or the requests of traders
that in past have not completed correctly an execution of the protocol. In this version of the paper, we
do not disclose the public keys of the traders in the first message of the Σ-trade protocol to keep hidden
all the information about the trade (i.e., the first round sent from the trader to the MM does disclose the
upper bound of the amount of commodity which might be inferred by looking at SCi). However, to keep
resilience against malicious traders that never complete the protocol we can simply rely the standard Know
Your Client (or Know Your Customer) which require the traders to register to the market maker and later
identify themself for every new trading operation.

7 Monopolist Profit Seeking MM

The Glosten and Milgrom model [GM85] has become a standard model of a zero knowledge market-maker
who trades against an informed trader. We adopt the extension by Das [Das05], which is also the model used
in Das and Magdon-Ismail [DMI08]. In this model, the true price (value) of the commodity is an unknown V
and we assume the MM has a prior over V at time 0, p0(v). The prior represents all the starting information
the MM knows, and we can think of the prior as some very high-entropy distribution, for example a Gaussian
with huge variance. Number the traders t = 1, 2, . . . in the sequence they arrive. Trader t has an estimate
of the value wt = V + ε, where ε is a random perturbation (noise) of the true value which quantifies how
informed the trader is. Let us denote the cumulative distribution function (CDF) of ε by Fε, which is known
to the market maker. For simplicity, we assume the noise is symmetric, so Fε(−x) = 1− Fε(x), for example
zero mean Gaussian noise. We also assume that different traders are independent, which means their noisy
perturbations of V are independent. We now consider the MM actions for trader t, which is to set bid and
ask prices, at > bt for the trader who will arrive at time-step t. The trader will either trade or not depending
on how their signal wt relates to at, bt. Specifically, the trader buys from the market maker if wt > at,
sells to the market maker if wt < bt and makes no trade otherwise. If the trader buys, the market maker
receives the signal xt = +1, if the trader sells, the signal is xt = −1 and otherwise the signal xt = 0. When
trader t + 1 arrives, we already have a sequence of trades x1, x2, . . . , xt. Let us assume by induction that
the market maker has correctly updated its distribution over V to the posterior pt(v) at time t. Here, pt(v)
contains all the information of the MM which now only depends on the historical sequence of trades made
x1, . . . , xt. Given bid and ask prices b, a, and the value V , one can compute the probability of each type of
signal, P [xt = +1] = 1− Fε(a− V ), P [xt = −1] = Fε(b− V ). The market makers profit for an ask signal is
a − V and for a bid signal is V − b. To get the expected profit, we integrate over the possible values of V ,
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Πfull

MM’s initial state: public keys (pkΞ
MM, pk

Ť
MM) with the corresponding secret keys (skΞ

MM, sk
Ť
MM) and the smart contracts

SCpenalize, SCaccount.

Pi’s initial state: the public keys of the MM (pkΞ
MM, pk

Ť
MM), the public keys (pkΞ

i , pk
Ť
i ) with the corresponding

secret keys (skΞ
i , sk

Ť
i ), the smart contract SCi which can be invoked by MM up to round Ti with Ti << T a and a

transaction identifier ID initialized to 0.

Pi. Before interacting with MM check that MM has created a smart-contracts SCpenalize, SCaccount prescribed in
Figs. 6 and 8. Let x be the amount of Ξ that Pi wants exchange for Ť . Send (request, sid) to Ftrade.

Upon receiving (priceΞ→Ť , priceŤ→Ξ) from Ftrade, if the prices are not good accordingly to the Pi’s
strategy, then send (NO-TRADE, sid) to Ftrade, else do the following

– Compute ID← ID + 1 and y ← x · askedPrice and σ1
$←− Sign(skΞ

i , x||y||pkΞ
MM||ID)

– Define tradei as the concatenation of (x, y, ID, σ1, pk
Ť
i , pk

Ξ
i ) and send (ok, tradei) to Ftrade.

Pi. On each round send (getTrade, sid) to Ftrade. If Ftrade replies with ⊥ then invoke SCpenalize with the
input detected1, else let (Trades, ei) be the output of Ftrade and do the following.

– If Ti rounds have passed (i.e., SCi cannot be invoked anymore), tradei belongs to Trades and SCi
has never stored in usedIDs the identifier ID then invoke SCpenalize with the input detected1.b

– If SCi has stored the identifier ID in usedIDs but Trades does not contain any entry tradei such
that (x, y, ID, σ1, pk

Ť
i , pk

Ξ
i ) = tradei and Ver(pkΞ

i , σ1, x||y||pkΞ
MM||ID) = 1 then invoke SCpenalize with

the input (detected2, SCi, ID, σ1, pk
Ξ
i ).

MM. Upon receiving (new-request, Pi) from Ftrade send (setPrice, priceΞ→Ť , priceŤ→Ξ) to Ftrade.

MM. Upon receiving (ok, tradei) from Ftrade, parse tradei as (x, y, ID, σ1, pk
Ť
i ) and do the following steps.

