
Client-Auditable Verifiable Registries

Nirvan Tyagi

Cornell University

Ben Fisch

Stanford University

Joseph Bonneau

New York University

Stefano Tessaro

University of Washington

Abstract. Verifiable registries allow clients to securely ac-
cess a key-value mapping maintained by an untrusted server.
Applications include distribution of public keys, routing infor-
mation or software binaries. Existing proposals for verifiable
registries rely on global invariants being audited whenever the
registry is updated. Clients typically rely on trusted third-party
auditors, as large registries become expensive to audit.

We propose several new protocols for client-auditable reg-
istries that enable efficient verification of many updates to the
registry, removing the need for third-party auditors. Our solu-
tions use incrementally-verifiable computation (IVC) and/or
RSA accumulators. Our evaluation shows that our construc-
tions meet practical throughput requirements (60 updates /
second), which is 100× faster than naive solutions using IVC.
Clients save 100–104× bandwidth and computation costs
over prior solutions requiring auditing every update.

1 Introduction

A number of systems have demonstrated the promise of
transparency as a means to enhance security, most promi-
nently the Certificate Transparency protocol first launched in
2013 [LLK13,Lau14]. The goal of transparency systems is to
ensure that an authority’s behavior can be monitored by users.
Typically, misbehavior by the authority is not prevented but is
detectable. The implicit assumption is that large, public-facing
authorities are potentially malicious (or compromised) but
are cautious: they are unwilling or at least extremely hesitant
to carry out any attack that will leave evidence.

Certificate Transparency applies this philosophy to certi-
fication authorities (CAs) for the Internet’s TLS public key
infrastructure. By requiring that every valid certificate is in-
cluded in a publicly available append-only log, Certificate
Transparency enables genuine domain owners to scan for im-
properly issued certificates for their domain. This security
model is reactive, weaker than that of many proactive pro-
posals which aim to prevent rogue certificates from being
accepted in the first place [CvO13]. However, it has proved
to provide a useful balance between security, performance
and flexibility. By comparison, HPKP [EPS15], a proactive
protocol enabling domain owners to pin a limited set of keys
to their domain, was deployed in 2015 but deprecated by 2019
due to lack of deployment and problems with overly strict
pinning policies preventing legitimate key changes.

Transparency has been proposed in a number of other se-
curity contexts, including user-public key mappings in en-
crypted communication systems [Rya14, MBB+15], usage

of cryptographic keys [YRC15], and distribution of soft-
ware binaries [FDP+14, NKJ+17, AM18]. Verifiable reg-
istries [CDGM19, MKL+20] provide transparency for the
key-value mappings required for all of these applications.

Key transparency. While our solution is general, our motivat-
ing challenge is public key distribution for secure messaging
services. In addition to the importance of this application, it
is the most demanding in terms of performance requirements,
requiring support for a registry which contains billions of
entries, is updated very frequently, and is audited by clients
using mobile devices which are limited in bandwidth and
computational power and frequently go offline.

Consider a modern secure messaging application such as
WhatsApp or iMessage. These services have brought end-to-
end encrypted communication to billions by hiding key man-
agement from users. Public-key distribution is centralized:
a user Alice can send a message to Bob simply by entering
his phone number. The phone number is used as a lookup
key at a key directory server, which responds with Bob’s pub-
lic key. Of course, this is a major potential security hole as
a malicious server could respond with an incorrect key for
Bob and then decrypt all of Alice’s communication to Bob.
Currently, the only defense against malicious behavior by the
key directory server is manual verification of key fingerprints
by end users, an error-prone [DSB+16, TBB+17, VWO+17]
process which the vast majority of users neither understand
nor attempt [ASB+17].

With key transparency, the key directory server publicly
commits to the mapping from users to keys using a verifiable
registry. Users’ devices can automatically monitor the key
directory and alert users if any unexpected keys are mapped to
their user name. This does not proactively prevent attacks: the
server is still able to insert rogue keys which will be accepted
and used. However, doing so will produce cryptographic ev-
idence that users are able to see. In fact, it is typically a
requirement that the server can unilaterally change a user’s
public key – a property needed for users to recover access if
they lose their current device (and private keys) [BBG+20].1

The challenge of client auditability. Our goal is to support
verifiable registries with billions of entries. Proofs of the cur-
rent value of a mapping (used to prove the current value of
a user’s public key) should be small (e.g. less than a few
kilobytes) and efficient for the server to compute. Most im-

1A minority of users may prefer a stronger, proactive security policy in
which any key change must be authorized by signing with a key that is not
under the servers’ control, as discussed in CONIKS [MBB+15].

1

portantly, it must be efficient for the server to prove to a client
what updates (if any) have been made to the client’s key after
an arbitrarily long period of disconnection. It is not enough for
a client to check that the current value is unchanged since the
last check, because the server may have changed the client’s
key to a malicious value and changed it back before the client
came back online to check (a ghost key attack).

Previous solutions have either required clients to do audit-
ing work linear in the number of updates to the registry (limit-
ing update frequency in practice) [LLK13, Rya14, MBB+15]
or relied on third-party auditors to verify global invariants
at a cost linear in the entire size of the registry [MBB+15,
MKL+20]. Our goal is to enable clients to audit the registry
themselves efficiently both in asymptotic terms (e.g. in con-
stant time with respect to the number of updates) and concrete
terms (e.g. in milliseconds on a mobile device).

Contributions and roadmap. We propose several construc-
tions for verifiable registries. While all of our constructions
enable efficient client auditability, different techniques offer
different trade-offs between server computation (key update
throughput and key lookup latency), bandwidth costs, and
client computation. We abstract the core of our constructions
in terms of a new cryptographic primitive, which we call an
authenticated versioned dictionary (AVD).

Merkle tree-based solutions. We first adapt constructions us-
ing Merkle trees in the trusted auditor setting [MBB+15], en-
abling efficient client auditing using incrementally verifiable
computation (IVC) [Val08] via recursive proofs [BCCT13,
BCTV14]. In each epoch, a succinct proof (in particular, a
SNARK [Gro10, GGPR13]) is provided which proves the up-
date from the previous epoch is correct and also recursively
verifies a proof for the previous epoch.

However, state-of-the-art approaches for proof recursion
incur significant practical overhead [BCTV14]. To overcome
this limitation, we propose a novel approach to IVC using
hierarchical SNARK aggregation [BMM+19] (which may
be of independent interest). At epoch N , a client receives
one aggregate proof for the first N/2 epochs, then the next
N/4,N/8, and so on, resulting in logarithmic client overhead
as well as amortized logarithmic server overhead to merge
proofs after each epoch. Even so, replacing recursion-friendly
SNARKs with standard SNARKs results in significant perfor-
mance gains.

RSA accumulator-based solutions. Auditing an updated
Merkle tree requires work linear in the number of up-
dates. While parallelizable, computing a SNARK proof over
many updates becomes a bottleneck at high throughput.
To overcome this, we turn to RSA accumulators, whose
algebraic structure enables sublinear batching of update
proofs [BBF19]. We augment an RSA key-value accumu-
lator [AR20] with efficient batched update proofs, producing
an RSA-based verifiable registry with update proofs of con-
stant size and apply the same two IVC approaches to achieve

client auditability. Computing the update proof still requires
work linear in the number of key updates, but only constant
work done by the more costly SNARK prover, enabling higher
update throughout than Merkle tree based solutions.

Additionally, we give an “algebraic” RSA construction that
dispenses with the use of SNARKs entirely. Similar to our
approach to IVC via aggregation, algebraic update proofs are
provided over logarithmic number of ranges of increasing
size. Instead of creating a succinct proof for each range by
aggregating individual SNARKs, new range proofs are com-
puted directly with a batched update proof over the range of
epochs. Again, merging ranges can be done at relatively low
amortized cost, leading to a client-auditable verifiable registry
based solely on algebraic proofs.

While our RSA accumulator constructions enable high
throughput of key updates, serving validity proofs for individ-
ual key-value mappings incurs higher latency, naively requir-
ing work linear in the total size of the registry. We provide
some deployment optimizations that help alleviate these costs
with batching and caching, but ultimately this represents an
essential performance tradeoff between the two approaches.

Checkpointing. To meet efficiency goals, clients will necessar-
ily not be able to audit every update made to the registry. We
introduce a powerful checkpointing technique that implicitly
ensures a key update made by one client is represented in
lookups made by another client. This holds as long as both
clients individually perform cheap audits whenever looking
up or updating a key.

Evaluation. We implement and evaluate our proposed con-
structions. In all of our constructions, clients save 100–104×
bandwidth and computation costs over prior solutions requir-
ing auditing every update; daily auditing requires download-
ing < 10 KB of data and < 100 ms verification time. On
the server side, our RSA-based constructions surpass practi-
cal throughput requirements (60 updates / second), which is
100× faster than baseline solutions using Merkle trees. How-
ever, the RSA constructions incur additional costs for key
lookups.

2 Setting and Threat Model

A verifiable registry [CDGM19,MKL+20] consists of a list of
key-value pairs (k,v) administered by a centralized2 server.
The server periodically signs and publishes, at each epoch, a
commitment (or digest) di to the registry state Di.

The server is not trusted and may arbitrarily deviate from
the protocol. Our goal is not to prevent attacks, but to ensure
that they are eventually detected. This is particularly suitable
for an honest-but-cautious adversary. We do not attempt to

2It would be possible to use a semi-centralized model in which a set of
semi-trusted servers collaboratively maintain the registry using techniques
from distributed consensus and threshold cryptography.

2

1 2 3 4 5 63 5 6
Alice’s view

Bob’s view

implicit shared view
epochs

Figure 1: Eventual inconsistency detection for Alice’s and Bob’s view using shared checkpoints. Large ticks with circle labels indicate points in
time where Alice or Bob perform a key lookup. When Alice or Bob make a new lookup, they audit the contiguous checkpoint subranges since
their last lookup; the checkpoints are indicated by dots and the arrows indicate proofs that the versioned invariant holds between epoch digests.
Checkpoints are chosen to guarantee that any two of Alice and Bob’s overlapping lookup ranges will share at least one checkpoint, highlighted
in green. Thus, the epoch digests of Alice and Bob’s lookups are implicitly guaranteed to preserve the versioned invariant, up until their most
recent shared checkpoint. The square label for the shared checkpoint indicates at what lookup the shared checkpoint first exists. The shared
checkpoint lags behind the most recent lookups made by Alice and Bob, but will eventually catch up on future lookups.

guarantee availability against a malicious server, which can
simply refuse to respond to any queries.

To prevent split-view attacks, i.e., attacks where different
clients are provided diverging views of the registry, we assume
some out-of-band mechanism for clients to communicate.
This is necessary and in line with prior work on transparency
systems [LLK13, MBB+15, CDGM19, MKL+20, LKMS04].
Concretely, we assume the availability of a public bulletin
board that the server can append values to, but cannot oth-
erwise tamper with or censor, a common assumption in
cryptographic protocols in several contexts [Ben87, CBM15,
CGJ+17]. This is a useful abstraction that admits different
implementations – e.g., via a public blockchain [TD17] or
using a gossip protocol [STV+16, MKL+20].

Basic lookups and monitoring. Clients can interact with the
server to query a key3 k at epoch i and retrieve the associated
value v , along with a proof π of validity with respect to di
and some additional metadata (such as a version number).
Clients perform lookups at the current epoch i to learn the
authoritative value for a given key. The committing property
of the registry ensure that, for a given digest di and key k,
the server can only produce a valid proof π for one value v .
For example, if Alice wants to encrypt a message to Bob, she
queries Bob’s username kBob, verifying the proof π to ensure
she has received the correct value vBob of Bob’s public key.

Clients also continually query their own username to ensure
that the mapped value is correct, a process called monitoring.
The additional metadata returned with monitoring queries
can be used to quickly verify that a client’s mapping has not
changed during a long period of disconnectivity. For example,
if a client queries its own key at digest di and the associated
metadata indicates the version number has not changed since
the last digest dj which the client queried, this guarantees the
mapping has not changed during this period.4

3We use key to refer to the lookup key in a directory, e.g. a username. The
value associated with that lookup key may itself be a cryptographic key in
applications such as key transparency.

4If the version number has changed, the server can provide a proof that it

Invariants and client auditing. Associating metadata with
each mapping enables efficient monitoring across many di-
gests, but requires that every digest preserves certain invari-
ants with respect to the prior digest. Past work has consid-
ered two such invariants. The versioned invariant [MBB+15,
Bon16] associates with each key a version number that must
be incremented whenever that key’s value is updated. The
append-only invariant [TBP+19] associates with each key
an append-only list of the entire history of values for that
key over the lifetime of the dictionary. Either invariant makes
it easy to detect if a mapping has been modified; we focus
exclusively on the simpler versioned invariant in this work,
observing that the append-only property can be recovered by
storing values in a chronological Merkle tree and versioning
the Merkle root [MKL+20].

Our constructions improve upon prior work [MBB+15,
CDGM19, TBP+19] in enabling clients themselves to effi-
ciently audit any pair of epochs (i, j) — even if they are not
consecutive — given digests di and dj to ensure that Dj has
been obtained from Di without violating the invariant. Prior
works5 assume a third-party that audits the invariant property
for each consecutive digest pair, (di,di+1), which requires
work at least linear in the number of epochs to audit (in many
cases, more: linear in the number of key updates). Because
of this, client audits have not been practical due to both the
computational burden required to verify every epoch proof
and the bandwidth costs on the server to serve such proofs.

We rely on a bulletin board to prevent split-view attacks,
in which a malicious server convinces Alice to accept digest
di and Bob to accept digest d′i 6= di for the same epoch i.
Both digests might be valid updates from a common ancestor
dj , but map a key to two distinct values. We assume that
all digests d0,d1, . . . (i.e., one unique digest per epoch) are
published by the server on the bulletin board, which clients
will read from to maintain a consistent view.

changed at a specific digest dk for i < k < j.
5An exception is the recent work of Chen et al. [CCDW20] which sup-

ports efficient auditing across epochs as does our work. We compare our
approaches further in Section 9.

3

Efficient checkpointing. An important point is that an audit
proof for epochs (i, j) only depends on di and dj , and does
not give any guarantee for the digests di+1, . . . ,dj−1 that are
on the bulletin board and other clients may access. (This
is necessary to avoid work linear in the number of epochs.)
Thus, a major challenge is that since clients are online at
different times, they might never audit the same epochs. A
malicious server can attempt an oscillation attack [MKL+20],
serving clients interleaving sequences of digests where each
sequence preserves the update invariant, but the two sequences
interleaved do not preserve the invariant. If we want any two
clients to detect such an attack, we need to ensure they at
some point check digests for the same epoch—but we also
want to avoid requiring clients to retrieve all digests, incurring
work linear in the number of epochs.

We overcome this by introducing a new checkpointing
technique, illustrated in Figure 1. For every audited range
(i, j), clients audit the invariant for a logarithmic number of
checkpoint digests corresponding to certain canonical epochs
between i and j. Crucially, these checkpoints are chosen so
that any two overlapping ranges will share at least one check-
point. This implicitly guarantees that, for any two clients, the
invariant is preserved through the sequence of digests in their
interleaved view up to their latest common checkpoint, and
any invariant deviance since then will eventually be detected
on future audits. We note that clients may temporarily accept
digest values that do not preserve the invariant. But the crucial
point is that an oscillation attack is guaranteed to eventually
be detected.

