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Abstract. It is a well-known fact that the power consumption during certain stages
of a cryptographic algorithm exhibits a strong correlation with the Hamming Weight
of its underlying variables. This phenomenon has been widely exploited in the
cryptographic literature in various attacks targeting a broad range of schemes such as
block ciphers or public-key cryptosystems. A common way of breaking this correlation
is through the inclusion of countermeasures involving additional randomness into the
computation in the form of hidden (undisclosed) component functions or masking
strategies that complicate the inference of any sensitive information from the gathered
power traces.
In this work, we revisit the tight correlation between the Hamming Weight and
the observed power consumption of an algorithm and demonstrate, in the first
part, a practical reverse-engineering attack of proprietary AES-like constructions
with secret internal components like the SubBytes, MixColumns and ShiftRows
functions. This approach is used in some commercial products such as the Dynamic
Encryption package from the communication services provider Dencrypt as an extra
layer of security. We recover the encryption key alongside the hidden substitution
and permutation layer as well as the MixColumns matrix on both 8-bit and 32-bit
architectures.
In a second effort, we shift our attention to a masked implementation of AES, specifi-
cally the secAES proposal put forward by the French National Cybersecurity Agency
(ANSSI) that concisely combines several side-channel countermeasure techniques. We
show its insecurity in a novel side-channel-assisted statistical key-recovery attack that
only necessitates a few hundreds of collected power traces.
Keywords: Block Cipher · Side-Channel · See-in-the-Middle · DPA · AES ·
Reverse Engineering · Microcontroller · Masking · Hamming Weight

1 Introduction
Over the past few years, the field of side-channel-assisted cryptanalysis has evolved
into an intricate spectrum that ranges from attacks based on power measurements to the
assessment of leakages through electromagnetic emission as well as timing-based procedures
and advanced pattern matching strategies that deploy machine learning algorithms. The
common ground, however, remains in the fact that such leakages are only observable at the
implementation level (both in hardware and software) and are usually not accounted for
during the design phase of a cryptographic algorithm. Among these techniques, differential
power analysis (DPA) [KJJ99] stands as one of the most destructive attack vector, as it is
able to dismantle implementations of cryptographic algorithms with little effort. Contrary
to other power analysis strategies, in DPA, an attacker looks for leakages in the differential
power trace obtained by running the target device with two or more different inputs and
computing the difference in obtained power traces. Furthermore, in order to counter the
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inevitable noise that comes with electromagnetic measurements, it is often necessary to
average the power traces for a given input over many repetitions.

In recent efforts, differential power analysis was coupled with conventional cryptanalysis
techniques that amplified its effectiveness, especially against constructions based on shift
registers. Dobraunig et al. [DEKM17] showed that by controlling differences in the
initialization vector of the re-keying scheme Keymill [TRS16], it becomes feasible to infer
relations between neighboring bits in the state register using the accompanying power
differences. The attack was later extended and successfully applied by Sim et al. [SJB21] on
an improved variant of Keymill. The premise of combining conventional cryptanalysis with
side-channel observations was later brought into the realm of block ciphers by Bhasin et
al. [BBH+19].

Reverse Engineering. Drawing conclusions from side-channel observations becomes
invariably harder when the construction in question is not fully disclosed. Kerckhoffs’s
principle states that any cryptosystem should be secure even if everything about the system,
except the key, is public knowledge. This concept is widely embraced by cryptographers,
however security through obscurity remains as a tempting path to follow in industry. In
this rather unconventional approach, the security is sometimes expected through obscurity,
and undisclosed proprietary cryptographic algorithms are still used in civil applications,
e.g. GSM or Pay-TV systems, and in diplomatic or military domains. This is where side-
channels can play a major role in unlocking the hidden structures in secret cryptosystems.

The first known use of side-channels to reverse-engineer was the case of the A3/8
algorithm used in GSM [Nov03]. The attack by Novak reveals the content of one of the
two substitution tables, which are intended to be kept as secret, used for authentication
and key agreement protocol of GSM. This was improved by Clavier to the recovery of both
the tables [Cla07]. In a related work, Clavier et al. [CIW13] presented a complete reverse
engineering of AES-like secret ciphers, which shared the same core structure of AES-128,
but used secret SubBytes, ShiftRows and MixColumns functions instead. Developed
independently around the same time, Rivain and Roche [RR13], proposed a generic attack
which applies to a general class of secret substitution-permutation (SPN) ciphers, showing
that this line of attack works beyond AES cipher. Note that none of the previous work
demonstrate attacks in practice, but their results are based only on theoretical simulations.
The first practical attack was presented by Jap and Bhasin [JB20]. The authors tried to
recover the 256 entries of a secret 8-bit S-box implemented on an Atmel AT-mega328P
microprocessor mounted on Arduino UNO board. The authors were able to recover only
159 of the 256 entries successfully.

A common method of using power measurements to reverse-engineer is by using the
concept of side-channel collisions, which builds on the premise that the same signals (values)
tend to consume the same amount of power. The attacker is required to distinguish if
values processed at two instances given algorithm are the same, assuming of course that
the power consumption patterns are the same, and deduce the structures of internal
components (e.g., entries of unknown lookup tables) on the basis of this. This is difficult
in practice, because almost all side channel measurements are corrupted with random
additive noise, which is why it is very important to determine the efficacy of side-channel
reverse engineering on real-world platforms.

One of the current commercial products that uses secret components in the encryption
process is Dynamic Encryption [Knu14, Knu20], which is a proprietary algorithm used by
the Danish company Dencrypt. The technique extends standard encryption algorithms like
AES-256 by a few additional rounds. In the additional rounds however, secret S-boxes are
used instead of the standard AES S-box. The technique is used in many of the company’s
products like Dencrypt Talk and Dencrypt Message [den21]. This method has been proven
hard to break in a classical sense (i.e., when the attacker only has access to plaintext-
ciphertext pairs and no side-channel information) [TKKL15]. However, the side channel
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security of the above method is still an open question.
Masking. Masking schemes are dedicated countermeasures that aim to thwart side-
channel attacks by introducing additional randomness into the cipher state. Akin to the
secret-sharing methodology, masking technique partitions an intermediate secret variable
x during the computation into n shares such that the knowledge of up to n− 1 shares does
not enable an attacker to infer any information about x, i.e., x is statistically independent
from the observed n − 1 shares. Since the introduction of masking as a side-channel
countermeasure in 1999 [CJRR99], there has been a continuous stream of refinements and
improvements such as threshold implementations that are targeted against the inherent
glitches occurring in hardware implementations [NRR06] and affine masking schemes
against high-order side-channel analysis [von01, FMPR11].

In this paper, we scrutinize the security of a masked AES implementation that combines
several side-channel countermeasures against a novel side-channel-based statistical attack.

1.1 Contributions
In first part of this paper, we demonstrate how to practically reverse-engineer the complete
round function of AES-like SPN ciphers whose internal round functions are kept as secret
besides the key. We shall assume that the adversary has black box access to the 8/32-bit
microcontroller, programmed with the said SPN cipher implementation, with the ability to
query any plaintext and collect its corresponding power trace of encryption with a single
unknown key. The underlying assumptions of the algebraic structure of the unknown
cipher are as follows:

1. The construction exhibits the same order of operations as AES. The state is of size
128 bits arranged in a 4× 4 byte matrix.

2. The substitution box is an unknown bijective function S∗: {0, 1}8 → {0, 1}8.

3. The ShiftRows procedure is an unknown permutation π ∈ S(16), where S(16) is
the permutation group on 16 elements. We assume that the bytes of the state are
permuted in a fashion that the byte at position i moves to π(i) after the execution
of the permutation layer, i.e. i→ π(i).

