
Privacy-preserving Density-based Clustering∗

Beyza Bozdemir
EURECOM

Sophia Antipolis, France
beyza.bozdemir@eurecom.fr

Sébastien Canard
Applied Crypto Group, Orange Labs

Caen, France
sebastien.canard@orange.com

Orhan Ermis
EURECOM

Sophia Antipolis, France
orhan.ermis@eurecom.fr

Helen Möllering†
Technical University of Darmstadt

Darmstadt, Germany
moellering@encrypto.cs.tu-

darmstadt.de

Melek Önen
EURECOM

Sophia Antipolis, France
melek.onen@eurecom.fr

Thomas Schneider
Technical University of Darmstadt

Darmstadt, Germany
schneider@encrypto.cs.tu-

darmstadt.de

ABSTRACT
Clustering is an unsupervised machine learning technique that
outputs clusters containing similar data items. In this work, we in-
vestigate privacy-preserving density-based clustering which is, for
example, used in financial analytics and medical diagnosis. When
(multiple) data owners collaborate or outsource the computation,
privacy concerns arise. To address this problem, we design, imple-
ment, and evaluate the first practical and fully private density-based
clustering scheme based on secure two-party computation. Our pro-
tocol privately executes the DBSCAN algorithm without disclosing
any information (including the number and size of clusters). It
can be used for private clustering between two parties as well as
for private outsourcing of an arbitrary number of data owners to
two non-colluding servers. Our implementation of the DBSCAN
algorithm privately clusters data sets with 400 elements in 7 min-
utes on commodity hardware. Thereby, it flexibly determines the
number of required clusters and is insensitive to outliers, while
being only factor 19x slower than today’s fastest private K-means
protocol (Mohassel et al., PETS’20) which can only be used for spe-
cific data sets. We then show how to transfer our newly designed
protocol to related clustering algorithms by introducing a private
approximation of the TRACLUS algorithm for trajectory clustering
which has interesting real-world applications like financial time
series forecasts and the investigation of the spread of a disease like
COVID-19.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Com-
puting methodologies→ Cluster analysis.

KEYWORDS
Private Machine Learning, Clustering, Secure Computation

1 INTRODUCTION
The availability of vast amounts of data and cloud computing power
nowadays has lead to hype around machine learning (ML). Super-
vised ML techniques like neural networks use labeled data records
(i.e., known input-output pairs) to train a model later utilized, e.g.,
for the classification of new records. In contrast, unsupervised ML
∗Please cite the version of this paper published at 16th ACM ASIA Conference on
Computer and Communications Security (ACM ASIACCS 2021) [13].
†Contact Author.

techniques have no “training” phase and aim at detecting unknown
patterns and structures in the unlabeled input data. Clustering is a
widespread unsupervised ML technique that partitions data into
groups of elements with similar properties. It has many privacy-
critical applications where sensitive business or personal data must
be protected spanning from financial analytics over market research
to medical diagnoses [1, 26, 56].

For such analyses, data from several sources is often needed, for
example, from competing (investment) banks or insurance compa-
nies to detect suspicious behavior [63] or from several hospitals to
get a diverse data set that is not biased due to diverse backgrounds
and demographics. Generally, clustering more data from several
sources commonly enhances the quality of analyses. Moreover, it
can be attractive to outsource computation and data due to high
requirements for storage and costly computation. However, in both
collaborative analyses and when outsourcing computation, the
sensitive input data requires protection against untrusted servers
and other data owners. Secure computation techniques can protect
against these parties to preserve data privacy.

Several optimized private clustering protocols using secure com-
putation have already been proposed for the well-known K-means
algorithm [49, 71]. However, K-means is relatively simple and can
only cluster specific data. It only detects convexly shaped clusters
such that it is only suitable for specific data collections. Addition-
ally, the number of clusters K needs to be determined in advance
which requires domain knowledge. Access to just a subset of the
input data makes it difficult to determine K. Also, K-means does
not include the notion of noise and its result is highly sensitive to
outliers as it has to assign every input to a cluster. Hence, even if a
record does not fit into any cluster, it will be assigned to the least
distant one and heavily affect this cluster’s centroid (i.e., the mean
of all assigned elements).

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is a more flexible clustering algorithm introduced by
Ester et al. in [20] to address the weaknesses of previously known
clustering algorithms like K-means. DBSCAN is able to detect ar-
bitrarily shaped clusters. Additionally, the number of clusters is
flexibly determined such that it fits to the data. The algorithm is
insensitive to outliers and specifically marks them as noise. Fig. 1
demonstrates the advantages of DBSCAN over K-means on four
different data sets.

TRACLUS [45], an extension of DBSCAN, is specifically de-
signed for clustering trajectories (i.e., sequences of multidimen-
sional points). Trajectories intuitively do not form convex clusters.
Furthermore, as trajectories often have different lengths, K-means
cannot straightforwardly cluster them, because it requires the same
fixed number of parameters for all inputs.

Private trajectory clustering can be a valuable mean for finan-
cial time series forecasts [29, 54] which are used by investors for
decision making and rely on the input of sensitive business data.
Additionally, it can be used for the privacy-preserving analysis of
location data collected by telecommunication providers to optimize
the services of the travel industry by determining typical travel-
ing routes. Another interesting application is the analysis of the
movement of (infected) people to control the spread of COVID-
19 while maintaining privacy in accordance to regulations like
the GDPR. In this context, it enables to detect people who used
similar routes while the service provider cannot learn individual
movements. Moreover, policy makers could use privacy-preserving
trajectory clustering to privately determine if people comply to
social distancing in the current pandemic before deciding about
further regulations.
Need for Full Privacy-preservation. As we will discuss in §2,
many previous “private” clustering protocols leak information be-
yond the output. We now demonstrate why leaking such intermedi-
ate information can cause a severe privacy breach using an example
from [47].

Liu et al. [47] demonstrate how leaking which elements are
neighbors, as done in [43], can be used to approximate data records
of other parties. We depict the attack in Fig. 2. Let us consider two
data owners, Alice and Bob, who hold a horizontally partitioned
data set, i.e., different data records that must not be leaked to each
other. Bob holds three data records 𝐵1, 𝐵2, and 𝐵3 that are too
far from each other (i.e., their mutual distances are greater than
𝜖 , cf. §3.1) to create a cluster themselves. However, when Alice
holds a data record 𝐴 that lies exactly in the intersection of the
neighborhoods of 𝐵1, 𝐵2, and 𝐵3 indicated by the circles with radius
𝜖 , Bob learns that all three of his data records are neighbors of the
same element of Alice. From this information and if this intersection
is small, Bob can accurately approximate 𝐴.

To summarize, such information leakage beyond the cluster-
ing output can cause serious privacy infringements, and hence

Figure 1: Comparison of clustering results with K-means
and DBSCAN.

𝐴

𝐵!

𝐵"

𝐵#

Data records of Bob
Data records of Alice

ϵ

Figure 2: Approximating data records of other parties from
leaked information (cf. [47]). 𝜖 is a DBSCAN parameter in-
dicating the maximal distance between two data records to
be considered as neighbors (cf. §3.1).

should be avoided. In this work, we provide the first fully privacy-
preserving DBSCAN algorithm that does not leak any information
beyond the output of the clustering.

Our Contributions and Outline
After summarizing related works in §2, we provide the following
contributions:

• Fully private DBSCAN:We design and implement the first
fully private DBSCAN scheme based on secure two-party
computation (S2PC) that achieves the same clustering quality
as the plaintext algorithm (cf. §5.2). For this, we introduce
dedicated protocols for all components of DBSCAN including
a partial parallelization (cf. §4.3). Our solution can be used for
clustering between two parties that want to keep their inputs
private as well as for outsourcing scenarios where many data
owners secret-share their private input records among two
non-colluding servers [38] (cf. §4.1). Due to the usage of
generic S2PC, our protocols leak no information beyond the
output. They can flexibly be used for arbitrarily partitioned
inputs (cf. §4.3.1) and complemented with arbitrary private
post-processing of the output (cf. §4.3.5).

• Privacy-preserving trajectory clustering:We show that
our protocols can be used for the privacy-preserving de-
sign of particular instantiations of density-based clustering
schemes by introducing the first privacy-preserving trajec-
tory clustering protocol based on the TRACLUS algorithm.
TRACLUS is a DBSCAN-based scheme optimized for clus-
tering trajectories, for which we design and implement an
approximated distance to improve its secure computation
efficiency (cf. §4.4).

• Open-source implementation and comprehensive em-
pirical evaluation: We benchmark our implementation1
and show that our protocols have practical runtimes on pub-
lic data sets (cf. §5.4). We compare the efficiency of privacy-
preserving DBSCAN to state-of-the-art privacy-preserving
solutions of the simpler and limited K-means algorithm [35,

1https://encrypto.de/code/ppDBSCAN

https://encrypto.de/code/ppDBSCAN

49] (cf. §5.3). Furthermore, we show that our approximated
TRACLUS distance has similar clustering quality as the orig-
inal distance on public and real-world data sets (cf. §5.2.2).

2 RELATEDWORK
In this section, we discuss related work on privacy-preserving K-
means and DBSCAN clustering. Moreover, we give a brief overview
on privacy-preserving trajectory analysis.
K-means. Privacy-preserving K-means clustering protocols were
intensively discussed in the literature. They use different techniques
like homomorphic encryption (HE), random blinding, various se-
cure two-party computation (S2PC) and multi-party computation
(MPC) techniques, and combinations of the aforementioned.

Most early works assume that all parties have access to a subset
of the plaintext input and require that data owners actively partici-
pate in the clustering. Private K-means clustering on horizontally
partitioned data, i.e., each party holds a subset of the data records,
was addressed in [24, 36, 61]. [61, 69] investigate private K-means
clustering on vertically partitioned data, i.e., the data owners hold
the values of disjoint subsets of attributes of all data records. A flex-
ible mix of both partitioning types is called arbitrary partitioning
covered in [14, 33]. Unfortunately, many proposed schemes leak
intermediate values such as centroids [24, 36, 46, 61, 69], clusters’
sizes [24, 61], merging patterns [32], use incorrect calculations [33],
or require active participation of the data owner [46] (which makes
them not suitable for the outsourcing scenario). Another research
direction leverages differential privacy [8, 64–66] to protect individ-
uals’ data, but these works trade accuracy for better performance.
Only the following works provide full privacy guarantees while
achieving a high accuracy: [14, 35, 49].

Bunn and Ostrovsky [14] create a two-party private K-means
protocol using additive homomorphic encryption (AHE) in com-
bination with S2PC for arbitrarily partitioned data. However, the
usage of expensive AHE results in impractical runtimes.

