
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.13154/tosc.v0.i0.0-0

Automated Search Oriented to Key Recovery on
Ciphers with Linear Key Schedule

Applications to Boomerangs in SKINNY and ForkSkinny

Lingyue Qin1, Xiaoyang Dong1
�, Xiaoyun Wang1,3

�, Keting Jia2 and
Yunwen Liu4,5

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China.
{qinly,xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn

2 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University, Beijing, China.
ktjia@tsinghua.edu.cn

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Qingdao, China.

4 College of Liberal arts and Science, National University of Defense Technology, Changsha,
China.

5 Hunan Engineering Research Center of Commercial Cryptography Theory and Technology
Innovation, Changsha, China. univerlyw@hotmail.com

Abstract. Automatic modelling to search distinguishers with high probability covering
as many rounds as possible, such as MILP, SAT/SMT, CP models, has become a
very popular cryptanalysis topic today. In those models, the optimizing objective
is usually the probability or the number of rounds of the distinguishers. If we want
to recover the secret key for a round-reduced block cipher, there are usually two
phases, i.e., finding an efficient distinguisher and performing key-recovery attack by
extending several rounds before and after the distinguisher. The totally attacked
number of rounds is not only related to the chosen distinguisher, but also to the
extended rounds before and after the distinguisher. In this paper, we try to combine
the two phases in a uniform automatic model.
Concretely, we apply this idea to automate the related-key rectangle attacks on SKINNY
and ForkSkinny. We propose some new distinguishers with advantage to perform
key-recovery attacks. Our key-recovery attacks on a few versions of round-reduced
SKINNY and ForkSkinny cover 1 to 2 more rounds than the best previous attacks.
Keywords: Key recovery · SKINNY · ForkSkinny · Differential attack · Rectangle
attack

1 Introduction
Differential cryptanalysis [BS91], proposed by Biham and Shamir, is one of the most
successful cryptanalysis techniques. To launch a differential key-recovery attack on block
ciphers, the first step is to find a differential with probability larger than a random case.
Based on the found differential, the second step is to append several extra rounds before
and after the differential distinguisher to recover the keys.

In the perspective of a distinguishing attack, good differential distinguishers are those
with a relatively high probability or those covering a larger number of rounds. Based
on the target cipher, one could utilise a dedicated search strategy to obtain differential-
like distinguishers, such strategies include Matsui’s branch and bound method [Mat93],
MILP-based automatic search [MWGP11, SHW+14] and SAT/SMT-based tools [KLT15].

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.13154/tosc.v0.i0.0-0
mailto:{qinly, xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn
mailto:ktjia@tsinghua.edu.cn
mailto:univerlyw@hotmail.com
http://creativecommons.org/licenses/by/4.0/

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 1

Whereas in a key-recovery attack, the goal is to attack as many rounds as possible with a
relatively low (data, time and memory) complexity. Therefore, a good distinguisher for
recovering the key is expected to balance the factors in determining the data/time/memory
complexities and the number of attacked rounds.

As a consequence, the strategy of searching good distinguishers for a key-recovery
attack may differ from that of a distinguisher attack. In other words, an optimal differential
in distinguishing attack is not necessarily the optimal one for recovering the key. For
instance, in order to extend more rounds before and after a differential distinguisher,
one aims at minimizing the number of active bits from the input/output differences of
the differential distinguisher, such that a data collection to filter the wrong pairs can be
efficiently performed.

In order to search for differential distinguishers targeting at an improvement on the
number of covered rounds by a key-recovery attack, one has to take into account multiple
factors and their interactive influences, including the probability and the length of the
differential distinguisher, the number of inactive bits in the differences after the forward
and backward extension, and the number of guessed key bits for a partial decryption. It is
interesting to study an automatic search model to analyze the trade-offs amongst various
factors such that the constructed distinguisher is optimized for an efficient key-recovery
attack. Till now, there are a few works covering related domains. Derbez et al. [DF16], Shi
et al. [SSD+18] and Chen et al. [CSSH19] introduced automatic tools on Demirci-Selçuk
Meet-in-the-Middle attack that take the distinguisher and the key-recovery phases as a
uniform searching model. Zong et al. [ZDC+21] studied the key-recovery-attack friendly
differential and linear distinguishers on GIFT-128 [BPP+17].

With the emergence of a large number of highly-constrained devices in burgeoning
fields such as the Internet of things (IoTs), sensor networks, etc., lightweight cryptography
becomes an active research domain in symmetric-key research groups. For applications in
lightweight block ciphers where the adversary may have more power under some advanced
attacking models, more interactive factors should be taken into consideration in the search
of distinguishers. For instance, an attacker may have access to or control over the keys or
tweaks. A related-key attack scenario where the encryption oracle is queried under a pair
of keys with certain known relation is practical for some lightweight ciphers.

At CRYPTO 2016, Beierle et al. proposed a new lightweight block cipher fam-
ily - SKINNY [BJK+16], which has comparable hardware/software performances with
SIMON [BSS+13] and also has much stronger security guarantees. Also in 2016, NIST
started the Lightweight Cryptography (LWC) standardization project [oSN20] to solicit
lightweight cryptographic algorithms that are suitable for constrained devices. Among
the Round 2 candidates of the LWC project, three algorithms are based on SKINNY, that
is, SKINNY-AEAD and SKINNY-Hash [BJK+20], ForkAE [ALP+19a] and Romulus [IKMP19].
And Romulus is one of the finalists in the LWC project. So the security analysis of SKINNY
is of great importance, which also affects the security evaluation of these candidates.

There are several cryptanalysis results on SKINNY under single-tweakey and related-
tweakey settings using different techniques, such as impossible differential attack [TAY17,
LGS17, SMB18, YQC17, ABC+17, DHLP20], rectangle attack [LGS17, ZDM+20], zero-
correlation attack [SMB18, ADG+19], Demirci-Selçuk Meet-in-the-Middle attack [SSD+18],
etc. Among these cryptanalysis results, the rectangle attacks in related-tweakey setting can
cover more rounds for most versions. Besides, there are many tools [BN10, LS19, CHP+17,
LGS17, HBS20] to search related-key rectangle distinguishers. Based on these works, we
build a new MILP model combining the key-recovery process and the distinguisher search
process together.

2 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

1.1 Our contributions
In this paper, we focus on an automatic model to search for distinguishers that directly
improve the cryptanalytic results. Firstly, we analyze the detailed factors that restrict
the generic differential key-recovery attack, and specifically a generalized rectangle attack
model given by Zhao et al. [ZDM+20, ZDJ19]. With data complexity and time complexity
lower than that of the exhaustive search, we try to maximize the attacked rounds for
a block cipher. The constraints that we take into consideration include the probability
of the distinguisher, the number of differential inactive bits of the input-output of the
attacked cipher, and the number of key bits needed to be guessed in the extended rounds.
Therefore, we propose a new automatic search MILP model of related-key rectangle attacks
on SKINNY, where the probability of a distinguisher and the dominating factors of the
key-recovery phase are systematically processed by the constraints. So the key-recovery
attacks may be improved in the number of covered rounds and/or the attack complexity.
The uniform MILP model is built mostly based on the works [BJK+16, HBS20] that takes
all the above constraints in searching a good distinguisher. We are able to find new good
properties in the distinguishers, which can be used to perform key-recovery attacks on
SKINNY and ForkSkinny covering more rounds than previous results. The cryptanalytic
results are summarized in Table 1.

2 Tradeoff Between Distinguisher and Key-recovery At-
tack

2.1 The tradeoff in differential cryptanalysis
Denote the N -round cipher E as E = Ef ◦ E′ ◦ Eb. E′ is the Nd-round differential
distinguisher (α 7→ β) with probability of p. The Nb-round Eb and Nf -round Ef are the
rounds added before and after the distinguisher, respectively. Denote the block size as n,
the number of active bits of the input difference of Eb as rb bits, and the number of key
bits needed to be guessed in Eb as mb bits. Similarly, we define rf and mf for Ef . After
appending Eb to the rectangle distinguisher E′, there are still inactive bits in the input of
Eb, i.e. rb < n. Let k denote the master key size.

α βEb E′ Ef

NdNb Nf

rb rf

Figure 1: Differential key-recovery attack on block cipher E

In differential cryptanalysis, an attacker’s goal is to either distinguish E from a random
function, or to recover the master key based on the differential and partial decryption
technique.

When searching for a differential distinguisher, the attacker aims at differentials that
cover the highest number of rounds or with the maximized probability to distinguish
the primitive from a random function. Meanwhile, for performing a key recovery attack,
there are two metrics to be optimized, i.e., on top of maximizing the number of attacked
rounds, minimizing the attack complexity. Intuitively, using a differential distinguisher
with highest probability of longest rounds, it is more likely to launch a better key recovery

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 3

Table 1: Summary of cryptanalytic results on SKINNY and ForkSkinny, where ID, ZC and
DS-MITM denote impossible differential, zero correlation and Demirci-Selçuk Meet-in-the-
Middle cryptanalysis. SK and RK denote single-key and related-key settings, respectively.

SKINNY

Version Rounds Data Time Memory Approach Setting Ref.

64-128

18 262.68 2126 264 ZC SK [SMB18]
18 260 2116 2112 ID SK [DHLP20]
19 262 2119.8 2110 ID SK [YQC17]
20 247.69 2121.08 274.69 ID SK [TAY17]
20 268.4 297.5 282 ZC/Integral SK [ADG+19]
22 263.5 2110.9 263.5 Rectangle RK [LGS17]
23 262.47 2125.91 2124 ID RK [LGS17]
23 262.47 2124 277.47 ID RK [SMB18]
23 271.4 279 264.0 ID RK [ABC+17]
23 260.54 2120.7 260.9 Rectangle RK [HBS20]
24 261.67 296.83 284 Rectangle RK Sect. 5.2

64-192

21 262 2180.5 2170 ID SK [YQC17]
22 247.84 2183.97 274.84 ID SK [TAY17]
23 273.2 2155.6 2138 ZC/Integral SK [ADG+19]
27 263.5 2165.5 280 Rectangle RK [LGS17]
29 262.92 2181.7 280 Rectangle RK [HBS20]
30 262.87 2163.11 268.05 Rectangle RK Sect. 5.1

128-256

19 2123 2241.8 2221 ID SK [YQC17]
20 292.1 2245.72 2147.1 ID SK [TAY17]
22 2127 2235.6 2127 Rectangle RK [LGS17]
23 2124.47 2251.47 2248 ID RK [LGS17]
23 2124.41 2243.41 2155.41 ID RK [SMB18]
24 2125.21 2209.85 2125.54 Rectangle RK [HBS20]
25 2124.48 2226.38 2168 Rectangle RK Sect. 5.4

128-384

21 2123 2353.6 2341 ID SK [YQC17]
22 296 2382.46 2330.99 DS-MITM SK [SSD+18]
22 292.22 2373.48 2147.22 ID SK [TAY17]
27 2123 2331 2155 Rectangle RK [LGS17]
28 2122 2315.25 2122.32 Rectangle RK [ZDM+20]
30 2125.29 2361.68 2125.8 Rectangle RK [HBS20]
30 2122 2341.1 2128.02 Rectangle RK Sect. 5.3

ForkSkinny

Version Rounds Data Time Memory Approach Setting Ref.
(Rinit/RI/RII)

128-256 24(7/27/17) 2122.5 2124.5 297.5 ID RK [BDL20]
(128-bit key) 25(18/27/7) 2118.88 2118.88 2119.2 Rectangle RK Sect. 6.2

128-256 26(7/27/19) 2125 2254.6 2160 ID RK [BDL20]
(256-bit key) 26(7/27/19) 2127 2250.3 2160 ID RK [BDL20]

28(20/27/8) 2118.88 2246.98 2136 Rectangle RK Sect. 6.1

4 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

attack. However, in practice, a good key recovery attack often requires a comprehensive
trade-off between the key recovery phase and the differential distinguisher.

Differential key-recovery attack. The general procedures of the key-recovery attack
based on a differential α 7→ β (see Fig. 1):

1. Data collection: Collect y = 2× 2−rb · s/p structures of 2rb plaintexts each, where s
is the expected number of right pairs.

2. Filter the wrong pairs using inactive bits of the ciphertext and there are y ·
22rb−1/2n−rf pairs left.

3. Initialize a list of 2mb+mf empty counters.

4. For all y · 22rb−1/2n−rf pairs, perform a guess and filter procedure to determine
candidate keys (denote the time complexity of the guess and filter procedure as ε)
and increase the corresponding counters.

The data complexity is about y · 2rb = 2 · s/p. The time complexity to generate the
key rank counters is about y · 22rb−1/2n−rf · ε ≈ 2 · s/p · 2rb+rf−n · ε. In order to lower the
time complexity of the key-recovery attack, we have to not only increase the probability
of α 7→ β, but also decrease 2rb+rf−n. Hence, there may exist various trade-offs between
the differentials, the attacked rounds, the data complexity and the time complexity. A
differential with lower probability may lead to better time-data tradeoff, or even lead to
longer attacked rounds, due to the potentially marginal term 2rb+rf in such a differential.

In this paper, we maximize the number of attacked rounds. Hence, the following
constraints are necessary in our optimization strategy.{

s/p < 2n

s/p · 2rb+rf−n · ε < 2k
(1)

Maximize:
Nb +Nd +Nf (2)

2.2 The tradeoff in rectangle attack on ciphers with linear key-schedule
Boomerang attack is a statistical cryptanalysis proposed by Wagner in 1999 [Wag99]. The
original boomerang distinguisher is constructed by splitting the encryption function into
two parts E′ = E1 ◦ E0, where two differentials α E0−−→ β and γ

E1−−→ δ are combined to
a boomerang. The probability of a boomerang is estimated by p2q2, where p, q are the
probability of the differentials. A number of studies have shown advanced techniques for a
better evaluation of the boomerang probability, including sandwich attack, boomerang
switch, etc., in both single-key and related-key models [Mur11, BK09, BDK05]. In 2018,
previous observations on the boomerang switch are unified in the framework of boomerang
connectivity table (BCT) by Cid et al. [CHP+18]. As a result, the probability of the middle
round in a boomerang can be precisely evaluated. Based on the proposal of the BCT table,
Liu et al. studied the automatic search model tailored for boomerang distinguishers with
the BCT table [LGS17]. Recently, Song et al. [SQH19] and Wang et al. [WP19] presented
new techniques to consider the middle layer consisting of multiple rounds. Thanks to the
latest progress on computing the middle part [CHP+18, BC18, SQH19, WP19], one can
compute the probability of the middle part theoretically for a few rounds.