4. The MixColumns matrix is an unknown invertible circulant matrix of form

M =


a b c d
d a b c
c d a b
b c d a

 M−1 =


e f g h
h e f g
g h e f
f g h e

 , (1)

where a, b, c, d, e, f, g, h ∈ GF (28) \ {0}.
In the second part, we turn our focus to a secure AES software implementation, whose
security relies on affine masking. We propose a practical side-channel-assisted key-recovery
attack against the secAES [BLPR] proposal by the French National Cybersecurity Agency
(ANSSI) for 8-bit Atmel microcontrollers. Briefly, the key idea behind this implementation
can be summarized in two points:

1. During the execution of each layer, the order of execution among 16 bytes are
shuffled, where the shuffling permutation is dependent on the mask. This means
that any cryptanalytic advance that attempts to leverage difference in power traces
by introducing a difference in one of the plaintext bytes is rendered ineffective. This
is because the order of byte accesses is randomized in the time axis, and as such
the time of access of any particular plaintext byte is different across two different
runs. The corresponding power traces do not necessarily align in time. Thus, it is
not possible to use the attack introduced by Bhasin et al. [BBH+19].
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2. The implementation furthermore employs affine masking to create two shares of each
state byte, therefore a traditional CPA-based approaches are difficult to apply.

1.2 Outline
After this introductory section, some preliminaries such as the recently proposed See-in-
the-Middle attack are briefly reiterated in Section 2. Afterwards, in Section 3, we detail
our reverse engineering procedure on hidden AES-like ciphers. Section 4 then contains the
write-up of the attack against the masked secAES implementations. Finally, the paper is
concluded in Section 5.

2 Preliminaries
Before diving into the two main parts of this text, we describe some preliminary information
on which the coming sections are based.

2.1 See-in-the-Middle
This novel side-channel analysis approach [BBH+19] can be categorized as a side-channel
assisted differential plaintext attack (SCADPA). It exploits the fact that the occurrence
of specific differential propagations in block cipher implementations are observable in
differential power traces. For example in AES, the well-known convergence property (see
Figure 1) of a diagonal plaintext differential leads to a significant leakage in the differential
power traces.

Round 0 Round 1 Round 2 Round 3

Convergence Diffusion Diffusion

Figure 1: Three-round converging and diffusing AES differential propagation. Depicted is
the block cipher state at the end of each round. Active bytes are marked in red.

The convergence in round 1 occurs with some probability and may affect any byte in the
first column. Depending on which byte is active, the differential propagates to a different
column in the second round. In Figure 2, the difference power traces for encryption with
two plaintexts are shown. The traces zoom into the region during the substitution layer
on the first state column during the second round, showing that a convergence is easily
detected. The authors proceed to show that on both 8-bit and 32-bit implementations
the active column is readily visible. Hence, it possible to know whether a convergence
has taken place or not for a given plaintext pair by just inspecting the difference of the
power trace. Then by guessing the actual differential in round 1 after the MixColumns,
one can solve backwards to find a solution for the entire round key in the corresponding
diagonal. The authors showed that on average, around 211.5 plaintexts need to be queried
until a convergence is observed, and thus finding the entire round key requires O(211.5)
side channel observations using the same number of plaintexts.

2.2 Setup
The contributions in Section 3 are validated experimentally on an 8-bit ATXmega128D4-
AU (AVR instruction set) board and a 32-bit STM32F3 (ARM Cortex-M4) board. Both



Fatih Balli, Andrea Caforio and Subhadeep Banik 5

S-Box	Round	2,	Column	1
Si
gn
al
	A
m
pl
itu
de

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time	Samples
0 100 200 300 400 500

(a) Convergence

S-Box	Round	2,	Column	1

Si
gn
al
	A
m
pl
itu

de

−0.02

0

0.02

0.04

0.06

0.08

Time	Samples
0 100 200 300 400 500

(b) Non-Convergence

Figure 2: Differential power trace (ATXmega128D4-AU) of the second round substitution
layer of the first state column. Only one byte is active when a convergence occurs (a)
whereas all four of them are active when there is no such occurrence (b).

microcontrollers belong to the most widely incorporated architectures in their respective
domains. As the secAES implementation is 8-bit specific (written in AVR assembly
language), the attack in Section 4 is validated on the ATXmega128D4-AU board. Both
microcontrollers are mounted on a ChipWhisperer installation [OC14] that captures power
traces through a softcore on a SPARTAN-6 FPGA that exposes an UART interface to the
user as a means of communication. The target devices are clocked at a frequency of 7.38
MHz, effectively sampling four power traces per clock cycle, i.e., a sampling frequency of
29.52 MHz.

We used the avrcryptolib (8-bit) and TinyAES128C (32-bit) implementatios with ran-
domized components in Section 3, whereas in Section 4, the actual secAES implementation
was used [BLPR] .

3 Reverse Engineering AES-like Ciphers
Before diving into the two main parts of the reverse engineering attack, we reiterate a few
side-channel phenomena that are directly linked to Hamming Weights of the underlying
parameters.

Definition 1 (Hamming Weight). Given an n-bit element x ∈ Fn, let 0 ≤W (x) ≤ n be its
Hamming Weight, i.e., the number of bits that are set to one in the binary representation
of x.

Due to noise in power measurements, it is not possible to directly deduce the Hamming
Weight for a particular value of interest, that is being updated inside the central processing
unit of the microcontroller. By leveraging differential power analysis, it is nevertheless
possible to find out the Hamming Weight of a particular value by the means of a different
observation.

Definition 2 (Power Consumption). Given a function F : Fm 7→ Fn that executes
a sequence of instructions for an arbitrary x ∈ Fm, we denote by P (F (x)) the power
consumption of this transfer and by P (F (x)) its average over multiple repetitions.

In Figure 3, we show that if W (F (x)) > W (F (y)) then P (F (x)) > P (F (y)) for two
different x, y ∈ F256. More precisely, given a fixed element x with Hamming Weight
W (F (x)) = w, we plot P (F (x)) − P (F (y)) for nine elements y with pairwise different
Hamming Weights. Evidently, we note that a Hamming Weight change in the output of F
is easily spotted. In general terms, if P (F (x)) for an n-bit element x ∈ Fn is compared
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against P (F (y)) for all other elements y ∈ Fn then the obtained plot can only exhibit one
of n+ 1 different arrangements of power drops and spikes.
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Figure 3: Averaged differential power traces (ATXmega128D4-AU) of one state byte during
the initial key whitening phase (a) and at the end of the substitution layer (b)1.

Definition 3 (Hamming Scale). Consider a n-bit element x ∈ Fn with W (x) = w. We
define the Hamming Scale H of x as

H(x) =
∑
y∈Fn

1W (y)>W (x) − 1W (y)<W (x).

In other words, H(x) denotes the difference between the number elements with a higher
Hamming Weight and those with a lower one. The Hamming Scale for n = 8 is given
in Table 1, which tabulates the value of the function H(x) whenever W (x) is a given
constant.