– If Pi has created a contract SCi accordingly to Fig. 1 then continue, otherwise stop interacting with
Pi.

– If Ver(pkΞ
i , σ1, x||y||pkΞ

MM||ID) = 1 and y = x · askedPrice and there are enough rounds to post a
transaction and invoke SCi, then continue with the following steps, else send (setTrade, Pi, 0) to
Ftrade.

– Compute σ2
$←− Sign(skΞ

MM, x||y||pkΞ
i ||ID).

– Post a transaction trx with the identifier ID in its payload that moves yŤ from pkŤMM toward pkŤi .

– Invoke SCi using the input (x, y, ID, σ1, σ2).

– Send (setTrade, Pi, 1) to Ftrade.

MM. Every ∆ rounds MM sends setOutput to Ftrade.

aWe require Ti to be smaller than T (the time-lock of SCpenalize) to give time to a party to trigger the complain
mechanism of SCpenalize. The exact relation between Ti and T is given by the liveness parameter of the underling
blockchain.

bThis capture the scenario where MM is honest in the execution of Ftrade but he does not post the transaction that
triggers the actual trade on-chain.

Figure 7: Full market-maker protocol with identifiable (and punishable) misbehaviour.
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SCpenalize

State: zΞ and rewardΞ locked for time T , the public key pkΞ
MM

Checking that MM is advancing:

- Act as a party P registered to Ftrade which receives no input.

Upon receiving the input detected1 from a party Pi with public key pkΞ
i :

- Send (getTrades) to Ftrade.

- Upon receiving output from Ftrade, if output = ⊥ then

– move rewardΞ to pkΞ
i and destroy zΞ.

- Else, parse output as (Trades, e) and check that each trade in Trades corresponds to a transaction on the
ethereum chain. If that is the case then do nothing, else move rewardΞ to pkΞ

i and destroy the zΞ.

Upon receiving the input (detected2, SCi, ID, σ1, pk
Ξ
i ) from a party Pi with public key pkΞ

i :

- If SCi is constructed accordingly to Fig. 1 and it has stored the identifier usedIDs but Trades does not
contain any entry tradei such that (x, y, ID, σ1, pk

Ť
i , pk

Ξ
i ) = tradei and Ver(pkΞ

i , σ1, x||y||pkΞ
MM||ID) = 1 for

some x, y ∈ {0, 1}λ then move rewardΞ to pkΞ
i and destroy zΞ

Figure 8: Smart contract SCpenalize that penalize MM in the case where Ftrade outputs ⊥. The gas fee required
to run the contract on the input detected is payed by the contract’s caller. We assume that this fee is strictly
less than reward (e.g., reward is 10 times the gas fee).

b, a,

E[profit] =

∫ ∞
−∞

dv pt(v)(v − b)(F (b− v))︸ ︷︷ ︸
bid-side profit

+

∫ ∞
−∞

dv pt(v)(v − a)(1− F (a− v))︸ ︷︷ ︸
ask-side profit

.

(1)

The bid-side and ask-side profits are independently controlled by b and a respectively. Hence, to maximize
the expected profit, we can independently maximize these terms with respect to a and b respectively. Taking
derivatives and setting to zero reproduces a a result from [DMI08] that essentially tells the market maker
how to set at, bt to maximize expected profit in the next time-step.

Lemma 1. To maximize the expected profit on the next trade, the market maker sets at and bt to satisfy

bt =

∫∞
−∞ dv pt(v)(vF ′ε(bt − v)− Fε(bt − v))∫∞

−∞ dv pt(v)F ′ε(bt − v)

at =

∫∞
−∞ dv pt(v)(vF ′ε(at − v) + Fε(v − at))∫∞

−∞ dv pt(v)F ′ε(at − v)

We denote these optimal bid and ask prices the myopic optimal prices. The approximate version of
this myopic optimal bid-ask prices are computed in [DMI08] for the case where the prior p0(v) and the
trader signal Fε are Gaussian. It is also shown in [DMI08] that maximizing aggregated, discounted profit by
instead solving the Bellman equation produces higher long-term gain for market maker and simultaneously
lowers initial spreads, increasing liquidity - a win win. Our framework is general, and so can use any market
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maker. We will continue the discussion with the mypoic-greedy market maker because the optimal-market
maker is computationally more expensive. Let us state some basic properties of the market maker [DMI08],
specifically the market maker’s distribution pt(v), which quantifies how much information the market maker
has on the true value V after t trades.

• The expected value of pt(v) converges to V . That is the market discovers the originally unknown true
value of the commodity based on trades with traders who arrive with imperfect information. Empiri-
cally, the speed of this convergence is illustrated in [DMI08] and follows the standard 1/t convergence
for Bayesian updates.

• The market maker uncertainty as captures by the variance of pt(v) of converges to 0. Thus, not only
does the market maker recover the true value V in expectation, but also becomes more and more
certain of it. Again, this convergence is standard for Bayesian updates.

