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We added three new scenarios: we shifted the original D, E, F → G, H, I and we added the new
scenarios as D, E, F. For all scenarios (including without KeySwitch), we corrected the estimated
security parameter λ, thanks to a notice by Sergiu Carpov. Instead of making rough estimates
based on Figure 9 from Chillotti et al. [6], we ran the LWE Estimator by Albrecht et al. [1, 2, 9].
Find the list of affected contents below:

Section 2.1.3:

� comment on the usage of the LWE Estimator by Albrecht et al.

Section 5:

� added reference to the LWE Estimator by Albrecht et al.,

� added new parameter sets as D, E, F; shifted the original sets D, E, F → G, H, I (only
for the “with KeySwitch” scenario),

� updated estimated security parameter λ in Tables 2 and 3.

Section 6:

� acknowledgment for Sergiu Carpov.
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Abstract

Unlike traditional and/or standardized ciphers, TFHE offers much space for the setup of its
parameters. Not only the parameter choice affects the plaintext space size and security, it also
greatly impacts the performance of TFHE, in particular, its bootstrapping.

In this paper, we provide an exhaustive description of TFHE, including its foundations,
(functional) bootstrapping and error propagation during all operations. In addition, we outline
a bootstrapping scenario without the key switching step. Based on our thorough summary, we
suggest an approach for the setup of TFHE parameters with particular respect to bootstrapping
efficiency. Finally, we propose twelve setups of real-world TFHE parameters for six different
scenarios with and without key switching, respectively, and we compare their performance.

N.b.: This is a technical paper, which is mainly intended for researchers interested in
TFHE. However, due to its self-containment, it shall be accessible also for readers with a basic
knowledge of TFHE.

1 Introduction

The fully homomorphic encryption scheme by Chillotti et al. named TFHE (Fully Homomorphic
Encryption over the Torus; [6]) has received a lot of attention recently [3, 4, 5, 8, 10]. However,
to the best of our knowledge, there is no study focusing on the choice of the TFHE parameters,
let alone with respect to the bootstrapping efficiency. Indeed, existing papers refer to the original
TFHE paper [6] or to the TFHE Library [13].

Our Contributions

In this paper, we present the results of our study on the TFHE parameter setup, while we particularly
focus on the bootstrapping efficiency. Most notably, we suggest an approach that allows for tuning
the plaintext space size as well as the limit of homomorphic additions. We demonstrate our method
on six different <plaintext space size> : <homomorphic additions limit> setups. These setups are
intended for our prospective applications, hence they have currently no direct motivation.

∗A related study on error-free computations with TFHE is to appear at Computing Conference ’21 in London.
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Paper Outline

In Section 2, we revisit TFHE, in particular we focus on multivalue plaintext space and multiple
ciphertext additions. Next, we provide a detailed analysis of TFHE error propagation in Section 3.
We propose an approach for TFHE parameter setup with particular respect to bootstrapping ef-
ficiency in Section 4. Finally, in Section 5, we provide TFHE parameter sets for various usage
scenarios together with performance measurements. We conclude our paper in Section 6.

2 TFHE with Multivalue Plaintext Space

In this section, we revisit TFHE by Chillotti et al. [6] as well as subsequent enhancements [4, 5].
We explain the (modified) bootstrapping algorithms in closer detail as a prerequisite for parameter
derivation in the following sections.

Symbols & Notation. Since this paper has a lot of technical content, we introduce frequent
symbols and notations at a single place, details will be given later. We denote:

� B the binary Galois field GF2,

� T the set R/Z referred to as the torus,

� M (N)[X] the set of polynomials modulo XN + 1, for a set M and N ∈ N0,

� for a polynomial p(X) = p(0) + p(1)X + p(2)X2 + . . . + p(N−1)XN−1, we denote coeffs(p) =
(p(0), p(1), . . . , p(N−1)),

� for a vector of polynomials w = (w
(0)
0 + w

(1)
0 X + . . . + w

(N−1)
0 XN−1, . . . , w

(0)
n−1 + w

(1)
n−1X +

. . .+ w
(N−1)
n−1 XN−1), we denote

• wi(X) = w
(0)
i + w

(1)
i X + . . .+ w

(N−1)
i XN−1, and

• w(j) = (w
(j)
0 , . . . , w

(j)
n−1),

� a
$← M and a

α← M the uniform and the zero-centered α-deviated draw, respectively, of a
random variable a from M .

The Torus and Concentrated Distribution. We call T = R/Z—real numbers modulo 1—with
the standard addition operation the torus. Torus forms a module over Z, i.e., we can scalar-multiply
its elements by integers yielding torus elements. The operation can be extended to formal integer-
torus polynomials.

Unlike multiplication, the division of a torus by an integer cannot be defined without ambiguity,
the same holds for the expectation of a distribution over the torus. However, this can be fixed for
a concentrated distribution [6], which is a distribution with support limited to a ball of radius 1/4,
up to a negligible subset. For further details, we refer to [6].
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2.1 TFHE Samples

TFHE is a fully homomorphic cipher, which employs internally two encryption schemes: T(R)LWE
and TRGSW. It uses TLWE to encrypt the plaintexts—i.e., the global encryption function—, while
TRGSW and TRLWE are used internally within the bootstrapping procedure. In our paper, we
simplify and unify the notation across papers (we follow the updated notation from [6], which was
introduced at the end of Section 3 of that paper).

2.1.1 T(R)LWE

Definition 1 (T(R)LWE Sample). Let n ∈ N be the dimension, N ∈ N, N = 2ν for some ν ∈ N0,
be the degree, α ∈ R+

0 be the standard deviation, and let the plaintext space P = T(N)[X], the
ciphertext (sample) space C = T(N)[X]n+1 and let the key space K = B(N)[X]n. For m ∈ P, we
call c = (a, b) the TRLWE sample of message m with key k ∈ K if

b = m+ k · a + e, (1)

where a
$← T(N)[X]n and e

α← T(N)[X]. Further, if a = 0, we call the sample trivial, if m = 0, we
call the sample homogeneous, and for N = 1, we call the sample the TLWE sample.

Note that the TRLWE sampling is actually encryption. For decryption, we apply the TRLWE
phase function (followed by rounding if applicable); a definition follows.

Definition 2 (T(R)LWE phase). Let n, N and α be TRLWE parameters as per Definition 1, and
let c = (a, b) be a TRLWE sample of m under a TRLWE key k. We call the function ϕk : T(N)[X]k×
T(N)[X]→ T(N)[X],

ϕk(a, b) = b− k · a, (2)

the TRLWE phase. Next, we call the sample (a, b) valid iff the distribution of ϕk(a, b) is concentrated.
Finally, we call msg(c) := E

[
ϕk(c)

]
the message of sample c, which equals m for a valid sample,

since the noise is zero-centered.