Table 1: Hamming Scale of an 8-bit element space according to Definition 3.
W (x) 0 1 2 3 4 5 6 7 8
H(x) 255 246 210 126 0 -126 -210 -246 -255

The existence of the observed phenomenon together with the Hamming Scale from
Definition 3 immediately yields an algorithm to recover the Hamming Weight of F (x),
which is given in Algorithm 1. In terms of complexity, this algorithm makes 2n×α function
calls, where α is the number of repetitions per encryption that are required to attain a
stable averaged power trace2. Note that knowledge of W (F (x)) does not necessarily mean
that F (x) is uniquely recovered. For example, if W (F (x)) = 4 and n = 8, then there
remains

(8
4
)
candidates. However, 0 and 2n − 1 within Fn are the only elements with

Hamming Weight 0 and n respectively.
Algorithm 1, can be converted into a Hill-Climbing routine with the same complexity

that recovers the element x such thatW (x) = 0 (or analogouslyW (x) = n). Its pseudocode
is detailed in Algorithm 2.

1This observation also holds for 32-bit processors like an ARM Cortex-M4. In Appendix A, we give the
corresponding plots for the STM32F3 microcontroller.

2On both 8-bit and 32-bit systems used in the paper, α ≈ 10 was sufficient for a stable average
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Algorithm 1 Generic n-Bit Hamming Weight Recovery
Input: x ∈ Fm, F : Fm 7→ Fn
Output: W (F (x))
. Execute the operation F (x) of a n-bit value x and obtain an averaged power trace.
In order to attain a stable average, several hundreds repetitions may be required.

1: p ← P (F (x))
2: h ← 0
3: for y ∈ Fm \ {x} do
. Distinguish whether the averaged differential power trace incurs a power spike or
drop and adjust the Hamming Scale counter h accordingly. Do nothing when the power
difference is below some threshold ε representing elements of equal Hamming Weight.

4: d ← P (F (y))− p
5: if |d| < ε then continue
6: if d > 0 then h ← h+ 1
7: else h ← h− 1
. Compare the calculated scale counter h with the Hamming Scale table from Definition 3
and return the corresponding Hamming Weight i.e., if |H(x) − h| is minimal, then
W (x) is the best estimation for the Hamming Weight of F (x).

8: return arg minx |h−H(x)|

Algorithm 2 Generic Zero Hamming Weight Recovery
Input: F : Fm 7→ Fn
Output: x ∈ Fm such that W (F (x)) = 0

1: x ←U Fm
2: p ← P (F (x))
3: for y ∈ Fm \ {x} do
4: d ← P (F (y))− p
5: if |d| < ε then continue
6: if d < 0 then
7: x ← y
8: continue
9: return x

3.1 Finding the Key
The first key whitening operation is invariably carried out by fetching the corresponding
plaintext and key bytes from the memory to some CPU register via some form of LOAD
instruction. After XOR of the state and the key bytes, the result is stored back to memory
with STORE instruction. In most instances, they would be performed by the code snippet
(running in a loop 16 times) as follows:

LD R1, [ADDR PT] ; load plaintext byte
LD R2, [ADDR KEY] ; load key byte
EOR R1, R2 ; execute exclusive-or
ST R1, [ADDR PT] ; store back to memory

Consider what happens to the differential power trace during the execution of these 4 instruc-
tions, when it is queried with plaintexts PT ⊕PT ′ = ∆ ·ei, where ei is the i-th unit vector
over bytes, i.e. e0 = [0x01, 0x00, 0x00, . . . , 0x00] and e1 = [0x00, 0x01, 0x00, . . . , 0x00]
etc. Note that the difference in the power consumption comes from the changes in the
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Figure 4: Values in the register r1 during the i and i+ 1-th load cycles

register r1 which accommodates the differential state byte during the 2 queries. Let us
observe the change in the value of the registers.

As can be seen in Figure 4, the sequence of loads during the i, (i+ 1)-th load cycles
give rise to 2 peaks in the differential (provided the noise has been filtered out by averaging
sufficient samples). This double peak can be observed in the differential trace shown in
Figure 3(a). During the (i+ 1)-th load, the register gets overwritten with the constant
(i+1)-th plaintext byte Y and thus the amplitude of the peak in the differential power trace
is proportional to the difference of the Hamming WeightsW (X⊕K⊕Y )−W (X⊕K⊕Y ⊕∆)
where K is the i-th key byte. Let this time instant be τ , and the amplitude of the averaged
power trace at τ for when the i-th plaintext byte has value x be denoted as P x,τ . We
have established that P x1,τ − P x2,τ = c · (W (x1 ⊕K ⊕ Y )−W (x2 ⊕K ⊕ Y )), where c is
some constant. Since Y is a plaintext byte under the control of the adversary, we can set
it to zero which gives P x1,τ − Px2,τ = c · (W (x1 ⊕K)−W (x2 ⊕K)). The adversary can
collect the set P = {P i,τ , ∀ i ∈ GF(28)}. Note that P i,τ −PK,τ = c ·W (i⊕K). Thus the
strategy of the adversary is as follows:

1. For each x ∈ GF(28)

• Compare the scalar P x,τ with the set P, i.e compute the vector Vx whose i-th
element is P i,τ − P x,τ .

• Compute the vector Hx whose i-th element is W (x⊕ i).
• Find correlation coefficient ρx between Hx and Vx.

By our previous analysis we already know that for x = K, we will obtain a very high
correlation coefficient, which gives us the value of K.
Complexity: Recovering each byte of the whitening key requires 28×α encryptions using
Algorithm 2, hence the total number of plaintexts one needs to query to recover all 16
bytes of the key is around 212 × α.

3.2 Finding π
Of the three secret components in the design, finding π is probably the simplest given a
differential power trace of two encryptions, provided the trace has been averaged over an
adequate number of runs to get rid of the noise (which is assumed to be zero mean). The
process is as follows: take two plaintexts PT, PTi such that PT ⊕PTi = ei. The adversary
obtains the differential power trace of PT, PTi (averaged over a few runs to cancel noise).
Ideally the simplest way to guess π(i) would be to observe the ShiftRows region of the
differential trace and deduce the relative position in the time axis of the single peak in
the trace for all i ∈ [0, 15]. However this method is not always reliable for the following
reasons:
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Figure 5: In this example π maps i = 0 to column 2 which manifests as 4 spikes in the
differential trace after 2nd round substitution layer.

1. Depending on the implementation, the ShiftRows and MixColumns operation may
be merged together so that a distinct region in the trace segregating the ShiftRows
operation may not be deducible.

2. Even if the ShiftRows region is demarcated, any particular implementation may
swap bytes in a specific order depending on the algebraic description of π.

3. The active position i may be a fixed point of π, due to which no operation the i-th
byte in the ShiftRows operation is necessary.

Instead, we will look to observe the peaks in the differential trace after the 2nd round
substitution layer. If the permutation function π is such that i is mapped to the j-th
column (for any 0 ≤ j ≤ 3), i.e. π(i) ∈ {4j, 4j + 1, 4j + 2, 4j + 3} then after the 1st round
MixColumns the j-th column becomes active, which shows up as a sequence of 4 spikes
after the 2nd round substitution layer in the differential trace. The relative order in the
time axis of these peaks tells us the value of j such that 4j ≤ π(i) ≤ 4j + 3, for each i.
In other words, we are able to deduce which column each byte is mapped to after the
ShiftRows operation.
Complexity. If α is the number of plaintexts we need to query for the de-noised trace of
one plaintext, the above procedure can pe simply run 16 times for differential at each ei
and so we need only around 17× α plaintext queries.

3.3 Finding M
Note that we do not yet have the exact description of π, but we aim to find the precise π
and the matrix M together in this part. Let ui be such that π(ui) = i,∀i ∈ [0, 15], i.e.,
u4i, u4i+1, u4i+2, u4i+3 are the bytes in the state that get mapped to the i-th column after
the first round ShiftRows. We have already determined the values of u0, u1, u2, u3 upto
a permutation of the 4 elements. As such, this means we have narrowed down the exact
values of ui for i = 0→ 3 to a set of 4! = 24 candidates. As such the following subroutine
is repeated 24 times for each of the possible values of the ui.