• In equilibrium, the market maker spread that produces maximum single step profit monotonically
increases with the variance of its distribution, which converges zero. Hence the bid-ask spread converges
to a minimum possible for a profit maximizing market maker. The multi-step (non-myopic) optimal
market maker produces even lower spreads than a zero-profit competitive market maker in high-volatile
uncertain environments. This is because optimal market makers may take early losses (with smaller
than myopic bid-ask spreads) to increase the spead of convergence to the true value. This is because
the market maker makes maximum long term profit when it trades around the true value V . To see
this formally, let r(b, a, v) be the expected profit as a function of the bid, ask and value, denoted
respectively by parameters b, a, v. Suppose the market maker does not know the true value V and
instead uses W to compute expected profit r(b, a,W ) which she maximizes to set prices b∗, a∗,

(b∗, a∗) = argmax
a,b

{r(a, b,W )}.

The actual expected profit, however, is computed with respect to the true value V , because this is
where the traders get their signals.

true expected profit = r(a∗, b∗, V ) ≤ argmax
a,b

{r(a, b, V )}.

The RHS is the expected profit from setting bid and asks optimally knowing the true value V . That is,
a market maker who knows V can always make more expected profit than a market maker who does
not.

The last bullet above is essentially the intuition behind why an optimal market maker has no incentive to
manipulate prices. The maximum profit is made when the market maker knows the true value V . Hence
the market maker is incentivized to discover the true value V as quickly as possible. The only information
available on the V is through the un-manipulated trader signals xt. We now prove the main theorem, which
is that after stating, the bid and ask prices, a rational market maker will not deviate from these prices, i.e.
manipulate them, after learning of a trader intending to trade (say) with a buy (we refer to Appendix C.2
for the proof).

Theorem 3 (Incentive compatibility). A rational profit-seeking market maker has no incentive to manipulate
the price given knowledge that some trader wishes to place a trade and the direction (buy/sell) of the trade
being known.

The following lemma states that it is suboptimal for the market maker in our setting to ignore trades
without knowledge of other trades. The proof follows analogously to Theorem 3 by using the fact that
by ignoring real trades, the market maker will be trading at an inferior price away from the most current
estimate of the value V . Hence, by excluding from its learning/price-discovery process these real trades (and
or their associated profits), expected profits are lower and convergence to V is slower. This in turn produces
lower long-term profit, because, as we already mentioned, the market maker makes most profit by trading
around the true value V .
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Lemma 2. A rational profit-seeking market maker which receives sequential trades, has no incentive to
disregard completed trades, even when the direction of the following trade is known.

8 Implementation and Evaluation

In this section, we describe implementation and evaluation of our framework. We begin by describing
implementation of the smart-contracts, followed by the implementation of the applications for seller and
buyer (to run the Πtrade protocol of Fig. 5). We then describe the experiments setup and, finally, conclude
the section with a discussion of the results of these experiments.

8.1 Smart-Contracts

We wrote our smart-contracts using Solidity version 0.6.12. This is the most widely supported version at the
time of this writing. We used TruffleSuite6 for development, testing and deployment. We also reused useful
abstractions, e.g. signature verification, access control, etc, from the OpenZeppelin7 framework. Concretely,
for exchangeable assets we used Ether and ERC20 tokens.

Due to the way ERC20 tokens work—the token owner needs to call transfer on the token smart-contract—
the functionality of the buyer smart-contract SCi (see Fig. 1) had to be split into two smart-contracts: the
1) SellerContract and the 2) BuyerContract.

The SellerContract is about 25 lines of code. A transaction is initiated upon a call to execute method
by the seller. Internally, it calls BuyerContract, which verifies buyer’s signature and pays the seller. Upon
getting paid, SellerContract pays corresponding tokens to the buyer. The entire transaction is executed
atomically. The gas cost of execute method is ≈ 33K.

The BuyerContract is implemented in about 50 lines of Solidity code. Deploying the contract locks
an amount till lock expiry. Its method, claimExpiry, claims the remaining funds after lock expires. The
expensive method here is execute which costs ≈ 67K. A trivial extension to this contract is a functionality
to renew lock time/amount for continued trading.

We have not discussed the verification contract’s cost here. This contract is invoked in pessimistic case
i.e. when market maker cheats, and the reward for a valid complaint far outweighs the gas costs. For buyer
and seller contracts, we list the costs in Table 1. Note that the cost of executing one trade is the sum of the
costs of execute methods of the SellerContract and the BuyerContract. While, we have also included the USD
cost, note that this is not a good metric due to variations in USD/ETH exchange rate and average gas price.
Gas cost is the only meaningful metric to compare complexity of different smart-contracts. Nevertheless, we
provide USD costs here to be consistent with the previous works.

6https://www.trufflesuite.com/
7https://www.openzeppelin.com/
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Table 1: Gas Costs of Seller and Buyer Contracts.

Methods Gas USD†
Contract Method 74gwei/gas∗ 2,158.23 usd/eth∗
BuyerContract claimExpiry 31,619 5.05

execute 67,984 10.86
SellerContract execute 33,456 5.34

Deployments
BuyerContract 1,082,529 172.89
SellerContract 836,341 133.57

∗ Prices taken from https://coinmarketcap.com/ on 2021-04-11.
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Figure 9: Standard DoS Attack Throughput (at 0% to 90% corruption thresholds). Values are average of 5
runs. Note that x-axis starts at 100milliseconds; this is the typical round-trip time and any τ < 100 may
cause timeouts for honest players.