3 Preliminaries

Authenticated dictionaries. Our system for verifiable reg-
istries will use an authenticated dictionary. A dictionary
D is a finite collection of key/value pairs [(ki,vi)]i where
every key is unique; we denote D[k] = v to map k to its
unique value v . An authenticated dictionary enables com-
mitting to a dictionary with a digest, d← Commit(D), and
updating a value in the dictionary to produce a new digest,
(d′,D′)←Update(D,k,v). Lastly, it provides proofs for key
lookups, (v ,π)← Lookup(D,k), that can be verified given
the digest commitment, 0/1 ← VerLookup(d,k,v ,π). An
authenticated dictionary must satisfy value binding, which
means that it is infeasible to produce valid lookup proofs for
key k to different values v and v ′.

The most prevalent authenticated dictionary used in prac-
tice is a Merkle tree [Mer87]. Merkle trees admit lookup
proofs and update proofs — proving that only a single
key mapping was changed — of size and verification time
O(logN) for dictionaries of size N . We review these algo-
rithms in Appendix A.

RSA groups and key-value dictionaries. An RSA group is
the multiplicative group of invertible integers modulo N (de-

noted Z×N), where N is the product of two secret primes. We
define the RSA quotient group for N as Z×N \ {±1}. The
widely believed Strong RSA Assumption (Strong-RSA) as-
serts that it is computationally difficult to compute eth roots
of a non-trivial element of Z×N for e≥ 3.

Recently, it was shown how to construct efficient authenti-
cated key-value dictionaries based on the security of Strong-
RSA [AR20,BBF19]. Our work builds on the KVaC construc-
tion [AR20] which we provide in Appendix E.

Lastly, proofs of integer discrete log [Wes19, BBF19] have
been useful for batching insertions and membership proofs
in RSA accumulators [CL02]. In such a proof, a prover con-
vinces a verifier that for u,v ∈ G and α ∈ Z, the relation
v = uα holds, where G is an RSA quotient group. Impor-
tantly, the integer α can be much larger than |G|, but the
verifier’s running time remains Õ(|G|). Later, we will extend
these techniques to apply to the RSA key-value dictionary.

SNARKs and incrementally-verifiable computation. A
non-interactive proof system for a relation R over state-
ment-witness pairs (x,w) enables producing a proof, π ←
Prove(pk,x,w), that convinces a verifier ∃w : (x;w) ∈ R,
0/1← Ver(vk,π,x); pk and vk are proving and verification
keys output by a setup, (pk,vk)← Setup(R).

A non-interactive argument of knowledge further convinces
the verifier not only that the witness w exists but also that the
prover knows w. If π is succinct, i.e. of “small” size and veri-
fication time, with respect to x andR, the protocol is further
known as a (preprocessing) SNARK [Gro10, GGPR13]. We
make use of SNARKs for relations of general circuit satisfi-
ability, of which there exist many constructions [GGPR13,
Gro10, GWC19, CHM+20, BBHR19, BFS20, Set20].

An incrementally-verifiable computation (IVC) [Val08] al-
lows proving correctness of repeated application of a circuit
computation. The predominant approach to IVC is use of
recursive SNARKs [BCCT13, BCTV14, BCMS20, BGH19],
in which the proof circuit for each intermediate state verifies
one step of computation from the previous state and veri-
fies correct computation from the initial state to the previous
state by recursively verifying the proof for the previous state;
such a proving circuit can be described because the recursive
verification can be computed succinctly.

4 Authenticated Versioned Dictionaries

In this section we will define an authenticated versioned dic-
tionary (AVD), the novel cryptographic primitive behind our
verifiable registry system, and present several constructions
of this primitive.

In a versioned dictionaryD, every key k has both an associ-
ated value v and a version number u, denoted D[k] = (u,v).
The version number is incremented upon each update to the
key. An ordered pair (D,D′) of dictionary states preserve the
versioned invariant if for every key k where D[k] = (u,v)

4

and D′[k] = (u′,v ′), either v = v ′ or u′ > u. An AVD pro-
vides the following algorithms to commit to the historical
states of a versioned dictionary and also to compute proofs
that they preserve the versioned invariant:
• di ← Commit(i,histi) returns a digest for epoch i, a

binding commitment to histi = (D0,D1 . . . ,Di), which
is an ordered list of dictionary states from epochs 0 to i.

• (i+ 1,histi+1,di+1) ← Update(i,histi,{kj ,vj}j) up-
dates the dictionary values for input keys {kj} to the
values {vj}, increments the version number of each up-
dated key, increments the epoch number i, and outputs a
new digest di+1 representing the new dictionary history.

• (di,ρ)←ProveEpoch(i,dj ,histj), for j ≥ i, returns the
digest di for epoch i along with a proof ρ that di is
correct (i.e., consistent with dj).

• 0/1← VerEpoch(i,di,dj ,ρ) verifies the proof ρ that di
is consistent with digest dj .

• (u,v ,π)← Lookup(D,k) returns the value v and ver-
sion number u along with a proof π that D[k] = (u,v).

• 0/1←VerLookup(d,k,u,v ,π) verifies the proof π that
D[k] = (u,v) is consistent with d.

• πAudit ← Audit(i,d,chkpts,hist) takes as input hist =
(D0, . . . ,Di), the digest d for hist, and an ordered list
of checkpoints c1, . . . , ck ∈ [i]; it returns a proof that all
pairs (Dcj ,Dcj+1

) for j ∈ [1,k−1] respect the version-
ing invariant.

• 0/1← VerAudit(i,d,chkpts,πAudit) is given the digest
representing the dictionary history in epoch i along with
an ordered list of checkpoints c1, . . . , ck ∈ [i] and verifies
the proof πAudit.

An authenticated versioned dictionary must satisfy history
binding, which means that it is infeasible to produce any
i,d,di,d

′
i and ρ,ρ′ such that VerEpoch(i,di,d,ρ) = 1 and

VerEpoch(i,d′i,d,ρ
′) = 1 or proofs π,π′ for version/value

pairs (u,v) 6= (u′,v ′) such that VerLookup(d,k,u,v ,π) = 1
and VerLookup(d,k,u′,v ′,π′) = 1. In addition, the prover
algorithm Audit and verifier algorithm VerAudit must sat-
isfy the security definition of a non-interactive proof sys-
tem for the relationRAudit over statement/witness pairs (x=
(d,chkpts),w= hist), where d =Commit(hist) and for every
checkpoint cj ∈ [i] the pair of dictionary states (Dcj ,Dcj+1

)
from the list hist = (D1, . . . ,Di) respect the versioned invari-
ant. Note that proving all historical states respect the versioned
invariant is a special case where the checkpoints include all
prior epochs.

4.1 Constructions: SNARK Recursion vs Aggregation

We begin with discussing general methods for construct-
ing an AVD from any underlying authenticated dictionary,
and we will later present several concrete constructions of
AVDs starting from either sparse Merkle trees or the RSA
key-value commitment KVaC [AR20]. We distinguish the

AVD algorithms from the authenticated dictionary algorithms
Commit,Update, Lookup, and VerLookup of the same name
using the notation AVD.xxx.

History commitment. The version number of a key is treated
as part of the dictionary value, i.e. D[k] = (u,v). The com-
mitment AVD.Commit combines a dynamic append-only
Merkle tree (or more generally any dynamic vector com-
mitment) with the algorithm Commit. The digest for the
first epoch with no history d0← AVD.Commit(0,D0) is set
to the digest δ0← Commit(D0). Given histi = (D0, ...,Di)
and the digests d0, ...,di−1 for the first i−1 epochs, the ith
epoch digest di← AVD.Commit(i,histi) is a pair of values
di = (rti, δi) where rti is the root of a Merkle tree over leaf
values (d0, ...,di−1) and δi← Commit(Di).

Batched updates. AVD.Update(i,histi,{kj ,vj}j) first re-
trieves the current version number uj of each kj and then
applies the underlying update algorithm Update(Di,kj ,(uj+
1,vj)) iteratively for each (kj ,vj) pair, returning the final
(δi+1,Di+1) pair. The epoch number is directly incremented
to i+1, is appended to histi to get histi+1 Di+1, and di+1 =
(rti+1, δi+1) where rti+1 is the root of the Merkle tree over
leaves (d0, ...,di−1).

Audit proofs. The first step is to construct an audit proof
for a single pair of authenticated dictionary digests. This
is a non-interactive proof system for a relation RInv over
pairs (x = (δ,δ′),w = (D,D′)) such that δ← Commit(D),
δ′ ← Commit(D′), and the transition from dictionary state
D to D′ respects the versioned invariant. Since our ultimate
goal is to build a registry that clients can audit efficiently
we optimize for the proof size and verification time (i.e., we
would like the proof system to be a SNARK for the relation
RInv). We will denote this abstractly as a pair of algorithms
πInv ← ProveInv(D,D′) and 0/1← VerInv(δ,δ′,πInv). Any
general purpose SNARK scheme suffices, however, in our
concrete constructions we obtain specialized proofs of this
relation that are more efficient that general purpose SNARKs.

The second step is to construct a proof system for auditing
a series of history checkpoints, starting from the algorithms
ProveInv and VerInv. Naively, the prover could create proofs
for all pairs of adjacent epoch digests in histi using ProveInv
and return all of these proofs. This is a valid proof forRAudit

irrespective of the specified checkpoints (in fact, it proves the
entire history of digests respects the invariant). This has the
advantage that the server managing the versioned dictionary
can compute a single proof for the most recent digest pair
after each update and does not need to recompute any proofs
upon a client audit. On the other hand, the proof for RAudit

is linear in the number of epochs and thus too expensive for
client-auditing. Alternatively, the audit proof could consist of
individual invariant proofs only for each pair of checkpoint
digests. This is linear only in the number of checkpoints,
but the server would have to compute these proofs on the
fly during an audit, incurring a higher latency. We have two

5

different approaches to addressing these challenges: the first
method uses SNARK recursion and the second uses SNARK
aggregation.

SNARK recursion. Using a standard approach for
incrementally-verifiable computation based on recursive
proofs [BCCT13, BCTV14], the server can generate a sin-
gle proof attesting to the entire history of digests upon each
update. Each incremental SNARK for the ith epoch proves
that di for epoch i and di−1 for epoch i− 1 respect the in-
variant, and also proves the existence of a similarly valid
SNARK proof for epoch i−1. Recursively, this attests that
the invariant is preserved from d0 through di. The complex-
ity of this recursive relation is proportional to the combined
complexity of the SNARK verification algorithm and RInv.
As an optimization, we can replace RInv (which is linear in
the size of the dictionary) with the relationRVerInv over pairs
(x= (d,d′),w= πInv) where d = (rt, δ) and d′= (rt′, δ′) such
that VerInv(δ,δ′,π) = 1. In other words, instead of proving
the invariant directly using the SNARK, the prover computes
the basic invariant proof using ProveInv(D,D′) to get the
witness πInv, and then uses the SNARK to prove its existence
along with the rest of the recursive statement. The complexity
ofRVerInv is proportional to the complexity of the verification
algorithm VerInv. This saves the prover work when the algo-
rithm ProveInv is substantially more efficient than the generic
SNARK prover algorithm, which is true for all of our concrete
constructions of AVDs.

Finally, the server can compute the next incremental
SNARK each time it updates the AVD. The latest SNARK is
returned as the audit proof. Computing a recursive SNARK
upon each update has a relatively high prover overhead com-
pared to computing a normal invariant proof for each new
digest. However, it achieves a constant size proof and verifica-
tion time, independent of the epoch or number of checkpoints.
It also still achieves better latency than the naive solution of
computing an invariant proof on the fly for each pair of check-
points. Moreover, computing the SNARK once per epoch
amortizes this work over all client audit requests.

SNARK aggregation. An alternative approach is to lower
the cost of producing invariant proofs for all checkpoints on
the fly via a technique called SNARK aggregation. This is
a bootstrapping technique, where the server will maintain a
cache of precomputed invariant proofs for epoch digest pairs,
and then will aggregate these proofs to get the audit proofs
for the checkpoint intervals. [BMM+19] present a protocol
that aggregates N individual SNARKs into a single proof of
size O(logN) in O(N) time. They further show that if the
statements being proved by the SNARKs are “sequential”,
that is, the statement for SNARK at index i is xi = (ai, bi)
where ai = bi−1 and bi = ai+1, then the aggregated proof
can be verified efficiently in O(logN) time. This version of
the aggregated proof proves knowledge of the intermediate
statements xi, given the starting and ending statements, x1

and xN . This is indeed the case when aggregating invariant
proofs for a contiguous list of adjacent epoch digest pairs (full
details provided in Appendix D).

Producing the aggregated proof is still linear in the number
of proofs being aggregated. Unfortunately, this means that
constructing an aggregated proof for even a small number
of checkpoints will in the worst case require work linear
in the total number of epochs. Fortunately, for the specific
checkpoints that clients in our system will audit there is an
efficient proof caching and aggregation strategy that achieves
amortized efficiency. We will discuss this in Section 6.

4.2 Merkle Tree Constructions

We construct several variations of AVDs based on a sparse
Merkle tree as the underlying authenticated dictionary. The
first uses SNARK recursion to build the audit proofs and the
second uses SNARK aggregation.

The sparse Merkle tree authenticated dictionary algorithms
(Commit,Lookup,VerLookup) works as follows. Let H :
K→ [N] denote a one-to-one mapping of keys in the dictio-
nary keyspace to integers in [N].6 The algorithm Commit(D)
returns the root d of a sparse Merkle tree overN leaves where
for each k ∈ K the leaf at index H(k) is assigned the value
v =D[k]. The algorithm Lookup(D,k) returns v =D[k] and
the Merkle path π for the leaf at index H(k). The algorithm
VerLookup(d,k,v ,π) verifies the Merkle path π for the index
H(k) and leaf value v .7

The sparse Merkle tree authenticated dictionary is trans-
formed into an AVD using the generic procedure described in
Section 4.1 above. However, as discussed, there are several
ways to construct the audit proofs with varying tradeoffs. The
most straightforward way to prove the invariant relationRInv

for a pair of digests (d,d′) is to provide the complete set of
key/value pairs that differ between the two dictionary states
along with a Merkle update proof (Section 3) for this com-
plete set of updates. The verifier checks that the update proof
is valid and also checks the invariant directly: for each key k
updated fromD[k] = (u,v) toD′[k] = (u′,v ′), it checks that
u′ > u. (This is the audit proof used in CONIKS [MBB+15]).
The algorithm Audit for a sequence of checkpoints returns a
proof of this form for each adjacent pair of checkpoint dictio-
nary states. Constructing this audit proof is efficient for the
prover, but inefficient for the verifier (i.e., linear in the total
sum of updates between all checkpoint pairs). We will refer
to this construction as MT-Linear.

To reduce the size and verification complexity of audit
proofs, we apply either the generic SNARK recursion method
or the SNARK aggregation method described in Section 4.1.