Jäschke et al. [35] use fully homomorphic encryption (FHE) for
a protocol that enables a data owner to outsource the K-means
computation in a privacy-preserving way. To improve runtime,
they simplify the required calculation of the original K-means clus-
tering by approximating the centroid determination and distance
comparisons, but still the overhead is far from practical for larger
data sets.

Mohassel et al. [49] provide an efficient privacy-preserving K-
means protocol in the semi-honest security model using Yao’s Gar-
bled Circuits. In their work, they improve efficiency by utilizing
that K-means requires to calculate the same distance function with
one fixed input, namely a point of the input data, to all (repeatedly
updated) centroids.
DBSCAN. Although density-based clustering has several advan-
tages as detailed in the beginning of §1, its privacy-preserving
realization is barely studied.

Anikin and Gazimov [5] design a privacy-preserving DBSCAN
protocol between an arbitrary number of parties with vertically
partitioned data in the semi-honest security model. Their scheme
uses additive blinding and HE. Besides expensive encryption oper-
ations, their protocol requires all parties to have plaintext access
to the data records, to be online, and to communicate extensively

which makes it not applicable to a privacy-preserving outsourc-
ing scenario. Additionally, one party executes the main part of the
computation and obtains the plaintext distances between the input
records, cluster assignments, and hence, cluster sizes. The authors
do neither provide a concrete instantiation of their protocol nor a
performance evaluation.

Similar reasoning applies for [4, 37, 43, 47, 73] who assume
vertically/horizontally partitioned data and for [3, 47] with arbi-
trary data partitioning. They use HE, blinding with random values,
and/or partially trusted third parties to protect data privacy. How-
ever, they leak information like cluster sizes and neighborhood
patterns [3, 37, 43, 47, 58] or distances between input records [4].
Under specific circumstances, the leaked information can be used
to concretely identify other parties’ input records [43, 47]. In [73],
complete data records are revealed when they belong to a clus-
ter. Again, no implementation and performance evaluation were
performed in these works.

Rahman et al. [58] introduce a privacy-preserving DBSCAN pro-
tocol using key-HE2 for an outsourcing scenariowhere an untrusted
server conducts the clustering with the help of the data owners.
Unfortunately, it leaks information such as the clusters’ sizes and
neighborhood patterns to the server. Again, no implementation and
performance evaluation were performed in that work.

In [52, 72], the authors leverage differential privacy [23] to pro-
tect the privacy of individuals’ data records. In these works, the
data owner performs the clustering, and an untrusted party later
requests access to parts of the results. This scenario is not trans-
ferable to executing the clustering with inputs from two or more
parties. Moreover, the level of noise added to the distance in each
parameter dimension depends on the privacy requirements and
will inevitably affect the meaningfulness of the data and, hence, the
quality of the clustering result.

To summarize, all existing protocols on private density-based
clustering assume that the involved parties have access to a frac-
tion of the plaintext input data (meaning that the data owners
actively participate in the protocol), use differential privacy (sacri-
ficing accuracy), are not fully private (leaking information), and/or
make heavy use of public-key cryptography (making the protocol
inefficient and not scalable). Our protocol is the first to be fully
precise (i.e., the same clustering quality as with plaintext DBSCAN
is achieved), fully private, and efficient for both the data owners and
server(s). It is usable in the outsourcing scenario and for two-party
computation (cf. §4.1).
Trajectory Analysis. Very few previous studies investigate the
problem of private trajectory analysis. Private-Hermes [55] and
Hermes++ [41] use anonymisation techniques to generate crafted,
realistic fake trajectories to allow users to securely query mobility
(trajectory) data sets. Other works such as [2, 27, 53] explore the
problem of private ride sharing which consists of finding a match
between parts of trajectories. To the best of our knowledge, no
previous work has investigated private trajectory clustering. Our
privacy-preserving TRACLUS protocol is the first that enables fully
privacy-preserving and efficient trajectory clustering between two
data owners and in the outsourcing scenario.
2Such a HE scheme allows to combine ciphertexts created with different keys to
produce an encryption of the sum of the messages decodable with sum of the keys.

3 PRELIMINARIES
In this section, we introduce the original DBSCAN algorithm and
its adaptation TRACLUS. We also give the cryptographic building
blocks used in our protocols.

3.1 Clustering
3.1.1 DBSCAN. Density-based Spatial Clustering of Applications
with Noise (DBSCAN) [20] relies on a density-based neighborhood
notion. Elements that are located with many other elements in a
dense area form a cluster while data records in a sparse area are
marked as noise. This intuition is realized by determining core points
that have at least minPts other elements in a range of 𝜖 around
them. The range can be quantified with any distance measure. All
elements that are located in the neighborhood of a core point 𝑝 are
directly density-reachable from 𝑝 . If an element 𝑞 is connected via
a chain of core points 𝑝1𝑝2 ...𝑝𝑧 , with 𝑝𝑧 = 𝑞, where each 𝑝𝑖+1 is
directly density-reachable from 𝑝𝑖 , then𝑞 is called density-reachable.
All points in the chain have to be core points except from𝑞. A cluster
consists of a core point 𝑝 and all density-reachable elements from
𝑝 . Elements of a cluster that are not core elements but belong to the
neighborhood of a core element are border elements. If an element
is neither a core element nor a border element it is marked as noise.

As mentioned above, DBSCAN has two parameters minPts and
𝜖 .minPts determines how many data records need to lie in a neigh-
borhood to form a cluster. The larger the value ofminPts, the more
elements are marked as noise while the clusters get more dominant.
Ester et al. [20] suggest minPts = 4 for 2-dimensional data, Sander
et al. [62] recommend minPts = 2 · dim where dim denotes the
dimensionality of the data, but depending on the application, data
set size, and the noisiness of data, the optimal value can vary. 𝜖
determines the maximum distance between two data records to be
considered as neighbors. A large value of 𝜖 results in large clusters
whereas a small value of 𝜖 marks many elements as noise.

DBSCAN can be applied on data of an arbitrary dimension. Its
worst case complexity in the cleartext is O(𝑛2), where 𝑛 is the
number of input elements.

3.1.2 TRACLUS. TRAjectory CLUStering (TRACLUS) [45] opti-
mizes DBSCAN for sequences of multidimensional points (trajec-
tories) and consists of two phases: partitioning and grouping. In
the partitioning phase, the algorithm divides trajectories into sub-
trajectories that are called line segments. Each line segment is rep-
resented by two points. The partitioning phase ensures that the
output is close to the original trajectory (preciseness) and that the
number of line segments created is minimal (conciseness). After-
wards in the grouping (clustering) phase, TRACLUS uses DBSCAN
with the same parameters (minPts is namedminLns for the minimal
number of line segments). An optimal 𝜖 value can be determined
with simulated annealing [39]: It is set to the value that minimizes
the entropy of the clustering [45].

For the neighborhood determination, TRACLUS uses a special
tripartite distance that is illustrated in Fig. 3:

𝑑𝑖𝑠𝑡 (𝐿𝑖 , 𝐿𝑗) = 𝑤⊥ · 𝑑𝑖𝑠𝑡⊥ +𝑤 ∥ · 𝑑𝑖𝑠𝑡 ∥ +𝑤\ · 𝑑𝑖𝑠𝑡\ , (1)

where 𝐿𝑖 and 𝐿𝑗 are two line segments. The perpendicular distance
𝑑𝑖𝑠𝑡⊥ measures the vertical distance between 𝐿𝑖 and 𝐿𝑗 . The parallel
distance 𝑑𝑖𝑠𝑡 ∥ is the horizontal distance between 𝐿𝑖 and 𝐿𝑗 . The

Figure 3: TRACLUS’ tripartite distance. 𝐿𝑖 and 𝐿𝑗 denote two
line segments with start points 𝑠𝑖 /𝑠 𝑗 and end points 𝑒𝑖 /𝑒 𝑗
(cf. [45]).

angular distance 𝑑𝑖𝑠𝑡\ measures the directional difference between
𝐿𝑖 and 𝐿𝑗 . The components are weighted with 𝑤⊥, 𝑤 ∥ , and 𝑤\

(set to 1 by default) and summed up. See [45] for more details. In
§4.4, we give a secure computation-friendly approximation of the
tripartite TRACLUS distance.

3.2 Clustering Quality Indices
To evaluate the quality of a clustering method, several quality as-
sessment measures have been proposed. We employ the commonly
used Adjusted Rand Index (ARI), Silhouette Coefficient (SC), and
Density-Based Clustering Validation (DBCV).

3.2.1 Adjusted Rand Index (ARI). The ARI [30] is an external clus-
tering validation index. External means in this context that the
real partitioning, called the ground truth, must be known. It takes
two partitionings as an input and evaluates how many input pairs
are assigned to the same cluster by both partitionings, how many
pairs are assigned to different clusters by both, and how many
pairs belong to the same cluster in one partitioning but to different
clusters in the other. Additionally, it corrects the count for chance.
The ARI is 1 for a perfect clustering. Worse clustering results yield
smaller ARIs.

3.2.2 Silhouette Coefficient (SC). As clustering is an unsupervised
machine learning technique, a ground truth is normally not avail-
able. The most frequently used methodology to evaluate the quality
of the clustering result is the silhouette analysis [60]. This method-
ology analyzes the resulting clusters by evaluating the similarity
between the elements within the cluster and the elements of other
clusters. The output is called the silhouette coefficient (SC) which is
close to 1 for a good clustering.

Although SC allows insights about how tightly elements are
clustered, it does not take outliers that remain unclustered, called
noise, into account. Thus, a penalty is needed to measure the SC
with noise as described in [50]. Let 𝑛 be the data set size and 𝑢 be
the number of not clustered elements. Then, multiplying the SC
with (𝑛 − 𝑢)/𝑛 gives the SC with noise penalty, 𝑆𝐶noise.

3.2.3 Density-Based Clustering Validation (DBCV). Anothermethod
specially designed to assess the quality of density-based cluster-
ing algorithms is the DBCV [50]. In contrast to the standard SC,
DBCV also takes noise into account. Similar to the other evaluation
metrics, a higher DBCV indicates a good clustering quality.

3.3 Secure Two-Party Computation
Secure computation allows two or multiple parties to securely com-
pute on private inputs. In this work, we use secure two-party com-
putation (S2PC) techniques. Typically, S2PC is used for two-party
applications, where two parties provide private inputs. Alterna-
tively, it can be extended to an outsourcing scenario [38], where an
arbitrary number of input parties secret-share their private input
data among two non-colluding servers. Secret-sharing allows to
split data into two random-looking values called secret-shares and
each of the two servers obtains one of these shares. To recover the
data, both servers would have to put their shares together (which by
the non-collusion assumption they do not do). The two servers then
jointly evaluate a function using S2PC on the shares without being
able to learn anything about the inputs or intermediate values.