We note that we did, slightly, deviate from the specification of Fig. 1 in our implementation. Specifically,
by initiating the transaction in SellerContract and restricting the calls to seller only, we saved one signature
verification cost i.e. ≈ 30K in gas. There may be other more aggressive optimizations possible.

8.2 Seller and Buyer Applications

The smart-contracts described above are only used in the last step of the Πtrade protocol. To run the Πtrade

protocol itself, we implemented the parties—seller and buyer—as nodejs8 applications. Towards this, we
used nodejs version 12.18.2. The source code was written in typescript9. The seller acts as a WebSockets

8https://www.nodejs.org
9https://www.typescriptlang.org
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Figure 10: Worst-case Throughput (at 0% to 90% corruption thresholds). Note that x-axis starts at 200mil-
liseconds; this is because a malicious player needs a budget of at least round-trip time (100milliseconds in
our case) to respond without risking timing out.

server and is implemented with ≈ 800 lines of code. The buyer is a WebSockets client and is about 400 lines
of code. We used uWebSocket.js10 for WebSockets server (i.e. seller) for its excellent performance.

8.3 Experiment Setup

We performed several experiments to measure throughput of the system. These were run on a consumer
laptop equipped with Core i7-10510U 1.80 GHz CPU and 8GB of RAM running Ubuntu 20.04. Recall that
in our fair trade protocol Πtrade (see Fig. 5), the buyer Pi speaks first and sends its public keys to the seller
MM. Then the seller speaks and responds by sending a ticket and the current prices. Both of these messages
can be computed very cheaply. Concretely creating the first message takes less than 50ms (for each party)
in our setup. Then the buyer either responds with NO-TRADE or trade. This is still cheap and can be done
in less than 50ms. Now the seller must respond to the trade offer. If this offer is NO-TRADE, the buyer needs
to perform very little work (concretely less than 50ms). However, if the offer is trade, the seller must verify
and create signatures, perform balance checks on appropriate assets and create/broadcast a transaction for
the trade. These operations are slow (especially the ones that involve communicating with an Ethereum
node). Concretely, it takes ≈ 350ms to prepare this message. Lastly, we observed that the typical round
trip time from buyer → seller → buyer is less than 100ms (or less than 0.1 seconds).

Our goal was to observe the system’s throughput in the following adversarial scenarios. The first one
is the Standard DoS attack. Here, a malicious buyer floods the system with ticket requests and then stops
responding. His goal is to slow the system down. To this end, we performed the following experiment: n
buyers connect to the seller. The seller responds (with ticket and prices) to them in the order they connect.
Upon receiving the ticket (and prices) from the seller, an honest buyer will execute a trade (i.e., the trade

scenario). On the other hand, a corrupt buyer will stop responding. After a timeout τ , the buyer will
assume a NO-TRADE response from this buyer, execute the NO-TRADE scenario, and move to the next buyer.
Concretely we ran experiments with n = 300 buyers. We repeated the experiment 5 times and report the
averages of the measurements. Note that relatively few repetitions of the experiments are not a concern
because of low variance of the measured values.

10https://www.github.com/uNetworking/uWebSockets.js
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The other attack scenario is what we call Worst-case Throughput attack. In this scenario the setting
remains the same as above except one difference; the malicious buyer now waits until just before the timeout
and then responds with a trade response. This strategy is more affective at slowing down the system than
the standard DoS attack. The reason why it is the case is discussed in Section 8.4).

8.4 Analysis

The results of the experiments for Standard DoS attack are summarized in Fig. 9, and for Worst-case
Throughput attack, in Fig. 10.

Before discussing the results, let us briefly look at the theoretical upper bound on the system’s throughput
due to the Ethereum blockchain limits. The block gas limit at the time of this writing is ≈ 12M gas. Posting
a trade in the implementation of Fig. 1 costs ≈ 101K gas. This means that, the maximum throughput Πtrade

can achieve on Ethereum blockchain is ≈ 119 transactions per block or ≈ 475 trades per minute (considering
an average block generation time is 15 seconds). In reality, this upper bound is much lower because there
are many other users/applications competing to put their transactions in the block.

Now, looking at the throughput measurements in Standard DoS attack in Fig. 9 we observe that, with
no corruptions, our system can execute a little over 200 trades per minute. Keeping in mind the discussion
above, this is an excellent throughput. Recall also, that this result was obtained on a consumer laptop which
is far inferior in power compared to the high-end server(s) typically used for such tasks. Therefore, despite
sequentialization of trades in our design, the throughput could be much higher.