Given the unknown matrix from (1), we proceed in multiple steps with differentials
on the certain specific locations after the substitution layer of the first round. Note that
our Hamming Scale algorithm (Algorithm 1) allows us to deduce (after de-noising) the
Hamming Weight of each byte computed after the substitution layer. We take additional
advantage of the fact that there is only a unique byte value with Hamming Weight 8, i.e.
0xFF or 255. We can filter all plaintext pairs that result in the difference x · ei (after the
first round SubBytes), for all i ∈ [0, 15] and for some byte value x, by simply examining
spikes in the differential trace after the first round substitution layer, and the Hamming
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Scale analysis allows us to determine W (x). Since there is only one byte (255) with
Hamming Weight 8, we can also determine plaintext pairs that generate differences of type
255 · ei. Since the there is no inter-mixing of bytes after the first round it is also relatively
straightforward to filter plaintext pairs that produce differences of type

∑
xi · ei (after 1st

round substitution layer), if we already know plaintext pairs that generate the individual
xi · ei differences.

Example 1. If PT=[00,00,00,00, 00,00,00,00, 00,00,00,00, 00,00,00,00] and
PT ′= [23,00,00,00, 00,00,00,00, 00,00,00,00, 00,00,00,00] are such that after
the first substitution layer the difference of the internal state is FF·e0, and PT ′′=
[00,00,A1,00, 00,00,00,00, 00,00,00,00, 00,00,00,00] is such that the correspond-
ing difference of state (between PT, PT ′′) is 05·e2, then it is easy to see that PT ′′′ =
[23,00,A1,00, 00,00,00,00, 00,00,00,00, 00,00,00,00] and PT produce the dif-
ference FF·e0 + 05·e2. This is true, even if the key and S-box functions are unknown.

Denote by ∆ the four-tuple [δ0, δ1, δ2, δ3]. Note that we can recover such differences up
to the their Hamming Weight using Algorithm 1. We will try to concentrate of differential
plaintext pairs that produce differences of the form

∑3
i=0 δi · eui

, so that they get mapped
to the first column after the first round ShiftRows. The idea is to observe in the differential
trace after the 2nd substitution layer at least one inactive byte (which requires one inactive
byte after the first round MixColumns). This also results in a completely inactive column
after the 3rd round SubBytes as seen in Figure 6. This can be distinguished in the
corresponding regions in the differential trace by a lack of spikes. In general we try to
distinguish the following special cases.

Step 1: δ0 = 255, δ1 = x1, δ2 = 0, δ3 = 0, for some w1 ∈ GF(28) whose exact value
is only known up to its Hamming Weight, i.e., W (x1) = w1. Note that as per the
previous example, an efficient way of getting such a difference is by first finding plaintext
pairs PT, PT ′ such that PT ⊕ PT ′ = y · eu0 such that they yield a difference 255 · eu0

after the first round SubBytes and then sequentially querying pairs PT, PT ′′ such that
PT ⊕ PT ′′ = y · eu0 ⊕ x · eu1 for all non-zero byte values x. After this, we make use of
See-in-the-Middle observation in the second round and check whether the differential has
caused the first byte after the 2nd SubBytes to be inactive and thus diffused to a single
inactive column after the 3rd SubBytes. When the first byte after the 2nd SubBytes is
inactive we have that the first byte of M ·∆ is zero which yields

255a⊕ x1b = 0 ⇒ 255a = x1b (2)

If the first byte after the 2nd substitution layer is not inactive, we repeat with a different
plaintext differential in the u1 location until one is found.

Step 2: δ0 = x2, δ1 = 255, δ2 = 0, δ3 = 0, for some x2 ∈ GF(28). Again, only
W (x2) = w2 is known. In this step, we now attempt to find such an w2 such that it yields
the same inactive column as in first step. In our case, this would be the first one, from
which we then infer

255b⊕ x2a = 0 ⇒ 255b = x2a (3)
Consequently, by combining (2) and (3), we get

x1x2 = 2552. (4)

Step 3+4: The first two steps are repeated for other differentials x3, x4 ∈ GF(28) for
which W (x3) = w3 and W (x4) = w4 such that the 2nd byte is inactive in the second round.
When this happens we must have the 2nd byte of M ·∆ is 0 for both ∆ = [255, x3, 0, 0]
and ∆ = [x4, 255, 0, 0]. These yield

255d = x3a, x4d = 255a. (5)
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Combining these equations as above we get:

x3x4 = 2552. (6)

Step 5+6: Another repetition for differentials x5, x6 ∈ GF(28) with W (x5) = w5 and
W (x6) = w6. If now the third byte is inactive, it yields

255c = x5d, x6c = 255d. (7)

Combining these, we get
x5x6 = 2552. (8)

Step 7+8: A final repetition for which the fourth byte is inactive using the differentials
x7, x8 ∈ GF(28) with W (x7) = w7 and W (x8) = w8, we get

255b = x5c, x6b = 255c. (9)

Combining these we get
x7x8 = 2552. (10)

The combination of (2), (3), (5), (7), (9) additionally yields

x1x3x5x7 = x2x4x6x8 = 2554. (11)

Step 9+10: One can indeed other structures of plaintext differences to get inactive bytes
after the 2nd round sub-bytes. For example an inactive 1st byte for ∆ = [x9, 0, 255, 0] and
an inactive 3rd byte for ∆ = [255, 0, x10, 0] yields

x9a = 255c, 255a = x10c. (12)

which yields
x9x10 = 2552. (13)

The combination of (2), (3), (9), (12) gives:

x1x7x9 = x2x8x10 = 2553 (14)

A schematic of the MixColumns recovery algorithm is depicted in Figure 2. By using
all the obtained equations together with the known Hamming Weights it becomes possible
to narrow down the number of circulant candidate matrices defined by [a, b, c, d] to around
28. This is how:

1. Note that the only information the adversary has is wi = W (xi) for all i ∈ [1, 10]
and the fact that the xi’s satisfy Equations (4), (6), (8), (10), (11), (13), (14).

2. For all bytes bi such that W (bi) = wi for i ∈ [1, 10]

• If the bi satisfy Equations (4), (6), (8), (10), (11), (13), (14), then retain them
as candidates for xi.

• If not move to the next set of bi.

If the initial values of u0, u1, u2, u3 are correctly guessed, then the filters defined by the
above equations are enough to obtain a unique value for the xi’s. From here we can get
28− 1 solutions for M as follows: we freely choose a to be any non-zero byte. Then b, c, d
are obtained from above as b = 255−1 · x2 · a, c = 255−1 · x9 · a and d = 255−1 · x3 · a.

For the 23 incorrect initial guesses of u0, u1, u2, u3 the situation is slightly more
complicated. For exactly 20 other incorrect guesses the above algorithm returns no solution
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which implies that our guess was incorrect. However for the remaining 3 guesses in which
the starting u0, u1, u2, u3 are rotations of the correct guess, the algorithm also yields a
unique solution. The solutions in the latter cases are row rotated versions of M in the
opposite direction.

To understand why this happens, let Pt be the 4× 4 permutation matrix that rotates
the a column vector by t locations (for 0 ≤ t ≤ 3) in some direction. Let vi be the i-th
column after the π operation. Note that if M is a circulant matrix then M · P−1

t is also a
circulant matrix, in which the rows of M are rotated t locations in the opposite direction.
Since M · vi =

(
M · P−1

t

)
· (Pt · vi), this explains that any starting guess of u0, u1, u2, u3

that is a rotation of the correct guess also yields a set of solutions for the matrix M that
is a row-rotated version of the correct matrix. However since M · P$ is not a circulant
matrix for any random permutation matrix P$ that does not strictly rotate, then trying to
run the above algorithm would yield a contradiction in some stage in the 10-stage filter
and hence yield no solutions.

