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Abstract

Plactic key agreement is a new key agreement scheme that uses

Knuth’s multiplication of semistandard tableaus from combinatorial

algebra. The security of plactic key agreement relies on the difficulty

of some computational problems, such as division of semistandard

tableaus.

Division by erosion uses backtracking to divide tableaus. Division

by erosion is estimated to be infeasible against public keys of 768 or

more bytes. If division by erosion is the best attack against plactic

key agreement, then secure plactic key agreement could be practical.

1 Introduction

Knuth’s [Knu70] multiplication of semistandard tableaus is described in §2.
(Some history of semistandard tableaus is covered in §A.1.)

Plactic key agreement uses multiplication of semistandard tableaus. Alice
and Charlie agree on a secret key as follows. All keys are semistandard
tableaus. Alice generates her private key a. Charlie generates his private
key c. Alice and Charlie both have the same (public) base key b. Alice
computes her public key d = ab and delivers d to Charlie. Charlie computes
and delivers his public key e = bc to Alice. Alice computes a secret key
f = ae from her private key a and Charlie’s public key e. Charlie computes
a secret key g = dc.

The secret keys f and g agree, because multiplication of semistandard
tableaus is associative and f = a(bc) = (ab)c = g.
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Plactic key agreement can be considered an instance of Berenstein and
Chernyak’s modification [BC04] of Diffie and Hellman’s exponential key agree-
ment [DH76], by setting the Bernstein and Chernyak’s semigroup1 to be the
plactic monoid2: which is the set of all semistandard tableaus, with Knuth’s
multiplication as the associative binary operation.

Division of semistandard tableaus is discussed in §3. Division can be
used as an attack against plactic key agreement as discussed in §4.2. The
secret key f can be computed from the (public) keys d, b, e using the formula
f = (d/b)e. Therefore, the security of plactic key agreement relies on the
difficulty of dividing semistandard tableaus.

Division by erosion, described in §3.3, is a method to divide semistandard
tableaus. It computes d/b by deleting each entry of b from d, in the reverse
order that the multiplication algorithm inserted entries of b into d. A catch is
that multiplication is non-cancellative. At each stage, there can be multiple
choices of which entries of d to delete. Some deletion choices can turn out
to be incompatible with the overall division task. Division by erosion uses
backtracking to correct these incorrect deletion choices. Empirically, division
by erosion seems slow, taking an average of about 20.3m attempted deletions
for m-entry tableau b (with entries in a set of 64 values). Extrapolating this
empirical evidence to m = 512, takes this to 2153 deletion attempts, which
should be infeasible.

Other possible division algorithms include: division by trial multiplication
(§3.4), which searches through the key space of a, and division by max-
algebra matrices (§3.5), which uses Johnson–Kambites [JK19] tropical matrix
representations of the plactic monoid. These other division algorithms are
predicted to be slower than division by erosion, if a and b belong to suitably
large key spaces.

If division by erosion is the fastest attack against plactic key agreement,
then secure plactic key agreement could be practical.

The security analysis of plactic key agreement is in its very early stages.

2 Knuth multiplication of tableaus

This section describes Knuth multiplication of semistandard tableaus [Knu70].

1A semigroup is a set with an associative binary operation.
2A monoid is a semigroup with an identity element.
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2.1 Semistandard tableaus

A (semistandard) tableau is a two-dimensional grid-aligned arrangement
of entries, meeting the following requirements.

1. The sequence of rows are

(a) left-aligned,

(b) sorted by row length (shortest row at the top, longest row at the
bottom, repeated lengths allowed)

2. The entries of each row are

(a) sorted (lowest at left, highest at right, repeated entries allowed).

3. The entries of each column are:

(a) sorted (highest at top, lowest at bottom),

(b) all distinct (no repeated entries allowed).

Two examples of semistandard tableaus with single-digit entries are:

a =
4
334
1233

b =
2
13

(1)

Note the following special considerations. An empty semistandard tableau
is possible, with no entries, and no rows. Many authors, including Knuth
[Knu70], reverse the order of rows. (Each column would have lowest entries
at the top.) It is sometimes convenient to consider there to be extra empty
rows above the top row.

Some mnemonics: rows may repeat but columns cannot, the entry order-
ings follow the Cartesian coordinate orderings, like this:

4
∨ 334

1233
≤

4
∨
3 ≤ 3 ≤ 4
∨ ∨ ∨
1 ≤ 2 ≤ 3 ≤ 3

(2)
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2.2 Overtableaus and row reading

This section defines a few basic tableau operations, which will help define
Knuth multiplication.

The size |t| of the tableau t is the number of entries in the tableau. For
example, the tableaus a and b from (1), have sizes:

|a| = 8 |b| = 3 (3)

The empty tableau has size 0.
The bottom row t of a tableau t is the last row. The bottom row

contains the least entry of each column. The overtableau t is the tableau
that sits above the bottom row t. In other words, the overtableau t is just t
with bottom row t removed. For the example tableaus a and b from (1), we
have:

a =
4
334

b = 2 (4)

a = 1233 b = 13 (5)

Some special cases: if t has only one row, then its overtableau is the empty
tableau; if t is empty, then both the overtableau and the bottom row are
empty.

The row reading ρ(t) of a tableau t is the concatenation of all the rows
of t, starting with top row at the left, and ending the bottom row at the
right. For the example tableaus a and b from (1), the row readings are:

ρ(a) = 43341233 ρ(b) = 213 (6)

When we need to refer to individual entries of a tableau, we can write ti for
the ith entry of ρ(t), starting with i = 1 at the left. So,

ρ(t) = t1t2 . . . t|t|. (7)

Note that we sometimes write ti to indicate multiple different tableaus: if
the context is not enough to distinguish whether ti means an entry of t, or a
distinct tableau, then write ρ(t)i for the ith entry of the row reading.