Interestingly, at low values of τ , the throughput of the system goes up with the number of corruptions.
This is not an anomaly. Recall that if a malicious trader does not respond within the timeout τ , the seller
assumes a NO-TRADE response and executes it. Recall also, that executing the trade scenario takes ≈ 350ms.
In comparison, NO-TRADE scenario costs almost nothing. Therefore the NO-TRADE scenario, with a timeout
τ ¡ the (running time) cost of a trade scenario, costs less than the trade scenario. This means that, with
some corruptions, some trades are cheaper to execute compared to when there are no corruptions (all honest
players trigger the trade scenario). Therefore, more trades go through, and the system’s throughput goes
up. This effect disappears as soon as the value of the timeout τ goes near and above the (running time)
cost of the trade scenario. While setting a low timeout τ may seem a good idea to defend against malicious
parties, it should not be less than the typical round-trip time (100ms in our trials) or it will start causing
timeouts for honest players.

Now, a better attack strategy would be for a malicious buyer to wait until just before the timeout (for
maximum slowdown) and then respond with trade response; to trigger the more expensive (in running time)
scenario for seller. This strategy is not only better overall, It also removes the advantage (discussed above)
the seller would have had at low values of τ in the Standard DoS attack. Concretely, a malicious seller would
wait until he has has just enough time left for one round-trip (100ms in our setup). Thus the amount of
time he should wait, delayBudget, can be computed as delayBudget = τ − RoundTripTime. The negative
effect of such attack is seen in Fig. 10. The throughput has gone down for all values of τ . Importantly
though, observe that the x-axis in Fig. 10 starts at τ = 200. This is because at τ = 100, the delayBudget of
the adversary is 0 i.e., he has to respond immediately and there is no longer a difference between an honest
buyer and a malicious buyer. We call this attack Worst-case Throughput attack because this is the most an
adversary can slow down the system.

Drawing from the observations above, we can conclude that the choice for value of τ should always be the
typical round-trip time (perhaps with some noise). This way, we suffer no loss in throughput even against
a determined adversary who wants to pay (via trade responses) to slow down the system, and in Standard
DoS attack, we gain in throughput. Finally, consider that in real life some honest sellers may also respond
with NO-TRADE e.g., if the prices are not favorable. Therefore, in our setup, the value of 205 trades per
minute at τ = 100 should be considered the lower bound on throughput.
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9 Comparison with Uniswap

In this section we compare our work with Uniswap[Uni18], the DEX with highest market cap on Ethereum
at the time of this writing. We provide an overview of Uniswap in Section 9.1 and compare it with this work
in Section 9.2.

9.1 Uniswap

Uniswap is a decentralized exchange implemented through a collection of smart contracts on Ethereum. At
a high level, it consists a number of pools of assets (pairs of tokens). Liquidity Providers (LPs) add liquidity
to the system by depositing their tokens into pools. For their service, they are given shares in the system
(proportionate to their deposits). The traders interact with the pools to buy/sell tokens of their interest.
These tokens follow the ERC20 standards. The current version is Uniswap v2. A newer version Uniswap v3,
primarily to facilitate more fine-grained control for liquidity providers, is planned for mid-2021.

At a lower level, Uniswap contracts are divided into two catagories 1) Core contracts implement funda-
mental functionality and 2) Periphery contracts facilitate interaction with the system. In the core, there
are a number of Pair contracts that encapsulate the functionality of a market maker for a pair of tokens.
The Factory contract ensures that only one Pair contract is created per unique pair of tokens. To interact
with the pairs, the Library contracts of periphery provides convenient access to data and pricing, while the
Router contract enables trading tokens (even accross multiple pairs). The current version of router contract
is V2Router02. We observed over a million recent transactions11 to V2Router02 and averaged the gas cost
of the invoked methods. These are listed in Table 2. The methods prefixed with swap perform various types
of trades and are, therefore, relevant for comparison with our system.

9.2 Comparison

Recall that our system uses a market making algorithm in a black box mannner i.e. any market making
algorithm could be plugged into it. Therefore, we focus our comparison on the parts unrelated to marking
making itself. A summary of the comparison is presented in table Table 3.

First, Uniswap (or any existing market maker, centralized or decentralized) has no defense against front-
running attacks without trusted assumptions. Our construction resolves this long-standing problem by
ensuring that the market maker cannot reorder trades without getting caught.

Second, trade execution in our work is bounded by the round trip time of the network, it takes about
350ms. In contrast, Uniswap trades are executed by the miners as part of mining a block. At the time of this
writing, etherscan shows high fees transactions ( ones that get picked up the soonest) get picked up in about
30 seconds. We can safely say that a trade in Uniswap takes at least 15 seconds (half of etherscan’s current
estimate). This is much larger than about 0.3 seconds in our system. Moreover, note that that not all trades
get mined in the very next block, a large number of them end up waiting for a few blocks before getting
picked up, increasing the trade execution delay. Our design is more amenable to a fast trading environment.

Third, in Uniswap and similar systems, miners are free to order trades the way they prefer. This gives
them an opportunity for profit by e.g. including favorable trades first. On the contrary, trades in our
construction are ordered on first come first served basis and this order is fixed before the corresponding
transactions are broadcast to the blockchain, nullyfing miners’ influence on trading.