The non-collusion assumption could be avoided by using homo-
morphic encryption (HE) [23] but currently available HE schemes
have a significant computational overhead as they use expensive
cryptographic primitives. Alternatively, usingmore than two servers
with tolerating one corruption yields better efficiency, e.g., [15, 48],
but have a larger attack surface as the corruption of any pair of
the multiple servers is sufficient to break privacy. Therefore, S2PC
is a reasonable trade-off between security and efficiency. Still, our
protocols in §4 are general and can easily be extended to more than
two parties/servers using hybrid secure multi-party computation
frameworks [15, 48].
Security Model. We consider the semi-honest security model
where the two non-colluding parties honestly follow the proto-
col while attempting to collect information about the other party’s
private inputs. This security model also protects against passive
attacks by curious administrators or accidental data leakage. The
non-collusion assumption can, e.g., be guaranteed between two
competing companies as it is in their interest to not give their cus-
tomer’s data to the competitor and to protect their business secrets.
Additionally, in an outsourcing scenario where one or several data
owners outsource the expensive computation to (cloud) servers, it is
reasonable to assume that the two servers are semi-honest, because
cloud providers are strictly regulated and threatened with severe
financial damage. Moreover, their reputation is damaged when ma-
licious behavior is detected. Hence, it is in the providers’ economic
interest to behave semi-honestly. In the outsourcing scenario, our
protocols in §4 are even secure against any number of malicious
data owners who can arbitrarily deviate from the protocol [38]. We
provide concrete examples how several applications can be realized
with S2PC in §4.
ABY.We use the S2PC framework ABY [17] that implements three
types of S2PC protocols, namely Yao’s Garbled Circuits [74], Boolean
GMW [25], and Arithmetic sharing, which is a generalization of
GMW, including state-of-the-art optimizations. Moreover, it enables
flexible conversions between the three sharing types. ABY supports
Single Instruction Multiple Data (SIMD) operations that efficiently
apply the same functionality on multiple inputs in parallel. SIMD
operations reduce memory usage and evaluation time. We use Yao’s
Garbled Circuits (i.e., Yao sharing) and Arithmetic sharing in this
work (cf. §B for details).

4 PRIVACY-PRESERVING DENSITY-BASED
CLUSTERING

In this section, we present our protocols for privacy-preserving
DBSCAN (ppDBSCAN) clustering, which for the first time provides
scalability with respect to data set size, the number of clusters, and
input records’ dimension as well as full privacy while maintaining
the clustering quality of the plaintext algorithm. We extend our
protocol to the private clustering of trajectories using the TRACLUS
algorithm (ppTRACLUS).

4.1 Application Scenarios
As already indicated in §3.3, our ppDBSCAN and ppTRACLUS can
be used in two application scenarios:

• Two-party Computation (2PC): Here, two data owners
privately perform the clustering on their vertically or hori-
zontally partitioned data. In such a classical secure two-party
computation, each of them runs one semi-honest party it-
self. The data owners could, for example, be two banks who
jointly investigate credit card frauds.

• Outsourcing: Here, one or multiple data owners outsource
their data as random-looking secret-shares (cf. §3.3) to two
non-colluding semi-honest parties (e.g., cloud servers) that
perform the private clustering via S2PC. The data owners
want to hide their sensitive data from any other party. As ex-
plained in §3.3, it is in the cloud providers’ interest to behave
semi-honestly and to not collude. The data owners can even
be malicious and arbitrarily deviate from the protocol [38].
Considering the application examples in §1, the data owners
can be, for example, multiple hospitals that join forces to
improve medical diagnosis or a telecommunication provider
that lawfully wants to monetize location information of cus-
tomers by selling privacy-preserving analytics to the travel
industry. To analyze people’s movements in a pandemic, a
governmental institution and a non-profit organization like
the EFF3 could operate the two non-colluding servers.

In the following, a party denotes one of the two non-colluding and
semi-honest parties that perform the privacy-preserving clustering.

4.2 Notation
We use the following notation in the remainder of this work: A
multiplexer gate (MUX) is denoted by 𝑎?𝑏:𝑐 which corresponds to
if 𝑎 then 𝑏; else 𝑐 . An AND gate is denoted by ∧ and an OR gate
by ∨.

4.3 Privacy-preserving DBSCAN
In this section, we present our secure two-party computation (S2PC)
protocol for fully privacy-preserving DBSCAN including a partial
parallelization of the clustering. A discussion on its security prop-
erties is given in §C.

4.3.1 Flexible Inputs. Initially, the data owners use Arithmetic
sharing (cf. §3.3) to secret-share their data among each of the two
parties. Each of the two parties collects the secret-shares of the
inputs it receives from all data owners in a vector 𝑋 that is input
3https://www.eff.org

https://www.eff.org

to the clustering. Additionally, the two processing parties can also
be provided with secret-shares of DBSCAN’s parameters minPts
and 𝜖 (cf. §3.1) such that they do not know them in the clear.

Note that the usage of Arithmetic sharing for the input data that
shall be clustered enables an arbitrary number of data owners to
easily join the clustering as no encryption key is needed. Moreover,
our ppDBSCAN can support any data splitting, i.e., horizontally
or vertically distributed data or an arbitrary mix of both, because
thanks to the Arithmetic sharing the data owners can simply secret-
share the attributes of the data records they are holding and send
these shares to the two parties who can sort them according to the
respective data records for the clustering.4

After receiving all shares from the data owners, the clustering
starts. DBSCAN can be split into two main building blocks, the
distance calculation and the clustering process, for which we design
novel S2PC protocols enabling a partial parallelization.

Listing 1: Privacy-preserving Squared Euclidean Distance
(SED) calculation.

1 Input : v e c t o r X / / n−dim . v e c t o r with inpu t data
2 𝜖2 / / sq . t h r e s h o l d
3 Output : d i s t / / n−dim . v e c t o r with SIMD −va l u e s :
4 / / d i s t [l] = (SED (X[k] ,X[l])< 𝜖2), 0 ≤ 𝑘 < 𝑛 ∗ /
5
6 sharedElements = combineToSIMD (X)
7 Vector d i s t ;
8 for (i =0 ; i < n ; i ++) :
9 simdElement = [X[i]] ∗ n / / n c o p i e s o f X[i]
10 sed = 0
11 for (j =0 ; j < dim ; j ++) :
12 temp = sharedElements [j] − simdElement [j] / / Arithm
13 sed += temp ∗ temp
14 d i s t [i] = sed < 𝜖2 / / Yao
15 return d i s t

4.3.2 Parallelized Distance Calculation. In DBSCAN, pairwise dis-
tances between all input records are calculated to determine neigh-
borhoods. In general, any distance measure can be used. Ester et
al. [20] originally use the Euclidean distance (ED), but for more
efficient evaluation we use the squared Euclidean distance (SED)
which is common for S2PC, e.g., privacy-preserving face recogni-
tion [18]. To determine if two elements are neighbors, the ED of two
input values 𝑥 and 𝑦 has to be smaller than 𝜖 which is equivalent
to 𝑆𝐸𝐷 (𝑥,𝑦) < 𝜖2.

List. 1 presents our private SED protocol. To massively parallelize
the computation, each party combines its secret-share of the 𝑗th
coordinates of each data record in 𝑋 with combineToSIMD(..) in one
SIMD arithmetic share (cf. §3.3) and collects these SIMD-shares in
a 𝑗-dimensional vector sharedElements. For every execution of the
for loop in Line 8, a 𝑗-dimensional vector simdElement is created by
each party where the 𝑗th entry contains 𝑛 times its secret-share of
the 𝑗 th coordinate of the 𝑖th input, where 𝑛 denotes the data set size.
In Lines 11-13, the SED is jointly calculated between the two parties.
Then, they jointly compare the result to the threshold 𝜖2 and only
the comparison result (secret-shared between the two parties) is
saved in the vector 𝑑𝑖𝑠𝑡 to reduce the storage requirement to 1 bit
4Even the data set size can be hidden from the two processing parties by using dummy
data records, but one has to ensure that the added data records do not change the
clustering result. One option can be to duplicate data records in combination with
increasing the value ofminPts. Also the number of parameters per data record can
be hidden by adding dummy parameters that are set to the same value for all input
records such that they do not affect the clustering result.

per input record pair for each party. Given the symmetry of the
distance measure, this approach causes an overhead as it calculates
𝑛2 instead of ≈ 0.5𝑛2 distances. But this is compensated by enabling
parallel distance computation and a partial parallelization of the
clustering which substantially reduces memory consumption and
improves runtime. For multiplications and additions, Arithmetic
sharing is most efficient (addition can even be done for free), and
we convert the resulting shared SED to Yao sharing for efficient
comparison [17].

We point out that further optimizations for distance calculations
from [34, 49] can improve the runtime and/or communication costs
of our protocol. However, as our experiments in §5.4 show, com-
puting SEDs is only a small fraction of the total complexity, so we
did not implement further optimizations.

4.3.3 Parameter Estimation. As described in §3.1, DBSCAN has
two parameters: 𝜖 (now 𝜖2 because of the SED) determines the
maximal distance between two input records to consider them as
neighbors, and minPts is the minimal cluster size.

The minimal cluster sizeminPts is strongly dependent on the re-
spective use case. For example, if for the containment of COVID-19
contact restrictions have been put into place andmeetings with only
less than 10 people are allowed, minPts could be set to 10 to check
if and how many “illegal” meetings happened. We recommend to
choose minPts based on the use case and its privacy requirements
as well as the data set size. Generally, it is advantageous to aim for
larger clusters (i.e., to choose a sufficiently large minimal cluster
sizeminPts) as they generalize better and leak less information. For
our DBSCAN experiments in §5, we follow the recommendation
by [20] and setminPts = 𝑛

100 (resp.minPts = 4 for the smaller data
set), where 𝑛 is the data set size.