A boomerang distinguisher requires a chosen-plaintext chosen-ciphertext model, and
it can be converted into a chosen-plaintext attack that is known as the rectangle at-
tack [BDK01] or amplified boomerang attack [KKS00]. The probability of the rectangle

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 5

distinguisher is 2−np2q2. In the attack, only α and δ are fixed and the internal differences β
and γ can be arbitrary values as long as β 6= γ. Hence, the probability would be increased
to 2−np̂2q̂2, where

p̂ =
√∑

βi

Pr2(α→ βi) and q̂ =
√∑

γj

Pr2(γj → δ).

Ef

E1

E0

Eb

Ef

E1

E0

Eb

Ef

E1

E0

Eb

Ef

E1

E0

Eb

α′

α

β

α′

α

β
γ

γ

δ

δ

δ′

δ′

C1

C2

P1

P2

C3

C4

P3

P4

Figure 2: Rectangle attack on block cipher E

For block ciphers with linear key-schedule, Zhao et al. [ZDM+20, ZDJ19] proposed a
new generalized related-key rectangle attack. We briefly recall the procedures with similar
symbols as shown in Fig. 1. The steps of Zhao et al.’s framework in Fig. 2 are given below:

1. Construct y =
√
s · 2n/2−rb/p̂q̂ structures of 2rb plaintexts each, where s is the

expected number of right quartets.

2. For each structure, query the 2rb plaintexts by the encryption oracle underK1, K2, K3
andK4 and obtain four plaintext-ciphertext sets denoted by L1, L2, L3 and L4, where
K1 is the secret key and K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K.
Insert L2 and L4 into hash tables H1 and H2 indexed by the rb bits of plaintexts.

3. Guess the mb subkey bits involved in Eb:

(a) Initialize a list of 2mf counters, each of which corresponds to a mf -bit subkey
guess.

(b) For each structure, partially encrypt plaintext P1 ∈ L1 to the position of α by
the guessed subkey bits, and partially decrypt it to the plaintext P2 after xoring
the known difference α. Then we look up H1 to find the plaintext-ciphertext
indexed by the rb bits. Do the same operation with P3 and P4. We get two sets

S1 ={(P1,C1,P2,C2)|(P1,C1)∈L1,(P2,C2)∈L2, EbK1
(P1)⊕EbK2

(P2)=α}, (3)
S2 ={(P3,C3,P4,C4)|(P3,C3)∈L3, (P4,C4)∈L4, EbK3

(P3)⊕EbK4
(P4)=α}. (4)

(c) The size of S1, as well as S2, is y · 2rb with y structures. Insert S1 into a hash
table H3 indexed by the (n− rf) bits of C1 and (n− rf) bits of C2 that set to
0 in the output difference through Ef from δ. Then for each element of S2, we
find the corresponding (P1, C1, P2, C2) satisfying C1 ⊕C3 = 0 and C2 ⊕C4 = 0
in the (n− rf) bits. In total we obtain y2 · 22rb−2(n−rf) quartets.

6 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

(d) We use all the quartets obtained in step (c) to determine the key candidates
involved in Ef and increase the corresponding counters. This phase is just a
guess and filter procedure. We denote the time complexity in this step as ε.

The data complexity is 4·y ·2rb = 4·
√
s·2n/2/p̂q̂ chosen plaintexts. The time complexity

to generate the counters is about 2mb · y2 · 22rb−2(n−rf) · ε ≈ 2mb+2rf−n · s/p̂2q̂2 · ε. Hence,
in order to attack more rounds, we need

 4 ·
√
s · 2n/2/p̂q̂ < 2n,

2mb+2rf−n · s/p̂2q̂2 · ε < 2k.
(5)

Maximize:
Nb +Nd +Nf . (6)

3 Specification of SKINNY

The lightweight block cipher SKINNY was proposed by Beierle et al. [BJK+16]. Let n denote
the block size, t denote the tweakey size and c denote the cell size, the family of SKINNY has
six main versions SKINNY-n-t: for each n ∈ {64, 128}, there are three tweakey size versions
t = n, t = 2n and t = 3n. The internal state is viewed as a 4× 4 square array of cells and
the tweakey is viewed as a set of z 4× 4 square arrays of cells, where z = t/n ∈ {1, 2, 3}.
The set of tweakey arrays are denoted as (TK1) when z = 1, (TK1, TK2) when z = 2, and
(TK1, TK2, TK3) when z = 3. SKINNY follows an SPN structure and a TWEAKEY framework
[JNP14]. In each round of SKINNY, the state is updated with 5 operations: SubCells
(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns
(MC), which is illustrated in Fig. 3.

STKi Xi Yi Zi Wi Xi+1

⊕
SC
AC

ART

SR MC

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

Figure 3: The ith round of SKINNY

The subtweakey STKi is only xored to the first two rows. Refer to Appendix A.1
for more details of the tweakey schedule. ∆Xi is the difference of state X in round i.
Xi[j, . . . , k] denote the cells of the state with index {j, j + 1, · · · , k}, where 0 ≤ j, k ≤ 15.
We denote the equivalent subtweakey in round i by ETKi, where ETKi = MC ◦ SR(STKi)
as Fig. 4.

STKi ETKi

SR
MC

4
0

5
1

6
2

7
3

0
7
0
0

1
4
1
1

2
5
2
2

3
6
3
3

Figure 4: The relations between the cells of STKi and ETKi

The MC operation adopts non-MDS binary matrix M . The matrix M and its inverse

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 7

matrix M−1 are as follows:

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 , M−1 =

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 . (7)

For the MDS matrix of AES, when 4 out of 8 input-output bytes are fixed, other bytes
are determined. However, the situation is different for SKINNY’s non-MDS matrix. For
instance, when the input bytes are (1, 1, 1, ?), the output bytes are (?, 1, 1, 1), where
“1” labels a known value and “?” unknown. Let M · (a, b, c, d)T = (α, β, γ, δ)T and
M−1 · (α, β, γ, δ)T = (a, b, c, d)T, we have

a⊕ c⊕ d = α,
a = β,
b⊕ c = γ,
a⊕ c = δ.

(8)

β = a,
β ⊕ γ ⊕ δ = b,
β ⊕ δ = c,
α⊕ δ = d.

(9)

Lemma 1. [BDL20] For any given SKINNY S-box S and any two non-zero differences δin
and δout, the equation Si(y)⊕ Si(y ⊕ δin) = δout has one solution on average.

4 Automated Search Oriented to Key Recovery
4.1 Previous automatic modelling of searching boomerang distinguish-

ers on SKINNY

The designers of SKINNY [BJK+16] first gave the Mixed-Integer Linear Programming
(MILP) model to search truncated differentials of SKINNY. Later, Liu et al. [LGS17]
tweaked the model to search boomerang distinguishers. However, the probability p̂2q̂2 of the
boomerang distinguisher is highly inaccurate without considering the dependence between
the two differential trails. In [SQH19], Song et al. revisited the Boomerang Connectivity
Table (BCT) proposed by Cid et al. in [CHP+18], and proposed a generalized framework of
BCT to systematically calculate the probability of a boomerang distinguisher considering
the dependence. They re-evaluated the probabilities of the boomerang distinguishers given
in [LGS17], where the probabilities are much higher than before.

As in Dunkelman et al.’s (related-key) sandwich attack framework [DKS10], the Nd-
round cipher E′ is considered as Ẽ1 ◦Em ◦ Ẽ0, where Ẽ0, Em, Ẽ1 contain r0, rm, r1 rounds,
respectively. Let p̃ and q̃ be the probabilities of the upper differential used for Ẽ0 and the
lower differential used for Ẽ1. The middle part Em specifically handles the dependence
and contains a small number of rounds. If the probability of generating a right quartet for
Em is t, the probability of the whole Nd-round boomerang distinguisher is p̃2q̃2t.

Recently, [HBS20] introduced a heuristic approach to search a boomerang distinguisher
using MILP/SAT models. They introduced some new tables for S-boxes to model the
dependency between the upper and lower differentials in boomerang distinguishers. We
briefly introduce their searching approach by following steps:

1. Firstly, search truncated differentials with the minimum number of active S-boxes
with a word-oriented MILP model considering the switching effect in multiple rounds,
which is based on the idea of [CHP+17]’s model. In their MILP model, they searched
for a (r0 + rm)-round upper truncated differential and a (r1 + rm)-round lower
truncated differential. The objective function is the number of active S-boxes in the
distinguisher. Considering the dependency, for the rm-round middle part, only the
S-boxes which are active in both upper and lower truncated differentials are involved
in the objective function.

8 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

2. Then, use the MILP/SAT models to get the actual differential characteristics for the
upper and lower truncated differential separately. If there is no actual differential
characteristic, go back to step 1.

3. Evaluate the probability of the middle part experimentally. If the probability is
equal to 0, go back to step 1.

4. Based on the algorithm proposed in [SQH19], evaluate the probability of the middle
part mathematically.

Almost at the same time, [DDV20] proposed a new automatic tool to search boomerang
distinguishers and provided their source code to facilitate follow-up works. Similar with
[HBS20], they also introduced a set of tables which help to calculate the probability of
the boomerang distinguisher. With the tables to help roughly evaluate the probability,
they use an MILP model to search for the upper and lower trails throughout all rounds by
automatically handling the middle rounds. Then a CP model is applied to search for the
best possible instantiations.

4.2 Our model to determine a distinguisher
According to Sect. 2, to launch a boomerang attack covering more rounds with a boomerang
distinguisher, the interaction between the Nd-round distinguisher and the Nb and Nf
extended rounds need to be considered simultaneously. Given the time complexity
2mb+2rf−n · s/p̂2q̂2 · ε in Sect. 2, it is necessary to set additional constraints over the
active rf bits in the output state of the lower trail and mb-bit subtweakey involved
in the extended Nb rounds. So we present an extended model for searching the entire
(Nb +Nd +Nf) rounds of a boomerang attack. The aim is to find new boomerang distin-
guishers in a related-tweakey setting that result in key-recovery attacks with more rounds.
In Sect. 2.2, the target is to maximize Nb +Nd +Nf . However, in practical programming,
we take Nb, Nd = r0 + rm + r1 and Nf as parameters to input the model, and the target is
the time complexity 2mb+2rf−n · s · (p̃2q̃2t)−1 · ε as in Sect. 2. By feeding different values
of Nb, Nd and Nf into the model, we try to find the maximal value for Nb +Nd +Nf .

Our new model tweaks the model of Hadipour et al. [HBS20] to search for a (Nb +
r0 + rm)-round upper truncated differential and a (rm + r1 +Nf)-round lower truncated
differential.

Let Xu
r and X l

r denote the internal state before SubCells in round r of the upper
and lower truncated differentials. For i-th cell of the internal state Xu

r of the upper
differential, we define a binary variable DXU[r][i] (0 ≤ r ≤ Nb + r0 + rm, 0 ≤ i ≤ 15),
where DXU[r][i] = 1 indicates that the corresponding cell is active. Then a binary variable
DSTKU[r][i] (0 ≤ r ≤ Nb + r0 + rm, 0 ≤ i ≤ 15) is defined for the i-th cell of the subtweakey
STKr of the upper differential, to indicate whether the subtweakey cell is active or not.
Similarly, there are DXL[r][i] and DSTKL[r][i] (0 ≤ r ≤ rm + r1 +Nf , 0 ≤ i ≤ 15) defined for
the lower differential. The modelling strategies of the (r0 + rm)-round and (rm + r1)-round
are the same to the model of Hadipour et al. [HBS20]. The constraints for the tweakey
schedule of SKINNY are also the same to the previous ones [BJK+16, HBS20, LGS17]. Here,
we only list the differences in our model.

Modelling the active cells propagation in the Nf rounds after the lower differential.
Starting from the (rm + r1)-round internal state X l

rm+r1
of the lower differential, the

truncated difference is propagated forwards with probability 1. Hence, the constraints on
DXL and DSTKL is different from those in the (rm + r1) rounds. As introduced in [BJK+16],
the linear diffusion layer SR and MC of SKINNY can be seen as a binary 16× 16 matrix L.
Let Lx(i) (resp. L−1

x (i)) be the set of the indexes j such that the coefficient Li,j = 1 in
matrix L (resp. L−1

i,j = 1 in L−1, see in Appendix A.2). In the related-tweakey attacks, the

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 9

subtweakey differences will affect the differences of the internal state. Take the key-recovery
attack on SKINNY-64-192 as example (see Fig.7). In Round 27, the non-zero difference in
∆STK27[3] leads to differences in ∆X28[7, 15], and further affects the following internal
states. Note that the subtweakeys are only xored to the first two rows of the state. ETKr

is produced by STKr by applying the matrix L (Eq.(16)). As shown in Fig. 4, each cell of
ETKr only depends on one cell of STKr, since there is only one entry of Li,j = 1 with
0 ≤ j ≤ 7 for a given i in the linear matrix L (Eq.(16)). For each i, we denote such j that
makes Li,j = 1 (0 ≤ j ≤ 7) as Lk(i). Therefore, the constraints on the impact of DSTKL to
the internal state and the propagation of the active cells in Nf rounds are given below:
∀ 0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15,

DXL[rm + r1 + r + 1][i] = (
∨

j∈Lx(i)

DXL[rm + r1 + r][j]) ∨ (DSTKL[r1 + rm + r][Lk(i)]). (10)

In addition, we require that there are some inactive cells in the output state of the
lower differential, which can help us filter quartets to reduce the time complexity in the
key-recovery attack 1. ∑

0≤i≤15
DXL[rm + r1 +Nf − 1][i] ≤ 15.