6N need not exceed 2256. If the dictionary keyspace is larger than 2256,
then H can be a collision-resistant hash function instead of a bijective func-
tion.

7The Merkle tree is not an explicit input to the algorithm Lookup(D,k),
but the server managing the authenticated dictionary would have this cached
and would not need to reconstruct the Merkle tree path.

6

Here, the complexity of the relationRVerInv is quasi-linear in
the number of updates between the two epoch states because
it is proportional to the verification of the Merkle update paths
described above. We will refer to the resulting construction
from SNARK recursion as MT-Recurse and the construction
from SNARK aggregation as MT-Aggr.

In Appendix B, we present an optimization to reduce the
length of the Merkle paths in the relationRVerInv.

4.3 RSA Accumulator Constructions

Our second family of constructions use a key-value authenti-
cated dictionary called KVaC [AR20], which is based on the
classical RSA accumulator. KVaC directly incorporates ver-
sion numbers as well. Key-value pairs are committed to with
the following digest, where u represents a version number for
the key, H is a collision-resistant hash function mapping keys
to primes, and g is a member of an RSA quotient group:

d←
(
g(
∏
iH(ki)

ui)·(
∑
i vi/H(ki)), g

∏
iH(ki)

ui
)

To update a key’s value from v to v + δ, the new digest d′ =
(d

H(k)
1 dδ2, d

H(k)
2) is computed, where the previous digest d =

(d1,d2).

Batching updates. When updating the values associated with
many keys, we observe that instead of applying each update
in sequence, all updates [k,δ]i can be applied at once by the
following:

Z←
∏
iH(ki) ∆← (

∏
iH(ki)) · (

∑
i δi/H(ki)) .

Then the batched update follows the same form as before,
d′ = (dZ1 d∆

2 ,d
Z
2). We will take advantage of this form to

construct audit proofs for the versioned invariant.

Proving the versioned invariant. To build an AVD from
KVaC, we start with constructing a proof that the versioned
invariant is preserved between two digests. One way to do
this is to prove that d′ is the result of correctly applying the
batch update procedure to d, but it turns out that proving a
weaker statement suffices. The prover constructs a proof of
knowledge for the following relation between d = (X1,X2)
and updated digest d′ = (Y1,Y2):

RKVaC =
{

((X1,X2,Y1,Y2); (α,β)) : Y1 =Xα
1 X

β
2 ∧Y2 =Xα

2

}
.

We show in Appendix E that it is computationally infeasible
to produce a valid proof for this relation if the versioned
invariant is violated. This is a somewhat surprising result,
as we do not enforce any extra structure on α and β, such
as matching the structure of (Z,∆). Rather, simply proving
knowledge of any α and β ensures that either the underlying
pair of dictionary states do not violate the versioned invariant
or that the prover has solved a computational problem related
to factoring, breaking the Strong-RSA assumption.

We use the generalized knowledge of integer discrete log
proof system from [BBF19] (Figure 12, Appendix E) as the
non-interactive proof of knowledge forRKVaC. Importantly,

this proof system, which leverages the algebraic structure of
the RSA group, has a constant-time verification algorithm
and constant-sized proof. This is a significant improvement
over other Merkle-based [MBB+15, MKL+20] and bilinear
pairing-based [TBP+19, LGG+20] constructions of authenti-
cated dictionaries with append-only proofs.

Unfortunately, computing membership and non-
membership proofs for keys from scratch is expensive
– on the order of the combined number of keys with non-null
values and number of past updates to the dictionary. Given a
(non-)membership proof for a previous epoch, the proof can
be updated to be valid for the current epoch in time linear in
the number of key updates that have since occurred. However,
even these updates can be expensive for the provider if many
epochs have passed since a key’s last query date. We provide
some optimizations to alleviate these costs in Section 6.

Checkpoint auditing. Recall that there are two “naive" ways
to implement the audit proofs for multiple checkpoints us-
ing the invariant proofs above, as discussed in Section 4.1.
The first sends the verifier proofs for every single adjacent
digest in the history (starting from the first checkpoint and
ending at the last) and the second sends the verifier invariant
proofs for every adjacent pair of checkpoint digests. The first
is more computationally efficient for the prover, while the
second achieves smaller proofs and verification.8 We call this
first method RSA-Linear and the second method RSA-Alg.
Normally, this second method incurs a higher latency to re-
spond to audits and overall requires significantly more server
computation (up to quadratic in the number of epochs). How-
ever, it turns out that RSA-Alg performs well in our system
for verifiable registries (Section 5) due to how checkpoints
are chosen (see Section 6).

Finally, we can achieve better tradeoffs between the prover
and verifier’s work by applying either of the generic transfor-
mations using SNARK recursion or SNARK aggregation, as
described in Section 4.1. We call the resulting constructions
RSA-Recurse and RSA-Aggr respectively.

5 Client Auditing using AVDs

We show here how to use an AVD as described above to build
a client-auditable verifiable registry. We consider a single
server that maintains and updates a sequence of dictionary
states histi = (D0,D1, . . . ,Di) – each dictionary state Di+1

is obtained by running the Update procedure on histi and
new key-value pairs to be included in the next epoch i+
1. The server also regularly publishes, on a public bulletin
board, a (signed) pair (di, i), where di← Commit(i,histi) –

8Note that for the constructions using Merkle trees, the basic invariant
proof we presented was linear in the number of updates between the two
epoch states, and thus this second strategy would not achieve a smaller proof
size. In contrast, the invariant proofs for the RSA KVaC dictionary are
constant size, independent of the number of updates between the epochs.

7

as discussed in Section 2, we assume that all clients have a
consistent view of this bulletin board.

Client look-up and auditability. Whenever a client looks up
a value for k in epoch i, it retrieves9 the latest commitment
di from the bulletin board, and requests k from the server.
The server then computes (u,v ,π)← Lookup(Di,k), and
sends (u,v ,π) to the client. The client verifies π by running
VerLookup(di,k,u,v ,π).

Before accepting the value v , the client needs to ensure
that the states D0,D1, . . . ,Di do not violate the versioned
invariant. To solve this, the client also requests from the
server an audit proof for a carefully chosen set of check-
points chkpts ⊆ [j, i], where j is the epoch of the previ-
ous lookup (or j = 0 if this is the first lookup) and re-
ceives πAudit ← Audit(i,di,chkpts,histi) from the server,
which is verified. The client also receives proofs (dc,ρc)←
ProveEpoch(c,di,histi) for all c ∈ chkpts, and verifies the
ρc’s are correct. Finally, the client also checks that dc is indeed
the digest for epoch c on the bulletin board, for all c ∈ chkpts.

If the checkpoints are j ≤ c1 < c2 < · · ·< c` ≤ i, this guar-
antees that (Dck ,Dck+1

) for all k ∈ [1, `−1] respect the ver-
sioned invariant. This is however not enough to prevent oscil-
lation attacks – imagine two clients accessing the same key,
but using disjoint sets of checkpoints. One way out of this
is to use chkpts = (j,j+ 1, . . . , i− 1, i), but this makes the
overall workload linear in the number of epochs.

Efficient checkpointing. We avoid linear cost by carefully
choosing a subset of checkpoints of logarithmic size, inspired
by the deterministic skiplist approach of [MB02]. The check-
point epochs for a range (a,c) have the property that at least
one of the checkpoints will be shared with the checkpoints
of an overlapping range (b,d), where a ≤ b ≤ c ≤ d. This
already ensures that if two clients are served different values
v 6= v ′ for the same key and with the same version at epochs
i < j, respectively, then a violation of the invariant will be
caught, at the latest, when the client that made an access at
i makes its first lookup at epoch i′ ≥ j. (The same is true if
they are served values with out-of-order version numbers.)

To see why this is true, assume that Client 1 makes two con-
secutive lookups at epochs a and c, whereas Client 2 makes
two consecutive lookups at epochs b and d, where a< b< c<
d. Thus, they audit overlapping epoch ranges (a,c) and (b,d)
with shared checkpoint γ where a≤ b≤ γ ≤ c≤ d. Then, the
clients cannot be served different values v 6= v ′ for the same
key k and version u at epochs b and c, respectively – this is
because Client 2 verified the invariant is preserved between
b and γ, whereas Client 1 verified the invariant is preserved
between γ and c – combined, these imply that the invariant is
also preserved in (b,c), and this contradicts the fact that the

9We abstract away here from the fact that, depending on the implementa-
tion of the bulletin board, it may be convenient for the client to obtain the
commitment di from the server first, and then check consistency with the
bulletin board later on.

Figure 2: Checkpoint epochs for a range are chosen by the logarith-
mic number of subtrees that span the range. Two overlapping ranges
are guaranteed to share a checkpoint, indicated by the dashed lines.
Invariant proofs are only needed for ranges between checkpoints,
which correspond only to complete subtrees; this insight is used to
improve prover efficiency.

views diverge at b and c. In contrast, note that it is possible for
the clients to obtain inconsistent values at c and d – however,
the violation of the invariant will be caught in a future audit.
It is clear that this argument can be generalized to any two
lookups made by a pair of clients, and also to guarantee that
the later lookup cannot return a value older than the earlier
lookup. (Also see Figure 1 for an illustration.)

We define the checkpoint epochs for a range as follows.
Consider the binary tree imposed over all epochs with each
epoch making up a leaf, populated from left to right such that
the left subtree of the tree is complete (see Figure 2). Any
range of epochs of length M can be divided into O(logM)
consecutive subranges of complete subtrees, defined by the
path in the tree from the start epoch to the end epoch. The
O(logM) checkpoint epochs are chosen as the start epoch of
each of these subtrees. We prove that overlapping ranges are
guaranteed a shared checkpoint in Appendix C. Intuitively,
the paths in the tree connecting the start and end epochs for
overlapping ranges intersect at some point; the nodes at which
the two paths intersect identifies a shared starting point for a
subtree.

6 Further Optimizations

We describe two optimizations to improve server efficiency
for (1) computing checkpoint audit proofs for MT-Aggr,
RSA-Aggr, and RSA-Alg, and (2) computing membership
proofs for RSA constructions.

Computing audit proofs for all checkpoint ranges. Due to
how checkpoints are chosen, the only audit proofs the server
needs to provide are those corresponding to complete sub-
trees in the superimposed tree over epochs (see Figure 2). Of
which, there are only O(N logN) such ranges compared to
the O(N2) possible ranges that exist without our checkpoint
structure (where N is the number of epochs). The server will
precompute and store audit proofs for all checkpoint ranges,

8

allowing immediate responses to Audit queries.
As new epochs are published, the server computes audit

proofs for any newly completed checkpoint ranges (i.e., com-
pleted subtrees). The cost to produce an audit proof is linear
in the length of the range. Intuitively, the completion of a
large range, and the expensive audit proof computation in-
curred, is a relatively rare event. By a classic amortization
argument [Ove83], the amortized work for computing all audit
proofs is O(logN) for each new published epoch.

For our SNARK aggregation constructions, the server com-
putes and stores the invariant proof for each adjacent epoch
digest pair as a SNARK. Whenever a checkpoint range is
completed, the server will run the [BMM+19] aggregation
protocol on the SNARKs in the range. For RSA-Alg, the
server simply computes a new algebraic invariant proof in-
cluding all the key updates in the range.

This novel combination of SNARK aggregation with amor-
tization also admits a new approach to IVC, which may be
of independent interest. For a computation of depth N , our
approach is verifier-efficient with proofs and verifier time of
size O(log2N). It is also amortized-prover-efficient where
the prover does amortizedO(|C|+logN) work for each step
of computation, where |C| is the size of the computation
circuit, but requires O(N) storage long term to store the indi-
vidual SNARKs for each step.

Computing RSA (non-)membership proofs. One solution
to alleviate the server workload and client latency in waiting
for these proofs is the use of promises. A promise [MBB+15]
is a signed statement by the server of a claimed lookup
value and the promise to compute a corresponding (non-
)membership proof for a specific epoch (by a certain time). A
promise allows a client to act on their query without waiting
for the full proof; the client can later query the full proof by
the promised time and provide evidence of a broken promise
if appropriate.

Delaying computation of (non-)membership proofs is also
of benefit to the server, as it allows use of existing tech-
niques [BBF19, TXN20] for computing a batch of M (non-
)membership proofs together in time O(N +M logM) time,
an improvement over computing each proof individually at the
time of request (O(N ·M)) where N is the total number of
past updates. Even with batching, there is a dependence on N :
for a long-running system, the total number of updates grows
large (> 230), leading to batched computations potentially
taking months to complete (i.e., fulfill a promise).

To partially address this issue, we introduce two new tech-
niques for membership proof computation of RSA accumula-
tors to allow low latency promise fulfillment for some keys.
The first technique is a key caching approach to support a
small cache of “hot” keys for which membership proofs may
be computed at low latency and progressively larger caches of
“colder” keys with longer latency proof computation. Keys can
be assigned to caches based on any policy. Some reasonable

verifiable registry interfaceepoch update constraints interface

MT-Linear RSA-LinearMT constraints RSA constraints

generic transforms to client auditability

SNARK recursion SNARK aggregation

MT-Recurse MT-Aggr

RSA-Recurse RSA-Aggr
RSA-Alg

Figure 3: Implementation overview. Implementation includes
generic interfaces for transforming a verifiable registry that supports
epoch audit proofs for consecutive digests to a registry supporting
efficient range audits using SNARKs.

policies might be by the frequency at which they are queried
or by how critical low latency monitoring is to the key’s use.
If, for example, key lookups follow a power law distribution
(Zipf’s law), caching may significantly improve median case
promise fulfillment.

The second technique is an amortized checkpointing ap-
proach to divide up the N updates over the system’s his-
tory into smaller, more manageable ranges allowing dynamic
caches that support key eviction and loading policies. Com-
puting non-membership proofs remains expensive. The full
details and proofs of security are deferred to Appendix F.

7 Implementation

We implement our proposed constructions in Rust. Our imple-
mentation consists of a number of parts (see Figure 3). We de-
fine a generic registry interface for a registry that provides up-
date proofs for consecutive epochs, and implement MT-Linear
(cf. [MBB+15, MKL+20]) and RSA-Linear (Section 4.3) —
were a client to audit these, it would require linear work.
An additional interface is defined for generating SNARK
constraints of the verification of an epoch update of a reg-
istry; we implement these constraints for MT-Linear and the
RSA-Linear. We further implement our two transforms for ef-
ficient client auditability via SNARKs (recursion and aggrega-
tion) to generically construct a client-auditable registry given
a registry that implements the above interfaces. This leads to
our constructions MT-Recurse, MT-Aggr, RSA-Recurse, and
RSA-Aggr. Our final construction, RSA-Alg, which does not
rely on SNARKs, is implemented directly from RSA-Linear.
The constructions refer to the client-auditable verifiable reg-
istry which includes their namesake AVD as well as the check-
pointing and amortization optimizations given in Sections 5
and 6. In total, our implementation consists of ≈ 11000 lines
of code.