Similarly, for some use cases the value for 𝜖2 might already be
given by the application itself: When investigating the movements
of people for the containment of COVID-19, 𝜖2 can be set to 2
meters similarly as it is done in contact tracing apps [67]. Alterna-
tively, 𝜖2 can be estimated by plotting a sorted 𝑘-distance graph
as suggested in [20]. In an outsourcing scenario with a single data
owner, the data owner can determine the value of 𝜖2 locally. When
several data owners provide input data and the data is expected to
be approximately independent and identically distributed, it can
be sufficient that one data owner 𝐷𝑂𝑖 plots the graph with his
data setting 𝑘 = minPts/𝑛𝑖𝑛 , where 𝑛𝑖 denotes the size of 𝐷𝑂𝑖 ’s
input set. The proportion 𝑛𝑖

𝑛 and 𝑛 itself may also be approximated.
Otherwise, the data owners can also agree on a value for 𝜖2 after
each data owner analyzed its data locally by a secure aggregation
of their local results.5 Furthermore, the calculation of a 𝑘-distance
graph and determination of 𝜖2 can also be realized with a secure
computation ahead of the clustering. However, such a secure com-
putation protocol for calculating 𝜖2 is not the focus of our work and
we leave it open for future work. Some works have already inves-
tigated private sorting [28, 34] and computing of the 𝑘-th nearest
neighbor [16, 34, 57].

The minimal possible 𝑘 is 2 and the minimal meaningful value
for minPts is 3. As noted in the beginning of §4.3, both parameters
can be secret-shared and no information is leaked.
5Secure aggregation protocols have been thoroughly investigated in the context of
smart metering, e.g., [19, 22, 44].

Listing 3: Privacy-preserving DBSCAN (ppDBSCAN) with
partial parallelization.

1 Input : v e c t o r sharedElements / ∗ n−dim . v e c t o r with
Sha r e d I npu tR e c o r d s (c f . L i s t i n g 2) ∗ /

2 Output : sharedElements
3
4 / / c l u s t e r i n g in Yao
5 c u r r e n tC l u s t e r I d = 0
6 for each elem in sharedElements :
7 elem . c l u s t e r I d = elem . no tProcessed ?
8 (elem . va l idNe ighborhoodS i ze ? c u r r e n tC l u s t e r I d : 0) :
9 elem . c l u s t e r I d
10 i sCoreElement = elem . va l idNe ighborhoodS i ze∧
11 elem . no tProcessed
12 elem . i sNo i s e = elem . no tProcessed ?
13 (! elem . va l i dNe igborhoodS i ze) : elem . i sNo i s e
14 elem . no tProcessed = 0
15
16 s I sCoreElement = [isCoreElement] ∗ n / / n c o p i e s
17 sCu r r en tC lu s t e r I d = [c u r r e n tC l u s t e r I d] ∗ n / / n c o p i e s
18
19 for (i =0 ; i < max I t e r a t i on s ; i ++) :
20 / ∗ c r e a t e SIMD va l u e s with th e va lue o f th e

r e s p e c t i v e a t t r i b u t e o f a l l s ha r edE l emen t s ∗ /
21 sC l u s t e r I d s , s I sNo i se , sNotProcessed ,

sVa l idNe ighborhoodS ize = combineSharesToSIMD (
sharedElements)

22
23 sVa l idNe ighbor = ((s I sNo i s e∨sNotProcessed)∧

s I sCoreElement)∧elem . ne ighbors
24 sC l u s t e r I d s = sVa l idNe ighbor ? sCu r r en tC lu s t e r I d :

s C l u s t e r I d s
25 sNotProcessed = sVa l idNe ighbor ? 0 : sNotProcessed
26 s I sNo i s e = sVa l idNe ighbor ? 0 : s I sNo i s e
27 / / check i f ne ighborhood s i z e and i f v a l i d n e i ghbo r
28 sNeighborsAreCoreElement = sVa l idNe ighbor ?

sVa l idNe ighborhoodS ize : 0
29
30 for (k =0 ; k < n ; k++) :
31 sUpdateResultDistanceComp =
32 sNeighborsAreCoreElement∧sharedElements [k] .

ne ighbors
33 elem . ne ighbors [k] = ORTREE(

sUpdateResultDistanceComp) ? 1 : elem . ne ighbors [k]
34
35 / / s p l i t simd va l u e s and update sha r edE l emen t s
36 updateSharedElements ({ s I sNo i se , sNotProcessed } ,

sharedElements)
37 updateSharedElements ({ s C l u s t e r I d s } , sharedElements)
38 c u r r e n tC l u s t e r I d = cu r r e n tC l u s t e r I d + isCoreElement / /

Arithm
39 return sharedElements

Listing 2: Shared input element.
1 c lass SharedInputRecord (minPts , / / (minimal ne ighborhood

s i z e
2 s p l i t t e dD) : / ∗ (n−dim . v e c t o r with s u b s e t o f s p l i t t e d

d i s t ou tpu t by L i s t i n g 1) ∗ /
3 c l u s t e r I d = 0
4 i sNo i s e = 0
5 notProcessed = 1
6 Vector ne ighbors = s p l i t t e dD
7 va l idNe ighborhoodS i ze = minPts < hamming_weight (

s p l i t t e dD)

4.3.4 Partially Parallelized & Private Clustering. To make DBSCAN
fully private, it is not sufficient to have a private distance calculation,
but also all intermediate information such as the clusters’ sizes,
assignment patterns, and number of clusters must not be leaked as
these can contain sensitive information.

The plaintext DBSCAN clustering is given in §A.We significantly
reduce the overhead of the neighborhood queries for every record
by calculating all distances in a parallelized fashion before starting
the clustering instead of doing it several times for every single
record like in the plaintext. For every input record, each party
creates an object of SharedInputRecord (cf. List. 2) which contains
its secret-shares of the object’s attributes’ values. The secret-shares
of the results of the comparison of the record’s distances to all other
records with 𝜖2 are stored in𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . The combined secret-shares
of both parties of validNeighborhoodSize denote if an input has more
thanminPts neighbors, i.e., whether it is a core element (cf. §3.1). It
follows thatminPts has to be one less than in the plaintext DBSCAN
to obtain the same clustering result.

Each party collects all objects of SharedInputRecord in a vector
sharedElements and inputs it into our private clustering protocol in
List. 3. In Lines 7 to 14 in List. 3, the parties jointly check if the data
record 𝑒𝑙𝑒𝑚 was assigned to a cluster before and, if this is not the
case, they check if 𝑒𝑙𝑒𝑚 is a core element such that it creates a new
cluster or it is marked as noise. If a new cluster is created, the unclus-
tered neighbors of 𝑒𝑙𝑒𝑚 are also added to this cluster (Lines 23-26 in
List. 3). If the neighbors themselves are core elements, their neigh-
bors also have to be analyzed and added to the cluster (Lines 28-36
in List. 3) as they are density-reachable (cf. §3.1). In plaintext DB-
SCAN, this is realized with a queue which leaks neighborhood pat-
terns (cf. Lines 19-24 in List. 4). Therefore, for a privacy-preserving
realization, all elements always have to be checked instead to obliv-
iously expand a cluster. This allows us to parallelize these steps
shown in Lines 19 to 36 in List. 3 with SIMD operations. However,
as 𝑒𝑙𝑒𝑚’s neighbors are changing, one has to repeat the loop start-
ing in Line 19 in List. 3 maximally 𝑛 times to accommodate the
neighbors of neighbors that are core elements through the update
in Line 33 in List. 3. This would increase the complexity of the pro-
tocol to O(𝑛3) to make it fully oblivious. But depending on the data
distribution few maxIterations are already sufficient. This yields a
complexity of O(𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 · 𝑛2). In our tests on the data sets
used in §5, setting𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 4 detects all clusters correctly.
Generally, many iterations are only needed if clusters consist of core
elements that are chained in a row; thus, simply speaking, if clusters
are particularly elongated. If the data owners cannot estimate the
needed maxIterations in advance, a privacy-preserving check can
be added that tests if the vector elem.neighbors in Line 33 in List. 3
changed in the last iteration (or after a specific number of itera-
tions). This leaks one bit of information to the two parties to inform
them if they have to continue further iterations. This additional
information leaks only vaguely how the input data is distributed
which can be acceptable for applications as a trade-off for better
efficiency. The function 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑆ℎ𝑎𝑟𝑒𝑠𝑇𝑜𝑆𝐼𝑀𝐷 (..) takes a vector
with 𝑛 𝑆ℎ𝑎𝑟𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑐𝑜𝑟𝑑s as input and combines their 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑-,
𝑖𝑠𝑁𝑜𝑖𝑠𝑒-,𝑛𝑜𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑-, and 𝑣𝑎𝑙𝑖𝑑𝑁𝑒𝑖𝑔𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑆𝑖𝑧𝑒-values to SIMD
shares each containing 𝑛-values. 𝑢𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑎𝑟𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (..) does
the opposite, it takes SIMD shares as input, splits them, and updates
the corresponding 𝑆ℎ𝑎𝑟𝑒𝑑𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑐𝑜𝑟𝑑’s objects.

All bit-operations of our ppDBSCAN protocol in List. 3 are done
in Yao sharing and the addition in Line 38 is done with Arithmetic
sharing to optimize efficiency [17]. Furthermore, note that List. 3 is
independent of the number of clusters and the dimensionality of
the input. Only the distance calculation in §4.3.2 is influenced by

the dimensionality while the number of clusters has no effect on
the performance of ppDBSCAN. Its clustering’s complexity solely
depends on the input data set’s size 𝑛.

4.3.5 Flexible Output and Post-Processing. Note that our protocol
is applicable for both the outsourcing scenario where one or more
(possibly malicious) data owners outsource computation to two
non-colluding semi-honest (cloud) servers as well as for two-party
applications (cf. §3.3 and §4.1). In both scenarios, the output can be
provided to a third party, one or multiple data owners, or one of
the servers depending on the use case.

Furthermore, the output of a clustering can flexibly be adapted to
the application without leaking intermediate results. For example,
the clustering can return a cluster label for each data record. Alter-
natively or additionally, it can return the average (i.e., centroid) or
medoid of each cluster, or the number of clusters and respective
cluster sizes.

Our secure two-party computation (S2PC) protocols for ppDB-
SCAN allow to realize each of these options as well as any further
post-processing in a secure and efficient way by simply defining
what is sent back to the respective parties that shall receive the
output and optionally securely evaluating a post-processing circuit
via S2PC.

4.4 Privacy-preserving TRACLUS
In this section, we provide a S2PC protocol for privacy-preserving
trajectory clustering. For trajectory clustering with our privacy-
preserving clustering protocol based on TRACLUS (cf. §3.1.2), we
assume that the data owners hold a horizontally split data set,
i.e., each data owner holds full trajectories.6 They locally run the
TRACLUS partitioning phase and outsource the clustering phase
by providing arithmetic secret-shares (cf. §B) of the line segments
to the two processing parties.