Modelling the active cells propagation in the Nb rounds before the upper differential.
For the (Nb + r0 + rm)-round upper differential, starting from the Nb-round internal
state Xu

Nb
of the upper differential, the truncated difference is propagated backwards with

probability 1.
Note that different from the key-recovery attack, in the searching model, we use the

original style of representation of SKINNY, i.e., we do not use the equivalent key ETK0 to
replace STK0. The constraints describing the impact of DSTKU to the internal state and
the active cells propagation backwards from the Nb-round are as follows (note that the
subtweakeys are only xored to the first two rows of the state):

DXU[r][i] =(
∨

j∈L−1
x (i)

DXU[r + 1][i]) ∨ DSTKU[r][i], ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 7,

DXU[r][i] =
∨

j∈L−1
x (i)

DXU[r + 1][i], ∀ 0 ≤ r ≤ Nb − 2, 8 ≤ i ≤ 15.
(11)

where, DXU[Nb − 1][i] is determined by the input difference of the (r0 + rm)-round upper
differential. Taking Fig. 5 as an example, Nb = 4, the DXU[3][i], i.e., the activeness of state
X3 is determined by Y3, where the constraints of Y3 to W3 are included by the program of
(r0 + rm) rounds truncated differential.

To avoid all cells active in the plaintext, we require that at least one cell of the internal
state X1 of the upper differential is inactive2:∑

0≤i≤15
DXU[1][i] ≤ 15.

1Note that, in the key-recovery attack, we use the active cells of Xl
rm+r0+Nf−1 to filter quartets

instead of Xl
rm+r0+Nf

.
2In the key-recovery attack, we use the active cells of Xu

1 to collect data instead of Xu
0 .

10 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

STK3 X3 Y3 Z3 W3

1 8
a

3
2

2 a
2 ⊕

3
2

2
2

3
2
2
2

SC
AC

ART

SR MC

STK2 X2 Y2 Z2 W2

1

2

8 1 ⊕SC
AC

ART

SR MC

STK1 X1 Y1 Z1 W1

d a

2 2 ⊕SC
AC

ART

SR MC

STK0 X0 Y0 Z0 W0

d a ⊕SC
AC

ART

SR MC

Figure 5: Phase (1): The Nb-round of the attack on SKINNY-64-192

Modeling the subtweakey cells involved in the Nb rounds before the upper differential.
There are many papers considering the dependence of keys in key-recovery, such as
[DFJ13, FN20, DF16]. As shown in Eq.(1), the time complexity of the rectangle attack
is also highly related to the number of keys involved in Nb, i.e., mb. In fact, we need to
guess mb-bit subtweakey first to deduce P2 from P1 by partial encryption and decryption
in the first Nb rounds. Please recall the details in Step 3 (b) of the rectangle attack model
in Sect. 2.2.

We hope that the smaller mb, the better. Since the matrix M in the MC operation is
not an MDS matrix, the subtweakeys involved in the partial encryption and decryption
are different. So we model the subtweakey cells from two aspects.

Taking the key-recovery attack on SKINNY-64-192 as example (see Fig. 7), we decom-
pose the whole process of deducing P2 from P1 into two phases:

(1) Partially encrypt P1 to Y3 (only active cells) as shown in Fig. 5.

(2) Partially decrypt Ȳ3 = Y3 ⊕∆Y3 to get P2 as shown in Fig. 6.

In Phase (1) shown in Fig. 5, in order to compute Y3[3, 6, 7, 9, 13] from P1, we need
the values of the cells marked by in X3. With the details of MC and SR, the values of the
cells marked by and in Z2 and corresponding STK2 are needed. The cell positions
in X2 which need to be known are the same as those in Z2, which are marked by and
. Similarly deducing for other rounds, the cells need to be known are all determined for
round 0-3, which are marked by and .

We define a binary variable KnownEnc[r][i] to identify whether the ith (0 ≤ i ≤ 15) cells
of the internal state Zr (0 ≤ r ≤ Nb − 1) should be known in Phase (1). A binary 16× 16
matrix LE (see in Appendix A.2) is introduced to describe the linear diffusion (combination
of SR and MC) determining the cells need to be known in Zr (same for Xr) from Xr+1. Let
LEz (i) be the set of the indexes j such that the coefficient LEi,j = 1 in the matrix LE . Initially
in round Nb−1 (round 3 in Fig.5), we have KnownEnc[Nb−1][i] = DXU[Nb−1][i](0 ≤ i ≤ 15).
For round Nb − 2 to 0, we have

KnownEnc[r][i] =
∨

j∈LE
z (i)

KnownEnc[r + 1][j], ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 15. (12)

In addition, for 0 ≤ r ≤ Nb − 2 (round 0-2 in Fig. 5), whether STKr[i] should be guessed
is identified by KnownEnc[r][i], where 0 ≤ i ≤ 7.

In Phase (2) as shown in Fig. 6, with Y3[3, 6, 7, 9, 13] computed in Phase (1), we
compute Ȳ3[3, 6, 7, 9, 13] = Y3 ⊕ α[3, 6, 7, 9, 13]. So the differences of the active cells in

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 11

STK3 X̄3 Ȳ3 Z̄3 W̄3

1 8
a

3
2

2 a
2 ⊕

3
2

2
2

3
2
2
2

SC
AC

ART

SR MC

STK2 X̄2 Ȳ2 Z̄2 W̄2

1

2

8 1 ⊕SC
AC

ART

SR MC

STK1 X̄1 Ȳ1 Z̄1 W̄1

d a

2 2 ⊕SC
AC

ART

SR MC

STK0 X̄0 Ȳ0 Z̄0 W̄0

d a ⊕SC
AC

ART

SR MC

Figure 6: Phase (2): The Nb-round of the attack on SKINNY-64-192

∆X3 are determined. Therefore, we compute the differences of active cells in ∆Y2 from
∆X3 through the linear operations SR and MC. In order to compute backwards further, we
have to know the values of the differential active cells of Y2 from P1. The calculation from
P1 to Y2 is similar to the calculation from P1 to Y3 in the encryption of Phase (1). To
compute the values of the active cells of Y2, all the cells in Z1 marked by north west lines
have to be known. Moreover, similar to Y2, all active cells of Y1 are also needed to be
known. Hence, combining the cells to compute Y2 and the active cells in Y1, all the cells
marked by north west lines in Y1 are needed to be known.

Suppose we have known such cells in Y2 marked by , then we are able to compute
the active cells marked by of Ȳ2 = Y2 ⊕∆Y2 and the difference of active cells of ∆X2.
Similarly, with ∆Y1 deduced from ∆X2 and active cells known in Y1, we compute ∆X1.
Then P2 is determined. Totally, we have to compute cells marked by north west lines of
Y2 and Y1.

In our programming of the model, we integrate the above two phases. For example, in
the round 2, X2 marked by dots in Phase (1) and by north west lines in Phase (2) are all
needed to be known. Hence, we can take the union of these marked cells and compute
backwards further. We define a binary variable Known (1 ≤ r ≤ Nb − 1, 0 ≤ i ≤ 15) for
each cell of each internal state Xr (same for Yr) to indicate whether the value is needed
either in Phase (1) or Phase (2). Known = 1 is marked by north east lines in Fig. 7. Then
the binary variable KnownEnc (0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 15) for each cell of Zr indicate
whether the value is needed to be known to compute the needed cells of Xr+1. Whether
STKr[i] should be guessed is also identified by KnownEnc[r][i], where 0 ≤ r ≤ Nb − 2 and
0 ≤ i ≤ 7. KnownEnc = 1 is also marked by north east lines in Fig. 7. For the round
Nb − 1, only active cells (i.e., state X3 in Fig. 7) in the internal state need to be known
and the subtweakey of this round does not need to be guessed:

Known[Nb − 1][i] = DXU[Nb − 1][i], ∀ 0 ≤ i ≤ 15.

From round Nb − 2 to round 0, we give the constraints over the linear diffusion (SR
and MC) determining which cells to be known in Zr from Xr+1 as in Phase (1) :

KnownEnc[r][i] =
∨

j∈LE
z (i)

Known[r + 1][j], ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 15.

In round Nb − 2 to round 1, the cells in Xr need to be known involve two types: the
active cells need to be known in Phase (2), and cells need to be known in Zr, which are

12 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

computed from the needed cells of Xr+1 in last round :

Known[r][i] = KnownEnc[r][i] ∨ DXU[r][i], ∀ 1 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 15.

The objective function. As in Sect. 2, the time complexity is 2mb+2rf−n · s · (p̃2q̃2t)−1 · ε.
For the (r0 + rm + r1)-round part, the target to be optimized is the same to Hadipour et al.
[HBS20]. First we add the variables DXU of r0-round upper differential (on behalf of the p̃)
with weight w0 to the objective function. Similarly add the variables DXL of r1-round lower
differential (on behalf of the q̂) with weight w1. Then, considering the switching effects,
we add the variables DXU and DXL in rm-round middle part (on behalf of the t) with weight
wm to the objective function. In order to find the distinguishers whose probabilities are
likely larger than random case, we set an upper bound on the number of active Sbox in
the (r0 + rm + r1)-round part:∑

0≤r≤r0−1, 0≤i≤15
w0 · DXU[Nb + r][i] +

∑
0≤r≤r1−1, 0≤i≤15

w1 · DXL[rm + r][i]+

∑
0≤r≤rm−1, 0≤i≤15

wm · (DXU[Nb + r0 + r][i] ∧ DXL[r][i]) ≤ BOUND,
(13)

where BOUND is selected experimentally. Namely, suppose minimum of Eq. (13) is MIN, we
set BOUND= MIN + 10.

In addition, we add the variables KnownEnc (on behalf of the mb) and DXL (on behalf
of the rf) with different weight wu and wl to get a uniformed objective:

obj =
∑

0≤r≤r0−1, 0≤i≤15
w0 · DXU[Nb + r][i] +

∑
0≤r≤r1−1, 0≤i≤15

w1 · DXL[rm + r][i]+

∑
0≤r≤rm−1, 0≤i≤15

wm · (DXU[Nb + r0 + r][i] ∧ DXL[r][i])+

∑
0≤r≤Nb−2, 0≤i≤7

wu · KnownEnc[r][i] +
∑

0≤i≤15
wl · DXL[rm + r1 +Nf − 1][i].

(14)

Because different parameters have different coefficients in the formula of the time complexity,
we give them different weights to model the objective more accurately. For example, in Eq.
(5), with mb + 2 · rf , the complexity is more sensitive with rf than mb. So we set the the
coefficients as wl = 2 · wu.

Then considering the probabilities in the DDT tables of the S-boxes and the switching
effects similar to [HBS20], we adjust the weight wl = 2wu = 2w0 = 2w1 = 4wm = 4.
We use different Nb, Nd and Nf to run our model. Nb and Nf are chosen from 1 to
4. Nd is chosen based on experience, for example, when the best previous distinguisher
have y rounds, we will choose Nd with y − 3 ≤ Nd ≤ y. As pointed out in [SQH19], the
dependencies of the upper and lower trails could affect up to 6 rounds. So we choose
rm = 6, and then r0 and r1 vary with Nd.

With our new model, we search for more proper truncated upper and lower differentials
for applying the key-recovery attack. And then, for r0-round Ẽ0 of the upper differential
and r1-round Ẽ1 of the lower differential, we use the CP model to get a instantiation for the
truncated differentials, as [SGL+17]. We also calculate the probability p̃ and q̃ considering
the clustering effect. We experimentally calculate the probability of rm = 6-round middle
part of the distinguisher. Note that the probability of the middle part should be high
to be verified with a small computer in reasonable time. We use one computer equipped
with one RTX 2080 Ti to experimentally compute the probability of the middle part and
the results of our experiments are listed in Table 2. Note that t may be zero. If so, we
need to find a new instantiation for the truncated differentials or even need to search new

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 13

Table 2: Experiments on the middle part of the boomerang distinguishers for SKINNY
Version rm Probability t Complexity Time
64-128 6 2−23.96 232 29.51s
64-192 6 2−18.73 229 5.48s
128-256 6 2−32.39 238 2835.37s
128-384 6 2−27.03 234 226.64s

truncated differentials. When t > 0 and p̃2q̃2t > 2−n, we successfully get a boomerang
distinguisher with probability p̃2q̃2t.

The details of the boomerang distinguishers we obtained are listed in Table 4, 5, 6 and
7. For more details, we refer to Table 16, 17, 18 and 19 in Appendix. B. In addition, we
summarize the previous boomerang distinguishers for SKINNY in Table 3.

Table 3: Summary of related-tweakey boomerang distinguishers for SKINNY. Nd is the
round number of distinguishers; Nb +Nd +Nf is the total attacked number of rounds.

Version Nd Probability p̃2q̃2t Nb + Nd + Nf Ref.

64-128

17 2−29.78 - [SQH19]
17 2−48.72 21 [LGS17]
19 2−51.08 23 [HBS20]
19 2−54.36 - [DDV20]
18 2−55.34 24 Ours

64-192

22 2−42.98 - [SQH19]
22 2−54.94 26 [LGS17]
23 2−55.85 29 [HBS20]
23 2−57.93 - [DDV20]
22 2−57.73 30 Ours

128-256

18 2−77.83 - [SQH19]
18 2−103.84 22 [LGS17]
20 2−85.77 - [DDV20]
21 2−116.43 24 [HBS20]
19 2−116.97 25 Ours

128-384

22 2−48.30 - [SQH19]
23 2−112 27 [LGS17]
23 2−112 28 [ZDM+20]
24 2−86.09 - [DDV20]
25 2−116.59 30 [HBS20]
22 2−101.49 30 Ours

Remarks. We compare our distinguishers with the other recent distinguishers, in particu-
lar with those provided by Hadipour et al. in [HBS20]. Our distinguishers have the same
rm = 6 with [HBS20], as pointed out in [SQH19] that the upper and lower differentials
can be dependent up to 6 rounds. Then for the r0-round upper differentials and r1-round
lower differentials, there are some differences, which are listed as follows:

• For the upper differentials, there are more than one active cell in the tweakey. So
benefiting from the linear key schedule, the state differences propagation can be
controlled by the subkey differences. Although our r0 is larger or equal to that in
[HBS20], there are fewer active cells in the input state. So when we extend same Nb
rounds before the distinguisher, the number of subkey bits involved in Eb is smaller
than the attack in [HBS20], e.g., for the attack on Skinny-64-128, by adding 2
rounds before the distinguisher, there are mb = 3c in our attack (see Sect. 5.2) and
mb = 8c in [HBS20]. In some cases, we can extend more rounds, e.g., for the attack

14 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

on SKINNY-64-192, there are Nb = 4 and mb = 19c in our attack (see Sect. 5.1) and
Nb = 3 and mb = 16c in [HBS20].