2.3 Multiplication

To multiply tableaus t and u, compute v = tu as follows:
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1. Initialize v = t.

2. For k = 1 to k = |u|, insert entry x = uk into tableau v, as described
below.

3. To insert entry x into tableau v, do one of the two actions below
(whichever is required by the stated conditions):

(a) If appending entry x to bottom row v, written vx, results in a
sorted row (lowest to highest), then

i. replace bottom row v by vx

(b) Else (if appending x to v does not result in a sorted row),

i. Let r be the least entry in bottom row v that is larger than
x,

ii. Replace the leftmost copy of r by x, modifying v.
iii. Insert r into overtableau v (so, entry x “bumps” entry r up

into the rows above).

Note that multiplication adds sizes (|tu| = |t| + |u|), because each inserted
entry increases the size of v by 1. Insertion has been defined recursively,
since the insertion procedure uses the insertion, but different inputs (the
replace entry and the overtableau). Insertion could have instead been defined
iteratively, as loop starting from the bottom row, bumping up to the next
row, until appending to the end of a row is possible.

2.4 Example of Knuth multiplication

As an example, let us multiply t = a and u = b, from (1). We let v = a, as
the initialization. Since ρ(b) = 213, we must first insert x = b1 = 2 into v.

The bottom row v is now 1233. The concatenation vx = 12332 is not
sorted lowest to highest because the last two entries have 3 > 2. So, we
must apply the second option for insertion, which bumps up an entry of the
bottom row. The least entry r of v that is larger than x = 2 is r = 3. So,
we replace the bottom row 1233 by 1223. The replaced symbol r = 3 is
bumped up into the overtableau v. To do the bumping, we first look at the
the overtableau w = v, which is

w = v =
4
334

(8)
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Because we are now trying to insert 3 into v, let us now write x = 3. We see
that x = 3 cannot be appended to the bottom row w = 334 of w, because
3343 is not sorted. Another entry must be bumped up. In this case, the
smallest entry larger than x = 3 is r = 4, so we must bump up 4. The
bumped-up entry, 4, can be appended to the very top row, giving a new top
row, 44. So, after insertion of 2 into v, we get a new value for tableau v:

v =
44

333

1223
(9)

where the changed entries have been shown in bold.
The next entry of b to insert is b2 = 1, which must be inserted into

this new v. From our experience of the previous insertion, we can see what
happens a little more quickly: 1 bumps 2 from the first row (first from the
bottom), which bumps 3 from the second row, which bumps 4 from the third
row. This time, the last bumped entry 4 gets appended to the empty row
above, creating a new non-empty row. The new v is

v =

4

34
233
1123

(10)

where, the changed entries of the new v have (again) been shown in bold.
Note that the changed entry in the bottom row is the inserted entry b2, while
the changed entries in overtableau were the bumped entries.

The final entry of b to insert is b3 = 3. This entry gets appended to the
bottom row (because appending it gives a sorted row), which gives the new
v, and also the final multiplication of a and b,

ab = v =

4
34
233
11233

(11)

with the single changed entry shown in bold.

2.5 The plactic monoid

Recall that a monoid is a set with an associative binary operation, with an
identity element. Often, the operation is written as multiplication, in which
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case, the associative law means that a(bc) = (ab)c for all a, b, c. If clear
from context, the identity element is written as 1, in which case, the identity
element condition means that 1a = a = a1 for all a.

Knuth’s multiplication of semistandard tableaus is an associative binary
operation. Associativity is not obvious: Knuth’s realization that semistan-
dard tableaus could be multiplied associatively was a major insight.

The identity element for Knuth’s multiplication of semistandard tableaus
is the empty tableau. For tableaus, the notation 1 for the identity element
conflicts with tableau of single entry of value 1, so we can instead write ǫ.
Then ǫt = t = tǫ for any semistandard tableau t.

Therefore, the set of semistandard tableaus with Knuth multiplication
meets the defining axioms of a monoid. This monoid is now called the plactic

monoid [LS81].
The plactic monoid is non-commutative: there are tableaus a and b

such that ab 6= ba (and non-commuting is typical).
The plactic monoid is non-cancellative: there are distinct tableaus

a, e, b with ab = eb (for any a, b, it is typical for there to exist such an
e).

An alternative definition of the plactic monoid is to use generators and
relations to give a monoid presentation, which is summarized below. The
monoid generators are possible entry values, which is some ordered set. The
relations are the Knuth relations, which say that yxz = yzx if x < y ≤ z
and xzy = zxy if x ≤ y < z. Knuth [Knu70] proved each congruence class
of words under these relations has a unique representative that is the row
reading of a semistandard tableau.

This alternative definition allows us to think of each word as being some
alternative representation of a semistandard tableau.

2.6 The Robinson–Schensted algorithm

Knuth multiplication is almost equivalent to the Robinson–Schensted algo-
rithm [Rob38, Sch61].

The Robinson–Schensted algorithms takes any word u = u1u2 . . . un (not
necessarily a row reading of a tableau), and then inserts the entries ui (in
order) into a tableau, starting from an empty tableau, using the same inser-
tion method as in Knuth multiplication. The result is always a semistandard
tableau, which is traditionally written P (u).
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In the monoid presentation of the plactic monoid, a word w represents a
tableau t if and only if P (w) = t.

Knuth multiplication has an alternative definition in terms of the Robinson–
Schensted algorithm as:

ab = P (ρ(a)ρ(b)). (12)

Consequently, for any semistandard tableau t, we have t = P (ρ(t)).
The column reading γ(t) of tableau t is a word formed by reading the

columns from left to right, while reading each individual column from top
to bottom. In other words, separate the columns, topple each column to the
left, and concatenate the fallen columns. Perhaps surprisingly, P (γ(t)) = t.