Note 2.1. In general, the TRLWE phase function returns m + e, i.e., the plaintext with a (zero-
centered) noise. TRLWE decryption can be understood as either:

1. an erroneous decryption via TRLWE phase – we accept some errors in our decrypted results,
which can be considered useful, e.g., in the context of differential privacy [7], or

2. a correctable decryption – for this purpose, we need to control the amount of noise and follow
the TRLWE phase function by appropriate rounding (relevant for this paper), or

3. an expectation of the TRLWE phase (i.e., msg(c)) – this is useful for formal definitions and
proofs.

In the following theorem, we state the additively homomorphic property.

Theorem 1 (Additive Homomorphism [6]). Let c1, . . . , cn be valid and independent TRLWE sam-
ples under a TRLWE key k and let e1, . . . , en ∈ Z(N)[X] be integer polynomials. In case c =∑n
i=1 ei · ci is a valid TRLWE sample, it holds

msg
( n∑
i=1

ei · ci
)

=

n∑
i=1

ei ·msg(ci) (3)
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and the noise amplitude and variance are bounded by

‖Err(c)‖∞ ≤
n∑
i=1

‖ei‖1 · ‖Err(ci)‖∞, and (4)

Var
(
Err(c)

)
≤

n∑
i=1

‖ei‖22 · Var
(
Err(ci)

)
, respectively. (5)

2.1.2 TRGSW

Unlike torus polynomials in TRLWE, TRGSW encrypts integer polynomials. For the purposes of
bootstrapping, it defines so called External Product, � : TRGSW × TRLWE → TRLWE, which is
multiplicatively homomorphic on TRGSW × TRLWE samples. Definitions follow.

Definition 3 (Gadget Matrix [6]). Let Bg = 2γ for some γ ∈ N and l ∈ N be the decomposition
parameters and let N and n be the TRLWE degree and dimension, respectively. We call

H =



1/Bg . . . 0
...

. . .
...

1/Blg . . . 0
...

. . .
...

0 . . . 1/Bg
...

. . .
...

0 . . . 1/Blg


, (6)

H ∈ T(N)[X](n+1)l,n+1, the gadget matrix.

Next, we recall the Gadget Decomposition Algorithm as Algorithm 1, which is—in this particular
form—entangled with the gadget matrix H.

Algorithm 1 Gadget Decomposition of a TRLWE Sample [6]
(for gadget matrix H, quality β = Bg/2 and precision ε = 1/2Blg)

Input: TRLWE sample (a, b) =
(
a1(X), . . . , an(X), b = an+1(X)

)
∈ T(N)[X]n+1,

Input: decomposition parameters Bg, l.
Output: Vector of integer polynomials d ∈ Z(N)[X](n+1)l.

1: for all ai(X) =
∑N−1
j=0 a

(j)
i Xj , a

(j)
i ∈ T, do

2: ā
(j)
i ← bBlg · a

(j)
i e

3: let [ā
(j)
i,1 , . . . ā

(j)
i,l ] be a Bg-ary representation of ā

(j)
i s.t. ā

(j)
i =

∑l
p=1 ā

(j)
i,pB

l−p
g

4: for i = 1 . . . n+ 1 and p = 1 . . . l do

5: d(i−1)l+p(X) =
∑N−1
j=0 ā

(j)
i,pX

j

6: return d

Note 2.2. For the gadget matrix H, quality β = Bg/2 and precision ε = 1/2Blg, we denote the gadget
decomposition algorithm as DecH,β,ε(a, b).
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Theorem 2 (Quality and Precision of Gadget Decomposition [6]). Algorithm 1 outputs d ∈
Z(N)[X](n+1)l such that ‖d‖∞ ≤ β and ‖d ·H− (a, b)‖∞ ≤ ε.
Definition 4 (TRGSW Sample [6]). Let n, N and α be the parameters of TRLWE with a key k.
We call C = Z + m ·H the TRGSW sample of m ∈ Z(N)[X] if each row of Z is an independent
homogeneous TRLWE sample under the key k, and we call m the message of C, denoted msg(C).
The phase of C is defined as the vector of the (n + 1)l TRLWE phases, denoted ϕk(C), and
the error of C is defined as the vector of the (n + 1)l TRLWE errors, denoted Err(C). We call
C ∈ T(N)[X](n+1)l,n+1 a valid TRGSW sample under key k iff there exists m ∈ Z(N)[X] such that
each row of C−m ·H is a valid homogeneous TRLWE sample under the key k.

Definition 5 (External Product [6]). For the decomposition parameters β and ε, we define the
External Product, � : TRGSW × TRLWE→ TRLWE, as

A � b = DecH,β,ε(b)T ·A, (7)

where TRLWE is the underlying cipher of TRGSW.

Theorem 3 (Multiplicative Homomorphism [6]). Let k be a TRLWE key, A a valid TRGSW sample
of mA ∈ Z(N)[X] under the key k, and b a valid TRLWE sample of mb ∈ T(N)[X] under the same
key. Then A � b is a TRLWE sample of mA ·mb ∈ T(N)[X] under the key k.

2.1.3 Security of T(R)LWE

For T(R)LWE encryption to be secure, a key length ↔ noise balance must be met. It holds that
the longer key, the better security, as well as the bigger noise, the better security. However, the
noise magnitude must be kept low, since with too much noise, correct decryption (as per Note 2.1,
point 2.) cannot be guaranteed. We propose an approach for finding the security ↔ usability ↔
performance balance together with the guarantee of correct decryption with high probability in
Section 4.

A practical security analysis of T(R)LWE is provided by Chillotti et al. [6], Section 7. They
expressed the effective bit-security parameter λ as a function of the entropy of the T(R)LWE key (at
most its dimension n) and the standard deviation of the noise (denoted by α). They ran a numeric
optimization to obtain the final estimate on λ and they summarized their results in a figure. Based
on their figure, we introduce a parameter sλ, which stands for the slope of an equi-λ line:

− log(αn) ≈ sλ · n. (8)

Note that due to the collision attack, the slope is further left-bounded by n = 2λ; see the original
figure ([6], Figure 9). We summarize approximate values of sλ in Table 1.

λ 40 80 128 192 256 384 512

sλ 0.051 0.040 0.033 0.028 0.024 0.020 0.017

Table 1: Approximate values of the parameter sλ.

Note 2.3. After we made actual parameter setups, we checked the resulting parameters with the
LWE Estimator by Albrecht et al. [1, 2, 9]. However, we ended up with less bits of estimated
security than expected when using the values of sλ from Table 1. It turns out that using the value
for 256-bit security makes a good estimate for 128-bit security.
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2.2 Bootstrapping

The procedure referred to as bootstrapping aims at reducing the internal noise of a TLWE sample
to a certain fixed level, while it internally runs the decryption procedure. In addition, it is capable
of function evaluation at no extra cost.

TFHE bootstrapping consists of the following three algorithms: BlindRotate, SampleExtract and
KeySwitch. In this paper, we only recall their basic practical variants, e.g., we fix the TRGSW
dimension, which will no longer be different than 1. In addition, we particularly focus on multivalue
plaintext space and function evaluation.