• For the lower differentials, our distinguishers for Skinny have smaller r1 than [HBS20]
and fewer active cells in the output state. So we can extend more rounds (Nf) with
fewer active cells (rf) in the ciphertext, and filter more quartets with inactive cells
of the ciphertexts before the tweakey recovery process to reduce the time complexity.
Taking the attack on SKINNY-64-192 as an example, when we add 4 rounds after
our distinguisher, there are 12 active cells in the ciphertexts (Nf = 4, rf = 12, see
Sect. 5.1); in [HBS20], all the cells in the ciphertexts are active when 3 rounds are
added (Nf = 3, rf = 16).

So considering all the parameters affecting the key recovery attack, i.e. the number mb

of guessed subkeys in Eb, the number rf of active cells in the ciphertext, the number
(Nb+r0+rm+r1+Nf) of rounds of the whole attack and the probability of the (r0+rm+r1)-
round distinguisher, the numbers of attacked rounds in our paper and [HBS20] are different.
From the point of number of attacked rounds, our new distinguishers perform better.

Table 4: The 18-round related-tweakey boomerang distinguisher for SKINNY-64-128
r0 = 8, rm = 6, r1 = 4, p̃ = 2−15.69, t = 2−23.96, q̃ = 1, p̃2q̃2t = 2−55.34

∆T K1 = 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0
∆T K2 = 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0
∆X0 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
∇T K1 = 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0
∇T K2 = 0, 0, 0, 0, 0, 0, 0, 0, b, 0, 0, 0, 0, 0, 0, 0
∇X18 = 0, 0, d, 0, 0, 0, d, 0, 0, 0, 0, 0, 0, 0, d, 0

Table 5: The 22-round related-tweakey boomerang distinguisher for SKINNY-64-192
r0 = 10, rm = 6, r1 = 6, p̃ = 2−19.5, t = 2−18.73, q̃ = 1, p̃2q̃2t = 2−57.73

∆T K1 = 8, 0, 0, 0, 0, 0, 0, c, 0, 0, 0, 0, 0, 0, 0, 1
∆T K2 = b, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 7
∆T K3 = e, 0, 0, 0, 0, 0, 0, f, 0, 0, 0, 0, 0, 0, 0, c
∆X0 = 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0
∇T K1 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
∇T K2 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0
∇T K3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0
∇X22 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0

Table 6: The 19-round related-tweakey boomerang distinguisher for SKINNY-128-256
r0 = 9, rm = 6, r1 = 4, p̃ = 2−42.29, t = 2−32.39, q̃ = 1, p̃2q̃2t = 2−116.97

∆T K1 = 00, 00, 00, 00, a0, 00, 00, 00, ef, 00, 00, 00, 00, 00, 00, 00
∆T K2 = 00, 00, 00, 00, 54, 00, 00, 00, 9d, 00, 00, 00, 00, 00, 00, 00
∆X0 = 00, 00, 00, 00, 13, 00, 10, 00, 00, 10, 00, 00, 10, 00, 00, 00
∇T K1 = 00, 00, 00, 00, 00, 00, 00, ff, 00, 00, 00, 00, 00, 00, 00, 00
∇T K2 = 00, 00, 00, 00, 00, 00, 00, cc, 00, 00, 00, 00, 00, 00, 00, 00
∇X19 = 00, 01, 00, 00, 00, 01, 00, 00, 00, 00, 00, 00, 00, 01, 00, 00

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 15

Table 7: The 22-round related-tweakey boomerang distinguisher for SKINNY-128-384
r0 = 10, rm = 6, r1 = 6, p̃ = 2−37.23, t = 2−27.03, q̃ = 1, p̃2q̃2t = 2−101.49

∆T K1 = 14, 00, 00, 00, 00, 00, 00, 1b, 00, 00, 00, 00, 00, 00, 00, 56
∆T K2 = 06, 00, 00, 00, 00, 00, 00, 84, 00, 00, 00, 00, 00, 00, 00, 66
∆T K3 = 30, 00, 00, 00, 00, 00, 00, 24, 00, 00, 00, 00, 00, 00, 00, 37
∆X0 = 81, 00, 00, 00, 00, 00, 00, 01, 00, 00, 00, 00, 00, 00, 00, 00
∇T K1 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 8a, 00, 00, 00, 00, 00, 00
∇T K2 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 0c, 00, 00, 00, 00, 00, 00
∇T K3 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 7f, 00, 00, 00, 00, 00, 00
∇X22 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 50, 00, 00, 00, 00, 00, 00

5 Related-tweakey Rectangle Attacks on Round-reduced
SKINNY

This section gives related-tweakey rectangle attacks on SKINNY-64-192, SKINNY-64-128,
SKINNY-128-384 and SKINNY-128-256 using the new distinguishers obtained in Sect. 4.2.

5.1 The Key-recovery attack on 30-round SKINNY-64-192

We use the 22-round related-tweakey rectangle distinguisher with probability of 2−n·p̃2q̃2t =
2−64−57.73 = 2−121.73 for SKINNY-64-192 given in Table 5, where

α = (3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0),
δ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0).

By extending 4 rounds before and 4 rounds after the 22-round distinguisher, we attack the
30-round SKINNY-64-192 as illustrated in Fig. 7.

In the first round, we first apply SR and MC operations, and then apply the ART operation
with the equivalent subtweakey ETK0 instead of the subtweakey STK0. So there is no
subtweakey involved in the first round, and we can build our structures at W ′0. Treating
W ′0 as the plaintext and Z29 as the ciphertext, we can get following parameters: rb = 15c,
mb = 19c, rf = 12c, mf = 17c, where c = 4. (The notations are introduced in Sect. 2).

Based on Zhao et al.’s key recovery algorithm [ZDM+20], the details of our attack are
as follows:

Data collection.

1. Construct y =
√
s · 2n/2−rb · (p̃q̃

√
t)−1 structures, where s is the expected number of

right quartets. Each structure includes 2rb plaintexts by traversing all the possible
values of rb/c = 15 cells W ′0[0 − 8, 10 − 15]. Let M = y · 2rb = y · 260 denote the
number of chosen plaintexts under each key.

2. Let K1 be the master secret key, K2 = K1 ⊕ ∆K, K3 = K1 ⊕ ∇K and K4 =
K1 ⊕∆K ⊕∇K. For each structure, query the corresponding ciphertexts for the
2rb plaintexts under four related keys K1,K2,K3 and K4, which are named as four
plaintext-ciphertext sets L1, L2, L3 and L4. Then insert L2 and L4 into hash tables
H1 and H2 indexed by the 15 cells W ′0[0− 8, 10− 15].

3. We have to guess ETK0[0− 15], STK1[0− 4, 6, 7] and STK2[1− 4] marked by north
west lines. According to Fig. 4, ETK0[i] = ETK0[i+ 4] = ETK0[i+ 12] = STK0[i]
for 0 ≤ i ≤ 3. Therefore, there are only 2mb = 219×4 = 276 possible values of
subtweakeys need to guessed in Eb:

16 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Active cell with fixed difference 0aa

Active cell Both the difference and the value are needed

Zero difference, but the value is needed

STK29 X29 Y29 Z29 X30

5 ⊕SC
AC

ART

SR
MC

STK28 X28 Y28 Z28 W28

2
2

2
⊕SC

AC
ART

SR MC

STK27 X27 Y27 Z27 W27

2 ⊕ 2 2
SC
AC

ART

SR MC

STK26 X26 Y26 Z26 W26

a
a

⊕SC
AC

ART

SR MC

22-round rectangle distinguisher of SKINNY-64-192

STK2 X2 Y2 Z2 W2

1

2

8 1 ⊕SC
AC

ART

SR MC

STK1 X1 Y1 Z1 W1

d a

2 2 ⊕SC
AC

ART

SR MC

STK3 X3 Y3 Z3 W3

1 8
a

3
2

2 a
2 ⊕

3
2

2
2

3
2
2
2

SC
AC

ART

SR MC

ETK0 X0 Y0 Z ′
0 W ′

0

a d
SC
AC

SR MC ⊕

Figure 7: The 30-round attack against SKINNY-64-192

(a) Initialize a list of 2mf = 268 counters, where each corresponds to a 68-bit
subtweakey guess involved in Ef .

(b) For each structure, we need to deduce P2 from P1. Due to that the values of
W ′0[0− 15] are known from P1 and ETK0[0− 15] are guessed, we can deduce
the values of Y1[0− 15]. Then using the guessed STK1[0− 4, 6, 7], we deduce
the values of Y2[1 − 6, 8, 9, 11, 12, 14]. With the guessed STK2[1 − 4], the
values of Y3[3, 6, 7, 9, 13] are known. Because Ȳ3[3, 6, 7, 9, 13] = Y3[3, 6, 7, 9, 13]⊕
∆Y3[3, 6, 7, 9, 13], we compute the differences in ∆X3[3, 6, 7, 9, 13] and propagate
to the differences in ∆Y2[1 − 6, 8, 9, 11, 12, 14]. Since the values of Y2[1 −
6, 8, 9, 11, 12, 14] are known, we can compute the differences in ∆X2[1−6, 8, 9, 11,
12, 14] and propagate the differences to ∆Y1[0− 8, 10− 15]. Similarly, we can
compute the differences in ∆W ′0[0−8, 10−15] using the known Y1[0−8, 10−15].
So we can deduce W̄ ′0[0− 8, 10− 15] = W ′0[0− 8, 10− 15]⊕∆W ′0[0− 8, 10− 15].
Query the hash table H1 with W̄ ′0[0− 8, 10− 15] of P2 to get the corresponding
plaintext-ciphertext pair, and get S1 as Eq. 3.
For L2 and L4, use the similar method to get set S2 as Eq. 4. The sizes of S1
and S2 are both y · 2rb = y · 260.

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 17

(c) Insert S1 into hash table H3 indexed by the 4 inactive cells Z29[5, 10, 11, 13] of
C1 and 4 inactive cells of C2. For each element of S2, we check the hash table H3
to find the element in S1 where (C1, C3) and (C2, C4) collide in the 8 inactive
cells. So there are y2 · 22rb · 2−2(n−rf) = y2 · 288 quartets as (C1, C2, C3, C4),
which can be used to conduct the tweakey recovery for the 68-bit subtweakey
involved in Ef . Call the tweakey recovery process to check whether the guessed
tweakey is correct.

Tweakey recovery.

1. In round 29: for the 4th column of X29 of (C1, C3), we obtain ∆W28[11] =
∆X29[7]⊕∆X29[15] = 0 according to Eq.(9). Since STK29 is only xored to the first
two rows of the internal state, X29[15] is determined by the ciphertext. Thereafter,
the input difference ∆X29[7] and output difference ∆Y29[7] of the SC operation are
known. By Lemma 1, we can deduce STK29[7], which has one solution on average.
Similarly, we also deduce STK ′29[7] for (C2, C4). Since the difference ∆STK29[7] is
fixed, we get a 4-bit filter. y2 · 288 · 2−4 = y2 · 284 quartets remain.

2. For the 1st column of X29 of (C1, C3), we obtain ∆W28[12] = ∆X29[0]⊕∆X29[12] = 0
according to Eq.(9). With known ∆X29[0] and ∆Y29[0], we deduce STK29[0] by
Lemma 1. Similarly, we deduce STK ′29[0] for (C2, C4), which acts as a 4-bit filter.
y2 · 284 · 2−4 = y2 · 280 quartets remain.

3. For the 3rd column ofX29 of (C1, C3), we obtain ∆W28[10] = ∆X29[6]⊕∆X29[14] = 0
from Eq.(9). With known ∆X29[6] and ∆Y29[6], we deduce STK29[6] by Lemma 1.
Similarly, we deduce STK ′29[6] for (C2, C4), which acts as a 4-bit filter. y2 ·280 ·2−4 =
y2 · 276 quartets remain.

4. Now we have deduced STK29[0, 6, 7]. Guessing STK29[2], we compute W28[14] and
X28[15]. ∆X28[15] = 0x2 is a 4-bit filter for both (C1, C3) and (C2, C4). y2 ·276 ·2−8 =
y2 · 268 quartets remain.

5. Guessing STK29[4], we compute W28[4]. Since ∆X28[7] = 0x2 and ∆Y28[7] is
determined by W28[4], we deduce STK28[7] for (C1, C3) and STK ′28[7] for (C2, C4)
by Lemma 1, which acts as a 4-bit filter. y2 · 268 · 2−4 = y2 · 264 quartets remain.

6. Guess STK29[1, 3, 5] and compute Z28 to peel off round 29.

7. In round 28: for the 1st column of X28 of (C1, C3), we obtain ∆X28[0] = ∆X28[4] =
∆X28[12] from Eq.(9). With known ∆X28[0, 4] and ∆Y28[0, 4], we deduce STK28[0, 4]
by Lemma 1. Similarly, we deduce STK ′28[0, 4] for (C2, C4), which acts as an 8-bit
filter. y2 · 264 · 2−8 = y2 · 256 quartets remain.

8. For the 3rd column of X28 of (C1, C3), we obtain ∆X28[2] = ∆X28[10] = ∆X28[14]
from Eq.(9). With known ∆X28[2] and ∆Y28[2], we deduce STK28[2]. Similarly, we
deduce STK ′28[2] for (C2, C4), which acts as a 4-bit filter. In addition, ∆X28[10] =
∆X28[14] is a 4-bit filter for both (C1, C3) and (C2, C4). y2 · 256 · 2−4 · 2−8 = y2 · 244

quartets remain.

