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Abstract. In response to ongoing discussions about data usage by com-
panies and governments, and its implications for privacy, there is a grow-
ing demand for secure communication techniques. While during their
advent, most messenger apps focused on features rather than security,
this has changed in the recent years: Since then, many have adapted
end-to-end encryption as a standard feature. One of the most popu-
lar solutions is the Signal messenger, which aims to guarantee forward
secrecy (i. e. security of previous communications in case of leakage of
long-term secrets) and future secrecy (i. e. security of future communica-
tions in case of leakage of short-term secrets). If every user uses exactly
one device, it is known that Signal achieves forward secrecy and even
post-compromise security (i. e. security of future communications in case
of leakage of long-term secrets). But the Signal protocol also allows for
the use of multiple devices via the Sesame protocol. This multi-device
setting is typically ignored in the security analysis of Signal.
In this work, we discuss the security of the Signal messenger in this
multi-device setting. We show that the current implementation of the
device registration allows an attacker to register an own, malicious de-
vice, which gives them unrestricted access to all future communication of
their victim, and even allows full impersonation. This directly shows that
the current Signal implementation does not guarantee post-compromise
security. We discuss several countermeasures, both simple ones aiming to
increase detectability of our attack, as well as a broader approach that
seeks to solve the root issue, namely the weak device registration flow.

1 Introduction

Messenger apps like Whatsapp, WeChat or Telegram have become a cornerstone
of person-to-person communication in the past decade. To meet users demand
for privacy and to protect their right for freedom of expression, many messengers
now employ end-to-end encryption (E2EE) to ensure message privacy. E2EE also
ensures that operators cannot pry on users communication and thus poses new
challenges to government surveillance. With the popularity and better protec-
tion of communication, governments and their police forces fear going blind and
try to regain access via jurisdiction and/or improved technical capabilities. For
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example, Russia banned Telegram for several years, due to its use of E2EE [23].
But political will to push regulation and/or improve technical capabilities also
exist in the US [19] and the EU [8].

One messenger and its same-named secure communication protocol stands
out: Signal. The Signal protocol has received great scrutiny by the crypto com-
munity and is widely accepted as providing a very high level of security. In fact,
Whatsapp adopted the Signal protocol to restore user trust after being bought
by Facebook in 2014. One of the features that make the Signal protocol special is
its future secrecy property, which—in addition to protecting all communication
completed before a breach of local credentials—also provides security guaran-
tees in case the short-term keys of a system were leaked [25]. Furthermore, the
specification states that the protocol achieves some sort of security against pas-
sive attackers that were able to compromise one of the parties, but not against
active attackers [27]. This is a weaker notion than that of post-compromise secu-
rity, which also protects all communication if the long-term keys are leaked [16].
Post-compromise security seems particularly desirable in a world where govern-
ments invest heavily in the ability to intercept messenger communication. But it
can also restore trust in cases where long-term secrets have been compromised
due to a malware infection, leakage of backups, or legal reasons [17,12]. For most
messengers, even a short-term compromise results in insecure subsequent com-
munication if long-term keys could be leaked (see e. g. the comparison in [18]).
Most of the messengers that restore security toward a broad class of adversaries
even with compromised secrets are based on the Signal protocol. Furthermore,
it was shown that Signal does indeed guarantee the stronger notion of post-
compromise security, in the one-device-per-user use case [9,15].

Multi-device support is handled by the Sesame sub-protocol in Signal. Sesame
adds a new level of complexity to the protocol, which is often not reflected in
current cryptographic analysis [9,15]. Unlike other parts of the Signal protocol,
the Sesame specification is less precise and leaves a lot of freedom to the actual
implementation of the protocol. Whether Signal achieves post-compromise se-
curity in the general case of users having multiple devices is thus not as clear.
In [16], the authors state that TextSecure — the predecessor of Signal — might
not achieve post-compromise security due to its implementation of the handling
of multiple devices. The authors of [15] state that the post-compromise security
of Signal depends on subtle details related to device state reset and the handling
of multiple devices, but that Signal could achieve some form of it.