The next question is then how to recover t and Pt? The answer is, it is not necessary.
We repeat the above algorithm to for the three other columns of the state, i.e. all possible
guesses of Ui = [u4i, u4i+1, u4i+2, u4i+3] ∈ [4i, 4i+3] for 1 ≤ i ≤ 3. For each column (which
is to say for each i) we get 4 rotationally equivalent initial guesses that yield solutions
for M . We first select the guesses for the 4 sets of initial guesses Ui that yield the same
set of 28 − 1 solutions for M up to multiplication by the free variable a. Let π be the
permutation over [0, 15] so formed by this guess, and let Pπ be the 16× 16 permutation
matrix corresponding to π. Thereafter for any t, consider the block diagonal matrix
Bt = Diag[Pt, Pt, Pt, Pt], then it is easy to see that the block cipher consisting of the
ShiftRows matrix Bt · Pπ and MixColumns matrix M · P−1

t are functionally equivalent for
any t. For example, AES would be functionally the same if the matrix B1 were applied to
the state after ShiftRows and the MixColumns matrix changed to Circ(1, 2, 3, 1). Thus
any choice of t works equally well, and we recover the linear layer up to the choice of the
free variable a.

Complexity. For each of the columns, the complexity can be queried as follows. To
generate differentials of the form 255 · eu0 , 255 · eu1 and 255 · eu2 after the first SubBytes
(using Algorithm 2) requires 3×α×28 queries. Thereafter, for generating the filter equations,
we have to use differentials of type ∆ = [255, x, 0, 0], [x, 255, 0, 0], [255, 0, x, 0], [x, 0, 255, 0]
which requires around 4× α× 28 plaintext queries. The filtering for the 24 possibilities
of the ui can be done separately after generating the traces. Thus the total number of
queries required in this part are 4× (7× α× 28) = 28× α× 28.

3.4 Finding S∗

Ultimately, to recover the hidden s-box, we again limit ourselves to differentials that map
to a single column after the ShiftRows operation. Therefore take the plaintext bytes ptui

and key bytes kyui
for i ∈ [0, 3], i.e. those which map to the 0-th column after key addition,

s-box layer and ShiftRows operation. For ease of notation, the corresponding plaintext
bytes are denoted by xi = ptui

which are added to the recovered whitening key bytes
ki = kyui

. It is straightforward to derive that when only the first byte of the column
is active after the MixColumns operation (as in Figure 1, i.e., all the other bytes in the
column inactive), this only occurs for a specific set of differentials, namely

S∗(x0 ⊕ k0) + S∗(x0 ⊕ k0 ⊕ δ0) = eλ

S∗(x1 ⊕ k1) + S∗(x1 ⊕ k1 ⊕ δ1) = hλ

S∗(x2 ⊕ k2) + S∗(x2 ⊕ k2 ⊕ δ2) = gλ

S∗(x3 ⊕ k3) + S∗(x3 ⊕ k3 ⊕ δ3) = fλ,

(15)
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Figure 6: MixColumns recovery schematic. An inactive first column yields the equation
255a = bx. For an inactive second column, we get 255b = cx. Through an inactive third
column, we receive 255c = dx. Finally, an inactive fourth column yields 255d = ax.

where λ ∈ GF(28) is any non-zero byte value, and as already mentioned e, f, g, h are the
coefficients in the inverse MixColumns matrix. The first step of our recovery attack is
concerned with finding a tuple x0, x1, x2, x3 ∈ GF(28) such that S∗(x0⊕k0) = S∗(x1⊕k1) =
S∗(x2 ⊕ k2) = S∗(x1 ⊕ k3) = 0, which simplifies the system of equations to

S∗(x0 ⊕ k0 ⊕ δ0) = eλ

S∗(x1 ⊕ k1 ⊕ δ1) = hλ

S∗(x2 ⊕ k2 ⊕ δ2) = gλ

S∗(x3 ⊕ k3 ⊕ δ3) = fλ.

(16)

Algorithm 2 together with the Hamming Scale observation after s-box can be used to find
such a tuple.

We proceed to look for the occurrence of convergences using the See-in-the-Middle
technique by varying the differentials δ1, δ2, δ3, δ4. Once it is found, we recover the
Hamming Weight of S(xi + ki + δi) making use of Algorithm 1. Suppose that we receive
the following tuple of Hamming Weights for the four equations

W (S∗(x0 ⊕ k0 ⊕ δ0)) = w0

W (S∗(x1 ⊕ k1 ⊕ δ1)) = w1

W (S∗(x2 ⊕ k2 ⊕ δ2)) = w2

W (S∗(x3 ⊕ k3 ⊕ δ3)) = w3.

(17)

Since at this point xi, ki, δi are known to the attacker, all he needs to fill up the 256
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entries of S∗ is some method to convert the weights wi recovered above into actual values.
However, the attacker knows that the actual values are related by Equation (16) which
he can leverage as follows. The attacker pre-computes a table T whose λ-th entry is the
tuple T [λ] = [W (eλ),W (hλ),W (gλ),W (fλ)] for all 0 < λ < 256. The attacker can infer
the value of λ if T [λ] = [w0, w1, w2, w3] for some table entry.

For random values of e, f, g, h, from computer simulations we have found that more
than 200 entries of T are unique. If the fingerprint [w0, w1, w2, w3] is a unique entry in the
table, we recover four substitution table elements. Otherwise, we can repeat the procedure
for a different differential. We were able to recover all S-box entries within a few repetitions
of the above procedure.

Complexity. Recovering the zero-image in the first step such that S∗(x0 ⊕ k0) =
S∗(x1⊕k1) = S∗(x2⊕k2) = S∗(x3⊕k3) = 0 requires 4×28 = 210 encryptions. Afterwards,
for each four elements of the s-box, the See-in-the-Middle convergence requires an additional
α×β×211.5 encryptions where β is the reciprocal of the probability that a unique Hamming
Weight fingerprint is found in the pre-computed table. Note that on average 211.5 plaintexts
are required to observe a See-in-the-Middle convergence on active byte as explained in
Section 2.1. If the coefficients e, f, g, h are chosen uniformly at random then computer
simulations show that β ≈ 1.3. This step needs to be repeated 256

4 = 64 times to recover
all the entries of S∗. Hence the number of total encryptions to recover the full substitution
table for a given MixColumns matrix is α× 210 + α× β × 217.5.

3.5 Final Computation

Note that we have 255 solutions of the matrix M and hence M−1 and so above procedure
has to be repeated 255 times to obtain 255 solutions of the M, S∗. Since every thing else
has been recovered, thereafter using any known plaintext, ciphertext pair we can check if
the given solution of M, S∗ indeed produce the corresponding plaintext-ciphertext pair.
With high probability 254 incorrect solutions of M,S∗ are eliminated in this step and we
successfully recover all the secret components of the block cipher.

4 secAES Implementation
The secAES implementation [BLPR] was proposed by Benadjila et al. and uses a combi-
nation of affine masking and shuffling to protect the key as well as the plaintext against
side-channel attacks3. Briefly, this implementation relies on two techniques (note that [n]
denotes the set {0, 1, . . . , n− 1} in this section):

• Each cipher state byte si is stored in the form of a× si ⊕mi with masks a ∈ GF(28)
and mi ∈ {0, 1}8 for i ∈ [16]. Here, a is fixed throughout a single encryption call and
is shared among 16 bytes, whereas each mi is unique to particular byte [FMPR11].