9. Now we have deduced STK28[0, 2, 4, 7]. We guess STK28[3, 5, 6] and compute Z27
to peel off round 28.

10. In round 27: for the 1st column of X27 of (C1, C3), we obtain ∆X27[0] = ∆X27[8] =
∆X27[12] from Eq.(9). With known ∆X27[0] and ∆Y27[0], we deduce STK27[0].
Similarly, we deduce STK ′27[0] for (C2, C4), which acts as a 4-bit filter. In addition,
∆X27[8] = ∆X27[8] is a 4-bit filter for both (C1, C3) and (C2, C4). y2 ·244 ·2−4 ·2−8 =
y2 · 232 quartets remain.

18 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

11. In round 26: Guessing STK27[4], we compute Z27 to X26. ∆X26 = 0xa is a 4-bit
filter for both (C1, C3) and (C2, C4). Therefore, y2 · 232 · 2−8 = y2 · 224 quartets
remain.

12. Output the top 268−h counters for the candidates and exhaustively search the other
(k −mb −mf) = 48 unknown key bits to check whether the guessed key is correct.

Table 8: Time complexity and guessed subtweakeys of each step in the tweakey recovery
process for 30-round SKINNY-64-192. D: deduced key cells; G: guessed key cells.

Step i Time complexity Ti Involved subtweakeys
1 y2 · 288 · 4

30 = y2 · 285.1 D: ST K29[7]
2 y2 · 284 · 4

30 = y2 · 281.1 D: ST K29[0]
3 y2 · 280 · 4

30 = y2 · 277.1 D: ST K29[6]
4 y2 · 276 · 24 · 4

30 = y2 · 277.1 G: ST K29[2]
5 y2 · 268 · 24 · 24 · 4

30 = y2 · 273.1 G: ST K29[4], D: ST K28[7]
6 y2 · 264 · 24 · 24 · 212 · 4

30 = y2 · 281.1 G: ST K29[1, 3, 5]
7 y2 · 264 · 24 · 24 · 212 · 4

30 = y2 · 281.1 D: ST K28[0, 4]
8 y2 · 256 · 24 · 24 · 212 · 4

30 = y2 · 273.1 D: ST K28[2]
9 y2 · 244 · 24 · 24 · 212 · 212 · 4

30 = y2 · 273.1 G: ST K28[3, 5, 6]
10 y2 · 244 · 24 · 24 · 212 · 212 · 4

30 = y2 · 273.1 D: ST K27[0]
11 y2 · 232 · 24 · 24 · 212 · 212 · 24 · 4

30 = y2 · 265.1 G: ST K27[4]∑
i
Ti ≈ y2 · 285.36

In the above steps, we totally guess 9 cells of key and y2 · 224 remain. Therefore, we
obtain totally y2 ·224 ·236 = y2 ·260 key counters. Since there are totally 68-bit key involved
in Ef , the counter under each 68-bit key is about y2 · 260/268 = y2 · 2−8 on average.

Complexity. The data complexity is D = 4M = 4 · y · 2rb = y · 262 chosen plaintexts. The
memory complexity is 5M + 2mf = y · 262.32 + 268.

In the Data collection process, one needs 4M = y · 262 encryptions in step 2 and
2mb · 3M = y · 2137.58 table look-ups in step 3(b) and 3(c). In the Tweakey recovery
process, one needs about 2mb ·y2 ·285.36+2192−h = y2 ·2161.36+2192−h encryptions according
to Table 8. Totally, the time complexity is y · 262 + y · 2137.58 + y2 · 2161.36 + 2192−h.

Set the expected number of right quartets s = 1 and y =
√
s ·2n/2−rb · (p̃q̃

√
t)−1 = 20.87.

The data complexity is 262.87 and the memory complexity is 268.05. Set the advantage h = 36
and the time complexity is about 2163.11. Let the signal-to-noise be SN = 2−n · p̃2q̃2t/2−2n,
based on the theoretical analysis by Selcuk [SB02], the success probability is about
Ps = Φ(

√
sSN−Φ−1(1−2−h)√

SN +1) = 62.3% .

5.2 The Key-recovery attack on 24-round SKINNY-64-128
We give a 24-round key-recovery rectangle attack on SKINNY-64-128 by adding 2 rounds
before and 4 rounds after the 18-round distinguisher, where

α = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2),
δ = (0, 0, d, 0, 0, 0, d, 0, 0, 0, 0, 0, 0, 0, d, 0).

The probability of the distinguisher is 2−n · p̃2q̃2t = 2−64−55.34 = 2−119.34. The data
collection phase is similar to Sect. 5.1. As shown in Fig. 8, We construct y =

√
s · 2n/2−rb ·

(p̃q̃
√
t)−1 structures by traversing rb = 4c = 16 inactive bits in W ′0 3. ETK0[4, 6, 9, 12]

marked by north west lines are involved in Eb. Due to ETK0[4] = ETK0[12] = STK0[0]
according to Fig. 4, there has mb = 3c = 12. In addition, we know rf = 12c = 48 and
mf = 21c = 84 where c = 4.

3Note that we do not traverse the cell with fixed difference W ′0[0] while building structures.

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 19

Active cell with fixed difference aa

Active cell Both the difference and the value are needed

Zero difference, but the value is needed

STK23 X23 Y23 Z23 X24

2 ⊕SC
AC

ART

SR
MC

STK22 X22 Y22 Z22 W22

7

⊕SC
AC

ART

SR MC

STK21 X21 Y21 Z21 W21

7 ⊕ 7 7SC
AC

ART

SR MC

STK20 X20 Y20 Z20 W20

d
d

d
d ⊕SC

AC
ART

SR MC

18-round rectangle distinguisher of SKINNY-64-128

STK1 X1 Y1 Z1 W1

c
9

2

9
2

2 ⊕
2

2
2

2
2
2SC

AC
ART

SR MC

ETK0 X0 Y0 Z ′
0 W ′

0

c

c
c c

SC
AC

SR MC ⊕

Figure 8: The 24-round attack against SKINNY-64-128

According to Zhao et al.’s attack procedures, for each guessing of 2mb = 212 possible
values in Eb, there are about y2 · 22rb · 2−2(n−rf) = y2 quartets (C1, C2, C3, C4) remaining.
We give the detailed processes to recover mf = 84 key bits in Ef . For each quartet
remaining, do (for briefness, take Z23 as the ciphertext C):

1. In round 23: for the 3rd column ofX23 of (C1, C3), we obtain ∆X23[2] = ∆X23[6] =
∆X23[14] due to Eq.(9). Since STK23 is only xored to the first two rows of the
internal state, X23[14] is determined by the ciphertext. With known ∆X23[2, 6] and
∆Y23[2, 6], we deduce STK23[2, 6] with Lemma 1. Similarly, we deduce STK ′23[2, 6]
for (C2, C4). Since the differences ∆STK23[2, 6] are fixed, we get an 8-bit filter.
y2 · 2−8 quartets remain.

2. For the 2nd column of X23 of (C1, C3), we obtain ∆X23[5] = ∆X23[9]⊕∆X23[13].
With known ∆X23[5] and ∆Y23[5], we deduce STK23[5]. Similarly, we deduce
STK ′23[5] for (C2, C4), which acts as a 4-bit filter. y2 · 2−8 · 2−4 = y2 · 2−12 quartets
remain.

3. For the 4th column of X23 of (C1, C3), we obtain ∆X23[3] = ∆X23[15]. With
known ∆X23[3] and ∆Y23[3], we deduce STK23[3]. Similarly, we deduce STK ′23[3]
for (C2, C4), which acts as a 4-bit filter. y2 · 2−12 · 2−4 = y2 · 2−16 quartets remain.

4. Guessing STK23[1, 7], we compute the 2nd, 3rd and 4th columns of W22. For
the 3rd column of X22 of (C1, C3), we obtain ∆X22[2] = ∆X22[6] = ∆X22[14].
Thereafter, we compute ∆X22[14] from W22[13] and ∆Y22[2, 6] from W22[2, 7] and
deduce STK22[2, 6]. Similarly, we deduce STK ′22[2, 6] for (C2, C4), which acts as an
8-bit filter. y2 · 2−16 · 2−8 = y2 · 2−24 quartets remain.

20 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

5. Guess STK23[0, 4] and compute W22 to peel off round 23. For the 2nd column of X22
of (C1, C3), we obtain ∆X22[5] = ∆X22[9]⊕∆X22[13]⊕ 0x7. With known ∆X22[5]
and ∆Y22[5], we deduce STK22[5]. Similarly, we deduce STK ′22[5] for (C2, C4), which
acts as a 4-bit filter. y2 · 2−24 · 2−4 = y2 · 2−28 quartets remain.

6. In round 22: Guess STK22[1, 7], we compute the 2nd, 3rd and 4th of W21. For
the 3rd column of X21 of (C1, C3), we obtain ∆X21[2] = ∆X21[6] = ∆X21[14].
Thereafter, we compute ∆X21[14] from W21[13] and ∆Y21[2, 6] from W21[2, 7] and
deduce STK21[2, 6]. Similarly, we deduce STK ′21[2] for (C2, C4), which acts as an
8-bit filter. Thereafter, we compute W20[2] from X20[6]. Since ∆X20[2] = 0xd, we
deduce STK20[2] for (C1, C3) and STK ′20[2] for (C2, C4), which acts as a 4-bit filter.
y2 · 2−28 · 2−8 · 2−4 = y2 · 2−40 quartets remain.

7. Guess STK22[0, 4] to peel off round 22.

8. In round 21: Guessing STK21[1], we compute W20[13] and X20[14]. ∆X20[14] =
0xd acts as a 4-bit filter for both (C1, C3) and (C2, C4). y2 · 2−40 · 2−8 = y2 · 2−48

quartets remain.

9. Guessing STK21[7], we compute W20[7]. Since ∆X20[6] = 0xd, we deduce STK20[6]
for (C1, C3) and STK ′20[6] for (C2, C4), which acts as a 4-bit filter. y2 · 2−48 · 2−4 =
y2 · 2−52 quartets remain.

10. Output the top 284−h counters for the candidates and exhaustively search the other
(k −mb −mf) = 32 unknown key bits to check whether the guessed key is correct.

Table 9: Time complexity and guessed subtweakeys of each step in the tweakey recovery
process for 24-round SKINNY-64-128. D: deduced key cells; G: guessed key cells.
Step i Time complexity Ti Involved subtweakeys

1 y2 · 4
24 = y2 · 2−2.58 D: STK23[2, 6]

2 y2 · 2−8 · 4
24 = y2 · 2−10.58 D: STK23[5]

3 y2 · 2−12 · 4
24 = y2 · 2−14.58 D: STK23[3]

4 y2 · 2−16 · 28 · 4
24 = y2 · 2−10.58 G: STK23[1, 7], D: STK22[2, 6]

5 y2 · 2−24 · 28 · 28 · 4
24 = y2 · 2−10.58 G: STK23[0, 4], D: STK22[5]

6 y2 · 2−28 · 28 · 28 · 28 · 4
24 = y2 · 2−6.58 G: STK22[1, 7], D: STK21[2, 6]

7 y2 · 2−40 · 28 · 28 · 28 · 28 · 4
24 = y2 · 2−10.58 G: STK22[0, 4]

8 y2 · 2−40 · 28 · 28 · 28 · 28 · 24 · 4
24 = y2 · 2−6.58 G: STK21[1]

9 y2 · 2−48 · 28 · 28 · 28 · 28 · 24 · 24 · 4
24 = y2 · 2−10.58 G: STK21[7], D: STK20[6]∑

i Ti ≈ y2 · 2−2.51

As shown in Table 9, we guess 10 cells of keys and y2 ·2−52 quartets remain in the above
steps. Therefore, we obtain y2 ·2−52 ·240 = y2 ·2−12 key counters. Since there are 84-bit key
involved in Ef , the counter under each guessed 84-bit key is about y2 · 2−12/284 = y2 · 2−96

on average.

Complexity. Setting the expected number of right quarters s = 1 and the advantage
h = 30, y =

√
s · 2n/2−rb · (p̃q̃

√
t)−1 = 243.67. The data complexity is 261.67, the memory

complexity is 284 and the time complexity is about 296.83. The success probability is about
75.8%.

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 21

5.3 The Key-recovery Attack on 30-round SKINNY-128-384
We give a 30-round key-recovery rectangle attack on SKINNY-128-384 by adding 4 rounds
before and 4 rounds after the 22-round distinguisher, where

α = (81, 00, 00, 00, 00, 00, 00, 01, 00, 00, 00, 00, 00, 00, 00, 00,),
δ = (00, 00, 00, 00, 00, 00, 00, 00, 00, 50, 00, 00, 00, 00, 00, 00).

The probability of the distinguisher is 2−n · p̃2q̃2t = 2−128−101.49 = 2−229.49. As shown in
Fig. 9, we have rb = 15c, mb = 19c, rf = 13c and mf = 16c. The data collection phase is
nearly the same to Sect. 5.1 and we construct y =

√
s · 2n/2−rb · (p̃q̃

√
t)−1 structures.