Just recently, the question whether implementations of the Signal protocol
do have post-compromise security was answered in [18]: The authors argue that
the Signal protocol does guarantee post-compromise security, but several promi-
nent implementations either do not guarantee it at all (e. g. WhatsApp and
Facebook Secret Conversations) or only partially (e. g. Signal messenger), due
to their problematic handling of desynchronization scenarios. More concretely,
the authors clone a device and later try to use this clone. Whenever the clone
sends a message, the receiving party just displays a message “Bad encrypted
message”. Similarly, whenever this clone receives a message, only the message
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“Bad encrypted message” is displayed. In both cases, the sending party does
not receive any notification about this. This behavior means that the cloned de-
vice can impersonate the original device, but can not be used to send or receive
messages, making it rather useless.

In this work, we present an attack on the post-compromise security of the
Signal messenger that allows to stealthily register a new device via the Sesame
protocol. In contrast to the attack in [18], this new device can send and receive
messages without raising any “Bad encrypted message” errors. Our attack thus
shows that the Signal messenger does not guarantee post-compromise security
at all in the multi-device setting.

1.1 Our Contribution

This work analyzes the Sesame protocol as it is implemented in the current
version of the Signal messenger. As many parts of Sesame are not specified
out, we reverse-engineer specific implementation details of Sesame in the Signal
messenger. With those gaps in the Sesame specification filled, we analyze the
post-compromise security property of the Signal protocol, which indeed holds in
the single-device per user scenario [15]. However, we show that the current im-
plementation of the Signal messenger, due to unfortunate choices in the Sesame
realization, undermines the post-compromise security and may ease interception
of messenger communication. We further point out how simple changes in the
realization of Sesame can be used to close these existing gaps. In summary, we

– give an overview of the Signal protocol suite, and discuss its security in case
one of a user’s devices gets temporarily compromised;

– highlight security-critical steps that have been declared implementation de-
tails and thus were left out from the protocol specification;

– show that in the current implementation, an attacker can fully break post-
compromise security by leaking only two long-term secrets, and using these
to register a new device;

– discuss several mitigations to help users detect our attack, and to fix the
underlying issue in order to allow secure registration of devices.

1.2 Responsible Disclosure

We disclosed our findings to the Signal organization on October 20, 2020, and
received an answer on October 28, 2020. In summary, they state that they do
not treat a compromise of long-term secrets as part of their adversarial model.
Therefore, they do not currently plan to mitigate the described attack or imple-
ment one of the proposed countermeasures.

2 Background

We always denote key-pairs by capital letters. For a key-pair IK, we denote
the secret key by sec(IK) and the public key by pub(IK). Symmetric keys are
denoted by lowercase letters, e.g. sk.
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Nowadays, instant messaging is omnipresent and such messengers often even
replace the use of e-mail in companies (examples include Slack [4], Microsoft
Teams [2], or Webex Teams [6]). Over the last decades, many different crypto-
graphic protocols for secure messaging were developed. Due to the rapid technical
development, many new features were added to the applications implementing
these protocols, but their security guarantees were rarely updated as well. Two
common features leading to security problems are group communication and
multi-device communication (see also the discussion in [13] for important differ-
ences between these scenarios). In the case of group communication, multiple
users want to communicate in a group. Furthermore, these groups are typically
dynamic, i. e. the users in a group can and do change relatively often. To cir-
cumvent the arising problems with group communication, the Messaging Layer
Security (MLS) protocol was introduced and is currently in the standardization
process [5,14]. In the case of multi-device communication, two users want to
communicate, but each of them may use different devices (such as a laptop, a
smartphone, and a tablet). Furthermore, users typically want to register new
devices, transfer old messages, and have a synchronized status on all of their
devices. To the best of our knowledge, there is no proposal for a unified handling
of multiple devices.

In this work, we only consider the multi-device setting and the problems
arising in this scenario. For simplicity, we focus on two-user communication,
i. e., two users A (or Alice) and B (or Bob) communicate, but each of the users
owns several devices.