Moreover, precisely because of the above mentioned miners’ influence, traders on Uniswap (and similar
systems) have an incentive to pay high gas price to get their trade included sooner. In fact, since the traders
can see other traders’ activity, they can actively compete with one another trader to get their trade executed
sooner. Such trading behavior induces the, so called, gas price auctions attack. Gas price auctions needlessly
raise transaction cost for the traders, and any other players who may need to get a transaction posted sooner.

11block 12,162,664 to block 12,231,464
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Table 2: Uniswap Gas Costs (relavant routines only, minimum cost)

Contract Method Gas

Factory createPair 2,512,920
setFeeTo 43,360
setFeeToSetter 28,294

Pair burn 85,206
mint 103,871
skim 48,051
swap 61,446
sync 52,012

V2Router02∗ addLiquidity 179,836
addLiquidityETH 208,694
removeLiquidity 136,412
removeLiquidityETH 153,809
removeLiquidityETHSFTT 307,229
removeLiquidityETHWithPermitSFTT 327,705
removeLiquidityWithPermit 183,505
removeLiquidityETHWithPermit 168,408
swapExactTokensForTokens 163,596
swapExactTokensForTokensSFTT 248,100
swapTokensForExactTokens 159,212
swapExactETHForTokens 131,562
swapExactETHForTokensSFTT 137,987
swapTokensForExactETH 132,490
swapExactTokensForETH 123,552
swapExactTokensForETHSFTT 194,171
swapETHForExactTokens 137,421

SFTT SupportingFeeOnTransferTokens

∗ Gas costs for V2Router02’s methods are average of one million transactions sent to it in block interval
12,162,664 to 12,231,464.
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Table 3: Comparison Summary

Feature FairMM Uniswap

Front Running Resilience Yes No
Gas Price Auctions No Yes
Miner Influence No Yes
Trade Execuction (seconds) ≈ 0.30 ≥ 15
Average Trade Cost (K) ≈ 101 ≈ 141∗

Max Trade Cost (K) ≈ 101 ≈ 1, 316†

Max Throughput‡ ≈ 475 ≈ 340

∗ Based on average cost of one million trade transactions observed from block 12,162,664 to 12,231,464.
A trade transaction is a call to any of the swap methods of the V2Router02 contract.

† Corresponding transaction can be seen at: https://etherscan.io/tx/

0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e). This is the most
expensive transaction we observed in our million transaction dataset. There may be more expensive
transactions outside this interval.

‡ in trades/minute. Theoretical upper bound on throughput based on average trade cost, assuming 12M
block gas limit on Ethereum network.

Transactions in our system are merely moving the funds around and may be mined in any order. Hence
traders have no incentive to pay higher than usual gas price, keeping transaction costs low for everyone.

Fourth, gas cost for a trade in Uniswap is variable. In our observation of over a million transactions,
the average gas cost is 141K. Depending on the trade, it can be much higher e.g. gas cost for the trans-
action 0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e is over 1, 316K. We note
that Uniswap is specifically designed and optimized for Ethereum. On the other hand, our system design is
general and lacks aggressive optimizations. Yet, the gas cost of our system is constant at 101K. Notwith-
standing, even if the gas cost of Uniswap transactions were much lower than ours, Uniswap’s transactions
would still be more costly in Ethers because of the gas price auctions mentioned above.

Finally, based on the average trade gas cost and assuming a block gas limit of 12M , the maximum
throughput of Uniswap is ≈ 340 trades per minute. This is less than our upper bound of 475. Concretely,
highest daily volume12 on Uniswap has been ≈ 199K transactions. On average, this means about 138
trades per minute. Importantly, this throughput is achieved in a scenario where all trade data is locally
available. Our construction on the other hand, communicates with the traders in real time. The fact that
this communication happens sequentially—on first come first served basis—negatively affects our throughput.
Despite this, we achieve at least 200 trades per minute (much higher than the highest volume of the arguably
biggest DEX—Uniswap—at the time of this writing). We stress that this throughput was achieved on a mid-
range consumer machine. With dedicate server running on a high speed network, this can be significantly
mitigated and, therefore, we do not see it as a major problem in practice.
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A Works on Fair Exchange

Several early works [Yao86, GMW87, ASW98, CC00, KL10] have discussed the idea of fair exchange. In
recent years, with the increasing popularity of crypto-currencies, protocols have been designed around them
to take advantage of the blockchain guarantees [BK14, KZZ16]. An interesting use-case of fair exchange is to
enable sale/purchase of assets with cryptocurrency [Wik18, BDM16, CGGN17, Fuc19]. The general scheme
is to construct smart-contracts in such a way, that claiming payment would reveal the key to the buyer.
Unfortunately, the large (often prohibitive) off-chain cost of this technique (when the predicate is complex
and/or the asset is large) hinders their adoption in many practical applications. FairSwap [DEF18] provided
a more efficient solution in terms of off-chain costs. OptiSwap [EFS20] further improved over [DEF18] for
the optimistic case and also provided a defense against grieving attack.