In a high level overview, bootstrapping proceeds as follows. First, BlindRotate takes the boot-
strapped TLWE sample and runs homomorphically a decryption-like procedure using encrypted key
bits. With the still-encrypted resulting “plaintext”, it “blindly rotates” its second input – a TRLWE
sample, which encodes (and possibly encrypts) the evaluated function in the form of a torus poly-
nomial. Next, SampleExtract extracts the constant term of the TRLWE-encrypted polynomial back
into a TLWE sample. Note that at this point, the sample is encrypted with a (possibly) different
key, hence finally KeySwitch does the job and switches the key to the original one (if applicable).

2.2.1 Blind Rotate

BlindRotate is the cornerstone of bootstrapping, since this is where the homomorphic decryption is
performed, i.e., where the noise is refreshed. It inputs the bootstrapped TLWE sample (a, b) in a
scaled and rounded integer form (ā, b̄) ∈ Zn+1 (details to be given later). In accordance with TLWE
decryption (phase function; cf. Definition 2), BlindRotate internally calculates

−m̄ = −b̄+
∑

ki · āi, (9)

where ki’s are TRGSW-encrypted under a TRLWE key k′(X), referred to as bootstrapping keys and
denoted by BKi or BKk→k′ . In BlindRotate, the (hidden) value −m̄ emerges as a power of X, by
which the other input—a TRLWE sample (u, v) ∈ T(N)[X]2—is multiplied. Then (u, v) gets blindly
rotated.

The (possibly trivial) TRLWE sample (u, v) encrypts a torus polynomial tv(X), referred to as
the test vector. Its torus coefficients encode the (rescaled) bootstrapping function f : ZN → T, for
now and for simplicity, as

tv(k) = f(k), k ∈ [0, N − 1]. (10)

Note 2.4. When multiplied by a power of X, the coefficients of a polynomial modulo XN +1 rotate
negacyclically with a period of 2N . For this reason, the rest of the actually evaluated bootstrapping
function f is the negacyclic extension of its first N values, i.e., we have rather f : Z2N → T and it
holds that

f(N + k) = −f(k), k ∈ [0, N − 1]. (11)

In the plain domain, the following occurs at the constant term:(
X−m̄ · tv(X)

)(0)
= tv(m̄ mod 2N) = f(m̄ mod 2N), (12)

i.e., there emerges the desired function value, which will be extracted by the subsequent algorithms.
Cf. Figure 1, which illustrates the idea of BlindRotate, how it looks in the plain domain.

Note 2.5. Due to (12), āi’s and b̄ will be scaled to Z2N as ā = b2Nae.
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tv(X) = 0 +1X −1X2 +2X3 (mod X4 + 1)

. . . desired function f

. . . negacyclic extension

Rotation by X−3

X−3 · tv(X) = 2 +0X −1X2 +1X3 (mod X4 + 1)

Figure 1: BlindRotate for m = 3, i.e., rotation by X−3, in the plain domain. Desired value f(3) is
emphasized in red. For simplicity, the values are rescaled to integers.

Note 2.6. During BlindRotate, the “old” noise is refreshed with a fresh noise, which comes from the
bootstrapping keys (TRGSW-encrypted ki’s) as well as from the (possibly) encrypted test vector
(i.e., it can be zero).

Enhancement of BlindRotate. Zhou et al. [14] suggested to unfold the original BlindRotate loop,
which multiplies the TRLWE sample (u, v) one by one by Xkiāi , cf. (9), and to group the terms ki
into pairs. Bourse et al. [4] further improved the technique by Zhou et al. by reducing the number
of required bootstrapping keys from 4 to 3 (per pair of TLWE key bits).

For pairs (k, k′) and (a, a′) of consecutive elements of vectors k and a, respectively, they write

Xka+k′a′ = kk′(Xa+a′ − 1) + k(1− k′)(Xa − 1) + (1− k)k′(Xa′ − 1) + 1. (13)

I.e., their bootstrapping keys consist of TRGSW encryptions of kk′, k(1− k′) and (1− k)k′ for each
pair of bits of the global TLWE key k. Find the improved BlindRotate algorithm as Algorithm 2
(line 4 adds a +ACC term, which is missing in [4]).
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Algorithm 2 BlindRotateIm ([6], improved by [4, 14])

Input: TLWE sample (a, b) ∈ Tn+1 under key k ∈ Bn,
Input: (possibly trivial) TRLWE sample (u, v) ∈ T(N)[X]2 of tv ∈ T(N)[X] under key k′(X) ∈
B(N)[X], and
Input: for i ∈ [1, n/2], TRGSW samples BK3i−2, BK3i−1 and BK3i of k2i−1k2i, k2i−1(1 − k2i) and
(1− k2i−1)k2i, respectively, under key k′(X), where (k1, . . . , kn) = k (aka. bootstrapping keys).
Output: TRLWE sample of X−m̄ · tv under key k′(X), where m̄ =

(
b̄−

∑n
i=1 ki · āi

)
mod 2N .

1: āi ← b2Naie for i ∈ [1, n], b̄← b2Nbe
2: ACC← X−b̄ · (u, v) // aka. accumulator
3: for i ∈ [1, n/2] do
4: ACC←

(
(Xa2i−1+a2i − 1)BK3i−2 + (Xa2i−1 − 1)BK3i−1 + (Xa2i − 1)BK3i

)
� ACC + ACC

5: return ACC

Theorem 4 (BlindRotateIm Error). Algorithm 2 returns a sample with error (variance) bounded
as follows:

‖Err(ACC)‖∞ ≤ 6nlNβ‖Err(BK)‖∞ + n(1 +N)ε+ ‖Err(u, v)‖∞, (14)

Var
(
Err(ACC)

)
≤ 6nlNβ2 Var

(
Err(BK)

)
+ n(1 +N)ε2 + Var

(
Err(u, v)

)
. (15)

Proof. Recall that by Definition 5, external product A � b = Dec(b)T · A, and by Definition 4,
TRGSW sample A = ZA +mA ·H. We write the line 4 of Algorithm 2 as (with simplified indexes
as per (13))

ACCnew =
(
(Xa+a′ − 1)BKkk′ + (Xa − 1)BKk(1−k′) + (Xa′ − 1)BK(1−k)k′︸ ︷︷ ︸

BKΣ

)
�

� ACC + ACC = (16)

= Dec(ACC)T︸ ︷︷ ︸
d

·BKΣ + ACC = . . . = (17)

= (Xa+a′ − 1) ·
(
d · ZBKkk′ + kk′ · (d ·H)

)︸ ︷︷ ︸
from (Xa+a′ − 1)BKkk′ term

+ . . .+ ACC = . . . (18)

Next, by Theorem 2, the decomposition precision gives Dec(c) ·H = c + εc, where ‖εc‖∞ ≤ ε.