Simplified and Approximated Distance Measure. As described in
§3.1.2, the computation of the TRACLUS distance involves complex
operations like sine computations which are relatively expensive
in S2PC (cf. §3.1.2). In order to ensure data privacy and execute the
clustering phase in an efficient manner, we simplify this distance
calculation using an approximation. Afterwards, ppDBSCAN — as
presented in List. 3 — is executed.

As the Euclidean Distance (ED) is the most common measure
used for trajectory clustering [12], we propose to replace TRACLUS’
original distance with a combination of EDs. The perpendicular,
parallel, and angular distances are still partially taken into account
when using the EDs between each pair of points of the two line
segments. As already explained in §4.3.2, ED can be replaced by the
Squared Euclidean Distance (SED). Therefore, given line segment
𝐿𝑖 with start point 𝑠𝑖 = (𝑥𝑠𝑖 , 𝑦𝑠𝑖) and end point 𝑒𝑖 = (𝑥𝑒𝑖 , 𝑦𝑒𝑖) and
similar for line segment 𝐿𝑗 , our approximated distance measure
realized with arithmetic sharing for privacy-preserving TRACLUS
6Considering, e.g., the use case of collecting humanmovements trajectories for analysis
purposes related to the containment of COVID-19, this trajectory data is typically
collected by telecommunication providers such that assuming horizontally split data
is plausible [9].

(ppTRACLUS) is defined as:
𝑑𝑝𝑝𝑡𝑟𝑎𝑐 (𝐿𝑖 , 𝐿𝑗) =𝑆𝐸𝐷 (𝑠𝑖 , 𝑠 𝑗) + 𝑆𝐸𝐷 (𝑠𝑖 , 𝑒 𝑗)+

𝑆𝐸𝐷 (𝑒𝑖 , 𝑠 𝑗) + 𝑆𝐸𝐷 (𝑒𝑖 , 𝑒 𝑗) .
To summarize, the two processing parties first jointly compute

𝑑𝑝𝑝𝑡𝑟𝑎𝑐 and compared it then to 𝜖 ′ in order to check whether two
line segments are neighbors.7

5 EXPERIMENTAL EVALUATION
In this section, we present the experimental results of our ppDB-
SCAN and ppTRACLUS. We run the experiments with four public
data sets and one private real-world data set to show clustering
quality and to benchmark runtime and communication costs. Addi-
tionally, we compare to previous work on private K-means to show
the practicability of our ppDBSCAN.

5.1 Experimental Setup
Server Configuration. We implement our protocols using the
ABY framework [17] (cf. §3.3) which is written in C++ and uses
64-bit precision. The experiments are performed on two separate
servers each equipped with Intel Core i9-7960X CPUs with 2.8 GHz
and 128 GB RAM. As in an outsourcing scenario, the two servers
are well-connected over a 10 Gbit/s LAN with 0.2 ms RTT.
Scenario. As detailed in §4.1, ppDBSCAN can be run in an out-
sourcing or a 2PC scenario. Moreover, the data to be clustered can
be arbitrarily split among the data owners for ppDBSCAN. For
ppTRACLUS, we require a horizontal data splitting to enable each
data owner to locally execute the partitioning phase. In our bench-
marks, we secret-share and outsource all data records to the two
non-colluding servers to assess the efficiency and quality of our
ppDBSCAN and ppTRACLUS. This models an outsourcing scenario
with a single data owner, but we stress that the clustering (and
hence its efficiency and quality) is independent of the number of
data owner(s) and the data splitting between the data owner(s) in
the outsourcing scenario as well as of the data splitting between the
two parties in the 2PC scenario. It follows that our experimental
results are directly transferable to other scenarios and more data
owners as long as the data set size, the number of parameters, and
the number of clusters is equal to our reported setting.
Data Sets. For the evaluation of our private clustering protocols, we
use five data sets from different sources. Two are chosen based on
previous work on private K-means [35, 49] to evaluate and compare
the efficiency and practicality of our ppDBSCAN. Additionally, we
evaluate the clustering quality of our simplification of the original
TRACLUS distance with a real world data set that contains location
data extracted frommobile phones and two public data sets, namely
the Hurricane and the Deer data sets used in the original TRACLUS
paper [45].

• Lsun: The Lsun data set [68] in Fig. 4a was used in [35, 49]
for evaluating private K-means protocols. It contains 400 2-
dimensional data points. Its ground truth contains 3 clusters
with different variances and cluster distances. The clusters
have 200, 100, and 100 elements.

7We indicate the 𝜖 of ppTRACLUS with 𝜖′ to unambiguously differentiate it from the
𝜖2 used in ppDBSCAN.

(a) Lsun (b) S1

Figure 4: Ground truth of data sets Lsun and S1.

Table 1: Clustering quality evaluation.

Data Set K-means DBSCAN
Lsun 0.4386 1.0
S1 0.9254 0.9757

• S1: S1 [21] in Fig. 4b is a 2-dimensional synthetic data set
with 5 000 samples that can be split into 15 spherical Gaussian
clusters with between 300 and 350 elements. The clusters
have an overlap of 9%. The set was used in [49, 66] to evaluate
private K-mean protocols.

• Travel: This “synthetic" data set (not related to real indi-
viduals) is a 2-dimensional trajectory data corresponding to
location of people’s mobile phones. It has been created and
provided by Orange S.A.8, a major telecom provider, based
on anonymized indicators of real trajectories. It consists of
40 000 line segments.

• Hurricane: This data set [45] has 2-dimensional track data
of Atlantic hurricanes from 1950 to 2006. It has 608 trajecto-
ries with 18 343 line segments.

• Deer: This data set [45] corresponds to 2-dimensional move-
ments of deers in 1995. There exist 32 trajectories which
correspond to 20 033 line segments.

Encoding. The Lsun data set consists of rational numbers. Similarly
as in previous work [35], we scaled the data to an integer repre-
sentation with a factor of 106 to use efficient S2PC protocols on
integers [17]. The S1, Deer, Hurricane, and Travel data sets were
already represented by integers.

5.2 Clustering Quality
In the following, we compare the clustering quality of the output
of DBSCAN (which is exactly realized by ppDSCAN) to the results
of the well-known K-means algorithm on the data sets Lsun and
S1. Afterwards, we demonstrate that our simplified TRACLUS dis-
tance (cf. §4.4) provides a better clustering quality than the original
tripartite distance of TRACLUS (cf. §3.1.2) on our tested data sets.

5.2.1 Comparison between DBSCAN and K-means. As clustering
is an unsupervised ML technique, it is normally not possible to cal-
culate an accuracy, meaning the proportion of correct predictions/
classifications in supervised machine learning. However, Lsun and
8https://www.orange.fr

S1 are artificial data sets, created to benchmark machine learning
algorithms, so their ground truths are known. For this reason, we
are able to evaluate the clustering quality of the outputs of K-means
and DBSCAN with the Adjusted Rand Index (ARI, cf. §3.2) which is
a widely used external clustering quality measure [6, 70].

For a fair comparison, we provide both clustering algorithms
with optimal values for their parameters. For K-means, centroids are
initialized at random, and we provide the right amount of clusters
(𝐾 = 3/15). For DBSCAN, we choose the parameters as described
in §4.3.3: 𝜖 = 2 × 1011 and minPts = 4 with Lsun, 𝜖 = 2.25 × 109
and minPts = 50 with S1.

Note that we use the Squared Euclidean Distance for DBSCAN
such that the output of DBSCAN is equal to the output of ppDB-
SCAN. Thus, the insights derived from the clustering quality eval-
uation in this section are directly transferable to the clustering
quality of ppDSBCAN.

The results shown in Tab. 1 are averaged across 10 experiments.
DBSCAN finds a better partitioning than K-means for both data
sets. Especially for Lsun, DBSCAN performs significantly better
than K-means. This is easily explainable by the data distribution
of both data sets (cf. Fig. 4a and Fig. 4b). K-means cannot correctly
split Lsun, because it only detects convex clusters which works
relatively well for the mostly round shaped clusters in S1, but not
for the two rectangular shaped ones in Lsun.

5.2.2 Validation of Simplified and Approximated TRACLUS Dis-
tance. We compare the clustering quality of ppTRACLUS with the
original TRACLUS. As no ground truth is known for the trajectory
data sets Hurricane, Deer, and Travel, we rely for this on well es-
tablished internal clustering quality indices [6, 42]: the Silhouette
Coefficient (SC) [60], SCnoise, and Density-Based Clustering Valida-
tion (DBCV) [42] (cf. §3.2). We conduct experiments with various
values for 𝜖 ′ and minLns for the Hurricane data set [45], the Deer
data set [45], and the Travel data set. As in [45], the optimal values
for 𝜖 ′ and minLns are computed with simulated annealing. The 𝜖 ′
values differ for TRACLUS and ppTRACLUS because of the differ-
ent distance measures. Note that all 𝜖 ′ for an Experiment 𝑖 ∈ {1, 2}
result in the same entropy level in simulated annealing.

Tab. 2 contains the results for the Hurricane data set. In Ex-
periment 1, TRACLUS outputs one cluster less than ppTRACLUS.
Moreover, the number of elements marked as noise and the num-
ber of clusters are larger with ppTRACLUS than with the original
plaintext TRACLUS. Nevertheless, we observe that ppTRACLUS
outputs better results with respect to SC, SCnoise, and DBCV than
the original TRACLUS. Results for the Deer data are given in §D.1.

Tab. 3 contains the results of Experiment 1 of ppTRACLUS and
TRACLUS for the Travel data set. Tab. 6 in §D.1 contains the re-
sults of Experiment 2 of ppTRACLUS and TRACLUS for the Travel
data set. We notice the same behavior with respect to the quality
evaluation metrics as for the Hurricane and Deer data sets shown
in Tab. 2 and Tab. 5 in §D.1. In Experiment 1, the number of input
records marked as noise by ppTRACLUS is larger than the number
of elements marked as noise by the original plaintext TRACLUS.
However, when fine-tuning the values of 𝜖 ′ and minLns, it is possi-
ble to decrease the number of elements marked as noise (cf. Tab. 6
in §D.1 and §5.4 in [45]). Both algorithms output relatively few
clusters while this particular data set (illustrating peoples’ travel

https://www.orange.fr

Table 2: Clustering quality assessment for TRACLUS and ppTRACLUS on the Hurricane data set. For all scores larger values
are better (best marked in bold).