The Robinson–Schensted can also be interpreted as the Knuth multipli-
cation of n single-entry tableaus.

2.7 A C program for Knuth multiplication

Table 1 is a C program that can run Knuth multiplication of semistandard
tableaus (and the Robinson–Schensted algorithm).

#include <stdio.h> // gcc knuth_mult.c -o knuth_mult

#define T(a,b)(a^=b,b^=a,a^=b,1)

enum{L=1000000};typedef char*s,S[L+1];typedef int i;typedef void _;

i knuth(i i,s w){return(w[2]<w[i-1])&(w[0]<=w[i])&&T(w[1],w[(i+1)%3]);}

_ robinson(s w,i j){i i; for(;j>=2&&w[j]<w[j-1];j--)

for(i=1;i<=2;i++) for(;j>=2&&knuth(i,w+j-2);j--) ; }

i main(_){S W={};s w=W;i i=0,o=0,c;

while(i<L&&(c=getchar())!=EOF)if(c&&'\n'!=c)w[i]=c,robinson(w,i++);

for(;(o>*w?puts(""):1)&&*w;w++)putchar(o=*w);}

Table 1: A C program for Knuth multiplication

The simplicity of Knuth multiplication can be measured by the brevity
of the C program in Table 1.

Note that the C program stores each entry with the C char data type
(almost always a byte). On many computer systems, the standard input and
standard output of char values uses the ASCII encoding of characters. In
this case, the C program allows tableau entries to be single digits, or letters

8



(latin alphabet), or even punctuation, with the entry-sorting based on the
(somewhat arbitrary) ASCII ordering.

!#"$%&'()*+,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

`abcdefghijklmnopqrstuvwxyz{|}~

Note that the C program uses the Knuth relations to insert entries into
the row reading representation of tableaus.

Table 2 shows an example of a shell3 session using the C program for
multiplication.

$ ./knuth_mult <<<'

> 4

> 334

> 1233

> ''

> 2

> 13

> '

4

34

233

11233

Table 2: A shell session using of the C program for multiplication

3 Division of semistandard tableaus

A binary operator / is a (right) division operator if

((ab)/b)b = ab (13)

for all a, b. Call / a divider (for brevity).
Note that other definitions for a divider are possible. In other areas of

algebra, division is often required to cancel multiplication, meaning that

3This session uses the “bash” shell, and might not work with other shells.
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(ab)/b = a for all a, b. A cancelling divider is not possible Knuth multiplica-
tion, because the plactic monoid is non-cancellative. The less strict require-
ment (13) for division is relevant to the security of plactic key agreement, so
that is the definition that we will use.

3.1 A division challenge

Independent efforts to devise algorithms for division of semistandard tableaus
can potentially result in faster algorithms. Some researchers might achieve
more independent thought by not learning existing division algorithms. The
C program for multiplication can be used to generate examples on which to
try potential division algorithms. Some researchers might be more motivated
by being given challenges.

For those researchers, a challenge division problem is given in Table 3 and
Table 4, generated as follows.

Random words a and b of length 512 were generated, drawn from a set
of 64 possible characters (from the standard base64 binary-to-text encoding
system). The value of b is shown in Table 3 (broken into several lines, for
convenience). The Robinson–Schensted can put b into its unique semistan-
dard tableau (but this is not shown, both to save space and to better show
the randomness of b). The value of a is not included, because it would lead
to a solution of the challenge.

gnxkOR2uN/j/sWwxNHcMKh1DaMaV4ifNUkJhjr9WWVAHVA5FNRdNYt1/bNGYuq5lZIjIiGtxjdVl

T+shNNf5NnYWawpQPJZStxH376j3JQgqwLLy0o5dq4vLeUJrSyoNUGfFB+dQawvYYRTQH+tJZQiA

usuD+VTNYkqBoVnl0Vt2CDKGNhNCdiYzf7O6IhgMJVmQxgmAGUPQwOinni6asO+sqodfogSB4B0D

g3UTUl5xnD0ALslyiSm3A7vO+8kOr8976RCTf19I+ZGWfihspGQUdcCwrcCmYRow31AEWMwbKnPL

D41maUNHsOBVtJJU58RZcjubTZqnga1f13Bsb/lLn0rXg73vDhCEpbr+yUi6ZOYc+mZW+hB2Cvih

6vJ3km3wxaMag86a2i+k1r9d0mcKTITJwjONvr1mDlpISCsmMwTbMcE7ddvbVjGw+TpP9xqQPaOT

BMRkW2zP8zcc+8kAr1XClSeb3LKBriZYkHY80P7zaDJh3JJNNgwY/lpf

Table 3: Value b (as generated) of the challenge division problem

The tableaus a and b were multiplied to get d = ab, which is shown in
Table 4, in semistandard tableau form.