. . . = (Xa+a′ − 1) ·
(
d · ZBKkk′

ª

+kk′ ·
(
ACC
♣

+ εACC

♠

))
+

+ (Xa − 1) ·
(
d · ZBKk(1−k′)

ª

+k(1− k′) ·
(
ACC
♣

+ εACC

♠

))
+

+ (Xa′ − 1) ·
(
d · ZBK(1−k)k′

ª

+(1− k)k′ ·
(
ACC
♣

+ εACC

♠

))
+ ACC

♣
. (19)

By Chillotti et al. [6], proof of Theorem 3.13:

ª is bounded by 2lNβEBK,
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♣ carries the error from the previous round and, unlike ª, it cancels out up to one term with a
unit-valued monomial (check all combinations of k, k′),

♠ is bounded by (1+N)ε and it appears at most once among the terms – where the keys multiply
to 1.

Hence we can bound the error of ACCnew as follows:

‖Err(ACCnew)‖∞ ≤ 3 · 2 · 2lNβEBK + ‖Err(ACCold)‖∞ + 2 · (1 +N)ε. (20)

The loop begins with ‖Err(ACC0)‖∞ = ‖Err(u, v)‖∞ and it keeps adding a constant term n/2-times,
cf. (20), hence the result (14) follows. By an analogical approach, we obtain the bound on the error
variance.

Note that the enhancement by Zhou et al., further improved by Bourse et al., aims at reducing
the total number of external products, which is the most demanding operation. Indeed, the original
BlindRotate algorithm [6] loops all n indices (instead of only n/2), for which it computes

ACC← BKi � (Xai · ACC− ACC) + ACC, (21)

where BKi encrypts the i-th bit of the global TLWE key k. At this point, it is interesting to observe
that (21) can be written also in a form, which resembles the improved variant (Algorithm 2, line 4),
and which encrypts the same:

ACC←
(
(Xai − 1)BKi

)
� ACC + ACC. (22)

However, the fundamental difference between (21) and (22) is that the latter introduces higher noise
overhead due to the (Xai − 1)BKi term. Unfortunately, such a rearrangement cannot be applied to
the improved variant.

2.2.2 Sample Extract

SampleExtract algorithm inputs the output of BlindRotate, which is a TRLWE sample – let us denote
it (r, s) (previously ACC). Recall that (r, s) encrypts the desired value at the constant term of its
message under the key k′(X) ∈ B(N)[X]. As outlined, the goal of SampleExtract is to extract the
constant term in the form of a TLWE sample.

First, let us write down the constant term of the message of (r, s). After some rearrangements,
we get

m(0) = s(0) −
(
k(0), k(1), . . . , k(N−1)

)︸ ︷︷ ︸
new TLWE key k′=coeffs(k′)

·
(
r(0),−r(N−1), . . . ,−r(1)

)
. (23)

It follows that
(
(r(0),−r(N−1), . . . ,−r(1)), s(0)

)
is a TLWE sample, which encrypts m(0) under the

key k′ = coeffs(k′). SampleExtract algorithm follows as Algorithm 3 (a slightly modified version
of [6]).

Note 2.7. In case we use the TRGSW key k′(X) such that coeffs(k′) = k, we can skip key switching.
N.b., in such a case, the bit security of k′ equals to that of k, which is typically shorter, hence this
must be taken into account with respect to security. The possibility of omitting KeySwitch will be
thoroughly discussed in Section 3.3.

Note 2.8. SampleExtract preserves the error – in fact, it only re-arranges coefficients.
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Algorithm 3 SampleExtract ([6], modified)

Input: TRLWE sample (r, s) ∈ T(N)[X]2 of m(X) ∈ T(N)[X] under k′(X) ∈ B(N)[X],
Output: TLWE sample of m(0) under k′ = coeffs(k′).

1: return (a′, b′) =
(
(r(0),−r(N−1), . . . ,−r(1)), s(0)

)
2.2.3 Key Switching

KeySwitch algorithm inputs a TLWE sample (a′, b′) and its goal is to change the encryption key
from k′ back to k. For this purpose, the algorithm inputs a series of TLWE encryptions of fractions
of k′’s bits referred to as the key switching keys, denoted by KSk′→k. In Algorithm 4, we recall the
original KeySwitch algorithm.

Algorithm 4 KeySwitch ([6])

Input: TLWE sample (a′, b′) ∈ TN+1 of m under k′ ∈ BN ,
Input: for i ∈ [1, N ], j ∈ [1, t] (t is a precision parameter), TLWE samples KSi,j of 2−j · k′i under
key k ∈ Bn, where (k′1, . . . , k

′
N ) = k′ (aka. key switching keys).

Output: TLWE sample of m under key k.

1: ā′i ← b2ta′ie for i ∈ [1, N ]
2: let [ā′i,1, ā

′
i,2, . . . , ā

′
i,t] be a binary representation of ā′i s.t. ā′i =

∑t
j=1 ā

′
i,j2

t−j

3: return (a, b) = (0, b′)−
∑N
i=1

∑t
j=1 ā

′
i,jKSi,j

Theorem 5 (KeySwitch Error [6]). Algorithm 4 returns a sample with error (variance) bounded as
follows:

‖Err(a, b)‖∞ ≤ ‖Err(a′, b′)‖∞ + tN‖Err(KS)‖∞ + 2−(t+1)N, (24)

Var
(
Err(a, b)

)
≤ Var

(
Err(a′, b′)

)
+ tN Var

(
Err(KS)

)
+ 2−2(t+1)N. (25)

2.2.4 TFHE Bootstrapping

The bootstrapped TLWE sample (a, b) is first scaled and rounded by the BlindRotate algorithm,
while rounding may introduce a rounding error. A lemma follows.

Lemma 2.1 (Pre-BlindRotate Error). The scaled and rounded sample (ā, b̄) has its error (variance)
bounded as follows: ∥∥∥Err

( ā

2N
,
b̄

2N

)∥∥∥
∞
≤ ‖Err(a, b)‖∞ +

n+ 1

4N︸ ︷︷ ︸
Eround

, (26)

Var
(

Err
( ā

2N
,
b̄

2N

))
≤ Var

(
Err(a, b)

)
+
n+ 1

48N2︸ ︷︷ ︸
Vround

. (27)

where we denote the rounding error terms as Eround and Vround, respectively.
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Proof. After scaling (ā, b̄) back to the torus domain by 1/2N, rounding to multiples of 1/2N may
change each of the n + 1 terms of the sample (a, b) at most by 1/2 · 1

2N . Variance of the rounding
error is then derived from the uniform and independent distribution of ai’s.

Note 2.9. The error and variance bounds (26) and (27), respectively, are the greatest bounds among
bootstrapping before the noise is refreshed. Therefore, we denote the bounds as

Emax := ‖Err(a, b)‖∞ + Eround, and (28)

Vmax := Var
(
Err(a, b)

)
+ Vround, (29)

respectively.