Active cell with fixed difference 0x0a0a

Active cell Both the difference and the value are needed

Zero difference, but the value is needed

STK29 X29 Y29 Z29 X30

1c
⊕SC

AC
ART

SR
MC

STK28 X28 Y28 Z28 W28

58
58

⊕SC
AC

ART

SR MC

STK27 X27 Y27 Z27 W27

58 ⊕ 58 58SC
AC

ART

SR MC

STK26 X26 Y26 Z26 W26

50
50

⊕SC
AC

ART

SR MC

22-round rectangle distinguisher of SKINNY-128-384

STK3 X3 Y3 Z3 W3

76 10
07

81
01

0107
01 ⊕

81
01

01
01

81
01
01
01

SC
AC

ART

SR MC

STK2 X2 Y2 Z2 W2

76

8a

10 76 ⊕SC
AC

ART

SR MC

STK1 X1 Y1 Z1 W1

28 56

8a 8a ⊕SC
AC

ART

SR MC

ETK0 X0 Y0 Z ′
0 W ′

0

56 28
SC
AC

SR MC ⊕

Figure 9: The 30-round attack against SKINNY-128-384

According to Zhao et al.’s attack procedures, for each guessing of 2mb = 2152 possible
values in Eb, there are about y2 · 22rb · 2−2(n−rf) = y2 · 2192 quartets remaining. We give
the detailed process to recover mf key bits for Ef . For each quartet remaining, do:

1. In round 29: for the 2nd column of X29 of (C1, C3), we obtain ∆X29[1] = ∆X29[13]
and ∆X29[5] = ∆X29[9]⊕∆X29[13] according to Eq.(9). Since STK29 is only xored
to the first two rows of the internal state, X29[9] and X29[13] are determined by the
ciphertext. With known ∆X29[1, 5] and ∆Y29[1, 5], we deduce STK29[1, 5]. Similarly,

22 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

we deduce STK ′29[1, 5] for (C2, C4). Since the difference ∆STK29[1, 5] is fixed, we
get a 16-bit filter. In round 28, since STK29[1, 5] is known, we compute W28[9]
and X28[11]. ∆X28[11] = 0x58 acts as an 8-bit filter for both (C1, C3) and (C2, C4).
y2 · 2192 · 2−16 · 2−16 = y2 · 2160 quartets remain.

2. For the 3rd column of X29 of (C1, C3), we obtain ∆X29[6] = ∆X29[14]. With
known ∆X29[6] and ∆Y29[6],we deduce STK29[6]. Similarly, we deduce STK ′29[6]
for (C2, C4), which acts as an 8-bit filter. y2 · 2160 · 2−8 = y2 · 2152 quartets remain.

3. For the 4th column of X29 of (C1, C3), the case is the same to step 1. We deduce
STK29[3, 7] for (C1, C3) and STK ′29[3, 7] for (C2, C4), which acts as a 16-bit filter.
y2 · 2152 · 2−16 = y2 · 2136 quartets remain.

4. Guess STK29[0, 2, 4] and compute W28 to peel off round 29.

5. In round 28: for the 2nd column ofX28 of (C1, C3), we obtain ∆X28[1] = ∆X28[9] =
∆X28[13]. With known ∆X28[1] and ∆Y28[1], we deduce STK28[1]. Similarly, we
deduce STK ′28[1] for (C2, C4), which is an 8-bit filter. ∆X28[9] = ∆X28[13] is an
8-bit filter for both (C1, C3) and (C2, C4). y2 · 2136 · 2−8 · 2−16 = y2 · 2112 quartets
remain.

6. For 4th column of X28 of (C1, C3), we obtain ∆X28[3] = ∆X28[7] = ∆X28[15].
With known ∆X28[3, 7] and ∆Y28[3, 7], we deduce STK28[3, 7]. Similarly, we deduce
STK ′28[3, 7] for (C2, C4), which acts as a 16-bit filter. y2 · 2112 · 2−16 = y2 · 296

quartets remain.

7. Guess STK28[2, 4, 5] and compute W27 to peel off round 28.

8. In round 27: for 4th column of X27 of (C1, C3), we obtain ∆X27[3] = ∆X27[11] =
∆X27[15]. With known ∆X27[3] and ∆Y27[3], we deduce STK27[3]. Similarly, we
deduce STK ′27[3] for (C2, C4), which acts as an 8-bit filter. ∆X27[11] = ∆X27[15]
acts as an 8-bit filter for both (C1, C3) and (C2, C4). y2 · 296 · 2−8 · 2−16 = y2 · 272

quartets remain.

9. Guessing STK27[7], we compute W26[7]. Thereafter ∆X26[9] = 0x50 acts as an 8-bit
filter for both (C1, C3) and (C2, C4). y2 · 272 · 2−16 = y2 · 256.

Table 10: Time complexity and guessed subtweakeys of each step in the tweakey recovery
process for 30-round SKINNY-128-384. D: deduced key cells; G: guessed key cells.

Step i Time complexity Ti Involved subtweakeys
1 y2 · 2192 · 4

30 = y2 · 2189.1 D: ST K29[1, 5]
2 y2 · 2160 · 4

30 = y2 · 2157.1 D: ST K29[6]
3 y2 · 2152 · 4

30 = y2 · 2149.1 D: ST K29[3, 7]
4 y2 · 2136 · 224 · 4

30 = y2 · 2157.1 G: ST K29[0, 2, 4]
5 y2 · 2136 · 224 · 4

30 = y2 · 2157.1 D: ST K28[1]
6 y2 · 2112 · 224 · 4

30 = y2 · 2133.1 D: ST K28[3, 7]
7 y2 · 296 · 224 · 224 · 4

30 = y2 · 2141.1 G: ST K28[2, 4, 5]
8 y2 · 296 · 224 · 224 · 4

30 = y2 · 2141.1 D: ST K27[3]
9 y2 · 272 · 224 · 224 · 28 · 4

30 = y2 · 2125.1 G: ST K27[7]∑
i
Ti ≈ y2 · 2189.1

As shown in Table 10, we totally guess 7 cells of key and y2 · 256 quartets remain in
the above steps. Therefore, we obtain totally y2 · 256 · 256 = y2 · 2112 key counters. Since
there are totally 128-bit key involved in Ef , the counter under each 128-bit key is about
y2 · 2112/2128 = y2 · 2−16 on average.

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 23

Complexity. Setting the expected number of right quarters s = 1 and the advantage
h = 56, we choose y = 1. The data complexity is 2122, the memory complexity is 2128.02

and the time complexity is about 2341.1. The success probability is about 84.1%.

5.4 The Key-recovery Attack on 25-round SKINNY-128-256

We give a 25-round key-recovery rectangle attack on SKINNY-128-256 by adding 2 rounds
before and 4 rounds after the 19-round distinguisher, where

α = (00, 00, 00, 00, 13, 00, 10, 00, 00, 10, 00, 00, 10, 00, 00, 00),
δ = (00, 01, 00, 00, 00, 01, 00, 00, 00, 00, 00, 00, 00, 01, 00, 00).

The probability of the rectangle distinguisher is 2−n · p̃2q̃2t = 2−128−116.97 = 2−244.97. As
shown in Fig. 10, we have rb = 8c and mb = 6c. In addition, we know rf = 12c according
to ∆Z24 and mf = 21c where c = 8. The data collection process is similar to Sect. 5.2 and
we construct y =

√
s · 2n/2−rb · (p̃q̃

√
t)−1 structures.

Active cell with fixed difference 0a0a

Active cell Both the difference and the value are needed

Zero difference, but the value is needed

STK24 X24 Y24 Z24 X25

07 ⊕SC
AC

ART

SR
MC

STK23 X23 Y23 Z23 W23

03

⊕SC
AC

ART

SR MC

STK22 X22 Y22 Z22 W22

03 ⊕SC
AC

ART

SR MC

STK21 X21 Y21 Z21 W21

01
01

01
01 ⊕SC

AC
ART

SR MC

19-round rectangle distinguisher of SKINNY-128-256

STK1 X1 Y1 Z1 W1

72

0a 10
10
61

10

10
03

10
03 ⊕

10
10
61

10

10
03

10
03

10
03
03
13

10
10
10
10

SC
AC

ART

SR MC

ETK0 X0 Y0 Z ′
0 W ′

0

0a

0a
0a 0a 0a 0a

0a

0aSC
AC

SR MC ⊕

Figure 10: The 25-round attack against SKINNY-128-256

According to Zhao et al.’s attack procedures, for each guessing of 2mb = 248 possible
values in Eb, there are about y2 · 22rb · 2−2(n−rf) = y2 · 264 quartets as (C1, C2, C3, C4)
remaining. We give the detailed process to recover mf key bits for Ef . For each quartet
remaining, do:

1. In round 24: for the 2nd column ofX24 of (C1, C3), we obtain ∆X24[1] = ∆X24[5] =
∆X24[13] according to Eq.(9). Since STK24 is only xored to the first two rows of the
internal state, X24[13] is determined by the ciphertext. With known ∆X24[1, 5] and
∆Y24[1, 5], we deduce STK24[1, 5] with Lemma 1. Similarly, we deduce STK ′24[1, 5] for

24 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

(C2, C4) and the pre-fixed ∆STK24[1, 5] acts as a 16-bit filter. y2 ·264 ·2−16 = y2 ·248

quartets remain.

2. For the 3rd column of X24 of (C1, C3), we obtain ∆X24[2] = ∆X24[14]. With known
∆X24[2] and ∆Y24[2], we can deduce STK24[2]. Similarly, we deduce STK ′24[2] for
(C2, C4), which acts as an 8-bit filter. y2 · 248 · 2−8 = y2 · 240 quartets remain.

3. For the 1st column, of X24 of (C1, C3), we obtain ∆X24[4] = ∆X24[8]⊕∆X24[12].
With known ∆X24[4] and ∆Y24[4], we can deduce STK24[4]. Similarly, we deduce
STK ′24[4] for (C2, C4), which acts as an 8-bit filter. y2 · 240 · 2−8 = y2 · 232 quartets
remain.

4. Guessing STK24[0, 6], we compute the first three columns of W23. For the 2nd
column of X23 of (C1, C3), we obtain ∆X23[1] = ∆X23[5] = ∆X23[13]. There-
after, we compute ∆X23[13] from W23[12] and ∆Y23[1, 5] from W23[1, 6] and deduce
STK23[1, 5]. Similarly, we deduce STK ′23[1, 5] for (C2, C4), which acts as a 16-bit
filter. y2 · 232 · 2−16 = y2 · 216 quartets remain.

5. Guessing STK24[3, 7], we compute the 4th column of W23 and peel off round 24.
For the 1st column of X23 of (C1, C3), we obtain ∆X23[4] = ∆X23[8] ⊕∆X23[12].
Thereafter, we compute ∆X23[8, 12] from W23[10, 15] and ∆Y23[4] from W23[5] and
deduce STK23[4]. Similarly, we deduce STK ′23[4] for (C2, C4), which acts as an 8-bit
filter. y2 · 216 · 2−8 = y2 · 28 quartets remain.

6. In round 23: Guess STK23[0, 6], we compute the first three columns of W22. For
the 2nd column of X22 of (C1, C3), we obtain ∆X22[1] = ∆X22[5] = ∆X22[13].
Thereafter, we compute ∆X22[13] from W22[12] and ∆Y22[1, 5] from W22[1, 6] and
deduce STK22[1, 5]. Similarly, we deduce STK ′22[1, 5] for (C2, C4), which acts as
a 16-bit filter. Then in round 22, we can compute W21[1] from X22[5]. Due to
∆X21[1] = 0x01, we deduce STK21[1] for (C1, C3) and STK ′21[1] for (C2, C4). which
acts as an 8-bit filter. y2 · 28 · 2−16 · 2−8 = y2 · 2−16 quartets remain.

7. Guess STK23[3, 7] and compute W22 to peel off round 23.

8. In round 22: Guessing STK22[0], we compute W21[12] and X21[13]. In round 21,
∆X21[13] = 0x01 acts as an 8-bit filter for both (C1, C3) and (C2, C4). y2·2−16·2−16 =
y2 · 2−32 quartet remain.

9. Guessing STK22[6], we computeW21[6]. Since ∆X21[5] = 0x01, we deduce STK21[5]
for (C1, C3) and STK ′21[5] for (C2, C4). which acts as an 8-bit filter. y2 · 2−32 · 2−8 =
y2 · 2−40 quartet remain.

Table 11: Time complexity and guessed subtweakeys of each step in the tweakey recovery
process for 25-round SKINNY-128-256. D: deduced key cells; G: guessed key cells.
Step i Time complexity Ti Involved subtweakeys

1 y2 · 264 · 4
25 = y2 · 261.4 D: STK24[1, 5]

2 y2 · 248 · 4
25 = y2 · 245.4 D: STK24[2]

3 y2 · 240 · 4
25 = y2 · 237.4 D: STK24[4]

4 y2 · 232 · 216 · 4
25 = y2 · 245.4 G: STK24[0, 6], D: STK23[1, 5]

5 y2 · 216 · 216 · 216 · 4
25 = y2 · 245.4 G: STK24[3, 7], D: STK23[4]

6 y2 · 28 · 216 · 216 · 216 · 4
25 = y2 · 253.4 G: STK23[0, 6], D: STK22[1, 5], STK21[1]

7 y2 · 2−16 · 216 · 216 · 216 · 216 · 4
25 = y2 · 245.4 G: STK23[3, 7]

8 y2 · 2−16 · 216 · 216 · 216 · 216 · 28 · 4
25 = y2 · 253.4 G: STK23[0]

9 y2 · 2−32 · 216 · 216 · 216 · 216 · 28 · 28 · 4
25 = y2 · 245.4 G: STK22[6], D: STK21[5]∑

i Ti ≈ y2 · 261.41

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 25

As shown in Table 11, we totally guess 10 cells of key combining with remaining
y2 · 2−40 quartets in the above steps. We obtain y2 · 2−40 · 280 = y2 · 240 key counters.
Since mf = 168, the key counter for each key is y2 · 240/2168 = y2 · 2−128 on average.

Complexity. Set the expected number of right quarters s = 1 and the advantage h = 30,
y =
√
s·2n/2−rb ·(p̃q̃

√
t)−1 = 258.48. The data complexity is 2124.48, the memory complexity

is 2168 and the time complexity is about 2226.38. The success probability is about 80.7%.

6 Application to ForkSkinny
ForkSkinny is a 2nd round candidate in the NIST lightweight authenticated encryption
standardization process. It is a Forkcipher designed by Andreeva et al. [ALP+19b] under
the ForkAE lightweight authenticated encryption framework. A Forkcipher

F : K × T × {0, 1}n → {0, 1}2n

takes n-bit plaintext, and generates a 2n-bit ciphertext under a given key K and tweak T

FK(p, T) = (c0, c1).