The challenge is to compute d/b. Recall that this means finding a tableau
u such that ub = d. A solution exists, namely u = a, but there are likely
many other solutions, with distinct semistandard tableaus, because Knuth
multiplication is non-cancellative.
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x

v

u

p

ny

mwz

ktxy

jsux

ipsux

gopst

ekorrxz

cjloqvy

bhkmntx

aeikmqwy

Ybgilpvxyz

VZdhkouvvxz

UXbfhnqstvxz

TWaeglprssty

SVZbfhmoorsxxxz

RRVZacjmmnruuww

PPTXZbejkmnttuv

OOQVXabdjllmnquvw

MNPTUXYchkkllltuvx

LMOOSVXZbgijjkqqtvwx

KLMNOSWYYbhiiioopuvw

JKKMMRUWXabffghjltuux

IJJKLPTUWZacdefiiiksv

HHIJKOQRUWXXbbccghjrtvwx

GGHHILLPSSUVVWZbegijosuwy

FFGGHIKNOQTUUVXaaegiinqtxxx

DEEFGGJMMOOSSTWYYbeggmnouuux

CDDDFFGJLLMNRRSTWWZffgiknstvvwy

ABBCDEFHIKLMNOQRUVYbbdhijooootuz

9AABBCEFFHJKLNOQTUVZaadfiklllmpqswx

89999BCDDDHHKKLMNSTTTYaacchhhjkoqtv

788889BCCCFGIIJKKPRRRUUWZZbbffgjnooqqy

67777888ABCFFFGHHMNNNQSVYYYabdfhikloooorx

56666777999ABEFGGJJKLMPPQRUUYaddggiimnnoswwwy

4455566678889BBDDDGHILLMOOQRSTUVXYdddllnnqrrss

3333344455778888BBEGGGIKLNNNNNQUVVVZccfhikmmmrsww

22222233344677779AABBDDGJJJJJKLMNTTUUWdffggijknpuw

1111112222223445599AAAAABCCCDGHIJPQSTUUWYZbcghilmmpvvw

0000000111111223333555788ABBCCDEIJLMNNQQRRabbbccdhhijkmrrsv

//////////000000111333356666789ACGJJJKMMOOSTTVZZZaaaaglmpqrrvvwwxz

+++++++++++++++++++++++++/11333788BBBCDHJJJJJNNNNNOOOOOPPPTTWXYYYbcefkklpwzz

Table 4: Value d (in tableau form) of the challenge division problem
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The division algorithms described in this report are estimated to take an
infeasible amount of time to compute d/b. Therefore, if a researcher solves
this challenge, then a faster division algorithm seems to have been found.

3.2 Left division reducible to right division

The plactic monoid is anti-automorphic, meaning that it is isomorphic to
its mirror image, where one swaps the left and right tableaus in the definition
of multiplication. (The anti-automorphism swaps values of high and low
entries, and also reverses the order of the row readings.)

The anti-automorphism means that left division, an operator \ such that
b(b \ (ba)) = ba, can be reduced to right division.

3.3 Division by erosion

This section (§3.3) explains division by erosion, which is an algorithm to
divide semistandard tableaus, set out on this report.

3.3.1 An overview

Eroding b from d = ab means trying to delete the entries of b from d, one-at-
a-time, in the opposite order from which they were inserted. Each deletion
bumps entries down the tableau, starting from a peak in the tableau (as
defined in §3.3.2). Erosion tries each peak of d to see if it deletes the last
entry x of b that needs to be deleted. On a match, it recursively uses erosion
to delete more entries of b from d. Whenever a match fails, erosion backtracks
the attempted deletion, and tries to delete and recursively erode from a new
peak of d.

Note the following metaphoric terminology. The term plactic is related to
plate tectonics, multiplication of tableaus is a little like two mountains collid-
ing and merging into one larger mountain. By contrast, erosion amounts to
the opposite process, the larger mountain eroding down into a smaller moun-
tain. More specifically, the erosion algorithm tries to remove random small
pieces of the larger mountain, pushing down from various points at the upper
surface of the mountain. The deletion down the rows can be considered as a
stream, eroding the mountain.
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3.3.2 Peaks of a tableau

A peak p of a tableau is an entry p with no entry above it and no entry to
the right. Equivalently, a peak is an entry that is both the top of a column
and the end of a row. In other words, a peak is an upper-right corner of a
tableau. For example, tableau d = ab from (11) has four peaks, which are
are shown in bold below:

4

34

233

11233

(14)

When inserting a new entry x into a tableau v to get a larger tableau w, the
last entry of w to be changed will be a peak of w. This new peak is the only
entry of w in a new position that was not occupied in v. In other words,
insertion always ends at a (new) peak. This view suggests that peaks should
be the starting point for process opposite to insertion (deletion, defined in
§3.3.3).

Note that different peaks can have the same value, so peak includes the
position of entry, not just its value.

3.3.3 Deletion

Deletion, defined below, starts at a given peak p of a given tableau t, and
ends by producing a smaller tableau s (a modification of t) and results in an
entry x being deleted from the bottom row of t. In other words, the input
is tableau t and the peak p. The tableau s and the deleted entry x are the
output.

1. Initialize s to be the tableau t.

2. Initialize x to be value of entry p.

3. Let r be positive integer such that p is in the row r of s (the bottom
row is row 1, and then we count up).

4. Remove p from (the end of) row r of s (so now |s| = |t| − 1).

5. While r > 1, repeat the following

(a) Reduce r by 1.
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(b) In row r of s, let y be the largest entry with y < x.

(c) In row r of s, replace the rightmost copy of y by x.

(d) Update x to value y.

6. Output the tableau s and the final entry value x.

Note that deletion is the opposite of insertion, in the sense that inserting
entry x into s results in t. Knuth [Knu70] defined deletion.

3.3.4 Examples of deletion

Each of the four peaks in (14) results in its own deletion which are illustrated
below:

∗
44
333
12233

1

4
3∗
234

11333
2

4
34
23∗
11333

2

4
34
233
1123∗

3

(15)

The new smaller tableau s is shown above the line, and the deleted entry x
is shown below the line. The entries of s that underwent replacement are
shown in bold. The former position of the peak of t is shown as ∗. The peak
∗ is not entry of s.

Note that sliding the bold characters up a row shows the process of re-
insertion of the deleted entry. Referring to erosion metaphor, the bold char-
acters indicate the path of a stream in the erosion of the mountain.