2.1 Post-Compromise Security

Modern cryptographic protocols aim to achieve different security guarantees,
depending on their use case. One of those guarantees is the security in case the
long-term keys of a party are leaked. Two important notions dealing with this
are forward secrecy and post-compromise security : Forward secrecy (typically
achieved by the use of ephemeral keys) guarantees that previous communication
is still confidential, even if the long-term keys of the parties are leaked (see
Fig. 1a).

compromisetest s`

(a) Forward Secrecy

compromise test s`refresh s`−1

(b) Post-compromise Security

Fig. 1: Schematic representation of forward secrecy and post-compromise secu-
rity.
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In contrast, post-compromise security guarantees that leakage of the long-
term keys does not break the confidentiality of future communication (see Fig. 1b).
Clearly, the general goal of universal post-compromise security is not achievable.
If A and B have not communicated before, an attacker knowing the long-term
identity key sec(IKA) of A can perfectly impersonate A and is thus able to
perform a man-in-the-middle attack, breaking the confidentiality of the commu-
nication between A and B. But, only slightly weaker guarantees are still possible:
If A and B have already communicated before, they might have agreed on an
(ephemeral) key EKA,B during this session. Whenever A and B now want to
resume their communication, A uses both sec(IKA) and EKA,B to authenticate
themselves. Clearly, having only access to the long-term key sec(IKA) is thus
not sufficient to break the confidentiality of the communication in this scenario.

In [16], Cohn-Gordon, Cremers, and Garratt formalized this above intuition
both about the impossibility of universal post-compromise security, but also on
the possibility of slightly weaker versions. Informally, they show that even if
all but one exchange of messages before the secure session are compromised,
post-compromise security can still be achieved.

Note that post-compromise security can be useful for a wide range of situ-
ations, not only for a complete breach of a device: For example, an old backup
containing the long-term keys might have been leaked (see e. g. [3]), malware
was present on the device (see e. g. [1]), parts of the implementation were ma-
nipulated (see e. g. [11,10]), or a secondary device might have been stolen.

Attacker model Here, we only give an informal discussion about the formaliza-
tion of post-compromise security and refer the interested reader to [16] for formal
definitions. Alice and Bob communicate via a sequence of sessions, which can be
thought of as runs of an authenticated key exchange protocol. Each session s has
its own local state, which includes e. g. the session key EKs, the parties A and B,
the randomness used in s, and all messages exchanged during the session. The
parties A and B have a global state, which includes e. g. the long-term secrets
IK and the public keys of all other parties.

Now, consider a sequence of sessions s1, s2, . . . , s` between A and B, where
the final session s` is the test session. The goal of an attacker is to break the
confidentiality of this test session. To do so, we assume that an attacker can
obtain the long-term secrets and the short-term secrets of all sessions, except for
the session s`−1 (which can be used as a refresh session) and the test session
s` itself (see Fig. 1b) We furthermore assume that an attacker has the usual
abilities: They can read all of the (encrypted) messages sent between A and B,
are a valid user in the network, and can communicate with both A and B.

Multi-device support As noted before, we consider the situation that both
A and B communicate via multiple, different devices. This multi-device setting
already leads to non-trivial problems with regard to post-compromise security.
Consider a single-device communication protocol Π that has post-compromise
security. In order to adapt Π to a multi-device setting, several questions arise:



6 Authors Suppressed Due to Excessive Length

– How to synchronize the different devices of a single user?
– How to register a new device?

To still guarantee the post-compromise security of the multi-device protocol,
these questions (and many more) need to be answered carefully.

To handle the synchronization of the different devices of a single user (and
also handle asynchronous messaging), one could make use of a server. For each
user A of the system, this server manages a mailbox, which stores all messages
sent to A, all messages received by A, and all registered devices of A. The
messages are stored encrypted. Now, whenever A uses one of their devices to
send a message to B, the device would put this message in the mailbox of A
and in the mailbox of B, if this device was successfully registered for A. To
synchronize received messages, every successfully registered device of A could
obtain and decrypt the content of the mailbox of A.

A straight-forward way to register a new device would be using the long-
term secret key sec(IKA) to add the new device to the device list of the mailbox
of A. Unfortunately, such a strategy might already break the post-compromise
security of the protocol: If, apart from knowing sec(IKA), no further verification
from A is required for such a registration, an attacker knowing sec(IKA) can
register a new device without alerting A. From this point on, the attacker would
be able to observe the complete communication of A, thus breaking the post-
compromise security of the protocol. The Sesame protocol used by Signal to
handle multiple devices roughly follows this approach and, as we will show, is
thus not post-compromise secure.