• The order of execution among bytes for each layer is randomized according to some
permutation π ∈ S(16). The permutation π is again fixed throughout the single
encryption call, and is mostly shared between different layers such as AddRoundKey,
SubBytes and ShiftRows [RPD09].

In the following section, we give a longer description of the implementation.

3We use Version 2 of the implementation that incorporates additional security measures that is available
at https://github.com/ANSSI-FR/secAES-ATmega8515/tree/master/src/Version2.

https://github.com/ANSSI-FR/secAES-ATmega8515/tree/master/src/Version2
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4.1 Details of secAES

Inputs. secAES receives three sequences of bytes P [i], K[i] and R[j] as input, for
i ∈ [16], j ∈ [18]. Each respectively corresponds to plaintext, key and initial random mask.

Intermediate Variables. During the execution, the following intermediate variables are
used:

• Three permutations π0, π1, π2 : [16]→ [16] are initialized based on the first two bytes
of the mask, i.e. R[0]||R[1]. A fixed permutation G is used in the Even-Mansour
fashion to construct them, and the algorithm buildIndicesPermutation is described in
Figure 7.

• The multiplicative mask byte a ∈ GF(28) \ {0} is computed depending on the value
of R[0]||R[1]. This is computed with buildMultiplicativeMask.

• The S-box masking bytes bin and bout are chosen as R[16] and R[17] respectively.

• The S-box is realized through masked and precomputed S-box table of 256 bytes,
hence we denote it by L. We use L[i] to denote i-th element in this table, for i ∈ [256].

• The input array P of size 16 is used for storing the internal cipher state. For memory
efficiency, the same array is used for producing the ciphertext at the end of the
encryption.

• The initial key array K of size 16 is used to store the intermediate round key.

• The array M of size 16 is used to store the intermediate mask state, which is
dynamically updated. This is in contrast to R, which is fixed throughout encryption.

Pre-processing. During this phase, first, the permutations π0, π1, π2 are established
with buildIndicesPermutation depending on the two-byte mask value R[0]||R[1]. Then,
the multiplicative mask a is computed with buildMultiplicativeMask. This is followed by
computeAndStoreMaskedSbox, which calculates the entries of the mask-dependent S-box
table, based on bin = R[16], bout = R[17] and a. Computation of each S-box table entry is
also randomized. Then, loadAndMaskInput transforms the given input such that each state
byte S[i] is transformed into a× S[i]⊕M [i], hence affine masking is used. In the same
fashion, loadAndMaskKey transforms each key byte K[i] into a×K[i]. Note that the order
of byte accesses in both loadAndMaskInput and loadAndMaskKey are randomized by the
permutation π0 which is computed with first two mask bytes R[0] and R[1].

These algorithms are given in Figure 7. This precomputation phase takes up about the
half of the whole encryption duration.

AES Layers. Given that each state byte is stored in the form of a × S[i] ⊕M [i] and
the key byte is stored as a×K[i], the individual layers of AES must be reconsidered to
play along with the format. Here, AddRoundKey is straightforwardly executed by simply
XORing key bytes into the state. With SubBytes, each state byte is first unmasked from
M [i] share, passed through S-box table L, and then remasked again with M [i].

An important implication of this particular S-box implementation is that both the
cipher state S[i] and the internal mask state M [i] must be kept in sync, otherwise one can
not correctly compute the S-box layer. Therefore, ShiftRows is performed on both the
cipher state, as well as the mask state in parallel. The double application idea is similar
for the linear operation defined by MixColumns. A temporary orderFromOneToTwo is
done before and afterwards MixColumns, which XORs a column of masks among them to
increase the order of mask application during MixColumns. It must also be noted that the
byte orders for each layers are randomized, so that the leak of information is minimized.
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buildIndicesPermutation:
1: G← [12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2]
2: SR← [0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3]
3: m1||m0||m3||m2 ← R[0]||R[1] where each mi is a nibble
4: π0[i]← G[G[G[G[i⊕m0]⊕m1]⊕m2]⊕m3] for i ∈ [16]
5: π1[i]← G[G[G[π0[i]⊕m1]⊕m2]⊕m3] for i ∈ [16]
6: π2[i]← SR[π0[i]] for i ∈ [16]

buildMultiplicativeMask:
1: a0 ← π0[2]||π1[2] and a1 ← π0[3]||π1[3]
2: If a0 6= 0, then a← a0, otherwise a← a1

computeAndStoreMaskedSbox:
1: for i = 0 to 255 do
2: j ← (i+R[15]) mod 256
3: L[j]← a× S-box[(j ⊕ bin)× a−1]⊕ bout

loadAndMaskInput:
1: M [i]← R[i+ 2] for i ∈ [16]
2: for i = 0 to 15 do
3: j ← π0[j]
4: S[j]← (a× P [j])⊕M [j]

loadAndMaskKey:
1: for i = 0 to 15 do
2: j ← π0[j]
3: K[j]← (a×K[j])

Figure 7: The initialization and mask processing takes roughly 167000 clock cycles, and
consumes about the half of the operations during AES encryption.

4.2 Exposure of secAES
In this section, we draw the reader’s attention to a few particular observations regarding
secAES implementation. These points make secAES scheme a good showcase to implement
Hamming Weight based attack.

1. In the classical threshold/masked implementations, both plaintext and ciphertext
values are represented with n shares. The device, which is assumed to be vulnerable
to an attacker with up to n−1 probes, receives n shares together as input, and returns
n shares back after encryption. Therefore, neither plaintext nor ciphertext appears
in clear form on the device. Furthermore, there is a uniform distribution property
that ensures that n− 1 shares do not leak any information. secAES does not fit into
this description, because there are large number of internal computations dependent
on the mask value, these are namely S-box table computations, dynamic masking
of the key and the plaintext states as well as calculation of the permutations used
in the random ordering of operations. For this reason, the device actually receives
plaintext and the mask in their original form, performs the rather heavyweight
masking operations on the vulnerable device for each encryption. This makes mask
dependent computations to be exposed to the attacker.

2. secAES uses considerably fewer number of mask bytes to protect itself against side-
channel attacks. This is made possible by the fact that each state and key byte is
multiplied by the same value, that is the multiplicative mask a. This means that,
for each AES invocation, each plaintext and key byte must be multiplied with a in
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AESEncryption:
1: buildIndicesPermutation
2: buildMultiplicativeMask
3: computeAndStoreMaskedSbox
4: loadAndMaskInput
5: loadAndMaskKey
6: addRoundKey
7: for i = 0 to 9 do
8: maskedSubBytes
9: shiftRows(S, π0)
10: shiftRows(M,π1)
11: if i 6= 9 then
12: orderFromOneToTwo
13: mixColumns(S, π0)
14: mixColumns(M,π1)
15: orderFromOneToTwo
16: keyExpansion
17: addRoundKey
18: for i = 0 to 15 do
19: S[i]← a−1 × (S[i]⊕M [i])
keyExpansion:
1: u← a× RC[round]
2: K[0]← K[13]⊕ u⊕ L[K[0]⊕ bin]⊕ bout
3: K[1]← K[14]⊕ L[K[1]⊕ bin]⊕ bout
4: K[2]← K[15]⊕ L[K[2]⊕ bin]⊕ bout
5: K[3]← K[12]⊕ L[K[3]⊕ bin]⊕ bout
6: for i = 4 to 15 do
7: K[i]← K[i]⊕K[i− 4]

addRoundKey:
1: for i = 0 to 15 do
2: j ← π0[i]
3: S[j]← S[j]⊕K[j]

maskedSubBytes:
1: for i = 0 to 15 do
2: j ← π0[i]
3: z ← S[j]⊕M [j]
4: z ← L[z ⊕ bin]⊕ bout
5: S[j]← z ⊕M [j]

shiftRows(X,Π):
1: for i = 0 to 15 do
2: j ← Π[i]
3: X ′[j]← X[j]
4: for i = 0 to 15 do
5: j ← Π[i]
6: v ← π2[i]
7: X[v]← X ′[j]

orderFromOneToTwo:
1: for i = 0 to 15 do
2: j ← π0[i]
3: S[j]← S[j]⊕M [(j + 4) mod 16]

mixColumns(X, π):
1: r ← π[0] · 0x03
2: for i = 0 to 3 do
3: j ← 4(i⊕ r)
4: X[j : j+4]← (M×X[j : j+4]τ )τ

Figure 8: secAES pseudocode.