The constraints and generic SNARK transforms are imple-
mented within the arkworks ecosystem for SNARKs. The
RSA constraints make use of optimizations for multipreci-
sion arithmetic [KPS18] and hashing to primes [OWWB20].
The generic SNARK transforms make use of the SNARK

9

implementations from arkworks. The SNARK aggregation
transform is specific to [Gro16], while the SNARK recur-
sion transform is implemented generically for any SNARK
that supports recursion; we instantiate and evaluate the re-
cursion constructions on [Gro16]. To target 128 bits of se-
curity, the aggregation transform is implemented over the
BLS12-381 pairing-friendly curve and the recursion trans-
form over MNT4-753 and MNT6-753 pairing-friendly cycle
of curves; the RSA constructions use an RSA group of 2048
bits. We set the height of the Merkle tree in the MT construc-
tions to 32, which with our open addressing optimization (see
Appendix B) can support 230 keys, and instantiate the hash
function using both Pedersen and Poseidon algebraic hash
functions [GKK+19].

8 Evaluation

We wish to answer the following questions:
• Client auditing costs: What are the bandwidth and com-

putation costs for a client to audit a range of epochs?
How does it compare to previous solutions that require
auditing every epoch in the range?

• Server update costs: What are the computation costs
for the server to incorporate key updates and publish a
new epoch digest? At what latency can new digests be
published; supporting what key update throughput?

• Lookup costs: What are the bandwidth and computation
costs for lookups?

Experimental setup. We benchmark our constructions using
an Amazon EC2 r5.16xlarge instance with 32 CPU cores
and 512 GB memory. Client computation is evaluated single-
threaded, and network costs of gathering client input are not
evaluated; our experiments simulate client input, generating
random requests of the appropriate size.

Some of our constructions grow in update cost over the
history of the registry due to increasing amortized costs of
aggregation. We evaluate and present costs for epoch updates
as follows. First, it is infeasible to exactly measure the costs
of a valid epoch update at large epochs, as constructing a
valid state and audit proof at a large epoch is not possible
without having run valid updates for all prior epochs (our
constructions share many properties with verifiable delay
functions [BBBF18]). Instead, we simulate the cost of an
epoch update by running it over a dummy state, constructing
SNARKs over invalid statements of appropriate size. This
approach properly evaluates the cost of constructing an audit
proof, but the resulting proof will not meaningfully verify.

Second, we present the amortized costs of aggregation for
epoch 2k by averaging the aggregation costs incurred between
the 2k−1 updates from epoch 2k−1 + 1 to 2k. While these ag-
gregation costs occur in spikes over the range, our systems
are not delayed by the need to complete an expensive aggrega-
tion; the aggregations can be computed in the background and

26 212 218

audited range (# of epochs)

101

103

105

107

109

pr
oo

f s
ize

 (K
B)

26 212 218

audited range (# of epochs)

10−1

101

103

105

ve
rif

y
tim

e
(s

)

RSA-Linear
MT-Linear

MT/RSA-Recurse
MT/RSA-Aggr

RSA-Alg

Figure 4: Client auditing costs. The size (left) and verification time
(right) of audit proofs for varying epoch range lengths.

audits can still be fulfilled, albeit with slightly longer proofs
(using unmerged ranges). Therefore, we believe reporting the
amortized costs in this manner leads to a fair evaluation.

8.1 Client Auditing

We contrast the auditing costs in terms of proof size and veri-
fication time for different lengths of audit ranges; the results
are shown in Figure 4. The goal of our client-auditable con-
structions is to outperform the linear scaling of MT-Linear
and RSA-Linear. All of our constructions scale logarithmi-
cally in the length of the audit range for both proof size and
verification time. The SNARK recursion and aggregation ver-
ification times appear almost constant as their logarithmic
costs are negligible: verification of log-number Merkle paths
and a log-sized aggregation proof, respectively.

Our constructions are 1-10×more efficient at epoch ranges
of length 32 and 100-1000× more efficient at epoch ranges
of length 1000 when compared to RSA-Linear which has
compact, constant size update proofs. When compared to
MT-Linear with 1000 key updates per epoch, the efficiency
improvements increase by another 100×. If we consider an
epoch publishing time of 20 minutes, auditing at epoch ranges
of length 32 and 1000 correspond to a client auditing around
twice a day or once every two weeks, respectively.

8.2 Server Epoch Updates

Building efficiently auditable proofs for epoch ranges adds
significant computational costs to the server. We investigate
what levels of key update throughput are achievable and at
what latency. To anchor our evaluation, we set a target of≈ 60
key updates per second based on current statistics from the
certificate transparency ecosystem [Clo20].

First, we evaluate how epoch update latency is affected
over time: some of our constructions incur increased cost as
the amortized cost of reaggregation increases. Figure 5 (right)
plots this (non-)increase. We find that the amortized costs of
reaggregation are negligible. These costs grow logarithmi-
cally so we expect them to remain manageable even for much
larger epochs.

Second, we evaluate the epoch latency for an update while
varying the number of key updates included in the epoch:

10

0 50000 100000
of key updates per epoch
0

500

1000

1500

ep
oc

h
la

te
nc

y
(s

) epoch 218, 32 cores

RSA-Recurse
MT-Recurse

RSA-Aggr
MT-Aggr

RSA-Alg

25 210 215

epoch

0

500

1000

1500
1000 updates/epoch, 32 cores

Figure 5: Server key update costs. (Left) The epoch update latency
for epochs of varying the number of key updates. (Right) The epoch
update latency varying the history of the registry. The key update
throughput is computed as the number of key updates per epoch
divided by the epoch latency.

update throughput is computed as number of key updates di-
vided by latency. We fix the epoch at 218 which corresponds
to approximately a year of service if publishing epochs ev-
ery minute, however as already demonstrated, costs are not
expected to increase significantly for larger epochs. Figure 5
(left) depicts these results. The MT-Recurse,MT-Aggr, and
RSA-Alg constructions are more or less directly proportional
to the number of key updates in the epoch, supporting through-
puts of 0.6, 2.6, and 92 key updates per second, respectively;
throughput is constant regardless of the number of key up-
dates batched in each epoch. Constructions MT-Recurse and
MT-Aggr scale in this manner because each additional key
update adds a Merkle path verification to the SNARK circuit
which makes up the dominant cost. The RSA-Alg construc-
tion scales with the dominant cost of amortized reaggregation
of Wesolowski proofs which is linearly dependent on the to-
tal number of key updates. These constructions support low
latency epochs without sacrificing achievable throughput.

On the other hand, the RSA-Recurse and RSA-Aggr con-
structions have a large constant dominant cost of verification
of the Wesolowski proof within a SNARK circuit that is in-
dependent of the number of key updates, leading to a large
minimum achievable latency. However, increasing the key
updates per epoch adds comparatively less work than the
other constructions, leading to RSA-Recurse and RSA-Aggr
outscaling update throughput of other solutions for high epoch
latency. Figure 5 shows that RSA-Aggr reaches the desired
throughput of 60 key updates per second at 40,000 key up-
dates per epoch with a latency of 12 minutes, and surpasses
the throughput of RSA-Alg at 100,000 key updates per epoch
with a latency of 20 minutes, but will cap out at ≈ 150 key
updates per second due to the costs of RSA exponentiation.

When comparing the two generic SNARK approaches to
IVC, we find apart from slightly larger client proof sizes, our
new aggregation approach is strictly better than recursion: pro-
viding > 2.5× speedup in this setting where circuit proving
costs dominate aggregation costs.

Improving throughput via parallelism. The dominant cost
for our constructions relying on SNARKs is the SNARK prov-

0 5000
of key updates per epoch
0

50

co
ns

tra
in

ts
 (×

10
6)

RSA-Recurse
MT-Recurse

RSA-Aggr
MT-Aggr

21 23 25

of cores

103

104

ep
oc

h
la

te
nc

y
(s

) epoch 218, 1000 updates/epoch

Figure 6: (Left) The number of constraints in the SNARK circuit for
varying number of key updates. (Right) The epoch latency (domi-
nated by the SNARK proving time) for different levels of hardware
parallelism.

ing time, and it has been shown that the SNARK proving work
is highly parallelizable [WZC+18]. Figure 6 (left) shows the
number of constraints to be proved in the SNARK circuit for
different numbers of key updates batched per epoch. The RSA
circuit is of constant size, just under 20M constraints. The
MT circuit grows linearly with the number of key updates,
≈ 20,000 constraints per key update. We demonstrate the par-
allelism of the workload by measuring epoch update latency
using different numbers of physical cores, shown in Figure 6
(right). For the circuit sizes evaluated, doubling the number
of processors halves the epoch latency up until between 16
and 32 processors where the marginal benefits of adding more
processors decreases. Larger circuit sizes, e.g. by adding more
key updates to the MT constructions, will continue to benefit
from increased processors [WZC+18].

Construction RSA-Alg does not compute a circuit SNARK.
Instead, the dominant cost consists of reaggregating append-
only proofs for subranges by proving new Wesolowski proofs.
While proving a single Wesolowski proof is mostly a sequen-
tial task, at any one time there will be approximately logN
(for N total epochs) such Wesolowski proofs being proved
in the background, one for each subrange length that is being
merged. These tasks can be easily parallelized given logN
processors. A similar strategy to parallelize the aggregation
work for MT-Aggr and RSA-Aggr does not lead to overall
throughput gain, since the aggregation work is a negligible
share of the total work for these constructions.

Improving throughput via sharding. A second way to in-
crease throughput is by sharding the key space and running
separate instances of a verifiable registry. If perfectly sharded,
i.e., key updates are evenly distributed across shards, then the
throughput of the system is expected to increase proportion-
ally to the number of shards (assuming the total computing
resources are also increased proportionally). However, client
auditing costs will increase proportionally: clients must audit
each shard assuming keys are distributed randomly across
shards. If we can guarantee that each client will only be in-
teracting with a small number of shards, then the throughput
gains of sharding may come with little increase in client cost.

11

25 210 215

batch size

10−1

101

103

tim
e

(s
)

1 cpu
16 cpu

20 25 210 215 220

of key updates

10−1

101

103

tim
e

(s
)

Figure 7: (Left) Batch computation of RSA membership proofs for
varying levels of hardware parallelism. (Right) Update computation
of an individual RSA membership proof over a range of key updates.

8.3 Key Lookups

The RSA-based constructions achieve the highest key update
throughput, but also incur large costs for computing mem-
bership proofs for key lookups. Figure 7 (left) shows the
time to compute membership proofs for a batch of keys. We
present an approach using promises, membership proof check-
pointing, and key caches to manage these costs. As a concrete
example, consider a registry with 230 unique keys divided into
16 caches of size 215,215,216,217, . . . ,229. We find through
batch computation, given a single thread dedicated to each
cache, the membership proof promises for the smallest caches
of size 215 can be fulfilled approximately every 20 minutes,
while promises for the largest cache of size 229, we extrapo-
late will be fulfilled on a schedule of around 3 months.

Keys in caches with long schedules for updating member-
ship proofs can be updated outside of their schedule individ-
ually at higher cost (without the savings from batch compu-
tation). Figure 7 (right) shows the cost of updating an indi-
vidual key’s membership proof over a set of key updates. At
60 updates per second, the time to update a key whose last
membership proof was 1 week ago is approximately 10 hours,
and we extrapolate the cost to update a valid proof from 3
months ago to be on the order of one week.

Lastly, lookup proofs are small. The base lookup proof
size is 1 KB and 0.8 KB for the MT and RSA constructions,
respectively. Using some of our optimizations to minimize
server costs, these increase but remain reasonable. When us-
ing the membership proof checkpointing optimization for
RSA constructions, the lookup proof size grows logarithmi-
cally with the total number of epochs (0.8× log N

C KB for N
total epochs and C checkpoint length). For the Merkle tree
constructions, the open addressing optimization increases the
size of the proof proportionally by the maximum nonce ω (16
KB for ω = 16).

8.4 Summary

RSA-Aggr and RSA-Alg meet the throughput requirements
for real verifiable registry workloads on our single machine ex-
periments. In contrast, for MT-Aggr to reach similar through-
put levels, it would require scaling up the computing and mem-
ory resources by > 20× [WZC+18]. On the other hand, the
RSA constructions rely heavily on promises for responding
to lookup queries. If fast detection of equivocation for large

numbers of keys is security critical, then the RSA construc-
tions will require a large amount of resources for membership
proof computation, tipping the scale in favor of MT-Aggr.

9 Related Work

Most previous proposals for verifiable registries (or trans-
parency logs) are constructed via Merkle trees and rely
on trusting powerful global auditors that do work linear
in the number of key updates to the registry [BCK+14,
KHP+13,Lau14,Rya14,CDGM19,MBB+15,MKL+20]. We
described a representative system, CONIKS [MBB+15], ear-
lier; Mog [MKL+20] extends CONIKS to efficiently sup-
port the append-only invariant using chronological Merkle
trees [CW09] at each leaf of the CONIKS lexicographic tree.

Merkle2 [HHK+21] reduces the work required by global
auditors per epoch to be logarithmic in the number of key
updates instead of linear; auditors verify a Merkle exten-
sion proof. However, Merkle2 fundamentally relies on a
stronger assumption called signature chains in which up-
dates must be signed by an authorization key not controlled
by the server. We design for a recovery model (similar to
CONIKS [MBB+15]) in which users can recover after losing
all key material. If this stronger key update policy is desired,
Merkle2 can be adapted using our checkpointing approach to
construct an extremely efficient client-auditable registry; the
Merkle extension proofs provide succinct append-only proofs
for arbitrary ranges of epochs.

There are a few proposals using non-Merkle-based com-
mitments, still in the trusted auditor model. AAD [TBP+19]
and Aardvark [LGG+20] use bilinear pairing-based accu-
mulators. AAD admits logarithmic-sized verification work
for the auditor per epoch, but is concretely expensive. Re-
cently, RSA accumulators have been proposed to construct a
verifiable registry with constant-sized verification work per
epoch [TXN20]. However, the proposal is not efficient, requir-
ing values to be committed bit-by-bit; our RSA constructions
realize this approach efficiently using new techniques for RSA
key-value commitment [AR20].

With regards to efficient client auditability, Chen et
al. [CCDW20] formalize the general approach of incremental
verification for ledger systems (IVLS). Our constructions us-
ing the IVC via SNARK recursion transform can be thought
of as falling under this general framework. We achieve im-
proved general performance using our SNARK aggregation
approach, as well as improved performance in the specific
case of registries using our RSA-based approaches.

Google Key Transparency proposed an approach for client
auditability called “meet-in-the-middle” (MitM) [Goo20] that
resembles our shared checkpoints approach. MitM is less
efficient as it requires clients to verify checkpoints on a per-
key basis, while our constructions provide security of all keys
by verifying a single sequence of checkpoints for the registry.

Privacy of registry contents (specifically selective dis-

12

closure) has also been considered in prior work. Tech-
niques to keep lookup keys private using verifiable ran-
dom functions and lookup values private using commit-
ments [MBB+15, EMBB17] can be adapted directly to all
of our constructions. Our RSA constructions offer additional
privacy benefits including keeping the total directory size and
update patterns private [CDGM19].