Data Set Score Experiment 1 Experiment 2
TRACLUS ppTRACLUS TRACLUS ppTRACLUS

Hurricane

(𝜖 ′, minLns) (24, 5) (5000, 5) (4, 5) (2250, 5)
of Clusters 2 3 11 13
Noise 129 150 597 645
SC 0.27 0.87 0.44 0.79
SCnoise 0.27 0.86 0.42 0.76
DBCV 0.72 0.97 0.64 0.76

Table 3: Results of Experiment 1 of the clustering quality as-
sessment for TRACLUS, ppTRACLUS, and ppTRACLUS’ on
the Travel data set. The best results are marked in bold.

Experiment 1
TRACLUS ppTRACLUS ppTRACLUS’

(𝜖 ′, minLns) (4200, 3) (450 × 106, 3) (450 × 106, 3)
of Clusters 1 2 48
Noise 796 13092 13506
SC N/A 0.83 0.98
SCnoise N/A 0.56 0.65
DBCV N/A 0.67 0.37

patterns) may need more precision (i.e., more clusters). One illus-
trative example is the identification of typical routes between two
locations A and B. In this example and for this particular data set,
ppTRACLUS groups all line segments in one cluster because of its
expansion method (cf. Line 19 of List. 3). We propose to reduce
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to 1 in order to take only the first-level neighbors
into account and to obtain a larger variety of clusters (containing
trajectories that reach B by passing through different locations
𝐿𝑖 , 0 ≤ 𝑖 ≤ 𝑚𝑎𝑥𝐿𝑜𝑐) and call this adaption ppTRACLUS’. We run
the same two experiments for ppTRACLUS’. Our results show that
the number of clusters increases with good results for SC, SCnoise,
and DBCV.

To summarize, our simplified and approximated distance mea-
sure 𝑑𝑝𝑝𝑡𝑟𝑎𝑐 tends to create a greater number of clusters (resulting
in smaller clusters in average) and marks more elements as out-
liers. Nevertheless, our quality evaluation with well-established
clustering quality indices surprisingly gives even better results for
the three analyzed data sets showing that its performance is com-
parable to the original tripartite distance measure of TRACLUS.

Intuition for better Clustering Quality of ppTRACLUS. Intuitively,
our approximated distance𝑑𝑝𝑝𝑡𝑟𝑎𝑐 summarizes all possible location-
based differences between two line segments while the original
tripartite distance explicitly focuses on horizontal, vertical, and
angular distance. Hence, the original distance might unnecessarily
amplify differences of the three different distance types although
those might be partially equalized when considering the combined
effect as done by 𝑑𝑝𝑝𝑡𝑟𝑎𝑐 . It follows that our approximation might
generalize better than the original which could be the reason for the

better clustering results. To conclude, ppTRACLUS with our𝑑𝑝𝑝𝑡𝑟𝑎𝑐
offers efficient privacy protection with high clustering quality.

5.3 Runtime Comparison and Evaluation
In this section, we compare the runtime of our ppDBSCAN to two
state-of-the-art fully privacy-preserving clustering schemes pre-
sented in [35, 49]. These two works focus on the K-means algorithm
which is significantly less powerful than DBSCAN and, thus, often
yields worse clustering results than DBSCAN (cf. §1). We do on
purpose not experimentally compare to the previous works on pri-
vate DBSCAN as all of these works leak intermediate information
whereas our protocol does not (cf. §2) . Moreover, none of these
works was implemented and experimentally evaluated.

Tab. 4 contains the runtimes of two state-of-the-art private K-
means protocols [35, 49] with the Lsun data set and of [49] with the
S1 data set. Both works use a better network than we do: [35] uses
a single Intel i7-3770 with 3.4 GHz and 20 GB RAM. [49] ran their
experiments locally on an Intel Core i7, 2.6 GHz with 12 GB RAM
over a simulated LAN with 10 Gbit/s and 0.02 ms RTT. For both
works, we present the best achieved runtimes, which is in [49] an
exact calculation with 15/30 iterations. [35] simplifies the original
K-means algorithm to get rid of divisions with encrypted denomi-
nators that are originally needed to update the centroids as they
are expensive to realize with HE. Their fastest approximation needs
15.47 h for one iteration but it takes 40 iterations until convergence
and sacrifices some accuracy for this speed-up. Our runtime for
Lsun is averaged across 10 experiments. Because of time constraints,
we approximate the overall runtime of our protocol for the S1 data
set by multiplying the average runtime of one iteration by the data
set size and adding the average distance calculation time. We use
the same DBSCAN parameters as in §5.2.

Table 4: Runtime comparison of private clustering schemes.

Algorithm Privacy-preserving K-means ppDBSCAN
Data Set Jäschke et al. [35] Mohassel et al. [49] This work
Lsun 25.79 days 22.21𝑠 420.72𝑠
S1 - 1, 472.60𝑠 620, 912.70𝑠

Tab. 4 shows that our ppDBSCAN is about 19x (for Lsun) and
422x (for S1) slower than the private K-means protocol of [49], but
more than 5 000x faster than the HE-based private K-means protocol
of [35] on the small data set Lsun. While in K-means optimizations
like batching [49] reduce runtime, making DBSCAN fully private

102 103

101

102

103

Data Set Size n (log scale)

Ru
nt
im

e
in

Se
co
nd

s(
lo
g
sc
al
e)

Total ppTRACLUS

Total ppDBSCAN

Clustering

Appr. TRACLUS Dist.

Sq. Euclidean Dist.

102 103
102

103

104

105

Data Set Size n (log scale)

Co
m
m
un

ic
at
io
n
in

M
B
(lo

g
sc
al
e) Total ppTRACLUS

Total ppDBSCAN

Clustering

Appr. TRACLUS Dist.

Sq. Euclidean Dist.

Figure 5: Runtimes and communication of our ppDBSCAN
and ppTRACLUS.

adds additional computation compared to the plaintext algorithm.
Again, we want to emphasize that DBSCAN is more complex than K-
means but also more powerful since it can detect arbitrarily shaped
clusters, automatically determine the required number of clusters,
and handle noise, which results in a higher clustering quality.

5.4 Scalability
Although DBSCAN has an inherent worst case complexity of O(𝑛2),
it is one of the most used clustering algorithms because of its fa-
vorable properties. Making it private inherently implies additional
overhead. Still, our protocol is practical as shown in Fig. 5 (exact
numbers are provided in §D). The complexities for computing the
two distances scale quadratically in the data set size, while the
clustering has a low cubic complexity.

The squared Euclidean distance (SED) is applied on 2-dimensional
data, 𝑑𝑝𝑝𝑡𝑟𝑎𝑐 on 4-dimensional line segments. maxIterations is set
to 4. As discussed in §4.3.4, an increase of the inputs’ dimension
will only affect the runtime and communication of the distance
calculation, but not of the clustering process. The distance calcu-
lation scales linearly in the dimensionality of the input records.
Moreover, a larger number of clusters does not change our clus-
tering and therefore also not the clustering’s costs. To summarize,
the private clustering component of ppDBSCAN is independent of

the number of clusters and the data dimensionality. In contrast,
private K-means [35, 49] requires to newly calculate the distances
to the centroids in every iteration, such that its efficiency is heavily
affected by an (1) increased input dimension, (2) a higher number of
clusters (i.e., more centroids), and (3) it leaks the number of clusters
𝐾 by design.

6 CONCLUSION
In this work, we presented the first fully private DBSCAN based on
secure two-party computation. We designed efficient protocols for
ppDBSCAN and introduced a partial parallelization for the cluster-
ing. Furthermore, we showed that our protocols can be extended
to other density-based clustering algorithms by introducing the
first private trajectory clustering which has interesting real-world
applications for financial time series forecasts or analyzing people’s
movements in a pandemic. We designed a S2PC-friendly approxi-
mated distance measure for trajectories and evaluated its quality
showing that it can even offer a better clustering quality than the
original TRACLUS distance. Finally, we demonstrated ppDBSCAN’s
efficiency in terms of runtime and communication with benchmarks
on real-world and public data sets and compared its overhead to
state-of-the-art private K-means [35, 49] whose limitations we over-
come.

ACKNOWLEDGMENTS
This project received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement no. 850990 PSOTI) and from
the PAPAYA project funded by the European Union’s Horizon 2020
research and innovation program (grant agreement no. 786767). It
was co-funded by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 CROSSING/236615297 and GRK 2050 Privacy & Trust/
251805230, and by the German Federal Ministry of Education and
Research and the Hessen State Ministry for Higher Education, Re-
search and the Arts within ATHENE.

REFERENCES
[1] M. Ahmed, A. N. Mahmood, and Md. R. Islam. 2016. A Survey of Anomaly Detec-

tion Techniques in Financial Domain. In Future Generation Computer Systems.
[2] U. M. Aïvodji, K. Huguenin, M. Huguer, and M. Killijian. 2018. Sride: A Privacy-

Preserving Ridesharing System. In WISEC. ACM.
[3] N. Almutairi, F. Coenen, and K. Dures. 2018. Secure Third Party Data Cluster-

ing Using Φ Data: Multi-User Order Preserving Encryption and Super Secure
Chain Distance Matrices. In International Conference on Innovative Techniques
and Applications of Artificial Intelligence.

[4] A. Amirbekyan and V. Estivill-Castro. 2006. Privacy Preserving DBSCAN for
Vertically Partitioned Data. In Intelligence and Security Informatics. Springer.

[5] I. V. Anikin and R. M. Gazimov. 2017. Privacy Preserving DBSCAN Clustering
Algorithm for Vertically Partitioned Data in Distributed Systems. In International
Siberian Conference on Control and Communications. IEEE.

[6] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. PéRez, and I. Perona. 2013. An
Extensive Comparative Study of Cluster Validity Indices. Pattern Recognition
(2013).

[7] G. Asharov, Y. Lindell, T. Schneider, andM. Zohner. 2013. More Efficient Oblivious
Transfer and Extensions for Faster Secure Computation. In CCS. ACM.

[8] M.-F. Balcan, T. Dick, Y. Liang, W. Mou, and H. Zhang. 2017. Differentially Private
Clustering in High-Dimensional Euclidean Spaces. In International Conference on
Machine Learning (ICML). PMLR.

[9] A. Bampoulidis, A. Bruni, L. Helminger, D. Kales, C. Rechberger, and R. Walch.
2020. Privately Connecting Mobility to Infectious Diseases via Applied Cryptog-
raphy. https://eprint.iacr.org/2020/522.

[10] D. Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization. In
CRYPTO. Springer.

https://eprint.iacr.org/2020/522

[11] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. 2013. Efficient Garbling
from a Fixed-Key Blockcipher. In S&P. IEEE.

[12] P. Besse, B. Guillouet, J.-M. Loubes, and F. Royer. 2016. Review & Perspective for
Distance Based Clustering of Vehicle Trajectories. In Transactions on Intelligent
Transportation Systems. IEEE.