GF(28). This means that there are large number of operations that depend on the
same value of a. In other words, there are many points in the collected power traces
that correlate to a.

For this reason, after collecting power traces, we focus our attention to the time intervals
during which the mask-based pre-computation operations take place, instead of the actual
AES encryption rounds. In particular, we look at loadAndMaskInput and loadAndMaskKey,
as each invocations of these algorithm trigger 16 GF(28) multiplications.

From an attacker’s perspective whose goal is to recover the key, there are two main
challenges to overcome: the multiplicative mask a that masks each of the key bytes, and the
randomized order of bytes for the multiplication operations, i.e., π0. Both the multiplicative
mask a and the randomizing permutation π0 are determined by R[0]||R[1], hence we make
it our initial goal to recover this two-byte mask value. Our idea is that, if we can recover
R[0]||R[1] with good probability, then we can compute both a and the permutation π0,
and correctly correlate Hamming Weight observations to key byte candidates.

As clear in Figure 9, given a single power trace, the regions whose Hamming Weight
correlate to the collected power measurements can be easily distinguished. We will simply
refer to the sets of power measurements that corresponds to GF256_mul routine as slots.
Each of these algorithms contains exactly 16 slots, whose position in time is fixed, but the
values processed within these slots are randomized with the permutation π0.
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Figure 9: The single power trace in the region of loadAndMaskInput. 16 slots corresponding
to the field multiplication algorithm GF256_mul is visible, and in particular slots 1, 3 and
16 are marked.

4.3 GF(28) Multiplication
For efficiency, multiplication of two bytes x and y is done with the use of log and log−1

tables. Namely, x× y = log−1((log x+ log y) mod 255), where log is defined with respect
to a generator g such that 〈g〉 = GF(28) \ {0}. We denote these tables with arrays LOG
and ALOG, each of which consists of 256 byte values4. The simplified equivalent of this
algorithm that we reconstructed from the original AVR assembly source code looks like
following:

GF256_mul(r16, r17):
1: Push r0, r1, r18, r30, r31 to stack
2: r5← 0 if r16 · r17 = 0, otherwise r5← 1
3: r16← LOG[r16]
4: r18← LOG[r17]
5: r16← (r16 + r18) mod 255
6: r16← ALOG[r16]
7: r1||r0← r16 · r5
8: r16← r0
9: Pop r31, r30, r18, r1, r0 from the stack
10: return

In this algorithm, r0–r31 represent the byte registers inside the microprocessor and
“ · ” represents simple integer multiplication. This algorithm evidently computes r16× r17
for the two values stored in these registers and places the result back in r16. In order to
handle the exceptional case where either of the two input bytes is 0 in a constant-time
fashion, a multiplication-based check is used. In other words, r5 is set to 0, if r16 · r17 = 0,
and otherwise r5 is set to 1. Later, r5 is used again in the multiplication to decide whether
the final value must be overwritten with zero. In short, this algorithm takes the same
number of clock cycles to execute regardless of its input values.

An interesting property regarding the implementation of secAES is that the caller
of GF256_mul incidentally sets r0 = 0 in its scope, in order to use this register for
carry addition. Therefore, the pushed and popped values of r0 is fixed to 0, and this
relationship holds as long as the function is invoked from either of loadAndMaskInput and
loadAndMaskKey. Between lines 7–10, r0 stores the results of the GF(28) multiplication

4One can notice that LOG[0] and ALOG[255] are irrelevant entries that are never accessed.
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Figure 10: The difference of energy consumed during two runs of GF256_mul. The
plaintext is chosen carefully such that the Hamming Weight of the multiplication results is
respectively 0 and 8, for these two traces.

briefly, until the popped 0 value from the stack is overwritten to r0. Hence, here we find a
transition that directly depends on the Hamming Weight of the field multiplication result.

The correlation of Hamming Weight to power measurement can be empirically verified
in Figure 10. In this figure, each bar corresponds to the difference of energy consumed
during a full clock cycle. Without loss of generality, we look at the third slot of two power
traces during the loadAndMaskInput routine. We choose the mask and plaintext carefully
so that the Hamming Weight of the field multiplication result a×P [i] is respectively 0 and
8 for this slot. Then, we can roughly find out the particular clock cycles/instruction that
show dependence on the Hamming Weight of this result. We repeat this experiment many
times to ensure that a particularly chosen time point is not due to a noise, but shows up
reliable across multiple measurements. Our experiments concluded with the fact that the
60th clock cycle is one such points of relevance. In fact, this happens to be the very clock
cycle during which r0 switches from the multiplication result to 0.

Before proceeding to details of an actual key-recovery attack, let us illustrate how
well sampled power points, whose exact point in time chosen carefully, correlate with
the Hamming Weight of the field multiplication result. In order to see this correlation,
we collect power traces for 4096 encryption (again for the third slot, for the sake of our
example) of loadAndMaskInput. For each encryption, we know the used plaintext and the
mask bytes R[0]||R[1] in advance which allows us to determine both a and π0 i.e., the
permutation that determines in which order each of the bytes are accessed. Hence we
compute the Hamming Weight of a× P [i] for some byte index i for which multiplication
of P [i] is done in this third slot according to the order established by π0. We construct
nine different sets of power measurements Ph = {yr : W (a× P [i]) = h} for h ∈ [9], and
use the obtained power measurements yr to determine a mean and variance for each set
Ph assuming that they are samples from a normal random variable (note that yr denotes
the amplitude of the power measurement during the r-th run).

The outcome of this experiment is given in Figure 11. For instance, it is clear that, by
looking at a power value obtained from a single trace, we can deduce whether an the result
of a × P [i] has a Hamming Weight of 0 or 8 with a good confidence. However, among
neighboring Hamming Weights, this information is harder to deduce. Nonetheless, once
equipped with the mean and variance of these distributions, it is feasible to do a thorough
analysis over multiple power traces. However to construct a valid attack, we need to ensure
that the attacker will not know the value of any of the mask bytes used for any encryption
apriori. Hence we need to device a method that allows the attacker to deduce at least the
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Figure 11: Power values that corresponds to the third invocation of GF256_mul from
loadAndMaskInput. Each color corresponds to different Hamming Weight for the result of
a× P [i]. In the background, the histogram of actual power values are given. The drawn
lines in front show the ideal normal distribution constructed from collected values.

first 2 mask bytes from the power traces alone. Hence, we will first explore how we can
recover the first two bytes of the mask, R[0]||R[1].