3 The Signal Protocol

The Signal (formerly Axolotl) protocol [26] provides end-to-end encryption for
text messages and multimedia files. It is widely used in different communica-
tion applications such as WhatsApp [33], Skype [24] and the Signal messenger
itself. The protocol is based on the Double Ratchet algorithm and uses a triple
Elliptic-curve Diffie–Hellman handshake (X3DH) to initiate new conversations.
The Sesame protocol is used to enable multi-device support. Signal uses a num-
ber of cryptographic primitives including
– Elliptic Curve Diffie-Hellman functions (implemented by X25519 or X448 [21]);
– a signature scheme called XEdDSA producing EdDSA-compatible signatures

from X25519 or X448 using the hash function SHA-512 [26];
– a hash function (implemented by SHA-256 / SHA-512);
– a key derivation function KDF based on the HKDF algorithm [20];
– an authenticated encryption (AEAD) scheme [31,32]. Concretely, KDF is

used to produce an encryption key, an authentication key, and an initial-
ization vector (IV). The plaintext is then encrypted with AES-256 in CBC
mode. Finally, HMAC with the hash function and the authentication key is
used on the authenticated data.
We continue by giving an overview over the three protocol parts that jointly

form the Signal protocol. For the remainder of this paper we use the term user
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for one communicating entity that usually is a single person. Note, that one user
may have multiple devices, that they use for their communication. The term
party on the other hand is used more abstractly on the protocol level for one
side of the communication, usually represented by a single device or server.

3.1 X3DH [29]

In order to setup a secure session, all parties have to agree on a key. Usually,
this is done via a Diffie-Hellman key exchange, but this does not work well in a
messenger setting, which heavily relies on asynchronous communication. If party
A wants to send a message to party B, but party B is offline, party A needs a
way to derive a shared secret key sk without any interaction with party B.

The X3DH protocol aims to solve that problem, by allowing B to store a set
of public keys in a public location, which A can subsequently use for a Diffie-
Hellman computation. In order to provide authentication and freshness, B offers
their public identity key and a set of prekeys. A retrieves B’s public keys and
computes DH key exchanges with their own secret identity key and an ephemeral
key. To allow B to later derive the same shared key, A subsequently sends their
public identity key and the public ephemeral key. A can now encrypt messages
with the shared key and send them to B. As soon as B gets online again, they can
use A’s public keys to derive the same shared secret and decrypt A’s messages.
In order to encrypt and send messages to A, B executes the same protocol steps
as A, deriving another shared secret for the other direction of communication.

3.2 Double Ratchet [27]

While agreement on a shared secret key is sufficient for A and B to exchange
encrypted messages, it is quite vulnerable against possible compromise: As soon
as the shared key gets leaked, an attacker gains full access to all past and future
communication between A and B. To avoid this, the shared key needs to be
refreshed in regular intervals, to add new randomness and narrow down the
possible damage from a leaked secret.

The Double Ratchet protocol solves this by introducing four cryptographic
chains. The first one, the Diffie-Hellman (DH) chain, consists of an alternating
series of public and private ephemeral keys, where the private part is provided
by the local party, and the public part comes from the remote party. Ideally,
each message sent from A to B also contains a new public ephemeral key from
A, and vice versa. Each time a party receives a new public ephemeral key, they
advance their local DH chain by one step.

The shared secret from the DH chain is then fed into a symmetric root chain,
which is initialized with the initial secret from the X3DH key exchange. On each
step of the DH chain, the root chain is advanced by one step as well. The root
chain uses a keyed hash function to generate a root key, which is used as key for
the next root chain step, and a chain key for sending or receiving. Each chain
key spawns a new sending or receiving chain, which is in turn used to derive
the keys for encrypting or decrypting messages. Since all chain keys are derived
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using a keyed hash function, an attacker cannot compute their predecessors, so
the protocol grants forward secrecy.