Acknowledgments

Nirvan Tyagi was supported by a Facebook Graduate Re-
search Fellowship, and part of his work took place while a
visiting student at the University of Washington. Ben Fisch
was funded by NSF, DARPA, and a grant from ONR. Joseph
Bonneau was supported by DARPA under Agreement No.
HR00112020022. Any opinions, findings and conclusions
or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of
the United States Government or DARPA. Stefano Tessaro
was supported by NSF grants CNS-1930117 (CAREER),
CNS1926324, CNS-2026774, a Sloan Research Fellowship,
and a JP Morgan Faculty Award.

References
[AM18] Mustafa Al-Bassam and Sarah Meiklejohn. Contour: A practi-

cal system for binary transparency. 11025:94–110, 2018.

[AR20] Shashank Agrawal and Srinivasan Raghuraman. KVaC: Key-
value commitments for blockchains and beyond. In ASI-
ACRYPT (3), volume 12493 of Lecture Notes in Computer
Science, pages 839–869. Springer, 2020.

[ASB+17] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anasta-
sia Danilova, Alena Naiakshina, and Matthew Smith. Obstacles
to the adoption of secure communication tools. In IEEE Sympo-
sium on Security and Privacy, pages 137–153. IEEE Computer
Society, 2017.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable delay functions. In CRYPTO (1), volume 10991 of
Lecture Notes in Computer Science, pages 757–788. Springer,
2018.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching tech-
niques for accumulators with applications to iops and stateless
blockchains. In CRYPTO (1), volume 11692 of Lecture Notes
in Computer Science, pages 561–586. Springer, 2019.

[BBG+20] Josh Blum, Simon Booth, Oded Gal, Maxwell Krohn, Julia Len,
Karan Lyons, Antonio Marcedone, Mike Maxim, Merry Ember
Mou, Jack O’Connor, et al. E2e encryption for zoom meetings,
2020.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable zero knowledge with no trusted setup. In
CRYPTO (3), volume 11694 of Lecture Notes in Computer
Science, pages 701–732. Springer, 2019.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
Recursive composition and bootstrapping for SNARKS and
proof-carrying data. In STOC, pages 111–120. ACM, 2013.

[BCK+14] David A. Basin, Cas J. F. Cremers, Tiffany Hyun-Jin Kim,
Adrian Perrig, Ralf Sasse, and Pawel Szalachowski. ARPKI:
attack resilient public-key infrastructure. In CCS, pages 382–
393. ACM, 2014.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and
Nicholas Spooner. Recursive proof composition from accumu-
lation schemes. In TCC (2), volume 12551 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2020.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves.
In CRYPTO (2), volume 8617 of Lecture Notes in Computer
Science, pages 276–294. Springer, 2014.

[Ben87] Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections.
PhD thesis, Yale University, USA, 1987.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent
snarks from DARK compilers. In EUROCRYPT (1), volume
12105 of Lecture Notes in Computer Science, pages 677–706.
Springer, 2020.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive
proof composition without a trusted setup. IACR Cryptol.
ePrint Arch., 2019:1021, 2019.

[BMM+19] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi,
and Noah Vesely. Proofs for inner pairing products and appli-
cations. IACR Cryptology ePrint Archive, 2019/1177, 2019.

[Bon16] Joseph Bonneau. Ethiks: Using ethereum to audit a CONIKS
key transparency log. In Financial Cryptography Workshops,
volume 9604 of Lecture Notes in Computer Science, pages
95–105. Springer, 2016.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Ri-
poste: An anonymous messaging system handling millions of
users. In IEEE Symposium on Security and Privacy, pages
321–338. IEEE Computer Society, 2015.

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and
Nicholas P. Ward. Reducing participation costs via incremental
verification for ledger systems. IACR Cryptol. ePrint Arch.,
2020:1522, 2020.

[CDGM19] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Har-
jasleen Malvai. Seemless: Secure end-to-end encrypted mes-
saging with less trust. In CCS, pages 1639–1656. ACM, 2019.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel
Kaptchuk, and Ian Miers. Fairness in an unfair world: Fair
multiparty computation from public bulletin boards. In CCS,
pages 719–728. ACM, 2017.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush
Mishra, Noah Vesely, and Nicholas P. Ward. Marlin: Pre-
processing zksnarks with universal and updatable SRS. In
EUROCRYPT (1), volume 12105 of Lecture Notes in Com-
puter Science, pages 738–768. Springer, 2020.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators
and application to efficient revocation of anonymous creden-
tials. In CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 61–76. Springer, 2002.

[Clo20] Cloudflare. Merkle town, 2020.

[CvO13] Jeremy Clark and Paul C. van Oorschot. Sok: SSL and HTTPS:
revisiting past challenges and evaluating certificate trust model
enhancements. In IEEE Symposium on Security and Privacy,
pages 511–525. IEEE Computer Society, 2013.

[CW09] Scott A. Crosby and Dan S. Wallach. Efficient data structures
for tamper-evident logging. In USENIX Security Symposium,
pages 317–334. USENIX Association, 2009.

[DSB+16] Sergej Dechand, Dominik Schürmann, Karoline Busse,
Yasemin Acar, Sascha Fahl, and Matthew Smith. An empirical
study of textual key-fingerprint representations. In USENIX
Security Symposium, pages 193–208. USENIX Association,
2016.

13

[EMBB17] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan
Boneh. Certificate transparency with privacy. Proc. Priv.
Enhancing Technol., 2017(4):329–344, 2017.

[EPS15] Chris Evans, Chris Palmer, and Ryan Sleevi. Public key pinning
extension for HTTP. RFC, 7469:1–28, 2015.

[FDP+14] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer,
Jaromir Smrcek, and Matthew Smith. Hey, NSA: stay away
from my market! future proofing app markets against powerful
attackers. In CCS, pages 1143–1155. ACM, 2014.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct nizks without
pcps. In EUROCRYPT, volume 7881 of Lecture Notes in
Computer Science, pages 626–645. Springer, 2013.

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab
Roy, Christian Rechberger, and Markus Schofnegger. Starkad
and poseidon: New hash functions for zero knowledge proof
systems. IACR Cryptol. ePrint Arch., 2019:458, 2019.

[Goo20] Google Key Transparency. Key transparency 2.0, 2020.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-
knowledge arguments. In ASIACRYPT, volume 6477 of Lecture
Notes in Computer Science, pages 321–340. Springer, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In EUROCRYPT (2), volume 9666 of Lecture Notes in
Computer Science, pages 305–326. Springer, 2016.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
PLONK: permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. IACR Cryptol. ePrint
Arch., 2019:953, 2019.

[HHK+21] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin
Yang, and Raluca Ada Popa. Merkleˆ2: A low-latency trans-
parency log system. In IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2021.

[KHP+13] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig,
Collin Jackson, and Virgil D. Gligor. Accountable key in-
frastructure (AKI): a proposal for a public-key validation in-
frastructure. In WWW, pages 679–690. International World
Wide Web Conferences Steering Committee / ACM, 2013.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi.
xjsnark: A framework for efficient verifiable computation. In
IEEE Symposium on Security and Privacy, pages 944–961.
IEEE Computer Society, 2018.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their appli-
cations. In ASIACRYPT, volume 6477 of Lecture Notes in
Computer Science, pages 177–194. Springer, 2010.

[Lau14] Ben Laurie. Certificate transparency. Commun. ACM,
57(10):40–46, 2014.

[LGG+20] Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin,
and Nickolai Zeldovich. Aardvark: A concurrent authenti-
cated dictionary with short proofs. IACR Cryptol. ePrint Arch.,
2020:975, 2020.

[LKMS04] Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis E.
Shasha. Secure untrusted data repository (SUNDR). In OSDI,
pages 121–136. USENIX Association, 2004.

[LLK13] Ben Laurie, Adam Langley, and Emilia Käsper. Certificate
transparency. RFC, 6962:1–27, 2013.

[MB02] Petros Maniatis and Mary Baker. Secure history preservation
through timeline entanglement. In USENIX Security Sympo-
sium, pages 297–312. USENIX, 2002.

[MBB+15] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Ed-
ward W. Felten, and Michael J. Freedman. CONIKS: bringing
key transparency to end users. In USENIX Security Symposium,
pages 383–398. USENIX Association, 2015.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional
encryption function. In CRYPTO, volume 293 of Lecture Notes
in Computer Science, pages 369–378. Springer, 1987.

[MKL+20] Sarah Meiklejohn, Pavel Kalinnikov, Cindy S. Lin, Martin
Hutchinson, Gary Belvin, Mariana Raykova, and Al Cutter.
Think global, act local: Gossip and client audits in verifiable
data structures. CoRR, abs/2011.04551, 2020.

[NKJ+17] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic,
Nicolas Gailly, Linus Gasser, Ismail Khoffi, Justin Cappos, and
Bryan Ford. CHAINIAC: proactive software-update trans-
parency via collectively signed skipchains and verified builds.
In USENIX Security Symposium, pages 1271–1287. USENIX
Association, 2017.

[Ove83] Mark H. Overmars. The Design of Dynamic Data Structures,
volume 156 of Lecture Notes in Computer Science. Springer,
1983.

[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh.
Scaling verifiable computation using efficient set accumulators.
In USENIX Security Symposium, pages 2075–2092. USENIX
Association, 2020.

[Rya14] Mark Dermot Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. In NDSS. The Internet Society,
2014.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zksnarks
without trusted setup. In CRYPTO (3), volume 12172 of Lec-
ture Notes in Computer Science, pages 704–737. Springer,
2020.

[STV+16] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,
Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi,
and Bryan Ford. Keeping authorities "honest or bust" with de-
centralized witness cosigning. In IEEE Symposium on Security
and Privacy, pages 526–545. IEEE Computer Society, 2016.

[TBB+17] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor,
Jeremy Thomas, and Blase Ur. Can unicorns help users com-
pare crypto key fingerprints? In CHI, pages 3787–3798. ACM,
2017.

[TBP+19] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos,
Charalampos Papamanthou, Nikos Triandopoulos, and Srinivas
Devadas. Transparency logs via append-only authenticated
dictionaries. In CCS, pages 1299–1316. ACM, 2019.

[TD17] Alin Tomescu and Srinivas Devadas. Catena: Efficient non-
equivocation via bitcoin. In IEEE Symposium on Security and
Privacy, pages 393–409. IEEE Computer Society, 2017.

[TXN20] Alin Tomescu, Yu Xia, and Zachary Newman. Authenticated
dictionaries with cross-incremental proof (dis)aggregation.
IACR Cryptol. ePrint Arch., 2020:1239, 2020.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of
knowledge imply time/space efficiency. In TCC, volume 4948
of Lecture Notes in Computer Science, pages 1–18. Springer,
2008.

[VWO+17] Elham Vaziripour, Justin Wu, Mark O’Neill, Jordan Whitehead,
Scott Heidbrink, Kent E. Seamons, and Daniel Zappala. Is that
you, alice? A usability study of the authentication ceremony
of secure messaging applications. In SOUPS, pages 29–47.
USENIX Association, 2017.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In
EUROCRYPT (3), volume 11478 of Lecture Notes in Computer
Science, pages 379–407. Springer, 2019.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada
Popa, and Ion Stoica. DIZK: A distributed zero knowledge
proof system. In USENIX Security Symposium, pages 675–692.
USENIX Association, 2018.

14

[YRC15] Jiangshan Yu, Mark Ryan, and Cas Cremers. How to detect
unauthorised usage of a key. IACR Cryptol. ePrint Arch.,
2015:486, 2015.

15

A Merkle Tree Preliminaries

A Merkle tree is a binary tree that stores the accumulated values in the labels of its leaves. The internal nodes of the tree are
given a label equal to the hash of the concatenation of its children’s labels. The hash label of the root of the tree is the digest.
The binding property is ensured given collision-resistance of the hash function. When using a Merkle tree as an authenticated
key-value dictionary, the key is defined by the path from the root to the leaf; i.e., left children encode 0 and right children encode
1.

A membership proof for a value consists of the labels of all the sibling nodes along the path from the leaf to the root.
Verification is run by using the claimed value and sibling nodes to compute the labels along the path and comparing the final
label to the root digest. Proving an update to a leaf can be done similarly. Given a membership proof for a leaf’s old value, the
claimed updated value is used to compute new labels along the path using the same siblings and comparing the final label with
the new root digest; this additionally verifies no other leaves were modified. These proofs both are of size O(logN) and incur
O(logN) verification time for a balanced tree of size N .

A sparse Merkle tree allows for initializing a complete Merkle tree over a large key space of size N = 2h efficiently (in
O(logN) time). All leaf labels are implicitly initialized to some canonical null value. A canonical null label for internal nodes
at a given height i are also computed as the hash of the concatenation of two null labels of height i−1. As values are added,
non-null internal nodes are stored explicitly. This way, storage of a sparse Merkle tree is of O(n logN) instead of O(N) where
n is the number of non-null values.

B Open Addressing Optimization for Merkle Tree Update Circuit Representation

We present an optimization to reduce the length of the Merkle paths in the circuit from 256 required for collision-resistance to a
height determined by the number of expected keys in the registry. The tree height is reduced to one in which collisions may
occur and collisions are handled by remapping the colliding key to a different index using open addressing, a technique used in
hash tables. This produces a more efficient circuit representation than other approaches used for path compression, e.g., Merkle
Patricia tries [MBB+15, CDGM19].

More specifically, to find the index for a key, the key is hashed along with a counter nonce ω initialized to 0, H(k ‖ω). If the
index is already populated, ω is incremented and a new index is computed until the first open index is found (up to some max
increment ωmax). Since it is possible to find collisions for an index, each leaf now additionally encodes the key k when it is
initially populated (for version-only, leafs encode k ‖v ‖u); constraints are added to ensure future updates to the leaf do not
change the encoded key. This approach allows the tree height to be set based on the expected max capacity of the registry. For
example, if the registry is not expected to exceed 230 keys, a tree height set to 32 with ωmax = 16 leads to a failure probability of
less than 1/264. Any reduction in Merkle path length is significant as it leads to an equally proportional decrease in proving time
(in this example, 4×).

The tradeoff to using open addressing for a faster epoch update proving time is that lookup proofs increase in size and
verification time. A lookup proof for a key inserted at nonce ω includes Merkle paths for all indices derived from nonces 0 to ω,
and in the case of a non-membership proof, will include all ωmax Merkle paths. Still, these proofs are relatively small and hashes
are fast to compute, so this tradeoff is largely beneficial.

C Proof of Shared Checkpoint Epoch

Theorem 1. For any two ranges (`1, r1) and (`2, r2) that are overlapping, i.e., `1 ≤ `2 < r1 ≤ r2, the two subtree partitions
induced by each range share a common boundary.

Proof. First consider the binary tree imposed over all epochs. In this binary tree, define node x as the root of the smallest subtree
that contains `2 and r1. We will show that their exists a shared boundary in the subtree partitions induced by (`1, r1) and (`2, r2)
somewhere within this subtree rooted at x.

Consider the following two exhaustive cases (depicted in Figure 8):

Case 1: `2 is the leftmost leaf of x’s subtree.

In this case, we will show that `2 itself is a shared boundary between the two subtree partitions.
If r2 is not in x’s subtree, then x’s subtree (or a supertree of x’s subtree if x is a left child) is included in the subtree partition

of (`2, r2). Otherwise, if r2 is in x’s subtree, r2 would necessarily be in x’s right subtree (since r2 ≥ r1) and thus x’s left subtree
is included in the subtree partition. For the other range, since r1 is included in x’s right subtree and `1 < `2 is not in x’s left
subtree, then x’s left subtree is included in the subtree partition of (`1, r1).