The primitive is based on the lightweight tweakable block cipher SKINNY, and there
are four different instances with variant block sizes and tweakey sizes (see Table 12).

Table 12: Instances of ForkSkinny.
ForkSkinny-[blocksize]-[tweakey] tweak Rinit RI RII

ForkSkinny-64-192 64 17 23 23
ForkSkinny-128-192 64 21 27 27
ForkSkinny-128-256 128 21 27 27
ForkSkinny-128-288 128 25 31 31

The construction of ForkSkinny is shown in Fig 11. The encryption of ForkSkinny
is split into two steps. The first Rinit rounds process the input message with the round
function of SKINNY under modified constants. Then, the encryption procedure is forked
into ForkSkinny0 and ForkSkinny1, where two copies of the output from the first stage
are separately processed by the two forks with RI and RII rounds, respectively. The
tweakeys are generated by the tweakey schedule for Rinit +RI +RII rounds in total, and
used sequentially in the initial step, ForkSkinny0 and ForkSkinny1. For instance, the last
RII round tweakeys are applied in ForkSkinny1.

Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages 9

4.1 Specification

RF RF

TKS TKS

M

K‖T

RF RF

TKS TKS

BC

C1

Tw

RF RF

TKS TKS

C0

Tw

Fig. 3: ForkSkinny encryption with selector s = b. A plaintext M , a key K and a tweak T (blue) are used
to compute a ciphertext C = C0‖C1 (red) of twice the size of the plaintext. RF is a single round function
of SKINNY and TKS is round tweakey update function [17]. and BC is a branch constant that we introduce.

Overall Structure. We illustrate our design in Fig. 3 for ForkSkinny-128-192. This version takes a
128-bit plaintext M , a 64-bit tweak T and a 128-bit secret key K as input, and outputs two 128-bit
ciphertext blocks C0 and C1 (i.e., ForkSkinny(K,T,M, b) = C0, C1). The first rinit= 21 rounds of
ForkSkinny are almost identical to the one of SKINNY and only differ in the value of the constant
added to the internal state. After that, the encryption is forked, which means that two copies of the
internal state are further modified with different sets of tweakeys. For reasons that we detail below,
a constant denoted by BC (Branch Constant) is added to the internal state used to compute C1,
right after forking. Then, ForkSkinny0 iterates r0 = 27 rounds and ForkSkinny1 iterates r1 = 27
rounds. As illustrated in Figure 3, after forking the tweakeys for the round functions of ForkSkinny0
are computed from the tweakey state obtained after rinit rounds, while the tweakeys for the round
functions of ForkSkinny1 are derived from the tweakey state at the end of rinit + r0 rounds (denoted
by Tw). Figure 4 details the ForkSkinny construction, where Enc-SKinnyr(·, ·) denotes the SKINNY

encryption using r round functions taking as input a plaintext or state together with a tweakey.
Similarly, Dec-SKinnyr(·, ·) denotes the corresponding decryption algorithm using r rounds.

1: function ForkSkinnyEnc(M,K, T, s)
2: tk ← K||T
3: L ← Enc-Skinnyrinit(M, tk)
4: if s = 0 or s = b then
5: C0 ← Enc-Skinnyr0(L,TKSrinit(tk))
6: end if
7: if s = 1 or s = b then
8: tk′ ← TKSrinit+r0(tk)
9: C1 ← Enc-Skinnyr1(L⊕BC, tk′)

10: end if
11: if s = 0 return C0

12: if s = 1 return C1

13: if s = b return C0, C1

14: end function

1: function ForkSkinnyDec(C,K, T, b, s)
2: tk ← K||T
3: tk′ ← TKSrinit(tk)
4: if b = 0 then
5: L ← Dec-Skinnyr0(C, tk′)
6: else if b = 1 then
7: tk′′ ← TKSr0(tk′)
8: L ← Dec-Skinnyr1(Cb, tk

′′)⊕BC
9: end if

10: if s = i or s = b then
11: M ← Dec-Skinnyrinit(L, tk)
12: end if
13: if s = o or s = b then
14: if b = 0 then tk′ ← TKSr0(tk′)
15: C′ ← Enc-Skinnyrb⊕1

(L, tk′)
16: end if
17: if s = i return M
18: if s = o return C′

19: if s = b return M,C′

20: end function

Fig. 4: ForkSkinny encryption and decryption algorithms. Here TKS denotes the round tweakey scheduling
function of SKINNY. TKSr depicts r rounds of TKS.

Figure 11: The ForkSkinny framework [ALP+19b].

We use a similar tweaked model to search boomerang distinguishers for the encryption
from plaintext M to C1 in Fig. 11, where only the tweakey schedule is slightly different.

26 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

For ForkSkinny-128-256, the subtweakeys used are STK0, STK1, . . .,STK20, STK48,
STK49, ..., STK74. As pointed out in [BDL20], there are some master key differences δs
that satisfy δ = LFSR215(δ). So we can get differential characteristics with 6 consecu-
tive inactive subtweakeys STK18, STK19, STK20, STK48, STK49 and STK50. We take
advantage of these properties and add constraints to the model in Sect. 4.2.

At ToSC 2020, Bariant et al. [BDL20] gave the related-key impossible differential
attack on 26(=7+19)-round reduced ForkSkinny-128-256, where Rinit = 7, RI = 27
and RII = 19. We select a 21(=17+4)-round related-tweakey rectangle distinguisher for
ForkSkinny-128-256, where Rinit = 17, RI = 27 and RII = 4. The probability of the
4-round middle part is 2−29.72, which is tested with a data complexity 235 and time of
237.3s on one computer equipped with one RTX 2080 Ti. The details of the distinguisher
can refer to Table 13 and Table 20. Using the 21-round distinguisher, we give a 28-round
key-recovery attack on ForkSkinny-128-256 with 256-bit key (Rinit = 20, RI = 27 and
RII = 8), and a 25-round key-recovery attack on ForkSkinny-128-256 with 128-bit key
(Rinit = 18, RI = 27 and RII = 7).

Table 13: The 21-round boomerang distinguisher for ForkSkinny-128-256
r0 = 8, rm = 4, r1 = 9, p̃ = 2−30.25, t = 2−30.31, q̃ = 2−7.48, p̃2q̃2t = 2−105.77

∆T K1 = 00, 00, e8, 00, 00, 00, 00, 00, 00, 00, 00, 00, 50, 00, 00, 00
∆T K2 = 00, 00, fa, 00, 00, 00, 00, 00, 00, 00, 00, 00, aa, 00, 00, 00
∆X0 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 88
∇T K1 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 19
∇T K2 = 00, 00, 00, 00, 00, 00, 00, cc, 00, 00, 00, 00, 00, 00, 00, af
∇X21 = 00, 00, 00, 00, 00, 00, 00, 00, 35, 00, 00, 00, 00, 00, 00, 00

6.1 The Attack on 28-round ForkSkinny-128-256 with 256-bit Key
We give a 28-round key-recovery attack on ForkSkinny-128-256 with 256-bit key by
adding 3 rounds before and 4 rounds after the 21-round distinguisher, as shown in Fig.
12. The probability of the distinguisher is 2−n · p̃2q̃2t = 2−128−105.77 = 2−233.77. We
have rb = 8c and mb = 10c. In addition, there are rf = 12c according to ∆Z27 and
mf = 17c = 136 where c = 8. The data collection process is similar to Sect. 5.2 and we
construct y =

√
s · 2n/2−rb · (p̃q̃

√
t)−1 structures.

According to Zhao et al.’s attack procedures, for each guessing of 2mb = 280 possible
values in Eb, there are about y2 · 22rb · 2−2(n−rf) = y2 · 264 quartets as (C1, C2, C3, C4)
remaining. We give the detailed process to recover mf key bits for Ef . For each quartet
remaining, do:

1. In round 27: for the 1st column of X27 of (C1, C3), we obtain ∆X27[4] = ∆X27[12]
according to Eq.(9). ∆X27[12] is determined since STK54 is only xored to the
first two rows of the internal state. With known ∆X27[4] and ∆Y27[4], we deduce
STK54[4] with Lemma 1. Similarly, for (C2, C4) we also deduce STK ′54[4] and the
pre-fixed difference ∆STK54[4] acts as an 8-bit filter. y2 · 264 · 2−8 = y2 · 256 quartets
remain.

2. For the 2nd column of X27, similar to step 1, we deduce STK54[5] for (C1, C3) and
STK ′54[5] for (C2, C4), which acts as an 8-bit filter. y2 · 256 · 2−8 = y2 · 248 quartets
remain.

3. For the 3rd column of X27 of (C1, C3), we obtain ∆X27[2] = ∆X27[14]. Therefore
∆X27[2] is determined, and we deduce STK54[2]. Similarly, we can also deduce
STK ′54[2] for (C2, C4) and obtain an 8-bit filter. y2 · 248 · 2−8 = y2 · 240 quartets
remain.

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 27

Active cell with fixed difference 0aa

Active cell Both the difference and the value are needed

Zero difference, but the value is needed

STK54 X27 Y27 Z27 X28

89 ⊕SC
AC

ART

SR
MC

STK53 X26 Y26 Z26 W26

5e
5e

5e ⊕SC
AC

ART

SR MC

STK52 X25 Y25 Z25 W25

5e ⊕ 5e 5e
SC
AC

ART

SR MC

STK51 X24 Y24 Z24 W24

35
35

⊕SC
AC

ART

SR MC

21-round rectangle distinguisher of ForkSkinny-128-256

STK2 X2 Y2 Z2 W2

15
fa

88

fa
88

88 ⊕
88

88
88

88
88
88SC

AC
ART

SR MC

STK1 X1 Y1 Z1 W1

15

05

⊕SC
AC

ART

SR MC

ETK0 X0 Y0 Z ′
0 W ′

0

05

05
05 b7 b7

b7

b7

SC
AC

SR MC ⊕

Figure 12: The 28-round attack against ForkSkinny-128-256 (256-bit key)

4. Guessing STK54[0], the first column of W26 is computed. Thereafter, we can
compute ∆X26[13] from W26[12] for both (C1, C3) and (C2, C4) in round 26. Since
∆X26[13] = 0x5e, we get a 16-bit filter. y2 · 240 · 2−16 = y2 · 224 quartets remain.

5. Guessing STK54[6], the 3rd column of W26 is computed. Thereafter, we compute
∆Y26[5] from W26[6] for both (C1, C3) and (C2, C4) in round 26. Since ∆X26[5] =
0x5e, we deduce STK53[5] for (C1, C3) and STK ′53[5] for (C2, C4), which acts as an
8-bit filter. y2 · 224 · 2−8 = y2 · 216 quartets remain.

6. Guess STK54[1, 3, 7] and compute Z26 to peel off the round 27.

7. In round 26: for the 1st column of X26 of (C1, C3), we obtain ∆X26[0] = ∆X26[8] =
∆X26[12]. Therefore ∆X26[0] is determined and we deduce STK53[0]. Similarly, we
deduce STK ′53[0] for (C2, C4), which acts as an 8-bit filter. ∆X26[8] = ∆X26[12] is
an 8-bit filter for both (C1, C3) and (C2, C4). y2 · 216 · 2−8 · 2−16 = y2 · 2−8 quartets
remain.

8. For the 3rd round of X26 of (C1, C3), we obtain ∆X26[2] = ∆X26[6] = ∆X26[14].
Therefore, ∆X26[2] and ∆X26[6] are determined and we deduce STK53[2, 6]. Simi-
larly, we deduce STK ′53[2, 6] for (C2, C4), which acts as a 16-bit filter. y2 ·2−8 ·2−16 =
y2 · 2−24 quartets remain.

9. Guess STK53[1, 4, 7] and compute Z25 to peel off round 26.

28 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

10. In round 25: for 3rd round of X25 of (C1, C3), we obtain ∆X25[2] = ∆X25[10] =
∆X25[14]. Therefore ∆X25[2] is determined and we deduce STK52[2]. Similarly, we
deduce STK ′52[2] for (C2, C4), which acts as an 8-bit filter. ∆X25[10] = ∆X25[14]
is an 8-bit filter for both (C1, C3) and (C2, C4). y2 · 2−24 · 2−8 · 2−16 = y2 · 2−48

quartets remain.

11. In round 24: Guessing STK52[6], we compute W24[10]. Thereafter, X24[8] is
computed and ∆X24[8] = 0x35 acts as an 8-bit filter for both (C1, C3) and (C2, C4).
y2 · 2−48 · 2−16 = y2 · 2−64 quartets remain.

Table 14: Time complexity, guessed and deduced subtweakeys of each step in the tweakey
recovery process for 28-round ForkSkinny-128-256 (256-bit key).

Step i Time complexity Ti Involved subtweakeys
1 y2 · 264 · 4

28 = y2 · 261.19 D: ST K54[4]
2 y2 · 256 · 4

28 = y2 · 253.19 D: ST K54[5]
3 y2 · 248 · 4

28 = y2 · 245.19 D: ST K54[2]
4 y2 · 240 · 28 · 4

28 = y2 · 245.19 G: ST K54[0]
5 y2 · 224 · 28 · 28 · 4

28 = y2 · 237.19 G: ST K54[6], D: ST K53[5]
6 y2 · 216 · 28 · 28 · 224 · 4

28 = y2 · 253.19 G: ST K54[1, 3, 7]
7 y2 · 216 · 28 · 28 · 224 · 4

28 = y2 · 253.19 D: ST K53[0]
8 y2 · 2−8 · 28 · 28 · 224 · 4

28 = y2 · 229.19 D: ST K53[2, 6]
9 y2 · 2−24 · 28 · 28 · 224 · 224 · 4

28 = y2 · 237.19 G: ST K53[1, 4, 7]
10 y2 · 2−24 · 28 · 28 · 224 · 224 · 4

28 = y2 · 237.19 D: ST K52[2]
11 y2 · 2−48 · 28 · 28 · 224 · 224 · 28 · 4

28 = y2 · 221.19 G: ST K52[6]∑
i
Ti ≈ y2 · 261.21

As shown in Table 14, we totally guess 9 cells of the key combining with remaining
y2 · 2−64 quartets in the above steps, . We obtain y2 · 2−64 · 272 = y2 · 28 key counters.
Since mf = 136, the key counter for each key is y2 · 28/2136 = y2 · 2−128 on average.

