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Abstract

Contact tracing has emerged as a powerful and effective measure to curb the spread of
contagious diseases. It is a robust tool, but on the downside, it possesses a risk of privacy
violations as contact tracing requires gathering a lot of personal information. So there is
a need for a cryptographic primitive that obfuscate the personal data of the user. Taking
everything into account, private set intersection seems to be the natural choice to address
the problem. Nearly all of the existing PSI protocols are relying on the number theoretic
assumption based hard problems. However, these problems are not secure in quantum
domain. As a consequence, it becomes essential to designing PSI that can resist quantum
attack and provide long-term security. One may apply quantum cryptography to develop
such PSI protocol. This paper deals with the design of PSI using quantum cryptography
(QC), where the security depends on the principles of basic quantum mechanics. Our
scheme achieves long-term security and remains secure against quantum attacks due to the
use of QC. As opposed to the existing quantum PSI protocols, the communication and
computation costs of our scheme are independent of the size of universal set. In particular,
the proposed protocol achieves optimal communication and computation costs in the
domain of quantum PSI. Moreover, we require only single photon quantum resources and
simple single-particle projective measurements, unlike most of the existing quantum PSI
protocols.

Keywords: Contact Tracing; Private Set Intersection; Quantum Communication; Quan-
tum Computation; Long-Term Security

1 Introduction

The Covid-19 pandemic has brought to the table an unprecedented task for researchers world-
wide to find solutions to curb the virus’s spread. Contact tracing has emerged as an important
mitigation tool for health authorities to fight the outbreaks of highly contagious diseases like
Covid-19, Ebola, and SARS. Contact tracing is a powerful countermeasure that can be utilized
to control the spread of infection.
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In contact tracing, a centralized credible authority identifies and assesses people exposed to
a contagious disease to put a break over the further transmission of the disease in the community.

It requires recording and measuring physical contiguity among individuals to ensure that
when one person reports infection, it is possible to mark all other persons who have been close
to that person during an appropriate period in the past and warn them about the potential
exposure.

On the one hand, it helps to alert the users who have been in close contact with the
infected persons, and in the meantime, it also allows health authorities to take proper actions
like isolating the contacts and doing early treatment to break the chains of transmission.

When done systematically and ethically, contact tracing transpires as a robust tool in the
fight against pandemic and contagious diseases. However, it has its own downsides as contact
tracing requires gathering personal information of citizens, such as geographical location or
contact numbers which raises ethical issues and serious privacy violations. It has motivated the
cryptographic community to come up with novel ideas for private contact tracing.

If contact tracing is employed without proper deliberation and careful examination, it can
turn out to be a surveillance tool that can damage and compromise the user’s privacy.

The goal should be that computations over private data is kept as low as possible. It also
needs to be ensured that a corrupt client cannot learn more private information than what is
intended to be revealed.

This gives a natural impulse for a cryptographic primitive that would allow the obfuscation
of private information of individuals. Cryptography techniques like private set intersections
(PSI) can help alleviate privacy concerns. PSI is a cryptographic technique that allows parties
to exchange datasets (contact numbers, geographical locations etc.) without revealing the actual
data to each other.

Involved parties can compute the intersection securely without any concern of privacy
violations. Private Set Intersection(PSI) will allow a person to determine if the data they
gathered matches the dataset of diagnosed patients without revealing their private information
to the server. Our protocol enables the user to check if their contact history dataset matches
the dataset of diagnosed patients without disclosing their personal information to the server. In
addition to that client would then only learn the intersection, nothing more than that. As we
can see, PSI provides a powerful solution when it comes to private contact tracing and address
the issue of privacy violation and data leakage efficiently.

In the domain of classical cryptography, several constructions of PSI have been proposed [1–
3, 7, 10, 13, 15–18, 20, 25–29]. Most of them are depending on the number theoretic assumption
based hard problems. However, due to Shor’s algorithm [24], these hard problems do not remain
secure in quantum domain.