Note that each DH chain step leads to a new sending or receiving chain.
Thus, if a sending or receiving chain key gets compromised, only the messages
encrypted with that particular chain are affected. The same holds for the root
chain: If a root key gets compromised, only the immediate sending or receiving
chain and its associated messages are affected. The next step of the root chain
can be considered secure again, as it incorporates fresh randomness from the DH
chain. In case a long-term secret (e.g., the private identity key) gets leaked, the
confidentiality of future messages from existing Double Ratchet sessions is still
preserved, as long as the attacker does not also gain access to all new private
ephemeral keys. Thus, intuitively, the Double Ratchet protocol also provides
post-compromise security. For a formal security proof of Signal’s forward secrecy
and post-compromise security we refer to [15].

3.3 Sesame [28]

In order to allow users to send and receive messages from multiple devices, the
Sesame protocol was introduced. The protocol describes two scenarios: A per-
user scenario, where a single identity key is used on all the user’s devices, and a
per-device scenario, where each device has its own identity key. Both scenarios
are handled in a similar fashion by the Sesame protocol, since the only difference
is the location where the identity keys are stored – either in the user records or
in the device records.

On the highest level, each device stores a list of users that it knows, including
its owner. For each of these users, a non-empty list of their devices is stored,
which in turn is associated with a list of Double Ratchet sessions. Additionally,
each device has its own mailbox on the server, which is used to asynchronously
fetch encrypted messages from other devices and which only contains messages
that weren’t yet received. For each device, exactly one session is active at a time,
while the other ones are stale and only kept in case delayed messages arrive.

Whenever a device of user A sends a message to user B, it sends this message
to each device associated with B, either via its current active session or by
initializing a new session via X3DH. Additionally, the message is sent to all
devices of A, using the same mechanism. The server then puts the messages into
the respective mailboxes, where the receiving devices can obtain their messages
from and then decrypt them using the corresponding session keys.

While Sesame describes how messages are kept synchronized on all devices in
a multi-device scenario, it does not cover the registration of new devices: These
details are fully left to the implementation, excluding them from considerations
regarding Sesame’s security. In Section 4, we show that the current implemen-
tation in the Signal messenger is indeed vulnerable, and allows an attacker to
impersonate their victim.
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4 Signal Implementation in the Signal Messenger

While the specification of the X3DH key exchange and the Double Ratchet are
rather specific, Signal’s multi-device extension Sesame only describes a high-
level view of exchanging messages between multiple devices and sessions (com-
pare e. g. [27] and [28]). Many important details, most notably the registration
of new devices, are left to the programmer, and are thus not included in any
security proofs. In this section, we take a closer look at these implementation
details and show how these allow an attacker to work around Signal’s post-
compromise guarantees, gaining unconstrained access to a user’s future commu-
nication. Our attack shows that the Signal messenger currently does not guaran-
tee post-compromise security. Furthermore, in contrast to [18], our attack allows
us to completely break the privacy of the communication, as it allows us to both
send and receive messages.

For simplicity, we assume a single user with identity key IK and who uses
the Signal app A. The device registration aims to add a new device D.

4.1 Reverse Engineering the Protocol Implementation

Since the device registration protocol is not specified anywhere, we had to an-
alyze how it is implemented in the Signal messenger. Unfortunately, there is
neither an official API specification nor any documentation of the procedure,
so we had to dive into the implementation and try to piece together the rele-
vant bits in order to get a full view of the device registration protocol and do a
security analysis.

For our analysis, we checked out the source repositories of Signal’s Android
app (commit fc41fb51) and Desktop client (commit a1721ed2). Apart from
occasional source code comments, both implementations are almost entirely un-
documented, and it proved difficult for us to get an overview by inspecting the
various subfolders/packages. In order to roughly locate the relevant code parts,
we searched for various strings which are shown in the UI, and then followed the
call traces.

There is no built-in means for exporting sent/received packets in debug mode;
Signal does certificate pinning with a custom TLS root certificate, which we
weren’t able to circumvent without losing connectivity, so setting up a proxy for
intercepting the network communication was not an option. Thus, we mostly
resorted to static analysis in order to understand what data is sent across the
network, along with some custom debug outputs. Studying the server implemen-
tation3 helped us infer the higher level information flow.