Note 2.10. By (27) and by the 3-sigma rule, we have that 3× standard deviation of the rounding
error (scaled to Z2N )

2N · 3σround =

√
3(n+ 1)

2
>

1

2
, (30)

i.e., only the rounding error is likely to change the value, where the bootstrapping function f : Z2N →
T is evaluated. To evaluate the function correctly, we need to introduce another (and sparser) pre-
cision for the global TFHE plaintexts. From now on, we denote the plaintext space bit-precision by
π, i.e., the plaintext space will be Z2π and it follows that 2π < 2N . Specific relation of π and N
will be discussed in Section 3.3, where we propose a proper test vector generation procedure.

Let us finally give the (multivalue) TFHE bootstrapping algorithm as Algorithm 5. N.b., at this
point, we do not specify any relations between its parameters, nor do we state any guarantee of the
correctness of its output.

Algorithm 5 Multivalue TFHE Bootstrapping

Input: TFHE parameters: π (plaintext precision), n (dimension), N (TRLWE degree), γ, l and t
(TRGSW decomposition and KS precision parameters),
Input: TLWE sample (a, b) ∈ Tn+1 of m = m̄/2π, m̄ ∈ Z2π , under key k ∈ Bn,
Input: (possibly trivial) TRLWE sample (u, v) ∈ T(N)[X]2 of test vector tv ∈ T(N)[X] under key
k′(X) ∈ B(N)[X],
Input: bootstrapping keys BKk→k′ , and key switching keys KScoeffs(k′)→k.
Output: TLWE sample of f̄(m̄)/2π under key k.

1: (r, s)← BlindRotateIm
(
(a, b), (u, v),BKk→k′

)
2: (a′, b′)← SampleExtract

(
(r, s)

)
3: return KeySwitch

(
(a′, b′),KSk′→k

)
Corollary 6 (Bootstrapping Error [6]). Algorithm 5 returns a sample (a′′, b′′) with error (variance)
bounded as follows:

‖Err(a′′, b′′)‖∞ ≤ 6nlNβEBK + n(1 +N)ε+ ‖Err(u, v)‖∞ + tNEKS + 2−(t+1)N︸ ︷︷ ︸
E0

, (31)

Var
(
Err(a′′, b′′)

)
≤ 6nlNβ2VBK + n(1 +N)ε2 + Var

(
Err(u, v)

)
+ tNVKS + 2−2(t+1)N︸ ︷︷ ︸

V0

. (32)

where we denoted the error (variance) bound of a freshly bootstrapped sample by E0 and V0, respec-
tively.
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3 Error Propagation in TFHE

In this section, we provide a thorough analysis of TFHE noise propagation during homomorphic
operations, based on which we derive a set of limitations on the TFHE parameters. In particular,
we focus on the multivalue TFHE variant and we derive our results with respect to the 3-sigma rule,
which is based on the error variance.

3.1 Overview of Error Propagation

During homomorphic addition and bootstrapping, the error evolves as follows:

Addition: The maximum error is additive by (4), the variance is additive with quadratic weights
by (5), provided that the noise of the involved samples is independent; cf. Theorem 1.

Bootstrapping: If the noise of the sample-to-be-bootstrapped is smaller than a certain bound,
bootstrapping evaluates the bootstrapping function correctly (i.e., at the correct point). On
average, the resulting sample carries a fixed amount of noise, independent of the original
sample; cf. Corollary 6.

In Figure 2, we summarize the error propagation in terms of respective maximum error bounds.
Note that the overall maximum of relative noise is achieved within bootstrapping, right after the
initial rounding step; cf. Note 2.9.

E0

fresh/bootstrapped
sample(s)

addition−−−−−→ n⊕ · E0

pre-bootstrap
(Epre)

bootstrapping︷ ︸︸ ︷
rounding−−−−−−→ n⊕ · E0 + Eround

pre-BlindRotate
(Emax)

BlindRotate,−−−−−−−→
etc. . .

E0

bootstrapped
sample

(33)

Figure 2: Error propagation during TFHE addition and bootstrapping, cf. (26), (28) and (31).
Number of additions is bounded by n⊕.

Note 3.1. Since a freshly bootstrapped sample plays a similar role as a freshly encrypted sample,
we will assume and demand equal error magnitude for both.

Note 3.2. We commit on a finite representation of torus elements (i.e., coefficients of samples) as
follows: we employ a τ -bit integral type, while such a τ -bit number t represents t/2τ ∈ T. With this
approach, we cover the range [0, 1) uniformly and we use the precision most efficiently, unlike with
a floating-point type. We call τ the sample precision, also referred to as the torus precision.

3.2 Test Vector Generation

Let us discuss the process of encoding the desired (negacyclic!) bootstrapping function f̄ : Z2π →
Z2π , where f̄ acts on plaintexts, into an actual test vector, which is a torus polynomial tv ∈ T(N)[X].
Recall that tv comes into play in BlindRotate (Algorithm 2), which “blindly rotates” tv by X−m̄,
where m̄ = b̄−

∑n
i=1 ki · āi, āi, b̄ = b2Nai, be and (a, b) is the bootstrapped TLWE sample.

12



By Note 2.10, we have that the (relative) rounding error exceeds 1/2N, i.e., the error of m̄ can be
greater than 1. Therefore, we need to expand the (negacyclic) bootstrapping function f̄ : Z2π → Z2π

into a staircase function f : Z2N → T—before it is encoded into the test vector tv—as

f(k) = f̄
(⌊ k

2ν+1−π

⌉)
, k ∈ [0, 2N − 1], (34)

cf. Figure 3. The function f is then encoded into tv—as outlined in (10)—as follows:

tv(k) = f(k), k ∈ [0, N − 1]. (35)

Recall that since f is negacyclic, the remaining values do not need to be encoded, cf. Note 2.4.
As soon as the actual maximum error is smaller than a half of the plaintext precision with

high probability, i.e., 3σmax < 1/2π+1, the erroneous value of m̄ does not leave the “stair” and the
bootstrapping function f̄ is evaluated as expected; cf. Figure 3. For the maximum variance Vmax,
defined in (29), we have the fundamental condition

Vmax ≤
1

32 · 22π+2
. (36)

2× 3σmax

2N
prec

. ν
+1

plaintex
t prec

. π

. . . f̄ : Z2π → Z2π

. . . f : Z2N → T

Figure 3: Conversion of a negacyclic bootstrapping function f̄ into a staircase function f . N.b.,
both functions are appropriately scaled.

3.3 Key Switching: Employ, or Omit?

We propose two possible bootstrapping scenarios: we either employ, or we omit KeySwitch, as
outlined in Note 2.7. Recall that KeySwitch aims at changing the key of a TLWE sample from (the
bootstrapping TRLWE key interpreted as) a TLWE key of length N to the original TLWE key of
length n. For each scenario, we derive a set of inequalities between the TFHE parameters.

First, let us introduce a new parameter ∆, which aims at expressing the amount of homomorphic
additions from the error variance point of view. We write the homomorphic addition of independent

13



TLWE samples (ci) using a series of integers (wi) (aka. weights) as C =
∑
wici. We bound the

weights as follows: ∑
w2
i ≤ 22∆. (37)

We also assume that the function f is known to the evaluating party, hence the test vector can be
given in the form of a trivial (error-free) TRLWE sample.