Moreover, the issue of long-term security is not resolved by the existing classical cryptosys-
tem. As a consequence, existing classical cryptosystem becomes a threat not only for present
but also for future in several real life applications. For instance, sensitive information (such
as electronic health records, government documents) should be stored securely for a long pe-
riod. However, there is a possibility of loosing long-term security during the transmission of
classical encrypted version of those data through public channel. This is due to the fact that
during the transmission, adversary may save encrypted data and it will wait for the develop-
ment of efficient classical algorithms or quantum computers. Once efficient classical algorithms
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or quantum computers come into market, the adversary can decrypt the data which were saved
in encrypted form during transmission. In other words, confidentiality of sensitive information
may have a very limited lifespan. Thereby, suitable replacement is required to overcome these
security threats.

One may think post-quantum cryptography (PQC) as an appropriate candidate since it
provides quantum security with respect to the existing classical or quantum algorithms. How-
ever, it does not provide long-term security as in future it may be possible to develop some
quantum or classical algorithms for breaking the hard problems of PQC.

On the contrary, by the laws of quantum physics, quantum cryptography (QC) provides
long-term security against an eavesdropper with unlimited computational power and remains
secure against quantum computer. Hence, it is essential to employ QC in the construction of
privacy preserving protocols, particularly in PSI protocols.

Shi et al. [22] developed first quantum PSI protocol. In the following, Cheng et al. [5]
showed that client’s query can be manipulated by a dishonest server in the work of [22] and
hence fairness is not preserved in [22]. Although a fully trusted passive third party (TP) is
involved in [22] to achieve fairness, still the existence of fully trusted TP is impossible in real
life. Later, set member decision protocol of [23] was extended by Maitra [19] to develop a
quantum PSI. Recently, [6] designed a quantum PSI by using the asymmetric key distribution
of [9].

Our Contribution: In this work, we concentrate ourselves in the design and analysis of
unconditionally secure two-party quantum private set intersection protocol QuPSI. We then
investigate the application of the proposed QuPSI in the context of contact tracing. In order
to design the proposed scheme, we have used the asymmetric key distribution of [9] and
Bloom filter [4] as the building blocks. The design of QuPSI protocol allows two entities, each
holding a dataset, to evaluate the intersection of datasets privately without disclosing the
actual data. Our scheme mitigate privacy concerns and provides a robust solution. Security
of QuPSI relies on the basic principles of quantum mechanics. As a consequence, it remains
secure against well-known quantum attacks and achieves long-term security, in contrast to the
classical PSI protocols. In this paper, we put forward a cryptographic building block QuPSI for
privacy-preserving contact tracing. Our scheme, QuPSI, by design, ensures that both entities’
private information- healthy individuals and diagnosed patients remain secure.

In contrast to [5, 6, 19, 22], the communication cost and computation cost of our scheme
does not depend on universal set’s size. Particularly, our proposed protocol attains optimal
communication and computation cost in the context of quantum PSI. The works [5, 19, 22]
need measurement in higher dimensional Hilbert space, “multi-particle entangled states” as
quantum resources, and “complicated oracle operators”. However, with the existing technologies
implementation of these oracle operators and preparation of these resources are not feasible.
As a consequence, only theoretical approaches have been provided by [5, 19, 22] in the context
of quantum PSI. On the other hand, similar to [6], our proposed quantum PSI is feasible and
practical since simple single-particle projective measurements and single photons are used in it.
Moreover, unlike [5, 19, 22], multiple execution of set intersection functionality is possible in
our scheme by performing only one time quantum computation and quantum communication,
provided the parameter m remains same.
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2 Bloom Filter [4]

Bloom filter is a data structure representing a set Z = {z1, ..., zd} of d elements by an array of size
n and uses λ independent hash functions Hash = (H1, . . . ,Hλ)) with Hi : {0, 1}∗ → {1, . . . , n}
for inserting or checking the membership of elements into that array. We represent the Bloom
filter for Z by BloomZ ∈ {0, 1}n and i-th entry in it by BloomZ [i]. The following three operations
are performed in a Bloom filter:

– Initialization: Put 0 at all the entries of an array of size n, which we call as empty Bloom
filter.

– Add: To add an element z ∈ Z into Bloom filter, compute H1(z), . . . ,Hλ(z) and put 1 to
the positions {H1(z), . . . ,Hλ(z)} of the Bloom filter. Repeat the process for each z ∈ Z
to obtain BloomZ .