3.3.5 Erosion of a tableau by a word

Erosion takes as input a tableau v and a word b = b1 . . . bm. It either fails,
or returns as output a smaller tableau t.

Erosion is a recursive procedure. The erosion v by b, will require the
erosion of smaller tableaus by shorter words. The number of sub-erosions
needed can be large, and the exact number seems hard to predict. It is
easier to describe erosion as a recursive procedure rather than an iterative
procedure.

To erode tableau v by word b1 . . . bm, do the following

1. If m = 0, then stop and output t = v (successfully).
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2. If m > 0, then for each peak p of v do the following:

(a) Apply deletion to v, starting from p, getting a smaller tableau s
and a deleted entry x.

(b) If x 6= bm, then continue (to the next iteration of the loop over
the peaks of v, if any peaks are left).

(c) If x = bm, then (recursively) run erosion on tableau s by word
c = b1 . . . bm−1, and do the following depending on the result:

i. If erosion of s by c succeeds, with result of tableau q, then let
t = q and stop (so that t = q is the output of eroding v by b).

ii. If erosion of s by c fails, then continue (to the next iteration
of the loop over the peaks of t, if any peaks are left).

3. At this point, the loop over all the peaks p of t has finished, with none
of the peaks successfully leading to an output tableau. In this case,
stop, and indicate the failure of erosion of v by b.

3.3.6 Division by erosion

Division by erosion means to divide tableau d by tableau b by applying erosion
of tableau d by word ρ(b) (the row reading of b).

More generally, one can use erosion of d by any word w representing b,
meaning that P (w) = b.

3.3.7 Example of erosion

We now divide tableau d = ab from equation (11) by b from equation (1).
Since ρ(b) = 213, we see that we need to delete m = 3 entries. The first
entry to delete is b3 = 3. The four peaks of d were listed already in (14),
and the results of deletions from these four peaks were listed already in (15).
Only one of the four peaks results in the deletion of b3 = 3, which happens
to be the lowest peak (the rightmost peak).

The deletion of 3 gives us a smaller tableau s that also has four peaks.
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The deletions of the four peaks of s are as follows:

∗
44
333
1223

1

4
3∗
234

1133
2

4
34
23∗
1133

2

4
34
233
112∗

3

(16)

The next entry to delete is b2 = 1, but the only peak of s that results in
deleting 1 is the highest peak (the leftmost peak). So, now we continue the
erosion process from the leftmost tableau of the four choices above.

The new smaller tableau s has 3 peaks, that get deleted as follows:

4∗
334

1233
2

44
33∗
1233

2

44
333
122∗

3

(17)

The next entry of b to delete is b1 = 2. We see that deletion of two of
peaks result in the deletion of 2. Erosion will output of one of these results,
depending on the ordering of the peaks in the iteration loop over the peaks.

Deleting from highest peak of s gives back the original tableau a from
(1). But suppose that we somehow used a different ordering of the peaks, so
that we end up deleting the second highest peak from s. Then division by
erosion would give a final answer of

d/b =
44
33
1233

(18)

3.3.8 A C program for division by erosion

Table 5 shows a C program that runs one possible version of division by
erosion.

An example shell session of running the C program for division by erosion
is shown in Table 6.

Note that the interface to the division C program differs slightly from the
multiplication C program. The second input b to division is supplied as a
command-line argument rather than as part of standard input. In Table 6,
the line with two quotes includes a space to cause b to be supplied as a
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#include <stdio.h> // gcc -O3 erode.c -o divide

#define T(a,b)(a^=b,b^=a,a^=b)

enum{E=20,N=1<<E,L=N/E,A=253};

typedef char *s,S[L+1],**t,*T[A]; char D[N];

typedef int i; typedef void _;

_ insert(t d,i*r,char c){i i=0,j;

for(; i<A && r[i] && d[i][r[i]-1]>c; i++){

for(j=0; j<r[i] && d[i][j]<=c; j++);

T(c,d[i][j]);}

d[i][r[i]++]=c;}

i delete(t d,i*r,i p){i i,j,q;char c=0;

for(i=0,q=-1;q<p;i++)q+=(r[i]>r[i+1]);

for(i--,T(c,d[i][r[i]-1]),r[i]--;i--;T(c,d[i][j]))

for(j=r[i]-1;j>=0&&d[i][j]>=c;j--);

return c;}

i erode (t d,i*r,s b,i l){i c,i,p;

if(0==l--) return 1;

if('\n'==b[l]) return erode(d,r,b,l);

for(p=i=0;i<A;i++)p+=(r[i]>r[i+1]);

for(c=0; p-- && c<=b[l]; insert(d,r,c))

if(b[l]==(c=delete(d,r,p)) && erode(d,r,b,l)) return 1;

return 0;}

i slen(char*b){i l=0;while(*b++)l++;return l;}

i divide(s w,s b){i i,r[A]={},j=slen(w);T d={D};

for(i=1;i<A;i++) d[i]=d[i-1]+1+j/i;

for(i=0;i<j;i++) insert(d,r,w[i]);

if (erode(d,r,b,slen(b))){

for(i=A-1;i>=0;i--) for(j=0;j<r[i];j++) *w++ = d[i][j];

return *w=0, 1;}

return 0;}

i main(i n,t b){S W;s w=W;i i=0,o=0,c;

if(2!=n) return 2;

while(i<L && (c=getchar())!=EOF)if(c&&'\n'!=c)w[i++]=c;

if (divide(w,b[1])){

for(;(o>*w?puts(""):1)&&*w;w++)putchar(o=*w);

return 0;}

return 1;}

Table 5: A C program for division by erosion
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$ ./divide <<<'

> 4

> 34

> 233

> 11233

> ' '

> 2

> 13

> '

4

334

1233

Table 6: Shell session run of C program for division by erosion

command-line argument, while the line with two quotes in Table 6 does not
include a space, to ensure that b is supplied as part of standard input.