16

x

`1 r1

Case 2

x

`2 r2

Case 1

x

`2 r2

Figure 8: Cases for proof of shared checkpoint epoch. Case 1 (left) has `2 as leftmost leaf of x’s subtree. Case 2 (right) does not.

Case 2: `2 is not the leftmost leaf of x’s subtree.

Call y the leftmost leaf of x’s right subtree. We argue that y is a shared boundary between the two subtree partitions.
First, we argue that if the right endpoint of a range is in a subtree T and the left endpoint is not, then the leftmost leaf of T is a

boundary in the range’s subtree partition. Consider two cases. First, if the right endpoint is in T ’s right subtree, then T ’s left
subtree is a part of the partition and the leftmost leaf of T is a boundary. Second, if the right endpoint is in T ’s left subtree, then
we use a recursive argument to claim that the leftmost leaf of T ’s left subtree (i.e., the leftmost leaf of T) is a boundary. The base
case of this argument is that the right endpoint is itself the leftmost leaf of T , in which case, it is a boundary.

Now with this argument, first consider r1 which is in x’s right subtree (`1 is not), then y is a boundary of (`1, r1). Next
consider, (`2, r2). If r2 is in x’s right subtree (`2 is not), then y is a boundary by the same argument as above. Else, r2 is not in
x’s subtree, so since `2 is not the leftmost leaf of x’s subtree, then x’s right subtree is included in the subtree partition of (`2, r2)
and y is a boundary.

D SNARK Aggregation

Here we present protocols for aggregatingN Groth16 SNARKs [Gro16]. These protocols are simplified, more optimized versions
of the related aggregation protocols presented in [BMM+19], since here we focus on the case where the SNARKs are over the
same relation and setup.

Bilinear pairing groups. We will make use of the following notation for bilinear pairing groups. (1) Groups G1,G2,GT are cyclic
groups of prime order p. (2) Group element g is a generator of G1, h is a generator of G2. (3) Pairing function e : G1×G2→GT
is a computable map with the following properties: Bilinearity: ∀ u ∈ G1, v ∈ G2, and a,b ∈ Z, e(ua,vb) = e(u,v)ab, and
Non-degeneracy: e(g,h) 6= 1. We assume an efficient setup algorithm that on input security parameter λ, generates a bilinear
group, (p,G1,G2,GT ,g,h,e)←G(1λ), where |p|= λ.

Inner product arguments. We will make use of the inner product arguments TIPP and MIPPk for the following relations; we
refer the reader to [BMM+19] for details on their construction:

RTIPP =

 gβ ∈G1, h

α ∈G2, T,U,Z ∈GT , γ ∈ Zp ;

[w]i =
[
gα

2i
]m−1

i=0
, [Ai]

m−1
i=0 ∈Gm1 , [v]i =

[
hβ

2i
]m−1

i=0
, [Bi]

m−1
i=0 ∈Gm2 , [r]i = [γ2i]m−1

i=0 ∈ Zmp

 :

T =
∏m−1
i=0 e(Ai,vi) ∧ U =

∏m−1
i=0 e(wi,Bi) ∧ Z =

∏m−1
i=0 e(A

ri
i ,Bi)

 ,

RMIPP-k =

 gβ ∈G1, T ∈GT , Z ∈G1, γ ∈ Zp ;

[Ai]
m−1
i=0 ∈Gm1 , [v]i =

[
hβ

2i
]m−1

i=0
, [b]i = [γi]m−1

i=0 ∈ Zmp

 :

T =
∏m−1
i=0 e(Ai,vi) ∧ Z =

∏m−1
i=0 A

bi
i

 .

17

KZG polynomial commitments. The KZG polynomial commitment scheme [KZG10] commits to polynomials of some max
degree n. For polynomial f(X) =

∑n−1
i=0 aiX

i where coefficient vector a = [ai]
n−1
i=0 , the commitment is computed with an

trapdoor commitment key ck = [gα
i
]n−1
i=0 as KZG.Commit(ck,a) =

∏
i(cki)

ai .
To prove that y= f(x) at a point x, KZG uses the polynomial remainder theorem which says f(x) = y⇔∃q(X) : f(X)−y=

q(X)(X−x). The proof is just a KZG commitment to the quotient polynomial q(X) where if q(X) has coefficients b= [bi]i,
then KZG.Open(ck,a,x) =

∏
i(cki)

bi . The verifier key consists of vk = hα, and the verifier runs KZG.Ver(hα,C,W,x,y) for
commitment C and opening W and checks that e(CW x/gy,h) = e(W,hα).

Groth16 SNARK. We recall some relevant notation for the structure and verification of Groth16 [Gro16] SNARKS. The
verifier’s verification key is as follows:

vkG16 =

(
hγ ,hδ,e(gα,hβ),

[
Sj = g(β·uj(τ)+α·vj(τ)−wj(τ))/γ

]`−1

j=0

)
,

where α,β,γ,δ,τ ∈ Zp are secret values and [uj(X),vj(X),wj(X)]
`−1
j=0 are public polynomials that define a circuit relation

with a statement of ` elements of Zp. A proof consists of three group elements, π = (A,B,C) ∈G1×G2×G1 and is verified
with a statement [xi]

`−1
i=0 by checking the following pairing product equation:

e(A,B)
?
= e(gα,hβ) ·e

`−1∏
j=0

S
xj
j ,hγ

 ·e(C,hδ) .
Aggregation. [BMM+19] describe how to aggregate the verification of a vector of proofs [πi = (Ai,Bi,Ci)]

n−1
i=0 for statements[

[xi,j]
n−1
i=0

]`−1

j=0
into a single pairing product equation by combining them with a random linear combination. More specifically,

the verifier samples a random r←$Zp and then checks:

n−1∏
i=0

e
(

(Ai)
ri ,Bi

)
?
= e
(
gα,hβ

)∑n−1
i=0

ri ·e

`−1∏
j=0

S
∑n−1
i=0

xi,j ·ri

j ,hγ

 ·e(n−1∏
i=0

(Ci)
ri ,hδ

)
.

We present the details of an aggregation proof that proves that this check succeeds in Figure 9; it is for the following relation:

RG16-Aggr =

{(
vkG16,

[
[xi,j]

`−1
j=0

]n−1

i=0
; [πi]

n−1
i=0

)
:

n−1∧
i=0

G16.Ver(vk, [xi,j]
`−1
j=0,πi)

}
.

Aggregation with sequential statements. Verification of the general aggregation protocol from Figure 9 is O(` ·n) time since
the verifier must compute all of the “aggregate” Zj values from the n statements [xi]i. Here we present a modified aggregation
protocol that allows for O(`+ logn) verification time for statements that follow a specific “sequential” structure.

The sequential structure that we require is that each statement xi is made up of two parts xi = (ai, bi). The first part is shared
as the second part of the previous statement, xi−1 = (ai−1, bi−1) where bi−1 = ai, and the second part is shared as the first
part of the following statement, xi+1 = (ai+1, bi+1) where ai+1 = bi. In other words, there exists a sequence of values [ai]

n
i=0

such that the statements are of the form [xi = (ai,ai+1)]n−1
i=0 . Here, each ai = [ai,j]

`−1
j=0 is a vector of ` field elements, and the

SNARKs are over statements of 2` elements.
In this case, we can use the structure of the statements to efficiently prove knowledge of accepting intermediate statements

without requiring the verifier to themselves check linear statements. We provide an aggregation protocol for the following relation
with details given in Figure 10:

RG16-Aggr-Seq =

{(
vkG16, [a0,j]

`−1
j=0, [an,j]

`−1
j=0 ;

[
[ai,j]

`−1
j=0

]n−1

i=1
, [πi]

n−1
i=0

)
:

n−1∧
i=0

G16.Ver(vkG16,([xi = ([ai,j], [ai+1,j])]
`−1
j=0,πi)

}
.

E Version-only Proofs and Batch Updates for RSA Key-Value Commitment

Groups of unknown order. We assume the existence of a randomized polynomial time sampling algorithm GGen(λ) that takes

18

G16-Aggr.Setup(n)

1. Generate commitment keys: α,β←$Zp, w←
[
gα

2i
]n−1

i=0
, v←

[
hβ

2i
]n−1

i=0
.

2. Generate shared verification key and proving key for TIPP and MIPPk:(
vk = (gβ ,hα),pk = (vk,

[
gα
i
]2n−2

i=0
,
[
hβ

i
]2n−2

i=0
)

)
← TIPP.Setup(n,(α,β)).

3. Return (vk,pk). (Notice w,v included in pk)

G16-Aggr.Aggregate(pk, [(xi,πi = (Ai,Bi,Ci))]
n−1
i=0)

1. Compute (π,r)← AggregateHelper(pk, [xi]
n−1
i=0 , [πi]

n−1
i=0), and return π.

G16-Aggr.Ver(vk,vkG16,
[
xi = [xi,j]

`−1
j=0

]n−1

i=0
,π)

1. Parse
(
hγ ,hδ,e(gα,hβ), [Sj]

`−1
j=0

)
← vkG16 and ((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC))← π.

2. Compute r← H([xi]
n−1
i=0 ,CA,CB ,CC) and [Zj]j ←

[
S
∑n−1
i=0 xi,j ·r

i

j

]`−1

j=0

.

3. Return VerifyHelper(vk,vkG16,π, [Zj]
`−1
j=0, r).

AggregateHelper(pk,x, [πi = (Ai,Bi,Ci)]
n−1
i=0)

1. Parse w,v and gβ ,hα from pk.

2. Commit to proof elements: CA =
∏n−1
i=0 e(Ai,vi), CB =

∏n−1
i=0 e(wi,Bi), CC =

∏n−1
i=0 e(Ci,vi).

3. Compute challenge r← H([xi]
n−1
i=0 ,CA,CB ,CC).

4. Compute inner products ZAB ←
∏n−1
i=0 e((Ai)

ri ,Bi), ZC ←
∏n−1
i=0 (Ci)

ri .

5. Prove using TIPP and MIPPk correct computation of inner products with respect to commitments:
πAB ← TIPP.Prove

(
pk,(gβ ,hα,CA,CB ,ZAB , r),(w, [Ai]i,v, [Bi]i, [r

i]i)
)

,
πC ←MIPPk.Prove

(
pk,(gβ ,CC ,ZC , r),(v, [Ci]i, [r

i]i)
)

.

6. Return π← ((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC)).

VerifyHelper(vk,vkG16,π, [Zj]
`−1
j=0, r)

1. Parse
(
hγ ,hδ,e(gα,hβ), [Sj]

`−1
j=0

)
← vkG16 and ((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC))← π.

2. Check inner product proofs:

TIPP.Ver
(
vk,(gβ ,hα,CA,CB ,ZAB , r),πAB

) ?
= 1 ,

MIPPk.Ver
(
pk,(gβ ,CC ,ZC , r),πC

) ?
= 1 .

3. Check aggregate pairing product equation:

ZAB
?
= e(gα,hβ)

rn−1
r−1 ·e(

∏`−1
j=0Zj ,h

γ) ·e(ZC ,hδ) .

4. Return 1 if above checks pass otherwise 0.

Figure 9: Aggregation of Groth16 [Gro16] SNARKs.

19

G16-Aggr-Seq.Setup(n)

1. Generate (vkG16-Aggr,pkG16-Aggr)← G16-Aggr.Setup(n) and (vkKZG,ckKZG)← KZG.Setup(n).

2. Return (vk = (vkG16-Aggr, vkKZG),pk = (pkG16-Aggr,ckKZG)).

G16-Aggr-Seq.Aggregate(pk,
[
[ai,j]

`−1
j=0

]n
i=0

, [(πi = (Ai,Bi,Ci))]
n−1
i=0)

1. Compute (πAggr, r)← AggregateHelper(pkG16-Aggr,(a0,an), [πi]
n−1
i=0).

2. Commit to statements:
[
CS,j

]
j
←
[
KZG.Commit(ckKZG, [ai,j]

n−1
i=0)

]`−1

j=0
.

3. Compute statement scalar inner products (exponents of Sj): [zj]j ←
[∑n−1

i=0 ai,j · r
i
]`−1

j=0
.

4. Prove correct computation of inner product by opening KZG commitment:

[Wj]j ←
[
KZG.Open(ckKZG, [ai,j]

n−1
i=0 , r)

]`−1

j=0
.

5. Return π← (πAggr,
[
(CS,j ,Wj ,zj)

]`−1

j=0
).

G16-Aggr-Seq.Ver(vk,vkG16, [a0,j]
`−1
j=0, [an,j]

`−1
j=0,π)

1. Parse
(
hγ ,hδ,e(gα,hβ), [Sj]

`−1
j=0

)
← vkG16, (πAggr,

[
(CS,j ,Wj ,zj)

]`−1

j=0
)← π, and

((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC))← πAggr.

2. Compute challenge r← H([xi]
n−1
i=0 ,CA,CB ,CC).

3. Compute statement elements taking advantage of sequential property:

[Zj]
`−1
j=0←

[
S
zj
j

]`−1

j=0
, [Zj]

2`−1
j=` ←

[
S
zj−a0,j

r
+an,j ·rn−1

j

]`−1

j=0

.

4. Check VerifyHelper(vkG16-Aggr,vkG16,πAggr, [Zj]
2`−1
j=0 , r)

?
= 1.

5. Check KZG proofs:
[
KZG.Ver(vkKZG,CS,j ,Wj , r,zj)

]`−1

j=0

?
= [1]j .

6. Return 1 if above checks pass otherwise 0.

Figure 10: Aggregation of Groth16 [Gro16] SNARKs with sequential statements.

20

KVaC.Setup(λ)

(a,b,G)←$GGen(λ)

g←$G
Return (a,b,G,g)

KVaC.Init()

Return (1,g)

KVaC.Commit([(k,v,u)]i)

[z]i← [H(k)]i

C1← g

∑
j

(
vjz

uj−1

j

∏
i6=j z

ui
i

)
C2← g

∏
i z
ui
i

Return (C1,C2)

KVaC.ProveMem([(k,v,u)]i,m)

[z]i← [H(k)]i

π1← g

∑
j 6=m

(
vjz

uj−1

j

∏
i6=j,m z

ui
i

)
π2← g

∏
i6=m z

ui
i

(a,b)← EEA(
∏
i 6=m z

ui
i ,zm)

π← ((π1,π2),(gb,a),um)

Return π

KVaC.VerifyMem(C,(k,v),π)

z← H(k)

((π1,π2),(B,a),u)← π

(C1,C2)← C

Return
∧

(π1)z
u

(π2)v·z
u−1

= C1

(π2)z
u

= C2

(π2)aBz = g

KVaC.Update(C,(k,δ))

z← H(k)

(C1,C2)← C

C′← (Cz1C
δ
2 ,C

z
2)

Return C′

KVaC.UpdateMemProof((k,π),(kδ, δ))

z← H(k)

((π1,π2),(B,a),u)← π

If k = kδ then
π′← ((π1,π2),(B,a),u+ 1)

Else
zδ ← H(kδ)

(s, t)← EEA(z,zδ)

q← bat
z
c ; r← at mod z

a′← r ; B′← πat+qZ2 B

π′← ((π
zδ
1 πδ2 ,π

zδ
2),(B′,a′),u)

Return π′

Figure 11: KVaC construction from [AR20].

as input the security parameter λ and generates a group of unknown order consisting of two integers a,b along with a description
of the group G. The group G is of unknown order in the range [a,b] where a,b, and a− b are all exponential in λ.