We lay out our reverse engineering results in the following section, where we
explain the device registration process and the involved secrets.

1 https://github.com/signalapp/Signal-Android/tree/fc41fb5
2 https://github.com/signalapp/Signal-Desktop/tree/a1721ed
3 https://github.com/signalapp/Signal-Server

https://github.com/signalapp/Signal-Android/tree/fc41fb5
https://github.com/signalapp/Signal-Desktop/tree/a1721ed
https://github.com/signalapp/Signal-Server
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4.2 Device Registration

Prerequisites To register a new device, several private and public values are
required, which may be partially known to an attacker:

– The (private) identity key IK: As described in Section 3.1, this long-term
key is required to setup new prekeys and start new conversation sessions. It
is only stored on the user’s device.

– The phone number pn: As, for the current implementation, the phone num-
ber is the only means for creating and identifying user accounts, it can be
assumed to be known to the attacker.

– The app’s API username unA and password pwA: These are used in HTTP
authentication when communicating with the server. The username directly
depends on the phone number and the device ID (which is constant for the
primary device), and can thus be easily guessed; the password is random
and needs to be leaked. Since the authentication data is sent in the clear,
but inside the TLS layer, the attacker may either exfiltrate it through the
same channel as the identity key, or by gaining (limited) access to the server,
which is assumed untrusted by the Signal protocol.

– The profile key pk : The profile key allows accessing certain meta information,
like the user’s display name and their avatar image. It usually is transmitted
when starting a new conversation, to allow the other peer to download and
decrypt the user’s profile information, so the attacker may have already
gained access to that key by communicating with their victim at an earlier
point of time. Anyway, we found that sending the profile key is optional for
device registration, and does not influence detectability of our attack.

Adversarial Scenario We now concretize our generic attacker model, which
we presented earlier. Throughout the rest of the paper, we assume an adversary
who at some point managed to obtain the private identity key IK, the phone
number pn, the API username unA, and the password pwA. After all of these
information are retrieved, the attacker does not interact directly with the victim
or interferes with their communication. Instead, the adversary will only interact
with the public Signal servers once during the compromise stage, using these
cloned credentials of the victim to impersonate the victim towards the server (but
not toward any of the communication partners of the victim). Once registered,
the adversary performs direct communication with a party (the Signal server), to
collect messages from their mailbox. This corresponds to the scenario described
in [18], where an attacker was able to clone the complete smartphone and uses
this cloned copy at a later time.

The PIN Another secret, which is only known to the user, is the PIN pin:
Signal PINs were introduced in 2020 [30], and are designed as a means for storing
private information in an untrusted location. This information may be later used
to recover key material and the contact list, e.g., after losing the primary phone
(Secure Value Recovery [22]). The PIN cannot be acquired by breaking into the
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Phone App Signal Server Desktop Client 

Open provisioning socket

Verification code?

QR Code

Fig. 2: The Signal device provisioning protocol. The user registers a new device
D with their primary device A.

server, as it is claimed to be secured by an SGX Enclave, which only permits
a small number of guesses. However, the current implementation of the app
offers a PIN “reminder” feature, which asks the user to enter the PIN in regular
intervals. This feature compares the hash of the entered PIN to a locally stored
value, in order to avoid accidentally using up the number of allowed guesses
on the server side. If an attacker manages to retrieve this hash value, e.g. by
dumping the memory of the app, they may be able to determine the (likely
short) PIN through an offline brute-force attack. However, knowing the PIN is
not required for our attack, except if the attacker wants to obtain the full contact
list of their victim.

Device Provisioning Protocol The protocol for registering a new device,
called provisioning by the Signal implementation, is illustrated in Figure 2. As
stated before, we use A to denote the phone (primary) instance of the user’s
Signal account, and D to denote the desktop client instance which the user tries
to register as a new device.

Upon start of the desktop client, the software will open a provisioning Web-
Socket to the Signal servers, which will generate and send a random device UUID
uuidD. The desktop client then generates a provisioning key pair PR and encodes
uuidD and pub(PR) into a QR code, which is presented to the user.
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After the user scanned the QR code using the Signal app, the app will first
request a verification code code from the server, and then encrypt some of the
app’s private data with a random AES key prs:

Encprs ({pub(IK), sec(IK), code, pn, pk})

The encrypted data and the encrypted key EncPR (prs) is sent to the server,
which relays it via the provisioning socket to the desktop client. The desktop
client uses the private provisioning key sec(PR) to obtain prs and thus decrypt
the data packet sent by the app.