Note 3.3. Let us outline our error-splitting heuristics: we suggest to split any error bound between
individual error terms by equal parts. Note that this approach does not guarantee the best tradeoff.

In both key switching scenarios, the bound (36) on Vmax (a guarantee of correct evaluation and
decryption with high probability) can be satisfied as follows:

Vmax ≤ 22∆V0

1/(32·22π+3)

+ Vround
1/(32·22π+3)

!
≤ 1

32 · 22π+2
, (38)

where we applied the parameter ∆ from (37) and the heuristics from Note 3.3.

Rounding Error Variance. Note that the rounding error variance term Vround is independent
of whether KeySwitch is employed, or not, hence it can be discussed for both scenarios together.
By (27), we have

Vround ≤
n+ 1

48N2

!
≤ 1

32 · 22π+3
, (39)

which yields
N ≥

√
6(n+ 1) · 2π−1. (40)

3.3.1 Employ KeySwitch

The additive error variance term 22∆V0 of (38) can be estimated by (32) and bounded as follows:

22∆V0 ≤ 22∆−1 · 3nlN22γVBK(N)

1/(32·22π+5) (ª)

+ 22∆n(1 +N)2−2(γl+1)

1/(32·22π+5) (©)

+ 22∆ Var
(
Err(u, v)

)
= 0

+

+ 22∆tNVKS(n)

1/(32·22π+5) (♣)

+ 22∆2−2(t+1)N
1/(32·22π+5) (♠)

!
≤ 1

32 · 22π+3
, (41)

where we applied β = Bg/2 = 2γ−1 and ε = 1/2Blg = 2−(γl+1) (cf. Definition 3, Algorithm 1 and
Theorem 2), and where we support the error variance terms of bootstrapping and key switching keys
VBK and VKS with their bit entropy, which is N and n, respectively. Recall that the bootstrapping
keys are encrypted with an N -bit TRGSW/TRLWE key k′(X), which is independent from the general
n-bit TLWE key k (it also encrypts the keyswitching keys).

In the logarithmic domain, we write:

2π + 4 + 3 log(3) + 2∆ + log(n) + log(N) + log(l) + 2γ + log
(
VBK(N)

)
≤ 0, (ª)

2π + 3 + 2 log(3) + 2∆ + log(n) + log(N + 1)− 2γl ≤ 0, (©)

2π + 5 + 2 log(3) + 2∆ + log(N) + log(t) + log
(
VKS(n)

)
≤ 0, (♣)

2π + 3 + 2 log(3) + 2∆ + log(N)− 2t ≤ 0. (♠)
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3.3.2 Omit KeySwitch

As outlined in Note 2.7, we can set the TRGSW/TRLWE key k′(X) such that coeffs(k′) = k (we fill
the rest with zeros), and then we can omit KeySwitch. N.b., the bit entropy of k′(X) is no longer
N – it is only n. For a thorough discussion on the subspace LWE, we refer to Pietrzak [11].

Note 3.4. With this approach, we effectively encrypt the main TLWE key by itself – indeed, boot-
strapping keys encrypt bits of the key by itself. This relies on so-called circular security assumption;
find more on circular security in Rothblum [12].

On the one hand, we get rid of the error terms (♣) and (♠) in (41), which gives us more room
for the plaintext space, additions and/or security. Another advantage is that we simplify the overall
bootstrapping process, which may lead to a performance improvement, most likely in an FPGA
implementation, which favors a few operations that are performed repeatedly.

On the other hand, the bootstrapping keys must carry more noise, since their entropy is reduced
from N bits to only n bits, in order to sustain a certain security level. This can be balanced by
appropriate countermeasures, e.g., by using longer TLWE keys (i.e., larger n).

Following an approach analogous to the previous one, we obtain:

2π + 3 + 3 log(3) + 2∆ + log(n) + log(N) + log(l) + 2γ + log
(
VBK(n)

)
≤ 0, (♥)

2π + 2 + 2 log(3) + 2∆ + log(n) + log(N + 1)− 2γl ≤ 0, (♦)

where we changed the entropy used by bootstrapping keys from N to n.

4 TFHE Parameter Setup for Efficient Bootstrapping

In this section, we propose a heuristic approach for a practical TFHE parameter derivation. Given
the plaintext space size and the desired level of security, our goal is to obtain a set of TFHE
parameters with particular respect to bootstrapping efficiency. We follow the 3σ approach and
the limitations proposed in the previous section for both key switching scenarios. Our ultimate
goal is to satisfy (36), which we achieve by demanding (40), and either (ª)–(♠), or (♥) and (♦),
respectively.

Note 4.1. In case we are free to choose the torus precision τ (e.g., for an FPGA implementation),
we suggest to use the uniform error distribution on {−1/2τ , 0, 1/2τ}. We have

τ = − log(α)− 1/2
(
log(3)− 1

)
, (42)

we can further apply − log(α) = −1/2 log
(
VBK/KS

)
; cf. Section 2.1.3 for the definition of α.

4.1 Generic Approach

Let us describe our approach for the TFHE parameter derivation, while we consider both key
switching scenarios, i.e., with or without KeySwitch. We input the following parameters:

� desired bit-security λ,

� plaintext bit-precision π, and

� limit on the additive weights 2∆ as per (37).
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Next, we aim at satisfying (40) and (ª)–(♠) for the “with KeySwitch” scenario, or (40), (♥) and
(♦) for “without KeySwitch”. Note that some parameters are immediately fixed, while others can
be further tuned. E.g., (♦) requires γl to be greater than a certain bound, which gives us a space
to tune the ratio of these parameters to achieve a better performance. See Algorithm 6, where we
outline our generic approach in the form of a pseudo-algorithm.

Note 4.2. Algorithm 6 gives no guarantee on the correctness, let alone the optimality of the returned
TFHE parameters. It is intended rather as an auxiliary guideline, whereas a certain portion of
insight and intuition must be applied, in particular on line 33. Hence, it does not need to be
strictly followed, in particular its final step, where the γ : l ratio is tuned. Indeed, increasing N
(while fine-tuning the γ : l ratio) may lead to better parameters, in particular if we would end up
with l ≥ 3. In such a case, it shows that increasing N to 2N and decreasing l to 1 (if possible)
leads to more efficient parameters. On the other hand, this does not appear to be an advantage for
l ≤ 2.
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Algorithm 6 Generic TFHE Parameter Derivation

Input: Security level λ, plaintext precision π, weight limit 2∆.
Output: TFHE parameters n, N , γ, l, (t), − log(αBK),

(
− log(αKS)

)
.