The RSA quotient group Z×N \{±1} where N is an RSA modulus is believed to have no element of known order other than
the identity. The group generation algorithm here may require trusted setup to generate the group modulus N .

Adaptive root assumption. The adaptive root assumption tasks an adversary with computing the random root of a non-trivial
group element. We define the advantage of an adversary A= (A0,A1) against the adaptive root assumption as follows:

Adv
adap-root
GGen,A (λ) = Pr

u` = w 6= 1 :

(a,b,G)←$GGen(λ);

(w,st)←$A0(a,b,G);

`←$Primes(λ);

u←$A1(st, `)

 .

Strong RSA assumption. The strong RSA assumption tasks an adversary with computing a chosen non-trivial root of a random
group element. We define the advantage of an adversary A against the strong RSA assumption as follows:

Adv
strong-rsa
GGen,A (λ) = Pr

 u` = w

` ∈ Primes(λ)\{2}
:

(a,b,G)←$GGen(λ);

w←$G;

(u,`)←$A(a,b,G,w)

 .

Extended Euclidean algorithm. Given two integers x,y such that the gcd(x,y) = 1, then (a,b)← EEA(x,y) returns the Bézout
coefficients (a,b) where ax+by= 1. The coefficients are such that a≤ y and b≤ x. The algorithm runs in timeO(max(|x|, |y|)).

E.1 RSA Key-Value Commitment

We make use of the key-value commitment KVaC from [AR20]; the construction pseudocode is given in Figure 11. The hash
function H maps keys to primes of size 2λ that are larger than the group order upper bound b. The space of values that can be
committed to is the set of positive integers bounded above by b. [AR20] prove KVaC secure with respect to a weak key binding
property in which the commitment must have been produced correctly, rather than adversarially. This is not sufficient for the
verifiable registry setting; in the next section we show how to augment KVaC with update proofs to protect against adversarially
generated commitments.

21

KVaC.BatchUpdate(C, [(k,δ)]i))

[z]i← [H(k)]i

(C1,C2)← C

Z←
∏
i zi

∆←
∑
j

(
δj
∏
i6=j zi

)
C′← (CZ1 C

∆
2 ,C

Z
2)

Return C′

KVaC.UpdateMemProof((k,π),(Z,∆))

z← H(k)

((π1,π2),(B,a),u)← π

(s, t)← EEA(z,Z)

q← bat
z
c ; r← at mod z

a′← r ; B′← πat+qZ2 B

π′← ((πZ1 π
∆
2 ,π

Z
2),(B′,a′),u)

Return π′

KVaC.ProveUpdate(C,C′,(Z,∆))

(C1,C2)← C ; (C′1,C
′
2)← C′

π← BBF.Prove((Z,∆),(C1,C2,C′1,C
′
2))

Return π

KVaC.VerUpdate(C,C′,π)

(C1,C2)← C ; (C′1,C
′
2)← C′

Return BBF.Ver((C1,C2,C′1,C
′
2),π)

RKVaC =
{

((X1,X2,Y1,Y2); (α,β)) : Y1 =Xα
1 X

β
2 ∧Y2 =Xα

2

}
BBF.Prove((α,β),(X1,X2,Y1,Y2))

sa← gα ; sb← gβ

`← HPrimes(X1 ‖X2 ‖Y1 ‖Y2 ‖ sa ‖ sb)
qa← bα/`c ; ra← α mod `

qb← bβ/`c ; rb← β mod `

Wa← gqa ; Wb← gqb

W1←Xqa
1 X

qb
2 ; W2←Xqa

2

π← (Wa,Wb,W1,W2, ra, rb, `)

Return π

BBF.Ver((X1,X2,Y1,Y2),π)

π← (Wa,Wb,W1,W2, ra, rb, `)

sa←W `
ag
ra ; sb←W `

b g
rb

Return
∧

`= HPrimes(X1 ‖X2 ‖Y1 ‖Y2 ‖ sa ‖ sb)

Y1 =W `
1X

ra
1 X

rb
2

Y2 =W `
2X

ra
2

Figure 12: Extension for KVaC to batch many key updates together (left). Extension to prove that key updates satisfy a versioned invariant
(center) using the generalized proof of linear homomorphism from [BBF19], shown for the particular update homomorphism relevant to KVaC
(right).

Game Gversion
Π,A (λ)

pp←$Π.Setup(λ) ; C∅←$Π.Initpp()

(k,(vA,uA,πA, [(CA,λA)]ni=1),(vB ,uB ,πB , [(CB ,λB)]mi=1)←$A(pp,C∅)

Return
∧

CA,0← C∅ ;
∧n
i=1 Π.VerUpdate(CA,i−1 ,CA,i ,λA,i)

CB,0← CA,n ;
∧m
i=1 Π.VerUpdate(CB,i−1 ,CB,i ,λB,i)

Π.VerifyMem(CA,n ,(k,vA,uA),πA)

Π.VerifyMem(CB,m ,(k,vB ,uB),πB)

∨ uA > uB

vA 6= vB ∧ uA = uB

Figure 13: Security game for versioned invariant preservation through updates.

E.2 Versioned Update Proofs

Figure 12 shows our protocol for proving updates preserve a versioned invariant. We use the generalized proof of linear
homomorphism [BBF19] to prove that the commitment is updated only by a particular homomorphism that we show guarantees
a versioned invariant. The proof of knowledge from [BBF19] is sound with respect to the adaptive root assumption. We also
show (in Figure 12) how to batch many key-value updates together such that the batched update follows the same homomorphic
form as a single update. Individual membership proofs can be updated with respect to batched changes.

Here we prove that the update proofs from Figure 12 enforce the versioned invariant is preserved. We say a key-value
commitment is versioned if it is not possible to provide two membership proofs for the same key that break the versioned
invariant. That is, (1) the key’s version number does not decrease, and (2) two different values for a key cannot be shown for the
same version number. The versioned property is defined by the security game in Figure 13. The advantage of an adversary is
defined as Advversion

Π,A (λ) = Pr[Gversion
Π,A (λ) = 1].

Theorem 2. For any adversary A against the versioned property of KVaC, we give adversaries B and C such that

Advversion
KVaC,A(λ)≤Adv

strong-rsa
GGen,B (λ) +Advsound

BBF,C,X (λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in KVaC and X is the knowledge extractor for
BBF [BBF19].

Proof. First, observe the update structure of KVaC. Using the extractor X for BBF, we extract the series of updates [αA,βA]ni

22

corresponding to update proofs [λA]ni . If the extractor fails, we build adversary C against the soundness of BBF. Else, we can
rewrite CA = CA,n as follows:

CA =
(
g
∑n
i (βA,i

∏
j 6=iαA,j), g

∏n
i αA,i

)
This can be considered as a single update from C∅ = (1,g) where

αA =

n∏
i

αA,i βA =

n∑
i

βA,i∏
j 6=i

αA,j

Similarly, CB = CB,m can be considered as a single update from CA:

CB =
(
C
αB
A,1C

βB
A,2,C

αB
A,2

)
αB =

m∏
i

αB,i βB =

m∑
i

βB,i∏
j 6=i

αB,j

This means that we can simplify the proof of the versioned property to consider just a single update from C∅ to CA of

(αA,βA) and a single update from CA to CB of (αB ,βB).
First, we will prove some useful lemmas.

Lemma 1. [Shamir’s trick] For any integer modulo N , given integers u,v ∈ Z×N and x,y ∈ Z, such that ux = vy modN and
gcd(x,y) = 1, it is efficient to compute w ∈ Z×N where wa = v modN .

Proof. Since gcd(x,y) = 1, we can compute the Bézout coefficients (a,b)← EEA(x,y) where ax+ by = 1. Let w = ubva

mod n, then

wx = ubxvax = (ux)bvax = (vy)bvax = v (mod N) .

Lemma 2. [Non-trivial root of unity] For RSA quotient group G with elements of unknown order bounded above by b, given
integers u,v ∈G and prime z > b, if uz = vz , then u= v.

Proof. Let α= u/v ∈G. Then αz = 1. Since z is prime, if α 6= 1, then z must be the order of α in G. However, z > b, an upper
bound on the order of elements in G, which is not possible, so α= 1 and u= v.

Lemma 3. [Coprime] For RSA quotient group G, given integers u,w ∈G, random integer v ∈G, integers a,b,c ∈ Z, and prime
z, then if uz

c
= va and ubwz = v, then zc |a and if let d= a/zc ∈ Z, then u= vd and gcd(z,d) = 1.

Proof. First, we prove that d exists, i.e., that zc |a. Consider (uz
c−1

)z = va. If z 6 |a, then gcd(z,a) = 1 and by Lemma 1, we
can compute xz = v which wins the strong RSA security game. Therefore z |a and uz

c−1
= ga/z by Lemma 2. We can repeat

this argument for (uz
c−i

)z = va/z
i−1

for i ∈ [2, c], ultimately arriving at zc |a and u= va/z
c

= vd.
Next, we show that z 6 |d. Consider ubwz = v rewritten as vbd−1 = w−z . If z |d, then gcd(bd−1,−z) = 1, and by Lemma 1,

we can compute xz = v which again wins the strong RSA security game. Therefore, z 6 |d meaning gcd(z,d) = 1.

The proof proceeds by considering each of the two winning conditions and showing that, in each case, a winning adversary
can break strong RSA.

(1) uA > uB

(2) vA 6= vB ∧ uA = uB

Case 1: uA > uB

From the verification equations of πA, we have that:

πz
uA

A,2 = CA,2 = gαA , π
πA,4
A,2 πzA,3 = g .

Thus, by Lemma 3, we know that πA,2 = gαA/z
uA . Similarly, from the verification equations of πB , we have that:

πz
uB

B,2 = CB,2 = gαAαB , π
πB,4
B,2 πzB,3 = g .

23

Again, by Lemma 3, we have that πB,2 = gαAαB/z
uB and gcd(αAαB/z

uB ,z) = 1. Since uA > uB , we can construct group
element u as follows:

u= π
αB ·zuA−uB−1

A,2 and then, uz = (π
αB ·zuA−uB−1

A,2)z = ((gαA/z
uA

)αB ·z
uA−uB−1

)z = gαAαB/z
uB
.

Since gcd(αAαB/z
uB ,z) = 1, we can compute w from Lemma 1, where wz = g which wins the strong RSA security game.

Case 2: vA 6= vB ∧ uA = uB

Let u= uA = uB . By the verification equation of πB , we have:

CB,1 = πz
u

B,1π
vBz

u−1

B,2

We also have, from the update proof and verification equations of πA, that:

CB,1 = C
αB
A,1C

βB
A,2

=
(
π
αBz

u

A,1 π
αBvAz

u−1

A,2

)(
π
βBz

u

A,2

)
We also can derive the following relation:

πz
u

A,2 = CA,2 (by verification of πA)

π
αBz

u

A,2 = C
αB
A,2 = CB,2

πz
u

B,2 = CB,2 (by verification of πB)

π
αB
A,2 = πB,2 (by repeated application of Lemma 2)

Putting this together we have as follows:

π
αBz

u

A,1 π
αBvAz

u−1

A,2 π
βBz

u

A,2 = πz
u

B,1π
vBz

u−1

B,2 (by equality to CB,1)

π
αBz

u

A,1 π
βBz

u

A,2

πz
u

B,1

=
π
vBz

u−1

B,2

π
αBvAz

u−1

A,2

π
αBz

u

A,1 π
βBz

u

A,3

πz
u

B,1

= π
(vB−vA)zu−1

B,2 (by relation between πB,2 and πA,2)

((
π
αB
A,1π

βB
A,2

πB,1

)z)zu−1

=
(
π
vB−vA
B,2

)zu−1

(
π
αB
A,1π

βB
A,2

πB,1

)z
= π

vB−vA
B,2 (by repeated application of Lemma 2)

Thus, we have found a zth root of a non-trivial element. By Lemma 3, we have that πB,2 = gαAαB/z
u

where gcd(αAαB/z
u,z) =

1. This gives us (
π
αB
A,1π

βB
A,2

πB,1

)z
= g

(vB−vA)αAαB
zu .

Since z is prime and the domain of values is chosen to be smaller than all z, we also have that gcd(vA−vB ,z) = 1, and therefore
by Lemma 1, we can compute w where wz = g winning the strong RSA security game.

24

KVaC.BatchProveMem(K= [(k,v,u)]ni ,K′ = [(k,v,u)]mi)

Z←
∏
i∈K\K′ H(ki)

ui ; Z′←
∏
i∈K′ H(ki)

ui

∆←
∑
i∈K\K′

(
vi ·H(ki)

ui−1
∏
j 6=i∈K\K′ H(kj)

uj
)

h′← g∆ ; g′← gZ

(a,b)← EEA(Z,Z′) ; B← gb

Return BatchRecurse(h′,g′,B,a,K′)

BatchRecurse(h,g,B,a, [(z,v,u)]ni)

If n= 1 then return [(h,g,B,a)]

n′← n/2

ZL←
∏n′

i=1 z
ui
i ; ∆L←

∑n′

i=1

(
viz

ui−1
i

∏
j 6=i z

uj
j

)
ZR←

∏n
i=n′ z

ui
i ; ∆R←

∑n
i=n′

(
viz

ui−1
i

∏
j 6=i z

uj
j

)
hL← hZLg∆L ; gL← gZL

hR← hZRg∆R ; gR← gZR

(s, t)← EEA(ZL,ZR)

qL← b atZL c ; rL← at mod ZL

qR← b asZR c ; rR← as mod ZR

aL← rL ; BL← g
qL
R gasBZR

aR← rR ; BR← g
qR
L gatBZL

WL← BatchRecurse(hR,gR,BL,aL, [(zi,vi,ui)]
n′

i=1

WR← BatchRecurse(hL,gL,BR,aR, [(zi,vi,ui)]
n
i=n′

Return WL ‖WR

KVaC.CommitWithCkpt(C = (C1,C2), [(k,v′,u′)]i)

[z]i← [H(k)]i

C′1← C
∏
i z
u′i
i

1 C

∑
j

(
v′jz

u′j−1

j

∏
i6=j z

u′i
i

)
2

C′2← C
∏
i z
u′i
i

2

Return (C′1,C
′
2)

KVaC.ProveMemWithCkpt([C = (C1,C2),(k,v′,u′)]i,m)

[z]i← [H(k)]i

π1← C

∏
i6=m z

u′i
i

1 C

∑
j 6=m

(
v′jz

u′j−1

j

∏
i6=j,m z

u′i
i

)
2

π2← C

∏
i6=m z

u′i
i

2

(a,b)← EEA(
∏
i 6=m z

u′i
i ,zm)

π← ((π1,π2),(Cb2,a),u′m)

Return π

KVaC.VerifyMemWithCkpt(C,C′,(k,v′),π)

(C1,C2)← C ; (C′1,C
′
2)← C′ ; z← H(k)

((π1,π2),(B,a),u′)← π

Return
∧

(π1)z
u′

(π2)v
′·zu
′−1

= C′1

(π2)z
u′

= C′2

(π2)aBz = C2

Figure 14: (Left) Algorithms for computing a membership proofs for a batch of keys. (Right) Modified commit, prove membership, and verify
membership algorithms for proving membership with respect to key updates since a checkpoint commitment.