The desktop client registers with the Signal servers by sending a packet con-
taining the phone number pn, the string code for verification, a random password
pwD, a random registration ID regId, and the device name nameD, which is cho-
sen by the user and is encrypted using the identity key IK. Upon receiving the
registration packet, the servers return a new device ID deviceIdD, completing
the protocol.

Since the Signal servers require HTTP authentication, the desktop client will
include the username unD := pn.deviceId and the password pwD in any future
communication.

After the registration is done, the desktop client requests the current list
of conversations, which is implemented via a hidden Double Ratchet session
between the desktop client and the app. This “shadow” session is also used
to synchronize messages sent by the user between their devices. There is no
notification to the user that a device requested their conversations. Note that
only the conversation metadata and the lists of participants are transmitted; the
data does not include the chat history prior to device registration.

4.3 Registering a Malicious Device

If an attacker manages to temporarily compromise the victim’s primary device
in a fashion that reveals certain private values, namely the victim’s identity key
IK and the API password pwA, they can simulate a device registration and add
a malicious device.

As illustrated in Figure 2, the only points where the primary device inter-
acts with the server during the device registration are requesting a verification
code and sending the encrypted private data. The former only requires API cre-
dentials, while the latter additionally requires the private identity key. Since we
assume that the attacker has gained access to these values, they can fully em-
ulate the protocol and set up the new device, without any interaction from the
victim or their app.

To demonstrate malicious device registration, we created a simple dummy
app4 in C#, which takes the private identity key and the API credentials, and
then runs the described API calls. For testing, we started a new instance of the
official desktop client, extracted the contents of the displayed QR code, and fed

4 Code is available on GitHub: https://github.com/balasdansb/signal-attack

https://github.com/balasdansb/signal-attack
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these into our dummy app. As soon as the API calls were completed, the desktop
client started downloading the conversations from the victim’s phone app. As
the phone app happened to be up and online, all contacts and groups were
successfully retrieved, without showing any notification to the victim (Figure
3). After the registration was completed, the victim and their peers started to
forward new messages and conversations to the forged device as well, giving the
attacker full access to their communication.

Since the server manages a list of all registered devices, the forged device
will appear in the victim’s device list, if they access it in their app. However, in
case the attacker has some level of control over the (untrusted) server, they can
easily manipulate the returned list to exclude their forged device, making the
attack almost undetectable.

4.4 Implications for post-compromise security

The newly added device gives the attacker a high level of access to all commu-
nications of the victim.

According to the Sesame specification, new messages shall be sent to the
active sessions of each of the peers’ devices, so each device can display the entire
chat history from the point of device registration, even if the user switches their
active device in between. Thus, the attacker receives all new communication
directed to their victim, as well as all messages sent by the victim to other
devices, as chat history is kept synchronous between all devices of a user.

The attacker may also impersonate the victim and send messages on their
behalf. As sending such a message is easily detectable by other synchronized
devices, one might suppress the synchronization to the victim’s other devices.
However, this may be detected as soon as one of the peers responds, since an
answer will be sent to all registered devices, including the victim’s own ones.

In summary, our attack shows that compromising just two secret values leads
to a full disclosure of all future communications. Previously, it was only known
that a cloned devices could be used, but this device was not able to send or
receive messages [18]. In contrast, our attack shows that leaked long-term keys
of Signal can directly be used to completely break the post-compromise security,
both in theory and in practice. While Double Ratchet itself has strong post-
compromise guarantees, this is subverted by the weak device registration and
synchronization procedure in Signal’s implementation of the Sesame protocol.
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(a) Alice’s view. (b) Bob’s view.

(c) Attacker’s view.