– Check: To check the presence of an element z in Z, compute H1(z), . . . ,Hλ(z). If atleast one
of BloomZ [H1(z)], . . . ,BloomZ [Hλ(z)] is 0 then z /∈ Z; else, z provably belongs to Z.

Bloom filter attains false positive since an element that has not been added in the filter can
falsely pass the check test. While, it never allows false negative since an element that has been
added in the filter will always pass the check test.

3 Proposed Quantum PSI

In this section, we describe the construction of the proposed quantum PSI between a client C
and server S. The asymmetric key distribution of [9] and Bloom filter [4] have been utilized as
the building blocks of our construction.
A high level overview: We use the asymmetric key distribution of [9] for distributing
only few bits of the key to a party, the whole key to another party. Let us consider that
the client C with the private set X = {x1, . . . , xv} ⊂ {0, 1}∗ and the server S with the
private set Y = {y1, . . . , yw} ⊂ {0, 1}∗ involve into the QuPSI protocol, which involves three
algorithms: (i) QuPSI.Raw Key, (ii) QuPSI.Asymmetric Key, (iii) QuPSI.Set Intersection. Also,
let (n,Hash = (H1, . . . ,Hλ)) be Bloom filter parameters with Hi : {0, 1}∗ → {1, . . . , n} and
{p1, . . . , pm} be the position set with non-zero entries in BloomX . Initially, the algorithm
QuPSI.Raw Key enables S to learn an n-bit raw key KE1 = {k1, . . . , kn} and C to learn only
m bits T1 = {t1, . . . , tm} = {ku1 , . . . , kum} of KE1 such that S does not have any knowledge
about the position ui of ti in KE1. At later stage, QuPSI.Asymmetric Key is run for al-
lowing S to generate KE2 = {k1, . . . , kn} from KE1 and C to learn T2 = {kp1 , . . . , kpm}
by using a permutation π over the set {1, . . . , n} such that the set {u1, . . . , um} is
mapped to the set {p1, . . . , pm}. In the following, during QuPSI.Set Intersection, S sends
B = KE2 ⊕ BloomY = {k1 ⊕ BloomY [1], . . . , kn ⊕ BloomY [n]} = {b1, . . . , bn} to C. On receiving
B, C evaluates A = {kp1 ⊕ bp1 , . . . , kpm ⊕ bpm} = {a1, . . . , am}. It allows C to learn the entries
of {a1, . . . , am} = {BloomY [p1], . . . ,BloomY [pm]} of BloomY . Then C forms a resulting Bloom
filter Bloom of length n by inserting 1 at all such pi’s where ai’s are 1 and 0’s at the remaining
entries. In the following, C outputs a set χ as X ∩ Y , where χ is the collection of all such
elements of X for which the set membership test of Bloom is satisfied. The proposed QuPSI is
discussed below in detail.
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Protocol 1. QuPSI

QuPSI.Raw Key:

1. S and C run the asymmetric key distribution of [9] in order to share an n + κ-bit key
KE = {r1, . . . , rn+κ} such that S receives the whole KE and C learns only m + κ bits T of

KE. In order to do that, on needs to set α = sin−1

(√
2(m+κ)
n+κ

)
in [9]. On the other hand,

the choice κ = (n− 4m)/3 in [14] enables the same kind of key distribution.

2. C chooses κ bits randomly from T and requests S to reveal the corresponding bits from KE.
Then C compares its own selected part with S’s corresponding part. If C’s κ bits are equal to
S’s κ bits then they move to the next step; otherwise, C aborts the execution by stating that
S is dishonest.

3. S deletes the compared κ bits from KE and updates the positions of the rest n bits in KE
to obtain the updated key KE1 = {k1, . . . , kn}. For instance, κ = 2, and bits of 2nd and
5th positions i.e., r2 and r5 are deleted. Then k1 = r1, k2 = r3, k3 = r4, ki = ri+2 for
i = 4, . . . , n.

4. C deletes the compared κ bits from T and updates the positions of the rest m bits in T
for obtaining the updated key T1 = {t1, . . . , tm} = {ku1

, . . . , kum
}, where ui is the position of

ti = kui in KE1. For instance, if m = 5 and T = {r2, r3, r5, r9, r12, r15, r20} then t1 = r3 = k2,
t2 = r9 = k7 ,t3 = r12 = k10, t4 = r15 = k13 and t5 = r20 = k18, i.e., u1 = 2, u2 = 7,
u3 = 10, u4 = 13, u5 = 18.