In addition to generic solutions for exchange assets, there has been interest in creating more efficient
solutions for specific subset of asset types. The most popular choice for this subset has been other cryp-
tocurrencies or tokens. These works broadly fall into the following two categories; 1) The works that deal
with assets on the same blockchain e.g. Uniswap [Uni18], 0x [WB17], AirSwap [Air18], EtherDelta [Del18],
Bancor[Ban], Idex [IDE18], Kyber [Kyb18], Curve [Cur20], etc and 2) the ones that operate across the
blockchains or crosschain. The crosschain research has mostly been restricted to 2 parties (on 2 blockchains).
Transactions in this setting are generally called crosschain swaps and the problem is usually solved with
Hash Time Lock Contracts (HTLCs) [Wik20a, Wik20b, Her18, ZHL+19, HLY19, Gug20, DH20]. HTLC
in the nutshell is similar to (the on-chain contract of) ZKCPs. The buyer locks assets for specified time,
and before the lock expires, the seller produces a pre-image (or key) of a hash. The notion of crosschain
swap was generalized—with definitions and first constructions—to crosschain deals among n parties (and
m blockchains) in [HLS19]. HTLCs technique has also been used to workaround the scalability problem of
blockchains [DW15, GM17, HLG20, Net18, PD16].

B Additional Preliminaries

B.1 The Random Oracle Functionality

The Random Oracle Functionality FRO As typically in cryptographic proofs the queries to hash func-
tion are modelled by assuming access to a random oracle functionality: Upon receiving a query (EVAL, sid, x)
from a registered party, if x has not been queried before, a value y is chosen uniformly at random from {0, 1}λ
(for security parameter λ) and returned to the party (and the mapping (x, ρ) is internally stored). If x has
been queried before, the corresponding ρ is returned.

B.2 Bulletin Board

The bulletin board BB allows the following queries (all of which can be emulated in modern blockchains;
cf. [CGJ+17] for a formal description):

• getCounter. The bulletin board returns the current value of the counter t: t← BB(getCounter).

• post. Upon receiving a value x, the bulletin board posts x and increments the counter t by 1. The
value can be retrieved by querying the bulletin board on t: t← BB(post, x).13

• getContent. Upon receiving the input t, it returns the value stored at counter value t. If t is greater
than the current counter value, it returns ⊥, else, x← BB(getContent, t).

13In [CGJ+17] the output of BB consists also of a tag, that can be used to prove that a value is part of the BB, without
inspecting the BB using the command getContent defined below.
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Bulletin board. For convenience, whenever the blockchain is just used for recording events, we treat it
as a bulletin board (BB). The bulletin board has a sequential-writing pattern where every string published on
the bulletin board has a counter (its position) associated to it. We do not make any assumptions about the
order in which issued transactions are recorded, other than what is implied by the standard chain quality
and transaction liveness properties of ledgers (cf. [GKL15, PSs17, BMTZ17]. We assume familiarity with
this notion and refer to B.2 for more detail.

C Proofs

C.1 Proof of Theorem 1

Proof. We divide the proof in two parts: the first is to deal with the adversarial MM (that we denote with
MM?) and the second to deal with the case where MM is honest. We denote with Q the set containing all
couples of query-answer performed using the hash function (that we model as a random oracle) and propose
the formal description of the ideal world market-maker adversary SMM. The simulator SMM works as follows.

• Let hstart = htemp = h? = 0λ. Initialize priceΞ→Ť ← SPΞ→Ť and priceŤ→Ξ ← SPŤ→Ξ. Initialize also
two empty lists reqList and Tickets.

• Upon receiving (new-request, Pi) from Ftrade, send (request, pki) to MM?.

• Upon receiving ticket1 = (h, σ, priceΞ→Ť , priceŤ→Ξ, pki) from MM? do the following steps.

- If Ver(pkMM, σ, h||pki||ei) = 0 then ignore the message received from MM?, continue as follows
otherwise.

- Add ticket1 to the list Tickets and send (setPrice, sid, Pi, price
Ξ→Ť , priceŤ→Ξ) to Ftrade.

- If Pi is an honest party then do the following.

- Add (Pi, h) to reqList.

- Inspect Q to check if htemp is a prefix of the chain with head h. If it is not then send setAbort

to Ftrade, else continue as follows.

- For each couple of items (pkj , tradej) encoded in the hash chain14 that starts from htemp and
finishes in h do the following

if Pj is an honest party then send (setTrade, sid, Pj , tradej) to Ftrade.

else send (setAdvTrade, sid, Pj , tradej) to Ftrade.

Set htemp ← h.

• Upon receiving (Pi, y) from Ftrade, if Pi is honest then do the following.

if y = NO-TRADE then send NO-TRADE to MM

else get (Pi, h) from reqList, and compute σ ← Sign(ski, h||y) and send (y, σ) to MM.

• Upon receiving any command, if no message (h′, σ′, requests, σ?, e) is posted on the BB within ∆
rounds such that Ver(pkMM, σ

′, h′)) = 1 and Ver(pkMM, σ
?, requests||e)) = 1 then send setAbort to

Ftrade, else do the following.