3.3.9 Empirical run-times of erosion

Average empirical run-times for eroding d/b, where d = ab, with a and b of
length L ≤ 60, drawn uniformly from a generator set of 64 symbols, seem to
take about 20.3L deletion attempts.

3.3.10 Variants of erosion

Variants of erosion are possible by choosing different methods of looping
through the peaks. Highest-to-lowest and lowest-to-highest are two simple
methods. Choosing the peaks in a random order might also help in some
cases (perhaps a and b have the property such that the fixed orderings of
peaks are slower than random peak orderings).

Shortcuts are also possible. The highest peaks deleted the lowest value of
elements. A peak also deletes an element of the bottom in the same column,
or in a column further to the right. These observations provide a shortcut,
to reduce the amount of tests on non-matching peaks. If there are very many
peaks, then perhaps a binary search will be a faster way to find the matching
peaks.
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Shortcuts to delete only matching peaks could improve the speed of ero-
sion by the inverse of the proportion of matching peaks to non-matching
peaks. This is easily upper bounded by approximately

√

|d|, the maximum
number of peaks.

Instead of pushing down from the peaks, one can instead try to pull down
from the bottom row. Implementations of this worked, but were much slower
than erosion. The problem may have been that are multiple choices of which
entry to pull down from the row above. Thus deleting a single entry requires
exploring many pull downs, backtracking from incompatible pull downs.

The process of deletion is actually part of an enhanced version of the
Robinson–Schensted algorithm. On input of a word w, the enhanced Robinson–
Schensted outputs a pair [P (w), Q(w)] of semistandard tableaus. The extra
tableau Q(w) has the same shape as P (meaning the each row r of Q has
the same length as row r of P ). The set of entries of Q is exactly the set
1, . . . , |Q(w)|. Such a tableau is called a standard tableau. Basically, Q
records the positions of the peaks when generating P (w) from Q. The peaks
are recorded in Q, so deletion can be applied to recover w exactly from
[P (w), Q(w)]. The enhanced Robinson–Schensted algorithm is a bijection
between words and pairs of semistandard tableaus of the same shape, with
the second tableau being a standard tableau.

Erosion of tableau t by word b can be interpreted as a simplification of
the following algorithm. Loop over standard tableaus s of the same shape
as t. Apply the enhanced Robinson–Schensted algorithm to get a word w
from [t, s]. If w = eb for some word e, then output P (e) as the value of d/b.
Erosion simplifies this procedure by not computing all of w, but only the
portion of the standard tableau s needed to check thta w will have b as a
suffix.

3.3.11 Estimates for the challenge

For the challenge division problem, we can count the number of standard
tableaus s with the same shape as d, using the hook-length formula. This is
approximately 24309. Division by erosion will use at most that many steps,
but likely far fewer steps.

Empirical estimates suggest the main influence on the cost of division by
erosion is the size of tableau b, with much less influence from the size of a
or the size of the alphabet, provided both are not too small. The number
of deletions used seem to be exponential in the length in the size of b, at
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approximately 20.3L deletions if b has size L (and a is not too small, and the
alphabet used as the entry set is not too small). This suggests that division
by erosion might take 2253 deletions, which should be infeasible.

3.4 Division by trial multiplication

Division by trial multiplication means computing d/b as follows. Use
a quick method to generate a tableaus from long search list of tableaus4

[a1, . . . , aL]. Begin a loop from i = 1 to i = L (which might end early).
Compute di = aib at each iteration. If di = d, then stop and output ai as
the value for d/b. If no iteration has di = d, then report failure to divide.

More precisely, a division algorithm uses trial multiplication if the vast
majority of its run-time computation is spent on tableau multiplications
di = aib. (So, a division algorithm that spends more time generating the
ai than testing them is not to be considered trial multiplication. In particu-
lar, division by erosion, which spends a long time to generate a one-tableau
list [a1], is not to be considered as a trial multiplication.)

Trial multiplication is strict if the search list [a1, . . . , aL] does not depend
on d. More precisely, strict trial multiplication can generate [a1, . . . , aL] based
on a priori given infomration about the method used to generate a, such as
Alice’s random variable she uses to generate a – but strict trial multiplica-
tion cannot depend on any information specifc to the target instance of the
generated a, which includes d = ab.

For small sized a, or a generated from a small set of large tableuas, trial
multiplication can be faster than erosion.

The rest of this section discusses some details of trial multiplication, such
as how to generate the search list [a1, a2, . . . , aL].

3.4.1 Guaranteed success

Division by trial multiplication is guaranteed to succeed if it can be guaran-
teed that the search list contains the a using to generate the input d = ab
defining the instance of the division problem.

We assume that the search list is guaranteed to contain a. Given alist
[a1, . . . , aL], for which this is not guaranteed, it is usual straightforward to

4Tableau ai in the search list does not indicate an entry in the row reading of a tableau

a, but rather a whole tableau in a list of tableaus.
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expand the list to ensure it covers all the a can be used to generate the
problem instance.

3.4.2 Generating the list as words instead of tableaus

It might be faster to generate the tableaus ai from a list words [w1, . . . , wL],
with ai = P (wi), where P is the Robinson–Schensted algorithm that converts
words to semistandard tableaus.

3.4.3 Content of a tableau

The (multiplicity) content µ(t) of a tableau t is an array [µ(t)x]x of integers
such that t contains µ(t)x entries with value x. When assuming that all
entries of t are taken as positive integers, we write µ(t) = [µ(t)1, µ(t)2, . . . ].