[13] Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Helen Möllering, Melek Önen,
and Thomas Schneider. 2021. Privacy-preserving Density-based Clustering. In
ASIACCS.

[14] P. Bunn and R. Ostrovsky. 2007. Secure Two-Party K-means Clustering. In CCS.
ACM.

[15] H. Chaudhari, R. Rachuri, and A. Suresh. 2020. Trident: Efficient 4PC Framework
for Privacy Preserving Machine Learning. In NDSS. The Internet Society.

[16] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. Razenshteyn, and M. S. Riazi.
2020. SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search. In
USENIX Security. USENIX.

[17] D. Demmler, T. Schneider, and M. Zohner. 2015. ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation. In NDSS. The Internet Society.

[18] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. 2009.
Privacy-Preserving Face Recognition. In PoPETS. Springer.

[19] Z. Erkin, J. R. Troncoso-pastoriza, R. L. Lagendijk, and F. Perez-Gonzalez. 2013.
Privacy-preserving Data Aggregation in Smart Metering Systems: An Overview.
In IEEE Signal Processing Magazine.

[20] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. 1996. A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In SIGKDD
Conference on Knowledge Discovery and Data Mining. ACM.

[21] P. Fränti and S. Sieranoja. 2018. K-means Properties on Six Clustering Benchmark
Datasets. In Applied Intelligence. Springer.

[22] F. D. Garcia and B. Jacobs. 2010. Privacy-friendly Energy-metering via Homomor-
phic Encryption. In International Workshop on Security and Trust Management.
Springer.

[23] C. Gentry. 2009. A fully Homomorphic Encryption Scheme. Stanford University.
[24] Z. Gheid and Y. Challal. 2016. Efficient and Privacy-Preserving K-means Cluster-

ing for Big Data Mining. In TrustCom/BigDataSE/ISPA. IEEE.
[25] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game.

In STOC. ACM.
[26] Q. Guo, X. Lu, Y. Gao, J. Zhang, B. Yan, D. Su, A. Song, X. Zhao, and G. Wang. 2017.

Cluster Analysis: A New Approach for Identification of Underlying Risk Factors
for Coronary Artery Disease in Essential Hypertensive Patients. In Scientific
Reports.

[27] P. Hallgren, C. Orlandi, and A. Sabelfeld. 2017. PrivatePool: Privacy-Preserving
Ridesharing. In Computer Security Foundations (CSF). IEEE.

[28] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi. 2012. Practically
Efficient Multi-party Sorting Protocols from Comparison Sort Algorithms. In
International Conference on Information Security and Cryptology (ICISC). Springer.

[29] M. Huang, Q. Bao, Y. Zhang, and W. Feng. 2019. A Hybrid Algorithm for Fore-
casting Financial Time Series Data Based on DBSCAN and SVR. In Information.

[30] L. Hubert and P. Arabie. 1985. Comparing Partitions. In Journal of Classification.
Springer.

[31] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. 2003. Extending Oblivious Transfers
Efficiently. In CRYPTO. Springer.

[32] G. Jagannathan, K. Pillaipakkamnatt, R. Wright, and D. Umano. 2010.
Communication-efficient Privacy-Preserving Clustering. In Transactions on Data
Privacy. Springer.

[33] G. Jagannathan and R. N. Wright. 2005. Privacy-Preserving Distributed k-Means
Clustering over Arbitrarily Partitioned Data. In SIGKDD International Conference
on Knowledge Discovery in Data Mining. ACM.

[34] K. Järvinen, H. Leppäkoski, E. S. Lohan, P. Richter, T. Schneider, O. Tkachenko,
and Z. Yang. 2019. PILOT: Practical Privacy-Preserving Indoor Localization using
OuTsourcing. In EuroS&P. IEEE.

[35] A. Jäschke and F. Armknecht. 2018. Unsupervised Machine Learning on En-
crypted Data. In SAC. Springer.

[36] S. Jha, L. Kruger, and P. McDaniel. 2005. Privacy Preserving Clustering. In
ESORICS. Springer.

[37] D. Jiang, A. Xue, S. Ju, W. Chen, and H. Ma. 2008. Privacy-preserving DBSCAN
on Horizontally Partitioned Data. In International Symposium on IT in Medicine
and Education. IEEE.

[38] S. Kamara and M. Raykova. 2011. Secure Outsourced Computation in a Multi-
Tenant Cloud. In IBM Workshop on Cryptography and Security in Clouds.

[39] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by Simulated
Annealing. In SCIENCE.

[40] V. Kolesnikov and T. Schneider. 2008. Improved Garbled Circuit: Free XOR Gates
and Applications. In ICALP. Springer.

[41] D. Kopanaki, N. Pelekis, A. Gkoulalas-Divanis, M. Vodas, and Y. Theodoridis.
2012. A Framework for Mobility Pattern Mining and Privacy- Aware Querying
of Trajectory Data. In Hellenic Data Management Symposium.

[42] H.-P. Kriegel and M. Pfeifle. 2005. Density-Based Clustering of Uncertain Data.
In SIGKDD Conference on Knowledge Discovery and Data Mining. ACM.

[43] K. A. Kumar and C. P. Rangan. 2007. Privacy Preserving DBSCAN Algorithm for
Clustering. In Advanced Data Mining and Applications. Springer.

[44] K. Kursawe, G. Danezis, and M. Kohlweiss. 2011. Privacy-friendly Aggregation
for the Smart-Grid. In PETS. Springer.

[45] J.-G. Lee, J. Han, and K.-Y. Whang. 2007. Trajectory Clustering: a Partition-and-
Group Framework. In SIGMOD International Conference on Management of Data.
ACM.

[46] D. Liu, E. Bertino, and X. Yi. 2014. Privacy of Outsourced K-Means Clustering. In
ASIACCS. ACM.

[47] J. Liu, L. Xiong, J. Luo, and J. Z. Huang. 2013. Privacy Preserving Distributed
DBSCAN Clustering. In Transactions on Data Privacy.

[48] P. Mohassel and P. Rindal. 2018. ABY3: AMixed Protocol Framework for Machine
Learning. In CCS. ACM.

[49] P. Mohassel, M. Rosulek, and N. Trieu. 2020. Practical Privacy-Preserving K-
means Clustering. In PoPETS. Sciendo.

[50] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J. Sander. 2014.
Density-based clustering validation. In International Conference on Data Mining.
SIAM.

[51] M. Naor and B. Pinkas. 1999. Oblivious Transfer and Polynomial Evaluation. In
STOC. ACM.

[52] L. Ni, C. Li, X. Wang, H. Jiang, and J. Yu. 2018. DP-MCDBSCAN: Differential
Privacy Preserving Multi-Core DBSCAN Clustering for Network User Data. In
IEEE Access. IEEE.

[53] E. Pagnin, G. Gunnarsson, P. Talebi, C. Orlandi, and A. Sabelfeld. 2019. TOPPool:
Time-aware Optimized Privacy-Preserving Ridesharing. In PoPETS. Sciendo.

[54] N. G. Pavlidis, V. P. Plagianakos, D. K. Tasoulis, andM. N. Vrahatis. 2006. Financial
Forecasting through Unsupervised Clustering and Neural Networks. Operational
Research (2006).

[55] N. Pelekis, A. Gkoulalas-Divanis, M. Vodas, A. Plemenos, D. Kopanaki, and Y.
Theodoridis. 2012. Private-HERMES: A Benchmark Framework for Privacy-
Preserving Mobility Data Querying and Mining Methods. In Extending Database
Technology. ACM.

[56] G. Punj and D. W. Stewart. 1983. Cluster Analysis in Marketing Research: Review
and Suggestions for Application. In Journal of Marketing Research.

[57] Y. Qi and M. J. Atallah. 2008. Efficient Privacy-preserving K-nearest Neighbor
Search. In International Conference on Distributed Computing Systems. IEEE.

[58] M. S. Rahman, A. Basu, and S. Kiyomoto. 2017. Towards Outsourced Privacy-
Preserving Multiparty DBSCAN. In Pacific Rim International Symposium on De-
pendable Computing. IEEE.

[59] D. Rathee, T. Schneider, and K. K. Shukla. 2019. Improved Multiplication Triple
Generation over Rings via RLWE-Based AHE. In CANS. Springer.

[60] P. Rousseeuw. 1987. Silhouettes: A Graphical Aid to the Interpretation and Vali-
dation of Cluster Analysis. In Journal of Computational and Applied Mathematics.

[61] S. Samet, A. Miri, and L. Orozco-Barbosa. 2007. Privacy Preserving K-means
Clustering in Multi-Party Environment. In SECRYPT.

[62] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. 1998. Density-Based Clustering in
Spatial Databases: The Algorithm GDBSCAN and Its Applications. In SIGKDD
Conference on Knowledge Discovery and Data Mining. ACM.

[63] A. Sangers, M. van Heesch, T. Attema, T. Veugen, M. Wiggerman, J. Veldsink,
O. Bloemen, and D Worm. 2019. Secure Multiparty PageRank Algorithm for
Collaborative Fraud Detection. In FC. Springer.

[64] U. Stemmer. 2020. Locally Private K-means Clustering. In SIAM Symposium on
Discrete Algorithms. ACM.

[65] D. Su, J. Cao, N. Li, E. Bertino, and H. Jin. 2016. Differentially Private K-Means
Clustering. In Conference on Data and Application Security and Privacy. ACM.

[66] D. Su, J. Cao, N. Li, E. Bertino, M. Lyu, and H. Jin. 2017. Differentially Private K-
Means Clustering and a Hybrid Approach to Private Optimization. In Transactions
on Privacy and Security. ACM.

[67] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion, W. Lueks, T.
Stadler, A. Pyrgelis, D. Antonioli, et al. 2020. Decentralized Privacy-Preserving
Proximity Tracing. IEEE Data Engineering Bulletin (2020).

[68] A. Ultsch. 2005. Clustering wih som: U*c. In Workshop on Self-Organizing Maps.
[69] J. Vaidya and C. Clifton. 2003. Privacy-Preserving k-Means Clustering over

Vertically Partitioned Data. In SIGKDD Conference on Knowledge Discovery and
Data Mining. ACM.

[70] N. X. Vinh, J. Epps, and J. Bailey. 2010. Information Theoretic Measures for
Clusterings Comparison: Variants, Properties, Normalization and Correction for
Chance. The Journal of Machine Learning Research (2010).