F RSA Membership Proof Computation

This section provides more detail for the key caching and membership proof checkpointing optimizations described in Section 4.3
for RSA membership proof computation.

F.1 Batch Computation and Key Caching

Figure 14 (left) provides pseudocode for the O(N +m logm) algorithm to batch compute membership proofs for a subset of m
keys over N total updates in the key-value commitment. We consider a set K of unique keys in the commitment and a subset
K′ ⊆K of size m for which to compute membership proofs. The O(m logm) work takes place in the BatchRecurse protocol
which adapts existing techniques from [BBF19, TXN20] for computing batch membership and non-membership proofs for RSA
accumulators. The O(N) work is in computing the initial values (h,g,B,a) passed to BatchRecurse representing the state of all
keys in K\K′; we will refer to these as helper values for membership proof computation.

Our approach is to maintain the helper values (h,g,B,a) for a cache K′ as a set of ` updates U = [(k,δ)]`i are applied to the
commitment. If the helper value is maintained to reflect the updated set K then membership proofs for the keys in K′ can be
recomputed with only O(m logm) work.

UpdateHelper((h,g,B,a),K′ = [(k,v,u)]ni , U = [(k,δ)]`i)

Z←
∏
i∈U H(ki)

ui ; Z′←
∏
i∈K′ H(ki)

ui

∆←
∑
i∈U

(
δi
∏
j 6=i∈U H(kj)

)
h′← hZg∆ ; g′← gZ

(s, t)← EEA(Z′,Z)

q← b at
Z′ c ; r← at mod Z′

a′← r ; B′← gat+qZB

Return (h′,g′,B′,a′)

The UpdateHelper pseudocode above shows how to maintain the helper values by applying updates from U . The update
protocol runs in O(m+ `) time.

25

Because maintaining a cache requires persistently updating its corresponding helper value, the system cannot efficiently
maintain too many caches. One possible distribution of cache sizes if there are K total keys is by sizes of power of 2, leading to
logK caches to maintain. This means that most keys will be placed in caches of large size which will still incur large promise
fulfillment times. However, some keys will be placed in smaller caches that can be recomputed often.

F.2 Membership Proof Checkpointing

The approach to key caching requires key membership in a cache to be fixed; adding or removing keys from a cache requires
recomputing the helper value incurring an expensive O(n) cost. However dynamic caches supporting key eviction and loading
are important for a long-lived system as key lookup patterns evolve. We address this using a similar checkpointing approach as
before: past epochs are divided into ranges of size decreasing powers of 2, resulting in a logarithmic total number of ranges
where the smallest range size is determined by the cache size. Instead of proving membership of a key across the entire history of
n updates, a checkpoint membership proof is provided for the updates that occur within each checkpointed range. The checkpoint
membership proofs of all checkpointed ranges together attest to the membership of the key over the full history.

As epochs are added, occasionally ranges get merged together. Recomputing membership proofs for merged large ranges
is an expensive task but is amortized over the life of the system. Recomputation is necessary to maintain a logarithmic-sized
membership proof, but can be done in the background as it does not affect latency; the membership proofs of the unmerged
ranges can be used in the meantime.

We select the checkpointing schedule, i.e., minimum checkpoint range length, for a cache based on its size; larger caches will
have proportionally larger minimum checkpoint ranges as computing membership proofs for the cache takes longer. However,
keys can be evicted and loaded between caches of different sizes (and schedules) at the time when their most recent checkpoint
endpoints coincide. Since both caches will be beginning a new checkpoint range, the helper values are restarted allowing for
arbitrary changes in key membership.

To compute checkpoint membership proofs for a subrange of epochs, consider the range starting with epoch digest d = (X1,X2)
and ending with epoch digest d′. Recall,

d′←
(
g(
∏
iH(ki)

ui)·(
∑
i vi/H(ki)), g

∏
iH(ki)

ui
)
,

for key-values (ki,vi) that have been updated ui times over the registry history. When reformulated:

d′←

X∏iH(ki)
u′i

1 X

(∏
iH(ki)

u′i
)
·(
∑
i v
′
i/H(ki))

2 , X
∏
iH(ki)

u′i
2

 ,
for key-values (ki,v

′
i) updated u′i times in the range between d and d′. We build checkpoint membership proofs to fit this

reformulation and show that a full history membership proof of v for version u consists of the logarithmic sequence of checkpoint
membership proofs of (k,v ′j ,u

′
j) and verifying the sum of values v =

∑
j v
′
j and versions u=

∑
j u
′
j .

Figure 14 (right) provides pseudocode for committing, proving membership, and verifying membership with respect to key
updates applied since a prior checkpoint commitment C = (C1,C2). By splitting up key updates among checkpointed ranges, we
allow for dynamic key caches that can change their key membership at the start of a new checkpoint without incurring expensive
costs to recompute a new helper value; the helper value for the new checkpoint starts from scratch (no previous updates in this
new range) instead of incurring cost on the order of all previous updates in the system. Computing membership proofs for a batch
of keys can also be done, modifying the computation of the helper values in BatchProveMem: h′← CZ1 C

∆
2 and g′← CZ2 .

A membership proof for key k of value and version (v,u) for commitment can be produced as a sequence of w checkpoint
membership proofs for k over w contiguous checkpoint ranges for values and version [(v′,u′)]wj . Note that some checkpoint
ranges may not include an update for k in which case the checkpoint proof is a non-membership proof of k. We will show that if
(1) the w checkpoint membership proofs verify, (2) v =

∑w
j v
′
j and u=

∑w
j u
′
j , and (3) there exist versioned invariant proofs

between the checkpoint commitments, then a membership proof for k of (v,u) for the full commitment can be computed. This in
turn implies that the versioned security property from Appendix E hold with respect to checkpoint membership proofs.

Theorem 3. For any sequence of w contiguous checkpoint proofs and versioned invariant proofs for key k,[
(Cj ,πj ,(v

′
j ,u
′
j),λj)

]w
j=1

, such that (where C0← KVaC.Init()):

•
∧w
i=1KVaC.VerUpdate(Cj−1 ,Cj ,λj),

•
∧w
j=1KVaC.VerifyMemWithCkpt(Cj−1,Cj ,(k,v

′
j ,u
′
j),πj),

then, given an extractor X for BBF, we give membership proof π such that KVaC.VerifyMem(Cj ,(k,
∑w
j v
′
j ,
∑w
j u
′
j ,π) = 1.

26

Proof. We will show that any two checkpoint proofs from CA to CB to CC :

• KVaC.VerUpdate(CA ,CB ,λA),

• KVaC.VerUpdate(CB ,CC ,λB),

• KVaC.VerifyMemWithCkpt(CA,CB ,(k,v
′
A,u

′
A),πA),

• KVaC.VerifyMemWithCkpt(CB ,CC ,(k,v
′
B ,u

′
B),πB),

can be merged into a single checkpoint proof π from CA toCC such that KVaC.VerifyMemWithCkpt(CA,CC ,(k,v
′
A+v′B ,u

′
A+

u′B),π). Given this result, the rest of the proof follows by merging the checkpoint proofs in sequence and observing that
KVaC.VerifyMemWithCkpt is equivalent to KVaC.VerifyMem where the checkpoint commitment is C0.

We show how to construct the merged proof π for 4 different cases enumerating whether each of the two checkpoint proofs are
membership proofs or non-membership proofs. In all cases, we will make use of z = H(k) and extracted exponents (αA,βA)

and (αB ,βB) from λA and λB , such that CB = (C
αA
A,1C

βA
A,2,C

αA
A,2) and CC = (C

αB
B,1C

βB
B,2,C

αB
B,2).

Case 1: Both πA and πB are non-membership proofs.

We show how to construct a non-membership proof π for the merged ranges. A valid non-membership proof consists of
πA = (BA,aA) such that CaAB,2B

z
A = CA,2. By soundness of BBF, we have that CB,2 = C

αA
A,2, and so by Lemma 3, we have

that gcd(z,αA) = 1. By a symmetric argument for πB = (BB ,aB) where CaBC,2B
z
B = CB,2, and CC,2 = C

αB
B,2, we have that

gcd(z,αB) = 1.
Since z is prime, this also gives us that gcd(z,αA ·αB) = 1. Thus we can compute Bézout coefficients (a,b)←EEA(αA ·αB ,z)

such that aαAαB + bz = 1, and non-membership proof π = (CbA,2,a). We can see this verifies for the merged range:

CaC,2(CbA,2)z = (C
αAαB
A,2)a(CbA,2)z = C

aαAαB+bz
A,2 = CA,2 .

Case 2: πA is a membership proof and πB is a non-membership proof.

We construct a membership proof of (v′A,u
′
A) for the merged ranges. Parse membership proof πA = (πA,1,πA,2,BA,aA). From

the verification equations of πA and Lemma 3, we have that zu
′
A |αA and gcd(z, αA

z
u′
A

) = 1.

We set π1 =

(
(πA,1)αB (CA,2)

αAβB

z
u′
A

)
and π2 = C

αAαB

z
u′
A

A,2 . Then we have the following two verification equations satisfied:

CC,1 = C
αB
B,1C

βB
B,2

=

(
(πA,1)z

u′A (πA,2)v
′
A·z

u′A−1
)αB(

C
αA
A,2

)βB
= (πA,1)αB ·z

u′A (πA,2)αB ·v
′
A·z

u′A−1

(CA,2)αAβB

=

(
(πA,1)αB ·z

u′A (CA,2)αAβB
)(

(CA,2)

αA

z
u′
A

)αB ·v′A·zu′A−1

=

(
(πA,1)αB (CA,2)

αAβB

z
u′
A

)zu′A(
(CA,2)

αA

z
u′
A

)αB ·v′A·zu′A−1

= (π1)z
u′A (π2)v

′
A·z

u′A−1

CC,2 = (CA,2)αAαB = (π2)z
u′A

To satisfy the last verification equation, first consider the same argument from Case 1 for non-membership proof πB
showing that gcd(z,αB) = 1. Thus, we have that gcd(z, αAαB

z
u′
A

) = 1, and compute (a,b)← EEA(αAαB
z
u′
A
,z). Finally we set

π = (π1,π2,C
b
A,2,a).

Case 3: πA is a non-membership proof and πB is a membership proof.

We construct a membership proof of (v′B ,u
′
B) for the merged ranges. Parse membership proof πB = (πB,1,πB,2,BB ,aB). From

27

the verification equations of πB and Lemma 3, we have that zu
′
B |αB and gcd(z, αB

z
u′
B

) = 1.

We set π1 = πB,1 and π2 = πB,2 = C

αAαB

z
u′
B

A,2 . Then we have the following two verification equations satisfied, directly form
the verification equations for πB :

CC,1 = (πB,1)z
u′B (πB,2)v

′
B ·z

u′B−1

= (π1)z
u′B (π2)v

′
B ·z

u′B−1

CC,2 = (πB,2)z
u′B = (π2)z

u′B

To satisfy the last verification equation, first consider the same argument from Case 1 for non-membership proof πA
showing that gcd(z,αA) = 1. Thus, we have that gcd(z, αAαB

z
u′
B

) = 1, and compute (a,b)← EEA(αAαB
z
u′
B
,z). Finally we set

π = (π1,π2,C
b
A,2,a).

Case 4: Both πA and πB are membership proofs.

We construct a membership proof of (v′A + v′B ,u
′
A + u′B) for the merged ranges. Parse membership proofs πA =

(πA,1,πA,2,BA,aA) and πB = (πB,1,πB,2,BB ,aB). From the same arguments in Case 2 and Case 3 using Lemma 3, we
have that zu

′
A |αA and gcd(z, αA

z
u′
A

) = 1 and zu
′
B |αB and gcd(z, αB

z
u′
B

) = 1.

Next, consider the following line to show that zu
′
A |(βA−

v′AαA
z):

(πA,1)z
u′A (πA,2)v

′
A·z

u′A−1

= CB,1 = C
αA
A,1C

βA
A,2

(πA,1)z
u′A = CB,1 =

C
αA
A,1C

βA
A,2

(πA,2)v
′
A
·zu
′
A
−1

= C
αA
A,1(CA,2)βA−

v′AαA
z (πA,2 = (CA,2)

αA

z
u′
A) πA,1

(CA,1)

αA

z
u′
A

z
u′A

= (CA,2)βA−
v′AαA
z

Using the same initial proof steps as the proof for Lemma 3, we claim that zu
′
A |(βA−

v′AαA
z) else we’ve found a solution to

the strong RSA security game. Symmetrically, we also claim that zu
′
B |(βB−

v′BαB
z).

We set π1 = (CA,1)

αAαB

z
u′
A

+u′
B (CA,2)

(αB(βA−v
′
AαA/z))+(αA(βB−v

′
BαB/z))

z
u′
A

+u′
B and π2 = C

αAαB

z
u′
A

+u′
B

A,2 . The first two verification equa-
tions are satisfied as follows:

(π1)z
u′A+u′B (π2)(v′A+v′B)·zu

′
A+u′B−1

= (CA,1)
αAαB (CA,2)(

αB(βA−v′AαA/z))+(αA(βB−v′BαB/z))(CA,2)

(
(v′A+v′B)αAαB

z

)

= (CA,1)
αAαB (CA,2)

(αBβA+αAβB)

= CC,1

(π2)z
u′A+u′B = (CA,2)αAαB = CC,2

To satisfy the last verification equation, we have that gcd(z, αAαB

z
u′
A

+u′
B

) = 1 from gcd(z, αA
z
u′
A

) = 1 and gcd(z, αB
z
u′
B

) = 1 since z is

prime. We compute (a,b)← EEA(αAαB

z
u′
A

+u′
B
,z). Finally we set π = (π1,π2,C

b
A,2,a).

28

	Introduction
	Setting and Threat Model
	Preliminaries
	Authenticated Versioned Dictionaries
	Constructions: SNARK Recursion vs Aggregation
	Merkle Tree Constructions
	RSA Accumulator Constructions

	Client Auditing using AVDs
	Further Optimizations
	Implementation
	Evaluation
	Client Auditing
	Server Epoch Updates
	Key Lookups
	Summary

	Related Work
	Merkle Tree Preliminaries
	Open Addressing Optimization for Merkle Tree Update Circuit Representation
	Proof of Shared Checkpoint Epoch
	SNARK Aggregation
	Version-only Proofs and Batch Updates for RSA Key-Value Commitment
	RSA Key-Value Commitment
	Versioned Update Proofs

	RSA Membership Proof Computation
	Batch Computation and Key Caching
	Membership Proof Checkpointing