4.4 Mask Recovery
Let Nj,h denote the idealized normal distribution of power measurements for Hamming
Weight h at slot j. Typically, the mean of the first two slots are slightly higher than the
rest of the fourteen slots, and for this reason, we treat each slot separately. We will denote
the probability density functions with Nj,h.PDF(x) for a measurement x. For instance, in
Figure 11, the distributions N3,h of the slot 3 are given.

We set the 16 bytes of the plaintext as P [·] = [1, 2, . . . , 16], so that each plaintext byte
is unique and allows us to extract more information from a single trace. Then, for the
multiplicative mask value a, we should observe power measurements where the results of
the field multiplication are a, 2× a, 3× a, . . . , 16× a. However, these measurements will
appear in the slots with a randomized order, because of π0.

Pre-computation. Let r = R[0]||R[1]. Let P denote the fixed plaintext as above
such that P [i] = i + 1. Let a and π0 be functions of r, as their value depend only on
r (see buildIndicesPermutation and buildMultiplicativeMask in Figure 7). We compute a
look-up table I with 216 entries, where each entry is a list of ideal Hamming Weights
in 16 slots in corrected order. In other words, I[r] = Permuteπ0(r)([W (a(r)),W (2 ×
a(r)), . . . ,W (16 × a(r))]), where Permuteπ0(r) permutes the elements with respect to
π0(r). For example, if π0(0) = 1, π0(1) = 0 and π0(r) = r for all other r ∈ [16] then
I[r] = [W (2× a(r)),W (a(r)),W (3× a(r)),W (4× a(r)), . . . ,W (16× a(r))].

Mask Likelihood. Consider the following hypothetical probability experiment. Let
N0, . . . ,N8 denote normal distributions. Let u be a uniformly sampled byte from {0, 1}8.
Let h = W (u). Let X denote the random variable following the distribution Nh. The
main question in this experiment is, given a measurement x, what is the probability of the
actual Hamming Weight H = h′? From Bayes’ theorem:

Pr[H = h′|X = x] = Nh′ .PDF(x) · Pr[H = h′]∑8
h̄=0Nh̄.PDF(x) · Pr[H = h̄]
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Table 2: The probability of recovering the correct mask among the highest ranking k
candidates. Ideally, we would like the probability for k = 1 to be as high as possible.

Among top k 1 2 3 4 8 16
The probability p 0.721 0.815 0.854 0.877 0.930 0.957

Therefore, given a candidate two-byte mask value r′, and 16 power measurements
x1, . . . , x16 corresponding to each of the 16 slots, we can compute the probability of r = r′,
where r denotes the unknown correct two-byte mask. For that, we take all 16 slots into
account. Namely:

Pr[r = r′|(X1, . . . , X16) = (x1, . . . , x16)] =
16∏
j=1

Nj,I[r][j].PDF(x) · Pr[h = I[r][j]]∑8
h̄=0Nj,h̄.PDF(x) · Pr[h = h̄]

In short, we can compute this probability for each mask candidate, and rank all the
masks depending on their probability. The first candidate should give us the mask with
the maximum likelihood.

The result of this maximum likelihood approach is given in Table 2. For more than
half of the single power traces, we are able to recover the correct two-byte mask value
R[0]||R[1] as the highest ranking candidate.

4.5 Key Recovery
From the masking recovery algorithm, we are able to recover first 2 mask bytes for a large
number of successive encryptions, where more than half of them are correct. Then, for
each trace, we can compute both the permutation π0 and the multiplicative mask a. For
recovering the key, we will follow the same idea, but this time focus on the loadAndMaskKey
algorithm, in which a×K[i] field multiplications are executed.

Pre-computation. Suppose that we have ` power traces for ` successive encryptions,
hence ` recovered mask values r1, . . . , r`. Some of these masks are naturally incorrect, and
we cannot know which ones are incorrect. For each trace, we compute a(ri) and π0(ri) and
store them in a table. Unlike in the mask case, where the ideal weights are pre-computed,
we cannot do the same, as the key space is considerably larger than the Hamming Weight
space. Instead, we look at collected power values xi,j that belongs to i-th trace and j-th
slot in loadAndMaskKey. Then, for each slot and power trace, we compute the probability
of Hamming Weight h′ in advance, for each h′ ∈ [9]. In other words, we construct a table
J such that:

J [i, j, h′] = Pr[H = h′|Xj = xi,j ] = Nj,h′ .PDF(xi,j) · Pr[H = h′]∑8
h̄=0Nj,h̄.PDF(xi,j) · Pr[H = h̄]

.

Key Likelihood. For simplicity, let us explain our approach for a single byte position
of the key. In particular, suppose that we want to recover the first byte of the key, that
is K[0]. For K[0], each power trace contains exactly one slot that corresponds to the
value a(ri)×K[0]. As long as our guess on ri is correct, we will compute a(ri) and π(ri)
correctly, the observation we make will be useful, because we will correctly guess the slot j
where the multiplication of 0-th key byte is done. Otherwise, it will contribute to our key
ranking as noise.

For each byte candidate k′ ∈ {0, 1}8, we initially construct an empty list, P [k′] = ∅. For
each power trace, we will add exactly one probability term to each candidate byte’s list. For
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Figure 12: The number of correctly recovered key bytes (among full 16 bytes) vs. the
number of power traces.

that, we first compute the Hamming Weight of a(ri)×k′, that is u←W (a(ri)×k′). Then,
we calculate the correct slot v ← π0(ri)[0] in which we can find the power measurement
for the key byte position 0. Then, the probability term {J [i, v, u]} is inserted to the list
P [k′]. Eventually, for ` power traces, each list P [k′] contains ` terms, and we can compute
the key byte likelihood of k′ by multiplying all terms in P[k′]. If the mask is computed
correctly, the list P [k′] is populated with a high-probability value for the correct candidate
k′ and with a low-probability value for the other candidates. If the mask is computed
incorrectly, we expect that the terms added to the list are random. The remaining part,
again, is to order key byte candidates k′ in descending order, and pick the highest ranking
candidate as the guess. The same algorithm is repeated for the remaining 15 byte positions
of the key.

The result of this maximum likelihood is given in Figure 12. In conclusion, approxi-
mately 50 power traces are sufficient to recover all bytes of the key.

5 Final Words and Future Work
In this paper, we revisited the intrinsic connection between the Hamming Weight of
intermediate cipher variables and the power consumption of an algorithm from which we
extrapolate two main contributions.

1. A practical side-channel-assisted reverse engineering procedure on AES-like construc-
tions found in commercial products such as Dencrypt Message [den21] where the
round function components are secret, i.e., undisclosed encryption key as well as the
SubBytes, ShiftRows and MixColumns functions.

2. A practical side-channel-assisted key-recovery attack on the 8-bit secAES proposal
by the French National Cybersecurity Agency (ANSSI) that combines several side-
channel countermeasures.

Therefore, a promising future line of research in this direction would be to identify for
each platform, instruction sequences that when invoked in a certain order leak information
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in some form or the other that make the underlying implementation vulnerable. Although,
at first glance, this seems to be non-trivial task to perform, it may be possible to do so by
correctly modeling the power footprint for each commonly used instruction of any given
platform.
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A STM32F3 Plots

Hamming	Dist.
-6
-5
-4

-3
-2
-1

0
1
2

Si
gn
al
	A
m
pl
itu
de

−0.02

−0.01

0

0.01

0.02

Time	Samples
0 10 20 30 40 50 60

(a) Key Whitening
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(b) Substitution Box

Figure 13: Averaged differential power traces (STM32F3) of one state byte during the
initial key whitening phase (a) and at the end of the substitution layer (b).
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