For the example tableaus a and b from (1), the contents are:

µ(a) = [1, 2, 4, 2, 0, 0, . . . ] µ(b) = [1, 2, 3, 0, 0, 0, . . . ] (19)

Note that tableau size is determinable from content by summing: |t| =
∑

x µ(t)x. Also, content is additive over tableau multiplication: µ(tu) =
µ(t) + µ(u), because tableau multiplication determines tu by re-arranging
the entries of t and u into a larger tableau.

3.4.4 Shuffling

Given d and b, we can deduce that µ = µ(a) = µ(d) − µ(b). We we can then
pick the first word of search list w1 as the word:

1µ12µ2 . . . |d|µ|d| (20)

The remaining words in the word search list [w1, . . . , wL] can be obtained
by permuting the entries of r1. Methods to generate all distinct permutations
of a given word are well-known, and fast. The number of permutations of
w1, and thus the length L of the search list is then

L =
(µ1 + µ2 + µ3 + . . . )!

µ1!µ2!µ3! . . .!
. (21)

This shuffling saves us from wasting time on trials ai that have content
inconsistent with d and b.
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3.4.5 Shortening the list

The shuffling strategy will produce multiple words per tableau. This means
that the list [a1, . . . , aL] has repeated entries, even if the list of words [w1, . . . , wL]
has no repeats.

Given enough memory, some of the repeated computations di = aib and
dj = ajb for ai = aj can be avoided. Using Robinson–Schensted to get ai

from wi is actually the first part of computing di = aib. A hash of ai can be
stored in a list. When aj is computed, it can be hashed, and compared to
the list of hashes. It aj = ai is detected via the hash list, then the rest of the
computation dj = ajb can be skipped.

There also exist various combinatorial methods to generate tableaus di-
rectly (such as [GNW79] and [NPS97], see [Sag01] for others). These genera-
tion methods might take longer to generate search list a1, . . . , aL, and might
arguably fall outside the category of trial multiplication. More importantly,
it is unclear by how much they would speed up division.

3.4.6 Non-cancellation increases success rate

The length L of the search list [a1, . . . , aL] is an upper bound on the number
of trial multiplications need.

Knuth multiplication is non-cancellative, so there would typically be
many different ai such that aib = d. If C is the average number of such
ai, then the L/C is a better estimate for the number of trial multiplications
that will be needed.

As a speculative heuristic, an a priori guess is that C ≈
√

L might measure
the amount of non-cancellation, so that

√
L trial multiplications would be

needed. This has not been estimate empirically.

3.4.7 Estimates for the challenge

The number of shuffled words in the word list for the challenge division
problem is approximately 22851. Under the speculative heuristic of non-
cancellation, this mean at least 21400 trial multiplications would be needed.

3.5 Division by max-algebra matrices

Johnson and Kambites [JK19] found a way to represent a semistandard
tableau as a matrix, such that Knuth multiplication converts to matrix mul-

22



tiplication over a max-algebra. A max-algebra (also known as a tropical alge-
bra), consists of numbers, but with different operations. The usual addition
operation is replaced by maximization. (The usual multiplication operation
is either: kept the same, in which case, only non-negative numbers are used;
or in some versions, replaced by addition, in which case an extra number,
−∞, is included in the algebra.)

This suggests dividing tableaus can be achieved by dividing max-algebra
matrices.

The Johnson–Kambites representation takes a tableau with entries in the
set {1, . . . , n}, and represents it as a square matrix with 2n rows and 2n

columns. For large n, these matrices are quite large. Max-algebra division
of 2n by 2n matrices can be done in about 8n arithmetic operations on num-
bers, but the matrices in the Johnson–Kambites representation are sparse
and trianglular, so might division might be be close to taking 2n arithmetic
operations.

These considerations suggest a tentative estimate that, for large size
tableaus, division by erosion will be faster than using the Johnson–Kambites
representation and max-algebra matrix division.

4 Key agreement

Alice and Charlie agree on a secret key as follows. All keys are semistandard
tableaus. Alice generates her private key a; Charlie generates his private key
c. Alice and Charlie both have the same base key b (but b is not secret).
Alice computes her public key d = ab and delivers d to Charlie. Charlie
computes and delivers his public key e = bc to Alice. Alice computes a
secret key f = ae. Charlie computes a secret key g = dc. Alice and Charlie’s
secret keys f and g agree, because f = abc = g and Knuth multiplication is
associative, a(bc) = (ab)c.

In practice, Alice and Charlie will apply a key derivation function H to
the agreed secret key f to derive a encryption or authentication key k =
H(f). Some reasons for this are that: f might be the wrong length to use as
encryption or authentication key, f might be too easily distinguishable from a
uniformly random byte string. Key derivation functions aim to address these
issues, because they have variable length outputs, and are pseudorandom
functions (secret inputs give outputs that look random).
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4.1 Main security aims

The main security aim of plactic key agreement is to resist an attacker who
tries to compute the agreed secret key f = g by knowing the base key b, and
the delivered keys d and e.

Note that several other types of attackers can be defined. For example,
some attackers might not observe d, but can observe the use of the key
f . Some attackers might not know b, perhaps because it is derived from a
password, and will try to guess b. Some attackers might somehow get to see
a set of possible agreed secret keys {f1, f2} that contains f , and need to find
i such that fi = f . Resisting these other attackers is only secondary aim of
plactic key agreement, and would not be too useful if the main security aim
could not be met.

4.2 Attacking key agreement using division

The attacker can compute the agreed secret key f by the computation

f = (d/b)e. (22)

The proof that this works is an elementary calculation:

f = abc

= (ab)c

= ((ab)/b)b)c

= ((d/b)b)c

= (d/b)(bc)

= (d/b)e.