[71] W.Wu, J. Liu, H.Wang, J. Hao, andM. Xian. 2020. Secure and Efficient Outsourced
K-means Clustering using Fully Homomorphic Encryption with Ciphertext Pack-
ing Technique. In Transactions on Knowledge and Data Engineering. IEEE.

[72] W. M. Wu and H. K. Huang. 2015. A DP-DBScan Clustering Algorithm based on
Differential Privacy Preserving. In Computer Engineering and Science.

[73] W. Xu, L.. Huang, Y. Luo, Y.. Yao, and W. W. Jing. 2007. Protocols for Privacy-
Preserving DBSCAN Clustering. In Int. Journal of Security and Its Applications.

[74] A. C. Yao. 1986. How to Generate and Exchange Secrets. In FOCS. IEEE.

[75] S. Zahur, M. Rosulek, and D. Evans. 2015. Two Halves Make a Whole - Reducing
Data Transfer in Garbled Circuits Using Half Gate. In EUROCRYPT. Springer.

A PLAINTEXT DBSCAN CLUSTERING
List. 4 shows the plaintext DBSCAN clustering as described in §3.1.
For each unclassified data record 𝑒𝑙𝑒𝑚 (i.e., it was not assigned
to a cluster yet) of the input data set, it is checked if 𝑒𝑙𝑒𝑚 has at
least minPts neighbors (i.e., at least minPts elements in a radius
of 𝜖 , cf. Line 9). If this is the case, a new cluster 𝑐 containing 𝑒𝑙𝑒𝑚
and its neighbors is created in Lines 10 to 12. Otherwise, 𝑒𝑙𝑒𝑚 is
considered as outlier and marked as noise (cf. Line 14). The func-
tion 𝑒𝑥𝑝𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (..) recursively iterates through all neighbors
of 𝑒𝑙𝑒𝑚 and the neighbors of the neighbors to check if they are
unclassified and core elements (cf. Line 21). If this is the case, they
will also be added to cluster 𝑐 .

Listing 4: Plaintext DBSCAN Clustering
1 Input : input , eps , minPts
2 Output : c l u s t e r s
3
4 dbscan (vec to r data , eps , minPts) :
5 vec to r c l u s t e r s
6 for each elem in input :
7 i f (elem . i s U n c l a s s i f i e d ()) : / / no c l u s t e r a s s i g n e d
8 ne ighbors = elem . getNeighbors ()
9 i f (| ne ighbors | >= minPts) : / / b i g enough ?
10 c = new C lu s t e r ()
11 c l u s t e r s . push (c)
12 expandClus ter (elem , neighbors , eps , minPts , c)
13 else : / / n o i s e
14 elem [i] . markAsNoise ()
15 return c l u s t e r s
16
17 expandClus ter (p , queue , eps , minPts , c) :
18 c . add (p)
19 while (queue . notEmpty ()) :
20 q = queue . pop ()
21 i f (q . i s U n c l a s s i f i e d () && | q . ge tNeighbors () | > minPts) :
22 queue . append (q . ge tNeighbors ())
23 i f (q . i s U n c l a s s i f i e d () | | q . i sNo i s e ()) :
24 c . add (q)

B S2PC TECHNIQUES
Garbled Circuits. Yao’s Garbled Circuits (GC) [74] allow to se-

curely evaluate Boolean circuits between two parties. One party,
called garbler, encrypts the gates of the circuit using random keys
for each wire and sends it (now called garbled circuit) together with
the keys associated to his inputs to the other party, called evaluator.
The evaluator receives the keys associated to his inputs via Obliv-
ious Transfer (OT) [7, 31, 51] from the garbler. After decrypting
the garbled circuit, the parties jointly decode the output keys. ABY
includes state-of-the-art optimizations like Free-XOR [40], fixed-
key AES [11], and Half-Gates [75]. XOR gates are for free and AND
gates cost 2^ bits of communication in an input-independent setup
phase, where ^ = 128 is the symmetric security parameter [17].

Arithmetic Sharing. Arithmetic sharing uses additive shares of
𝑙-bit integers in the ring Z2𝑙 . To share the secret value 𝑥 , the data
owner (who can be one of the parties) chooses a random value
𝑟 ∈𝑅 Z2𝑙 and sets ⟨𝑥⟩𝐴𝑖 = 𝑥−𝑟 and ⟨𝑥⟩𝐴

𝑖−1 = 𝑟 . Party 𝑃𝑖 receives share
⟨𝑥⟩𝐴

𝑖
and party 𝑃𝑖−1 gets ⟨𝑥⟩𝐴𝑖−1. When provided with both shares,

any party can reconstruct the secret by addition of the shares. While
secure addition can be executed locally, secure multiplication with

arithmetic shares requires interaction andmultiplication triples [10]
that can be efficiently precomputed with OTs [17] or homomorphic
encryption [59].

Conversions. Converting an Arithmetic share to Yao sharing
(A2Y) costs 6𝑙^ communication bits and 12𝑙 AES operations [17].
Yao to Arithmetic (Y2A) sharing conversion costs 𝑙^ + (𝑙2 + 𝑙)/2
and 6𝑙 AES operations. Both conversions require two messages. 𝑙 is
the bit-length of the Arithmetic share.

C SECURITY DISCUSSION
In this section, we sketch why ppDBSCAN (§4.3) and ppTRACLUS
(§4.4) are privacy-preserving, i.e., a semi-honest adversary learns
nothing beyond what can be inferred from the output of the proto-
cols. Generally, the security of ppDBSCAN and ppTRACLUS follows
directly from the provable security of the used S2PC techniques
(cf. §B): Yao’s Garbled circuits (GC) [74] and Arithmetic sharing [25].

At the beginning of the protocol, the data owners secret-share
their input data records among them (2PC) or among two non-
colluding parties (Outsourcing [38]). Hence, those have only access
to indistinguishable random secret-shares that do not leak any-
thing about the input data. Parameters can similarly be input as
random secret-shares that do not leak any information. In the first
step, the distance calculation (cf. §4.3.2 for ppDBSCAN and §4.4 for
ppTRACLUS), no secret-shares are opened and only conversions
between Arithmetic sharing and Yao’s GC are run which are prov-
ably secure [17]. Similar reasoning applies for the second phase, the
clustering (cf. §4.3), if𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is set to the data set size 𝑛. To
enhance efficiency,𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 can be fixed or it can be checked
in a privacy-preserving manner using secure computation if the
vector 𝑒𝑙𝑒𝑚.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 has changed. This, however, leaks one bit of
information implying some information about the data distribution
(e.g., how elongated clusters can be).

To summarize, ppDBSCAN and ppTRACLUS can be instantiated
fully privacy-preserving such that all information remain secret-
shared during the execution of the entire protocol.

D BENCHMARK RESULTS
In this section, we provide more details and additional results of
our benchmarks of ppDBSCAN and ppTRACLUS.

D.1 Additional Experiments for Clustering
Quality of ppTRACLUS

Tab. 5 presents the results of TRACLUS and ppTRACLUS on the
Deer data set. It contains the number of clusters created from the
Deer data set which are equal with TRACLUS and ppTRACLUS.
When only one cluster is found, SC and DBCV cannot be computed.
Nevertheless, having only one cluster does not necessarily mean
that the quality of the clustering algorithm is low. It simply says
that the algorithm found only one group of similar elements.

Tab. 6 contains the results of Experiment 2 of TRACLUS, ppTR-
ACLUS, and ppTRACLUS’ on the Travel data set.

Table 5: Clustering quality assessment for TRACLUS and ppTRACLUS on the Deer data set. For all scores larger values are
better (best marked in bold).

Data Set Score Experiment 1 Experiment 2
TRACLUS ppTRACLUS TRACLUS ppTRACLUS

Deer

(𝜖 ′, minLns) (400, 3) (1 × 106, 3) (282, 3) (550 × 103, 3)
of Clusters 1 1 2 2
Noise 1 480 20 1333
SC N/A N/A 0.089 0.36
SCnoise N/A N/A 0.089 0.34
DBCV N/A N/A 0.47 0.79

Table 6: Results of Experiment 2 of the clustering quality as-
sessment for TRACLUS, ppTRACLUS, and ppTRACLUS’ on
the Travel data set. The best results are marked in bold.

Experiment 2
TRACLUS ppTRACLUS ppTRACLUS’

(𝜖 ′, minLns) (47 × 103, 3) (13.5 × 109, 3) (13.5 × 109, 3)
of Clusters 1 1 2
Noise 0 359 361
SC N/A N/A 0.82
SCnoise N/A N/A 0.81
DBCV N/A N/A 0.98

D.2 Runtime and Communication Costs
Tab. 7 contains the runtimes (in seconds) and Tab. 8 contains the
communication costs (in MB) of the SED, the approx. distance of
TRACLUS, and clustering averaged over 10 experiments. The SED
distance is applied on 2-dimensional data, the approx. TRACLUS
distance on 4-dimensional line segments. maxIterations is set to 4.

Table 7: Runtimes for ppDBSCAN/ppTRACLUS.

Runtimes (s)
Data Set
Size n

Squared
Euclidean
Distance

Appr.
TRACLUS-
Distance

Density-
based

Clustering
100 2.36 4.36 10.9
200 8.04 14.82 58.43
300 17.35 28.94 171.12
400 29.03 45.39 391.69
500 44.17 64.98 750.284
600 61.04 86.91 1317.70
700 79.76 113.07 2043.01
800 102.99 144.09 2970.52
900 125.82 177.48 4187.54
1000 157.07 208.92 5682.425

Table 8: CommunicationCosts for ppDBSCAN/ppTRACLUS.

Communication (MB)
Data Set
Size n

Squared
Euclidean
Distance

Appr.
TRACLUS-
Distance

Density-
based

Clustering
100 144 328 460
200 575 1317 3566
300 1294 2968 11912
400 2300 5280 28090
500 3594 8253 54694
600 5176 11889 94315
700 7044 16185 149548
800 9201 21143 222983
900 11645 26762 317214
1000 14376 33043 434835

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Clustering
	3.2 Clustering Quality Indices
	3.3 Secure Two-Party Computation

	4 Privacy-preserving Density-based Clustering
	4.1 Application Scenarios
	4.2 Notation
	4.3 Privacy-preserving DBSCAN
	4.4 Privacy-preserving TRACLUS

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Clustering Quality
	5.3 Runtime Comparison and Evaluation
	5.4 Scalability

	6 Conclusion
	Acknowledgments
	References
	A Plaintext DBSCAN Clustering
	B S2PC Techniques
	C Security Discussion
	D Benchmark Results
	D.1 Additional Experiments for Clustering Quality of ppTRACLUS
	D.2 Runtime and Communication Costs