1: set minimum feasible nmin ← 2λ
2: set initial estimate on N from (40) (n.b., N must be a power of two and N ≥ 2λ)
3: calculate bound nmax from equality in (40)
4: if Key Switching then
5: get t form (♠)
6: get − log

(
VKS(n)

)
form (♣)

7: calculate − log(αKS(n)) = −1/2 log
(
VKS(n)

)
8: if sλ · n > − log

(
αKS(n)

)
then

9: if n = nmax then
10: N ← 2 ·N
11: go to 3

12: n← min
{
− log(αn)/sλ, nmax

}
. ceil n (e.g., to a multiple of 10)

13: go to 6

14: set initial γ ← 1
15: get l from (©), or from (♦), respectively
16: get − log

(
VBK(N)

)
form (ª), or − log

(
VBK(n)

)
form (♥), respectively

17: calculate − log(αBK(N)), or − log(αBK(n)), respectively
18: if Key Switching then
19: if sλ ·N > − log

(
αBK(N)

)
then

20: N ← 2 ·N
21: go to 3

22: else
23: if sλ · n > − log

(
αBK(n)

)
then

24: if n = nmax then
25: N ← 2 ·N
26: go to 3

27: n← min
{
− log(αn)/sλ, nmax

}
. ceil n (e.g., to a multiple of 10)

28: go to 15

29: fine tune γ, l:
30: if l = 1 or (γ, l) “not to be changed” then
31: go to 34

32: increase γ s.t. l can be decreased (n.b., γl is lower-bounded by (©), or (♦), respectively)
33: go to 16

(consider rolling back to 32 in case N shall be increased,
/γ was increased too much/; cf. Note 4.2)

34: return
(
n,N, γ, l, t,− log(αBK(N)),− log(αKS(n))

)
, or

(
n,N, γ, l,− log(αBK(n))

)
, resp.
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5 Proposed Parameters & Experimental Results

In this section, we put forward practical TFHE parameters for nine different π : 2∆ scenarios, while
our initial aim is λ = 128-bit security, using the parameter sλ from Table 1.

The scenarios, motivated by our actual research, are as follows (cf. (37) for the definition of ∆):

A. 2-bit plaintexts, weights (1, 1), i.e., 22∆ = 12 + 12 = 2,

B. 2-bit plaintexts, weights (1, 1, 1), i.e., 22∆ = 3,

C. 4-bit plaintexts, weights (1, 1, 1), i.e., 22∆ = 3,

D. 3-bit plaintexts, weights (1, 1, 1, 1, 2, 2), i.e., 22∆ = 12,

E. 4-bit plaintexts, weights (1, 1, 1, 1, 2, 2), i.e., 22∆ = 12,

F. 5-bit plaintexts, weights (1, 1, 3, 3), i.e., 22∆ = 20,

G. 4-bit plaintexts, weights (1, 1, 1, 1, 4, 4), i.e., 22∆ = 36,

H. 5-bit plaintexts, weights (1, 1, 1, 1, 4, 4), i.e., 22∆ = 36, and

I. 7-bit plaintexts, weights (1, 1, 6, 6), i.e., 22∆ = 74.

5.1 Parameters with KeySwitch

We present our TFHE parameters with KeySwitch and their benchmarking results in Table 2. N.b.,
the actual estimate of the security parameter λ using the LWE Estimator [9] has shown much less
than the desired 128-bit security: we achieve only about 90 to 95 bits of security. To achive 128-bit
security, we suggest to use the parameter s256 instead, as outlined in Note 2.3. Finally, for a Ruby
code to generate these parameters, we refer to Appendix A.1.

5.2 Parameters without KeySwitch

In Table 3, we propose TFHE parameters without KeySwitch, for the Ruby code we refer to Ap-
pendix A.2. As with KeySwitch, the actual security estimate has shown much less than 128-bit
security: we achieve only about 95 bits of for scenarios A – G and even less for scenarios H and
I. Also note that since the code of the TFHE Library is quite rigid, modifying it to the “without
KeySwitch” variant and running benchmarks is out of the scope of this paper. Hence these results
shall be considered for illustration purposes only.

6 Discussion & Conclusion

Our pseudo-algorithm for TFHE parameter setup shall be considered only as an auxiliary tool
to make an initial estimate. In particular, our splitting heuristics does not guarantee the best
parameter tradeoff by any means. We believe that for concrete requirements on plaintext space
and security, there is still some space to improve the suggested TFHE parameters. On the other
hand, we identified several generic relations and limitations that need to be taken into account for
prospective TFHE parameter setups anyways.
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However, we were positively surprised by the experimental results. Most notably, even for
π = 5, the bootstrapping time is only about twice more than for π = 2 with our parameters.
We conjecture that the product N · l plays the most significant role in the overall bootstrapping
performance. Hence, for π = 5, where N is still as low as 1 024, the bootstrapping times are
convenient. This allows us to process bigger portions of data in a single bootstrap and gives more
freedom for any prospective usecases of functional bootstrapping.
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[13]
π = 2 22∆ ≥ 2 n = 630 N = 1 024 t = 8

165 ms
γ = 7 l = 3 − log(αKS) = 15 − log(αBK) = 25 λ ≈ 127

A
π = 2 22∆ = 2 n = 400 N = 1 024 t = 11

55 ms
γ = 15 l = 1 − log(αKS) ≈ 13.31 − log(αBK) ≈ 31.20 λ ≈ 91

B
π = 2 22∆ = 3 n = 420 N = 1 024 t = 11

60 ms
γ = 16 l = 1 − log(αKS) ≈ 13.61 − log(αBK) ≈ 32.53 λ ≈ 93

C
π = 4 22∆ = 3 n = 480 N = 1 024 t = 13

95 ms
γ = 9 l = 2 − log(αKS) ≈ 15.73 − log(αBK) ≈ 28.12 λ ≈ 93

D
π = 3 22∆ = 12 n = 480 N = 1 024 t = 13

98 ms
γ = 9 l = 2 − log(αKS) ≈ 15.73 − log(αBK) ≈ 28.12 λ ≈ 93

E
π = 4 22∆ = 12 n = 510 N = 1 024 t = 14

103 ms
γ = 10 l = 2 − log(αKS) ≈ 16.78 − log(αBK) ≈ 30.17 λ ≈ 93

F
π = 5 22∆ = 20 n = 560 N = 1 024 t = 16

111 ms
γ = 10 l = 2 − log(αKS) ≈ 18.25 − log(αBK) ≈ 31.60 λ ≈ 94

G
π = 4 22∆ = 36 n = 540 N = 1 024 t = 15

106 ms
γ = 10 l = 2 − log(αKS) ≈ 17.62 − log(αBK) ≈ 31.00 λ ≈ 94

H
π = 5 22∆ = 36 n = 570 N = 1 024 t = 16

113 ms
γ = 11 l = 2 − log(αKS) ≈ 18.67 − log(αBK) ≈ 33.04 λ ≈ 94

I
π = 7 22∆ = 74 n = 680 N = 4 096 t = 20

547 ms
γ = 24 l = 1 − log(αKS) ≈ 22.35 − log(αBK) ≈ 49.19 λ ≈ 95

Table 2: Original TFHE Library parameters (delimited) and our TFHE parameters for various
scenarios with KeySwitch, supported by the measured mean time per bootstrapping. Recall that
τ = − log(α)− 1/2