QuPSI.Asymmetric Key:

1. Let {p1, . . . , pm} be the positions with non-zero entries in BloomX . A random permutation
π over the set {1, . . . , n} is selected by C such that the set {u1, . . . , um} is mapped to the set
{p1, . . . , pm}. C sends π to S and obtains the updated key T2 = {kp1 , . . . , kpm} from T1 =
{ku1 , . . . , kum} by applying π over the position set {u1, . . . , um}. Note that kpi = kπ(uj) = kuj

if pi = π(uj).

2. S, on receiving π from C, obtains the updated key KE2 = (k1, . . . , kn) from KE1 =
{k1, . . . , kn} by applying π over the position set {1, . . . , n}. Note that ki = kπ(j) = kj if
i = π(j).

QuPSI.Set Intersection:

1. S computes BloomY and evaluates B = KE2 ⊕ BloomY = {k1 ⊕ BloomY [1], . . . , kn ⊕
BloomY [n]} = {b1, . . . , bn} and sends B to C.

2. On receiving B = {b1, . . . , bn}, the client C evaluates A = {kp1 ⊕ bp1 , . . . , kpm ⊕
bpm} = {a1, . . . , am}. Note that it enables C to obtain the entries of {a1, . . . , am} =
{BloomY [p1], . . . ,BloomY [pm]} of BloomY . In the following, C performs the following steps:

(a) selects an empty set χ,

(b) forms a resulting Bloom filter Bloom = {g1, . . . , gn} of length n by setting gi = 1 if
ai = BloomY [pi] = 1; otherwise, sets gi = 0,

(c) for i = 1, . . . , v, if xi passes the set membership test of Bloom then includes xi into χ,

(d) outputs the resulting set χ as the desired intersection X ∩ Y .

4 Security Analysis

A PSI protocol, with functionality FPSI : (X,Y ) → (X ∩ Y,⊥), should attain the following
security properties:
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1. Correctness: On completion of the protocol, the exact intersection i.e., X ∩ Y (possibly
empty) should be the output of C.

2. Client’s privacy: At the end of the protocol, C should obtain only X ∩ Y , not beyond
that.

3. Server’s privacy: On completion of the interaction, S should not obtain anything.

Now, we discuss each of the aforementioned security requirements for our QuPSI.

Correctness: We need to prove that χ provides the desired intersection X ∩ Y for showing
the the correctness of QuPSI. The set χ is obtained by collecting all such elements of
X for which the set membership test of Bloom is satisfied. The resulting Bloom filter
Bloom is formed by inserting 1 at all such pi’s where ai = BloomY [pi] = 1’s are 1 and 0’s
at the remaining entries. Moreover, {p1, . . . , pm} represents the positions with non-zero
entries in BloomX i.e., BloomX [j] = 1 for j ∈ {p1, . . . , pm} and BloomX [j] = 0 for j ∈
{1, . . . , n}\{p1, . . . , pm}. Thus Bloom[i] = 1 if and only if BloomX [i] = 1 and BloomY [i] =
1. An element x ∈ X satisfies the set membership test for Bloom implies Bloom[Hi(x)] =
1 for i = 1, . . . , q. Furthermore, Bloom[Hi(x)] = 1 implies BloomX [Hi(x)] = 1 and
BloomY [Hi(x)] = 1 for all i = 1, . . . , q. Therefore, x satisfies the set membership test of
BloomY which implies x ∈ Y except with negligible probability ε (false positive rate of the
Bloom filter BloomY ). Hence, we may conclude that x ∈ X satisfies the set membership
test for Bloom implies x ∈ X ∩ Y except with negligible probability ε. In other words, χ
determines the X ∩ Y .