Note that when the attacker computes d/b, it is not necessarily the case
that a = d/b, because the plactic monoid is non-cancellative. The value d/b
can be considered, however, to be effectively equivalent to Alice’s private
key, because both private keys a and d/b generate the same public key d.
In other words, (d/b)b = ab. In this sense, using division to attack plactic
key agreement is similar to solving the discrete logarithm problem to attack
elliptic curve Diffie–Hellman key agreement, because both attacks find the
effective private key of one of the users.

24



4.3 Shell script for key agreement

A demo shell script5 using the plactic monoid for key agreement is in Table 7.

# demo.sh

=? () { head -c 384 /dev/urandom | base64 ; }

= () { cat $@ | ./knuth_mult ; }

> a =? # Alice: secretly generate

> b =? # Both: jointly generate

> c =? # Charlie: secretly generate

> d = a b # Alice: openly deliver to Charlie

> e = b c # Charlie: openly deliver to Alice

> f = a e # Alice: secretly compute

> g = d c # Charlie: secretly compute

sha256sum f g # Both: hashed key ready to use in encryption, etc.

Table 7: Demo shell script for plactic key agreement

An example run of the demo script in Table 7 is included in Table 8,
merely showing that Alice and Charlie compute the same hash. The values

$ ./demo.sh

0defbeb9f0e3e62fbe99b32db3325d837857078e6dfcf5537b6fab490462bf58 f

0defbeb9f0e3e62fbe99b32db3325d837857078e6dfcf5537b6fab490462bf58 g

Table 8: A run of plactic key agreement

of the files d and b from this run are shown in Tables 3 and 4. The file b is
not put into semistandard tableau form.

Heuristically extrapolating empirical run-times of division-by-erosion, sug-
gests that computing d/b using division-by-erosion should be expected to take
at least 2128 steps (on average for d and b computed randomly of similar size).

5The script uses special features of the bash shell to arrange for the command lines to

look somewhat like the standard notations in algebra, such as d = ab.
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5 Discussion

5.1 Provenance

The combinatorics underlying plactic key agreement has prominent prove-
nance, originating from very reputable authors, such as Knuth and Schutzen-
berger. If a fast division algorithm was obvious to these authors, maybe they
had no reason to mention it.

5.2 Diversification

Plactic key agreement seems independent of the more established cryptog-
raphy schemes such as: elliptic curve Diffie–Hellman (ECDH), supersingular
isogeny key exchange (SIKE), as well as McEliece public-key encryption, and
NTRU public key-encryption. It seem unlikely that an attack on one of these
established schemes would extend to plactic key agreement.

5.3 Quantum computer attack vulnerability

The combinatorial nature of plactic key agreement involves many branching
steps and non-reversible operations. Quantum computers tend to have ad-
vantage over classical computers when many non-branching and reversible
operations can be computed in quantum superposition. This intuition sug-
gests that plactic key agreement might have some innate immunity to quan-
tum computer attacks. (On the other hand, perhaps the Johnson–Kambites
matrix representation runs faster on a quantum computer.)
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A Previous work

This section outlines the history of the technical elements making up plactic
key agreement.

A.1 Semistandard tableaus and the plactic monoid

Kostka [Kos82] introduced semistandard tableaus to provide combinatorial
explanations of the integer coefficients of symmetric polynomials. The co-
efficient of the monomial symmetric polynomials in the Schur symmetric
polynomial is the number of semistandard tableaus of a given shape and
content (and now the numbers are called Kostka numbers). Jacobi [Jac41]
defined Schur symmetric polynomials as ratios of alternating polynomials.
Schur later used these polynomials in matrix representations of permutations
[Sch01] (and now these polynomials are name after Schur). Young [You00]
used standard tableaus (semistandard tableaus with all entries distinct) to
study matrix representation of permutations (and now these tableaus are
often called Young tableaus).

Robinson [Rob38] used semistandard tableaus in 1938 to find the longest
non-decreasing subsequence of a given sequence. Schensted [Sch61] extended
this method in 1961 to find longest subsequences that were unions of a given
number non-decreasing subsequences. Their independently discovered algo-
rithm is now called the Robinson–Schensted algorithm. It is the part of the
Knuth multiplication that one gets from multiplying an empty tableau a by
some other tableau b, except that one starts from the row reading of b. The
shape of the tableau b provides information about various subsequences of b.

Knuth [Knu70] defined a monoid, which he called “tableau algebra”. Its
elements can be represented by semistandard tableaus. To prove associativ-
ity of multiplication of tableaus, Knuth showed that the Robinson–Schensted
algorithm that maps strings to semistandard tableaus actually defines a con-
gruence on the monoid of strings under concatenation (the free monoid). The
resulting congruence monoid is the plactic monoid.

Lascoux and Schutzenberger [LS81] studied Knuth’s “tableau algebra”
in 1981 and re-named it monoide plaxique6, which has been translated to
plactic monoid, which is now the generally accepted term.

6The new name may be inspired by plate tectonics.
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For a sample of some recent research about the plactic monoid, see [CM18]
and [JK19].

A.2 Key agreement

Diffie and Hellman [DH76] introduced in 1976 a key agreement scheme7.
Merkle [Mer78] independently introduced another (less efficient) type of key
agreement. Diffie–Hellman key agreement uses exponentiation modulo a
large prime number. Changing their notation slightly, Alice sends d = ba

to Charlie, Charlie sends e = bc to Alice, Alice computes agreed key f = ea,
and Charlie computes agreed key g = dc.

Berenstein and Chernyak [BC04] described in 2004 a key agreement scheme
that uses semigroup multiplications8 instead of modular exponentiation.
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