Fig. 3: View of a conversation between Alice and Bob (screenshots (a) and (b)
slightly shortened to save space, by removing the user icons). After Alice initiated
the conversation and Bob answered, both verified their safety numbers. After
another message (“This is a secure message”), Alice’s account got compromised.
The attacker installed another device, and was able to read Alice’s last message
(“Not secure anymore”). Finally, the attacker impersonated Alice and sent a
message on her behalf. There is no indication to Bob or Alice that a new device
was added to the conversation, or which device authored a given message.
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5 Countermeasures

To counter the attack described above, there are several possibilities. Note that
according to the assumptions of the Signal protocol, we do not trust the server.
This lack of trust makes fixing the above problems much harder.

5.1 UI Changes

Right now, there is no active indication that a new device has been added, neither
for the user themselves, nor for their peers. While indicating a change or addition
of devices does not mitigate our attack, it greatly enhances detectability.

Notification for own device addition Currently, the attack can only be
detected when the victim checks their device list and spots the malicious device.
Since their own devices automatically sync settings and messages to all other
devices, they need to have a current list of all devices at all times. Whenever a
new device appears in this list, which the user did not actively add via scanning
a QR code, their primary app should issue a high-priority notification in order to
warn the user of a possible breach. However, this only works if the attacker is not
able to somehow suppress their malicious device at the server-side, which would
hide it from the victim, at the cost of not receiving the victim’s own messages
anymore.

Notification of device list changes In order to communicate in accordance
with the Sesame protocol, each user maintains ratchet sessions with all devices
of their peers as well as all other devices of themselves. As soon as a new device
is added, this may be indicated in the chat history, if the users choose to opt-in
to such a feature (there may be privacy concerns). If, in order to escape such
measures, an attacker fully suppresses their device at the server-side, they won’t
receive any messages, making the attack useless.

Device-specific security codes Another optional extension are device-specific
security codes: Instead of verifying a user once and then trusting all their devices,
the conversation peers could do a pair-wise verification of all devices. In this
setting, messages are only sent to authenticated devices, and a warning is issued
whenever a non-verified device is present. This approach is taken e.g. by the
Matrix messenger platform [7], which allows either a device-based or a user-
based verification.

5.2 Alternative Multi-Device Protocols

An alternative, more radical approach would be replacing the Sesame protocol
itself. Just recently, Campion, Devigne, Duguey, and Fouque devised a replace-
ment protocol for Sesame [13]. While Sesame realizes multi-device support by
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opening separate Signal channels between all devices used by the two communi-
cating parties, the approach presented in [13] uses a single Signal channel for all
communication between two users A and B. The usage of multiple devices on A’s
side is therefore transparent to B (and vice versa), meaning that higher privacy
guarantees are achieved. A’s devices can only use the same Signal channel to
communicate with B, if all of them use the same double ratchet session, which
can only be achieved when they synchronize the used ratchet key. In order to
achieve such a synchronization the authors introduce the Ratcheted Dynamic
Multicast (RDM). Based on asymmetric keys that are renewed regularly (hence
ratcheting), this allows every device of A to use a non-interactive multicast
channel to send session updates to all other devices owned by A, while providing
forward secrecy and post-compromise security (called healing properties in [13]).

In our attack we exploited the device registration and management, which
are mostly handled by the Signal server. The device registration presented in [13]
enforces the use of another already registered device. This is possible because
the registered devices of a user keep track of all other registered devices in a
decentralized fashion. If A wants to register a new device, they must use one of
their registered devices, which in turn uses the RDM to notify all other devices
of A about the new device. Note that the RDM can only be used if the current
ephemeral keys are known, which means that an attacker who has only extracted
long-term secrets is not able to register a new device.

6 Conclusion

In this work, we presented a security analysis of the Sesame protocol and its
current implementation in the Signal messenger, with focus on post-compromise
security. To enable a detailed security analysis, we first had to reverse-engineer
several implementation details of the Signal messenger. Based on the detailed
knowledge, we showed that the multi-device support of the Signal messenger can
be abused to eavesdrop on all communication after a one-time credential breach.
Thus, currently, the Signal messenger does not provide message privacy in the
post-compromise security scenario. We further discussed possible mitigations
of the described attack, where some are easy to implement and have minimal
impact on the user experience of the Signal messenger, while providing enhanced
detectability of our attack.
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