Client C’s privacy: The permutation π is the only classical message which is sent to S
from C. The server S would not be able to obtain any information about BloomX from π
since it does not know {u1, . . . , um}. We now show that the probability of determining the
position set {u1, . . . , um} of C’s part by a dishonest S is negligible (atmost 1

2κ ). Initially, a
dishonest server S can prepare a state of two qubits 1√

2
(|00〉+ |11〉) for applying entangle-

measure attack, where the first qubit is received by C and the second qubit is obtained by
S. Then S can measure the state in its register to get information associated to the C’s
measurement’s conclusiveness. Nevertheless, this attack brings bit errors as mentioned
in [9, 14]. This is because if knowledge associated to the conclusiveness of C’s bits is
obtained by S then it will never be able to obtain the knowledge about C’s recorded bit
values. In other words, it is not possible for S to simultaneously get both the correct bit
value and the address of C’s correct measurement basis. As a consequence, S is unable to
simultaneously determine the correctly measured bit value ri of C and its position i. In
the proposed QuPSI, the honesty of S is checked by C by comparing κ measurement bit
values with the associated bits declared by S. Thereby, the honest test will be passed by
a dishonest S atmost with negligible probability 1

2κ . Consequently, it can be concluded
that C’s privacy is preserved.

Server S’s privacy: Note that if C wants to obtain any information about Y \X ∩Y then it
requires to store more bit values in T . To perform this task, during the first step of Raw
Key Storing phase [9, 14], C can store and use more effective measurements on the qubits
sent by S to C. We now explore C’s possible measurements.
Let us consider simple measurement of C. In this case, if S announces 0 for declaring that
a qubit lies in {|0〉, |0′〉} then C applies the optimal unambiguous state discrimination
(USD) measurement [12, 21] to identify the qubit’s state. Note that if F (φ0, φ1) is the
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fidelity between the two states (φ0, φ1) to be discriminated then the success probability of
the USD measurement is bounded by 1 − F (φ0, φ1). According to [9], the probability is
ProbUSD = 1− 〈0|0′〉 = 1− cosα. As a consequence, C’s advantage is negligible for small
α.
On the other hand, C can also perform joint measurement [14] on the γ qubits which
contribute to the element of the final key. Here, C wants to obtain directly the final key’s
bit value, without distinguishing the raw key’s individual bit values. To perform this, C
can utilize the following two possible measurements:

1. Helstrom’s minimal error-probability measurement for distinguishing two quantum
states with highest information gain [8, 11]. If D(ρ0, ρ1) is the trace distance between
two equally likely quantum states ρ0 and ρ1 then the probability of distinguishing
φ0 from φ1 and determining the right state is atmost ProbD = 1

2 + 1
2D(φ0, φ1).

As a consequence, a final key bit can be determined with the probability at most
ProbD = 1

2 + 1
2sin

γα which is closed to 1/2 for small α.

2. USD measurement is the other one, where the success probability of discriminating
the two γ-qubit mixed states related to odd and even parity can be obtained. Note
that the probability rapidly decreases with γ. Thus, following [9], we can conclude
that for small α, the advantage of C is distinctly decreased.

Therefore, in order to preserve S’s privacy, we need to select small α. This is to be
observed that by choosing n � vλ, one can make α very small since vλ > m. Thereby,
according to [9, 14], we may conclude that storing bit values more than m+κ is impossible
for C. Thus, the privacy of S is preserved.

5 Efficiency Analysis

In our scheme, quantum computation and quantum communication are only needed during the
phase QuPSI.Raw Key. Moreover, the same raw key allows multiple execution of set intersection
functionality for the private sets of C, where m remains same. Thereby, only one time quantum
computation and quantum communication enables multiple execution of set intersection func-
tionality. The round cost, communication cost and computation cost of the proposed scheme
are discussed below.

Round cost: QuPSI.Raw Key needs 5 rounds (1 quantum and 4 classical), while each of
QuPSI.Asymmetric Key and QuPSI.Set Intersection needs 1 classical round.

Communication cost: O(n+ κ) qubits and O(n+ κ) classical bits are required to be trans-
mitted by S during QuPSI.Raw Key. In addition, S has to transmit n classical bits during
QuPSI.Set Intersection. While, O(n + κ) classical bits during QuPSI.Raw Key and a per-
mutation π are required to be transmitted during QuPSI.Asymmetric Key.