- notAbort← 1.

- For each (Pi, h) in reqList compute notAbort ← notAbort ∧
verification(h?, h′, h, pki, requests)

notAbort← notAbort ∧ checkBB(h?, h′, requests, pkMM)

14We note that this values can be computed by inspecting Q.
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If notAbort = 0 then send setAbort to Ftrade.

Set h? ← h′ and send (setOutput) to Ftrade, e = e + 1.

SMM can fail only if one of the following occurs:

1. Ftrade aborts because the simulator sees (with respect to a party Pi) in the hash chain a value tradei
that is not consistent with the trade chosen by an honest party Pi, but in the real world Pi does not
abort. If this is the case then we can break the signature scheme since the adversary is able to provide
a new signature for pki.

2. Ftrade aborts because the simulator is unable to reconstruct the hash-chain that goes form h′ to h′′,
where h′ and h′′ are part of two different tickets given to two honest parties, whereas in the real world
at least one honest party does not abort. If this is the case, then the adversary knows how to invert a
RO value.

3. Given two hash values h′ to h′′, where h′ and h′′ part of two different tickets, there are multiple hash
chains that connect h′ to h′′. If this is the case, then we can construct an adversary that finds a
collision for FRO.

We denote with SP the simulator for the case when MM is honest and an arbitrary set of traders can be
corrupted. For simplicity, we consider only the case where MM and exactly one party Pk is honest. The
proof can be easily generalized to the case where there is more than one honest trader. Formally, SP acts as
follows.

Initialize h ← 0λ, τ and R ← ∆ where τ represents the upper bound on the time that a party has to
reply to MM (this is to avoid DoS attack) and ∆ be the maximum number of rounds after which MM should
post the accumulated trades on the BB.

• Upon receiving (request, pki) from a corrupted party Pi send (request, sid, Pi) to Ftrade.

• Upon receiving (setPrice, sid, priceΞ→Ť , priceŤ→Ξ) from Ftrade do the following.

– Compute h′ ← H(h||pki) and set h← h′.

– Compute σ ← Sign(skMM, h, pki||e).

– Send ticket1 := (h, σ, priceΞ→Ť , priceŤ→Ξ, pki) to Pi.

• Upon receiving (trade, σi) from a corrupted Pi, if Ver(pki, σi, h||tradei) = 0 then send
(ok, sid, NO-TRADE) to Ftrade on the behalf of Pi, else send (ok, sid, tradei) to Ftrade.

• If Ftrade replies with ok then do the following

– Compute h′ ← H(h||trade) and set h← h′.

– Compute σ ← Sign(skMM, h).

– Set requests[k]← (pki, trade, σi).

– Run MMalgorithm(trade, priceΞ→Ť , priceŤ→Ξ) thus obtaining priceΞ→Ť ′, priceŤ→Ξ
′

and set

priceΞ→Ť ← priceΞ→Ť ′, priceŤ→Ξ ← priceŤ→Ξ
′
.

If Ftrade replies with ko then do the following

– Compute h′ ← H(h||NO-TRADE) and set h← h′.

– Set requests[k]← (pki, NO-TRADE, 0λ).

– Compute σ ← Sign(skMM, h).
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• Upon receiving (getTrades) forward it to and Ftrade. If (Trades, e) is received from Ftrade then post
(h, σ, Trades, σ?, e) to the BB, where σ ← Sign(skMM, h) and σ? ← Sign(skMM, Trades), else ignore the
command15.

Our simulator can fail only if one of the following occurs:

1. A malicious party posts on the BB a proof of cheating (h, σ, pk, e) at the end of the e-th epoch such
that Ver(pkMM, h||pk, σ) = 1, where h||pk||e has never been signed by the simulator.

2. The simulator does not manage to post a valid message on the BB within ∆ rounds.

We can argue that due to the unforgeability of the signature scheme the first case cannot occur. The
second case instead cannot occur due to the security of the BB.

C.2 Proof of Theorem 3

Proof. Suppose the trader wishes to trade, buying from market maker at the ask-price (the argument is
analogous if the trader wishes to sell at the bid). The best the market maker can do is to try to manipulate
the price after having already posted bid and ask prices. The goal is to make more expected profit given this
additional knowledge that the trader wishes to buy. So let us consider what price the market maker should
charge to make maximum expected profit given this additional knowledge. The trader has announced an
intention to buy, and has the option to reject any final trade offered. The trader will buy provided V + ε ≥ at.
Hence the market maker needs to set at to maximize the expected ask-side profit. Since the expected profit
breaks into two independent terms in (1), maximizing only the ask side profit corresponds exactly to setting
the ask to mazimize the expected profit, which is exactly the prescription in Lemma 1 This means that the
bid-ask prices set by the market maker are exactly those that maximize expected profit, and hence there is
no incentive for a rational market maker to deviate from these prices after learning that a trader wishes to
buy.

15We note that by construction the trades encoded in requests are the same as in Trades.
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