(
log(3)− 1

)
≈ − log(α)− 0.29.
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A
π = 2 2∆ = log(2) n = 990 N = 1 024

γ = 16 l = 1 − log(αBK) ≈ 32.35 λ ≈ 97

B
π = 2 2∆ = log(3) n = 990 N = 1 024

γ = 16 l = 1 − log(αBK) ≈ 32.65 λ ≈ 96

C
π = 4 2∆ = log(3) n = 860 N = 1 024

γ = 9 l = 2 − log(αBK) ≈ 28.04 λ ≈ 96

G
π = 4 2∆ = log(36) n = 940 N = 1 024

γ = 10 l = 2 − log(αBK) ≈ 30.90 λ ≈ 96

H
π = 5 2∆ = log(36) n = 1 310 N = 2 048

γ = 21 l = 1 − log(αBK) ≈ 43.14 λ ≈ 73

I
π = 7 2∆ = log(74) n = 1 550 N = 8 192

γ = 25 l = 1 − log(αBK) ≈ 50.78 λ ≈ 63

Table 3: Our TFHE parameters for various scenarios without KeySwitch. Recall that τ = − log(α)−
1/2
(
log(3)− 1

)
≈ − log(α)− 0.29.
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Appendix

A Ruby Commands for TFHE Parameter Calculation

Below we provide Ruby commands, which can be used for TFHE parameter calculation. Run
commands in an interactive Ruby shell, e.g., in irb. First, we initialize a global constant S, which
holds the security parameters sλ for different λ’s as per Table 1, and we select the desired security
level λ = 128.

# Hash of security parameters s_lambda

S = {_40: 0.051, _80: 0.04, _128: 0.033, _192: 0.028, _256: 0.024, _384: 0.02, \

_512: 0.017}

lambda = :_128

A.1 Parameters with KeySwitch

# Example initial setups with suggested parameters # :1-2

# ====================================================================================

pi = 2 ; _2D = 1 ; nu = 10 ; n = 400 ; gamma = 15 # A

# ------------------------------------------------------------------------------------

pi = 2 ; _2D = Math.log2(3) ; nu = 10 ; n = 420 ; gamma = 16 # B

# ------------------------------------------------------------------------------------

pi = 4 ; _2D = Math.log2(3) ; nu = 10 ; n = 480 ; gamma = 9 # C

# ====================================================================================

pi = 3 ; _2D = Math.log2(12) ; nu = 10 ; n = 480 ; gamma = 9 # D

# ------------------------------------------------------------------------------------

pi = 4 ; _2D = Math.log2(12) ; nu = 10 ; n = 510 ; gamma = 10 # E

# ------------------------------------------------------------------------------------

pi = 5 ; _2D = Math.log2(20) ; nu = 10 ; n = 560 ; gamma = 10 # F

# ====================================================================================

pi = 4 ; _2D = Math.log2(36) ; nu = 10 ; n = 540 ; gamma = 10 # G

# ------------------------------------------------------------------------------------

pi = 5 ; _2D = Math.log2(36) ; nu = 10 ; n = 570 ; gamma = 11 # H

# ------------------------------------------------------------------------------------

pi = 7 ; _2D = Math.log2(74) ; nu = 12 ; n = 680 ; gamma = 24 # I

# ====================================================================================

nn = 2**nu ; n_max = 1.0 * nn**2 / (3 * 2**(2*pi-1)) - 1 # :3

t = ((2*pi +3 +2*Math.log2(3) +_2D +nu)/2).ceil # :5

logVKSn = -(2*pi +5 +2*Math.log2(3) +_2D +nu +Math.log2(t)) # :6

logAKSn = logVKSn / 2 # :7

tauKS = 0.5 * (-logVKSn - Math.log2(3) + 1)

l = ((2*pi +3 +2*Math.log2(3) +_2D +Math.log2(n) +nu) / (2*gamma)).ceil # :15

logVBKnn= -2*pi -4 -3*Math.log2(3) -_2D -Math.log2(n) -nu -Math.log2(l) -2*gamma# :16

logABKnn= logVBKnn / 2 # :17

tauBK = 0.5 * (-logVBKnn - Math.log2(3) + 1)

# tune gamma & l (if applicable), and recalculate & check:
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print "-log(al_KS(n)) = #{-logAKSn}, n = #{n} | bnd = #{S[lambda] * n}" # :8

puts " ... #{-logAKSn < S[lambda] * n ? 'OK' : '!!!'}"

print "-log(al_BK(N)) = #{-logABKnn}, N = #{nn} | bnd = #{S[lambda] * nn}" # :19

puts " ... #{-logABKnn < S[lambda] * nn ? 'OK' : '!!!'}"

# print final results

printf(" n = %4d | N = %4d\n", n, nn)

printf("gamma = %4d | l = %4d | t = %4d\n", gamma, l, t)

printf("tauKS ~ %.3f | tauBK ~ %.3f\n", tauKS, tauBK)

A.2 Parameters without KeySwitch

# Example initial setups with suggested parameters # :1-2

# ------------------------------------------------------------------------------------

pi = 2 ; _2D = 1 ; nu = 10 ; n = 990 ; gamma = 16 # A

# ------------------------------------------------------------------------------------

pi = 2 ; _2D = Math.log2(3) ; nu = 10 ; n = 990 ; gamma = 16 # B

# ------------------------------------------------------------------------------------

pi = 4 ; _2D = Math.log2(3) ; nu = 10 ; n = 860 ; gamma = 9 # C

# ------------------------------------------------------------------------------------

pi = 4 ; _2D = Math.log2(36) ; nu = 10 ; n = 940 ; gamma = 10 # D

# ------------------------------------------------------------------------------------

pi = 5 ; _2D = Math.log2(36) ; nu = 11 ; n = 1310 ; gamma = 21 # E

# ------------------------------------------------------------------------------------

pi = 7 ; _2D = Math.log2(74) ; nu = 13 ; n = 1550 ; gamma = 25 # F

# ------------------------------------------------------------------------------------

nn = 2**nu ; n_max = 1.0 * nn**2 / (3 * 2**(2*pi-1)) - 1 # :3

l = ((2*pi +2 +2*Math.log2(3) +_2D +Math.log2(n) +nu) / (2*gamma)).ceil # :15

logVBKn = -2*pi -3 -3*Math.log2(3) -_2D -Math.log2(n) -nu -Math.log2(l) -2*gamma# :16

logABKn = logVBKn / 2 # :17

tauBK = 0.5 * (-logVBKn - Math.log2(3) + 1)

# tune gamma & l (if applicable), and recalculate & check:

print "-log(al_BK(n)) = #{-logABKn}, n = #{n} | bnd = #{S[lambda] * n}" # :19

puts " ... #{-logABKn < S[lambda] * n ? 'OK' : '!!!'}"

# print final results

printf(" n = %4d | N = %4d\n", n, nn)

printf("gamma = %4d | l = %4d\n", gamma, l)

printf("tauBK ~ %.3f\n", tauBK)
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