Computation cost: O(n + κ) projective measurements are required to be performed by
C in 2- dimensional Hilbert space during QuPSI.Raw Key. In addition, it requires
to perform one permutation π and m XOR operations in QuPSI.Asymmetric Key and
QuPSI.Set Intersection respectively. While, computation of the permutation π and n
XOR operations are required to be performed by S in QuPSI.Asymmetric Key and
QuPSI.Set Intersection respectively.
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Table 1 : Comparison summary of quantum PSI protocols

Protocol Ours [6] [22] [5] [19]

Quantum resource SP SP MPES MPES MPES

Complicated Oracle operators not required not required required required required

Dimension of the Hilbert Space 2 2 N N N

Simple single-particle projective measurements yes yes no no no

Multiple execution of set intersection yes yes no no no
functionality with only one time quantum
communication and quantum computation

Intersection cardinality revealed to server no no no no yes

Communication O(n+ κ)-qubit O(N + κ)-qubit O(v logN)-qubit O(v logN)-qubit O(v + l) logN -qubit
O(n+ κ)-bit O(N + κ)-bit O(β(log l + v logN))-bit

Computation O(n+ κ) O(N + κ) O(v) O(v) O(N + l)

Round complexity in 1 1 2 3 4
set intersection phase

SP = single photons, MPES = multi-particle entangled states, l, κ = security parameters, N = the universal set’s size, v
= size of C’s set, n= size of Bloom filter=O(w), β = cardinality of the intersection

Table 1 represents a comparative summary of QuPSI with the existing quantum PSI protocols.
The most attractive feature our scheme is that none of the communication and computation
cost depends on universal set’s size N , unlike the existing quantum PSI protocols. In other
words, the communication cost and computation cost of our scheme are much less than those
of the existing schemes since n� N .

6 Application to Contact Tracing

As a key building block for contact tracing, we presented the design of QuPSI protocol using
Quantum Cryptography(QC) that enables two parties, each holding a dataset, to determine the
intersection of datasets privately without revealing the actual data. Our protocol provides a
robust and efficient solution to privacy vulnerabilities.

To illustrate, consider two datasets, X and Y . Let X be a dataset comprising a person’s
physical contact history (recorded using a cell phone). Let Y be the dataset that keeps the
IDs of the diagnosed patients for the disease. Now our protocol enables the user to check
if their contact history dataset matches the dataset of diagnosed patients without disclosing
their personal information to the server. In addition to that client would then only learn the
intersection, nothing more than that.

Using these intersections, we can discover if a person and a diagnosed patients were in
close proximity during an appropriate period in the past.
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Making use of QuPSI in the background as the cryptographic building block, we can see if
the dataset of local contact histories of the individuals and database keeping the identities of
the diagnosed patients have any match. QuPSI, by design, ensures that both parties’ private
information- healthy individuals and diagnosed patients remain secure. It also assures that the
identities of the diagnosed individuals are concealed from others.

Therefore our PSI protocol QuPSI can be used to form an efficient, high-performance
contact tracing system that provides strong privacy guarantees.

7 Conclusion

In this paper, we utilized the asymmetric key distribution of [9] and Bloom filter to design
an unconditionally secure two-party quantum private set intersection protocol QuPSI. The
basic principles of quantum mechanics ensure the security of QuPSI. Thereby, it is resistant
against well-known quantum attacks and attains long-term security, unlike the classical PSI
protocols. In this work, we put forward a cryptographic building block QuPSI for privacy-
preserving contact tracing. The QuPSI ensures that both parties’ private information- healthy
individuals and diagnosed patients remain secure. In the proposed scheme, quantum resources
are single photons and simple single-particle projective measurements are needed similar to [6].
Thus, our design is more feasible to implement with the present technology than [5, 19, 22].
On a more positive note, the communication cost and computation cost of our scheme are
not dependent on universal set’s size, unlike [5, 6, 19, 22]. In particular, our scheme attains
optimal communication and computation cost in the context of quantum PSI. Moreover, only
one time quantum computation and quantum communication enables multiple computation of
set intersection functionality. Extending our two-party quantum PSI to multi-party would be
an interesting direction of future work.
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A Toy Example

Let X = {Alice, Bob, Hary}, Y = {Hary, Jones, Jack, Bob, Henry}, n = 18, λ = 2, H =
{H1, H2}. Also let H1(Alice) = 3, H2(Alice) = 7, H1(Bob) = 8, H2(Bob) = 1, H1(Hary) =
7, H2(Hary) = 16, H1(Jones) = 15, H2(Jones) = 16, H1(Jack) = 10, H2(Jack) = 12,
H1(Henry) = 18 and H2(Henry) = 1. Then BloomX = [101000110000000100], BloomY =
[100000110101001101], the number of non-zero entries in BloomX is m = 5 and the associated
positions are p1 = 1, p2 = 3, p3 = 7, p4 = 8, p5 = 16.

QuPSI.Raw Key:

1. Set α = sin−1(
√

7
10) in asymmetric key distribution of [9]. Then S obtains

n + κ = 20 bit key KE = {r1, . . . , r20} and C obtains m + κ = 9 bits (say
T = {r2, r3, r5, r9, r12, r15, r20}) of KE, where ri ∈ {0, 1} for i = 1, . . . , 20.

2. Let C chooses bits of 2nd and 5th positions of KE i.e., r2 and r5 for comparison
with S’s part. After the deletion of r2 and r5 the updated part of S becomes KE1 =
{k1, . . . , k18} and the updated part of C becomes T1 = {k2, k7, k10, k13, k18}, where
k1 = r1, k2 = r3, k3 = r4, ki = ri+2 for i = 4, . . . , 18. Note that {u1, u2, u3, u4, u5} =
{2, 7, 10, 13, 18}.

QuPSI.Asymmetric Key:
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1. Suppose C selects the permutation π over the set {1, . . . , 20} such that π(2) =
3, π(7) = 7, π(10) = 1, π(13) = 16, π(18) = 8 and π(j) = i for j ∈
{1, . . . , 18} \ {2, 7, 10, 13, 18} and i ∈ {1, . . . , 18} \ {1, 3, 7, 8, 16} in some or-
der i.e.,{u1, u2, u3, u4, u5} = {2, 7, 10, 13, 18} is mapped to {p1, p2, p3, p4, p5} =
{1, 3, 7, 8, 16}. Then the updated part of C becomes T2 = {k1 = k10, k3 = k2, k7 =
k7, k8 = k18, k16 = k13}.

2. S, on receiving π from C, obtains the updated key KE2 = (k1, . . . , k18) from KE1 =
{k1, . . . , k18} by applying π over the position set {1, . . . , 18}. Note that ki = kπ(j) =

kj if i = π(j). Thereby, k1 = k10, k3 = k2, k7 = k7, k8 = k18, k16 = k13.

QuPSI.Set Intersection:

1. S evaluates B = KE2 ⊕ BloomY = {k1 ⊕ BloomY [1], . . . , k18 ⊕ BloomY [18]} =
{b1, . . . , b18} and sends B to C.

2. On receiving B = {b1, . . . , b18}, the client C evaluates A = {k1 ⊕ b1, k3 ⊕ b3, k7 ⊕
b7, k8⊕ b8, k16⊕ b16} = {a1, . . . , a5}. Note that a1 = k1⊕ b1 = k1⊕k1⊕BloomY [1] =
BloomY [1] = 1, a2 = k3⊕ b3 = k3⊕ k3⊕BloomY [3] = BloomY [3] = 0, a3 = k7⊕ b7 =
k7 ⊕ k7 ⊕ BloomY [7] = BloomY [7] = 1, a4 = k8 ⊕ b8 = k8 ⊕ k8 ⊕ BloomY [8] =
BloomY [8] = 1, a5 = k16 ⊕ b16 = k16 ⊕ k16 ⊕ BloomY [16] = BloomY [16] = 1.
In the following, C performs the following steps:

(a) forms a resulting Bloom filter Bloom = [100000110000000100] = {g1, . . . , g18} by
setting gi = 1 if ai = BloomY [pi] = 1; otherwise, sets gi = 0,

(b) computes H1(Alice) = 3, H2(Alice) = 7, H1(Bob) = 8, H2(Bob) =
1, H1(Hary) = 7, H2(Hary) = 16. Note that Bloom[H1(Alice)] =
0, Bloom[H2(Alice)] = 1, Bloom[H1(Bob)] = 1, Bloom[H2(Bob)] = 1,
Bloom[H1(Hary)] = 1, Bloom[H2(Hary)] = 1

(c) outputs {Bob, Hary} as the desired intersection X ∩ Y , since Alice does not
satisfy the set membership test of Bloom, while each of Bob and Hary satisfies
that test.
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