Complexity. Setting the expected number of right quarters s = 1 and the advantage
h = 10, y =

√
s · 2n/2−rb · (p̃q̃

√
t)−1 = 252.88. The data complexity is 2118.88, the memory

complexity is 2136 and the time complexity is about 2246.98. The success probability is
about 83%.

6.2 The Attack on 25-round ForkSkinny-128-256 with 128-bit Key
By adding 1 round before and 3 rounds after the 21-round distinguisher, we can attack
25-round ForkSkinny-128-256 with 128-bit key and 128-bit tweak. There are rb = 0c,
mb = 0c, rf = 8c and mf = 8c. The attack procedure is similar with previous attack
in Sect. 6.1 and we omit it here. Setting the expected number of right quarters s = 1
and the advantage h = 20, y =

√
s · 2n/2−rb · (p̃q̃

√
t)−1 = 2116.88. The data complexity is

4M = 2118.88, the memory complexity is 5M + 2mf ≈ 2119.2 and the time complexity is
about 4M + 2mb · y2 · 22rb−2(n−rf) · 4

25 ≈ 2118.88. The success probability is about 83.5%.

7 Discussion and Conclusion
We give a uniform automatic MILP model of related-tweakey rectangle attacks on SKINNY
and ForkSkinny, which includes the key-recovery attack process and the related-tweakey
rectangle distinguisher. In the model, we balance the probability of a distinguisher and
the dominating factors of the key-recovery process, such as the guessed key bits. Hence,
we give the improved related-tweakey rectangle attacks on a few versions of round-reduced

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 29

SKINNY and ForkSkinny, which cover 1-2 more rounds than the best previous ones. We
would like to state that according to the discussion4 on the LWC forum, our rectangle
attacks on round-reduced SKINNY block cipher do not impact the security of SKINNY-AEAD.

Acknowledgments.

We would like to thank the anonymous reviewers from ToSC for their detailed comments.
This paper was supported by the National Key Research and Development Program of
China (Grant No. 2018YFA0704701), the Major Program of Guangdong Basic and Applied
Research (Grant No. 2019B030302008), the National Natural Science Foundation of China
(Nos. 62072270, 61902207 and 61902414), Shandong Province Key Research and Devel-
opment Project (Nos. 2020ZLYS09 and 2019JZZY010133), and National Cryptography
Development Fund (Nos. MMJJ20180101 and MMJJ20170121).

References
[ABC+17] Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,

Siang Meng Sim, and Gaoli Wang. Related-key impossible-differential at-
tack on reduced-round Skinny. In Dieter Gollmann, Atsuko Miyaji, and
Hiroaki Kikuchi, editors, Applied Cryptography and Network Security - 15th
International Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017,
Proceedings, volume 10355 of Lecture Notes in Computer Science, pages 208–
228. Springer, 2017.

[ADG+19] Ralph Ankele, Christoph Dobraunig, Jian Guo, Eran Lambooij, Gregor Lean-
der, and Yosuke Todo. Zero-correlation attacks on tweakable block ciphers
with linear tweakey expansion. IACR Transactions on Symmetric Cryptology,
2019(1):192–235, 2019.

[ALP+19a] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. ForkAE v. Submission to NIST Lightweight
Cryptography Project, 2019.

[ALP+19b] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A new primitive for authenticated
encryption of very short messages. In Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part II, pages 153–182, 2019.

[BC18] Christina Boura and Anne Canteaut. On the boomerang uniformity of cryp-
tographic sboxes. IACR Trans. Symmetric Cryptol., 2018(3):290–310, 2018.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack -
rectangling the Serpent. In Birgit Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, International Conference on the Theory and Application
of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding,
volume 2045 of Lecture Notes in Computer Science, pages 340–357. Springer,
2001.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. A related-key rectangle
attack on the full KASUMI. In Bimal K. Roy, editor, Advances in Cryptology

4https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/kCNjP0q64Bo?pli=1

30 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

- ASIACRYPT 2005, 11th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Chennai, India, December 4-8,
2005, Proceedings, volume 3788 of Lecture Notes in Computer Science, pages
443–461. Springer, 2005.

[BDL20] Augustin Bariant, Nicolas David, and Gaëtan Leurent. Cryptanalysis of
Forkciphers. IACR Trans. Symmetric Cryptol., 2020(1):233–265, 2020.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The Skinny
family of block ciphers and its low-latency variant mantis. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II,
pages 123–153. Springer, 2016.

[BJK+20] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash. IACR Transactions on Symmetric Cryptology,
2020(1):88–121, 2020.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptol-
ogy - ASIACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2009.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic search for related-key differential
characteristics in byte-oriented block ciphers: Application to AES, Camel-
lia, Khazad and others. In Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010.
Proceedings, pages 322–344, 2010.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 321–345. Springer,
2017.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Trans.
Symmetric Cryptol., 2017(3):73–107, 2017.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 -

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 31

37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 683–714.
Springer, 2018.

[CSSH19] Qiu Chen, Danping Shi, Siwei Sun, and Lei Hu. Automatic demirci-selçuk
meet-in-the-middle attack on SKINNY with key-bridging. In Information
and Communications Security - 21st International Conference, ICICS 2019,
Beijing, China, December 15-17, 2019, Revised Selected Papers, pages 233–247,
2019.

[DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the
fastest boomerangs application to SKINNY. IACR Trans. Symmetric Cryptol.,
2020(4):104–129, 2020.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. In Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 157–184,
2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, pages 371–387, 2013.

[DHLP20] Orr Dunkelman, Senyang Huang, Eran Lambooij, and Stav Perle. Single
tweakey cryptanalysis of reduced-round Skinny-64. In Shlomi Dolev, Vladimir
Kolesnikov, Sachin Lodha, and Gera Weiss, editors, Cyber Security Cryptogra-
phy and Machine Learning - Fourth International Symposium, CSCML 2020,
Be’er Sheva, Israel, July 2-3, 2020, Proceedings, volume 12161 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2020.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key
attack on the KASUMI cryptosystem used in GSM and 3g telephony. In Tal
Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings,
volume 6223 of Lecture Notes in Computer Science, pages 393–410. Springer,
2010.

[FN20] Antonio Flórez-Gutiérrez and María Naya-Plasencia. Improving key-recovery
in linear attacks: Application to 28-round PRESENT. In Advances in Cryp-
tology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part I, pages 221–249, 2020.

[HBS20] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks
on Skinny and CRAFT. IACR Cryptol. ePrint Arch., 2020:1317, 2020.

[IKMP19] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Romulus v1. Submission to NIST Lightweight Cryptography Project, 2019.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International

32 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 274–288.
Springer, 2014.

[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang at-
tacks against reduced-round MARS and Serpent. In Fast Software Encryption,
7th International Workshop, FSE 2000, New York, NY, USA, April 10-12,
2000, Proceedings, pages 75–93, 2000.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume
9215 of Lecture Notes in Computer Science, pages 161–185. Springer, 2015.

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of Skinny
under related-tweakey settings. IACR Transactions on Symmetric Cryptology,
2017(3):37–72, 2017.

[LS19] Yunwen Liu and Yu Sasaki. Related-key boomerang attacks on GIFT with
automated trail search including BCT effect. In Information Security and
Privacy - 24th Australasian Conference, ACISP 2019, Christchurch, New
Zealand, July 3-5, 2019, Proceedings, pages 555–572, 2019.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory
and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages
386–397. Springer, 1993.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions
on Information Theory, 57(4):2517–2521, 2011.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Information
Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing,
China, November 30 - December 3, 2011. Revised Selected Papers, pages 57–76,
2011.

[oSN20] National Institute of Standards and Technology (NIST). Lightweight cryp-
tography (LWC) standardization process, 2020. https://csrc.nist.gov/
Projects/Lightweight-Cryptography/Round-2-Candidates.

[SB02] Ali Aydin Selçuk and Ali Biçak. On probability of success in linear and
differential cryptanalysis. In Security in Communication Networks, Third
International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002.
Revised Papers, volume 2576 of Lecture Notes in Computer Science, pages
174–185. Springer, 2002.

[SGL+17] Siwei Sun, David Gérault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. Analysis of AES, Skinny, and others with constraint
programming. IACR Trans. Symmetric Cryptol., 2017(1):281–306, 2017.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 33

search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, pages 158–178, 2014.

[SMB18] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis
of reduced round Skinny block cipher. IACR Transactions on Symmetric
Cryptology, 2018(3):124–162, 2018.

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited.
application to Skinny and AES. IACR Transactions on Symmetric Cryptology,
2019(1):118–141, 2019.

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the demirci-selçuk meet-in-the-middle attack with constraints.
In Advances in Cryptology - ASIACRYPT 2018 - 24th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, pages
3–34, 2018.

[TAY17] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible
differential cryptanalysis of reduced-round Skinny. In Marc Joye and Abder-
rahmane Nitaj, editors, Progress in Cryptology - AFRICACRYPT 2017 - 9th
International Conference on Cryptology in Africa, Dakar, Senegal, May 24-26,
2017, Proceedings, volume 10239 of Lecture Notes in Computer Science, pages
117–134, 2017.

[Wag99] David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy,
March 24-26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer
Science, pages 156–170. Springer, 1999.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
application to AES variants and Deoxys. IACR Transactions on Symmetric
Cryptology, 2019(1):142–169, 2019.

[YQC17] Dong Yang, Wen-Feng Qi, and Hua-Jin Chen. Impossible differential attacks
on the Skinny family of block ciphers. IET Inf. Secur., 11(6):377–385, 2017.

[ZDC+21] Rui Zong, Xiaoyang Dong, Huaifeng Chen, Yiyuan Luo, Si Wang, and Zheng Li.
Towards key-recovery-attack friendly distinguishers: Application to GIFT-128.
IACR Trans. Symmetric Cryptol., 2021(1):156–184, 2021.

[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang
and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans.
Symmetric Cryptol., 2019(3):121–151, 2019.

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Gen-
eralized related-key rectangle attacks on block ciphers with linear key sched-
ule: applications to Skinny and GIFT. Designs, Codes and Cryptography,
88(6):1103–1126, 2020.

34 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Supplementary Material

A Specification of SKINNY

A.1 Tweakey schedule of SKINNY

The round tweakey STKi is defined as:
t = n : STKi = TK1i,
t = 2n : STKi = TK1i ⊕ TK2i,
t = 3n : STKi = TK1i ⊕ TK2i ⊕ TK3i.

(15)

The tweakey arrays TK1i, TK2i and TK3i in round i are generated as follows. First,
apply the permutation P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] on each TKmi−1
tweakey arrays:

TKmi[n]← TKmi−1[P [n]], 0 ≤ n ≤ 15,m ∈ {1, 2, 3}.

Then, apply an LFSR to update each cell of the first and second rows of TK2i and TK3i.
The details of the LFSRs used in different versions are given in Table 15.

Table 15: The LFSRs used in the tweakey schedule of SKINNY

TKm c LFSR

TK2 4 (x3‖x2‖x1‖x0)→ (x2‖x1‖x0‖x3 ⊕ x2)
8 (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0)→ (x6‖x5‖x4‖x3‖x2‖x1‖x0‖x7 ⊕ x5)

TK3 4 (x3‖x2‖x1‖x0)→ (x0 ⊕ x3‖x3‖x2‖x1)
8 (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0)→ (x0 ⊕ x6‖x7‖x6‖x5‖x4‖x3‖x2‖x1)

A.2 The linear layer matrix of SKINNY

L =

1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

(16)

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 35

L−1 =

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

(17)

LE =

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

(18)

B Boomerang Distinguishers of SKINNY and ForkSkinny

In this section, we list the differentials of the boomerang distinguishers searched in Sect. 4.2.
For each round of the (r0+rm+r1)-round distinguisher, we list the input/output differences
of the S-box and subtweakey differences for r0-round upper differential, as well as r1-round
lower differential. For rm-round middle part of the distinguisher, we only present the input
difference of the upper differential and the output difference of the lower differential. In
the following table, the differences are given in hexadecimal, “*” denote arbitrary nonzero
difference in the computation of the middle part, “-” denote arbitrary difference in the
differential.

C Experiments on round-reduced boomerang Distinguish-
ers of SKINNY and ForkSkinny

Due to the limited computing power, we make experiments on round-reduced boomerang
distinguishers for SKINNY. The round-reduced distinguishers are listed in Table 22, Table 23,

36 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Table 16: The differentials of the 18-round distinguisher for Skinny-64-128, where R8 to
R13 is the rm = 6-round middle part, u satisfies DDT[0x5][u] > 0 and DDT[u⊕0xc][0x6] >
0, v satisfies DDT[0x5][v] > 0 and DDT[v][0x6] > 0.

Upper differential Lower differential

R0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5

0,0,5,0,0,0,0,0

R1
0,0,0,0,0,0,5,0,0,0,0,0,0,0,5,0

0,0,0,0,0,0,u,0,0,0,0,0,0,0,v,0
0,0,0,0,0,0,c,0

R2
0,v,0,0,0,0,0,0,0,0,0,u⊕ 0xc,0,0,0,0

0,6,0,0,0,0,0,0,0,0,0,6,0,0,0,0
0,0,0,0,6,0,0,0

R3
0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,7,0,0

R4/5
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R6
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,d,0,0

R7
0,0,0,0,0,0,0,0,0,0,d,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,f,0,0,0,0,0

0,0,0,0,0,0,0,f

R8
f,0,0,0,0,0,0,0,0,0,0,0,f,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
,0,0,0,0,0,0,0,0,0,0,0,,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,7,0,0,0,0 0,0,0,0,0,0,0,0
R9-R12 middle part middle part

R13
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,5,0,0,0,0,0 0,6,0,0,0,0,0,0

R14/15/16
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R17
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,d,0,0,0,0,0

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 37

Table 17: The differentials of the 22-round distinguisher for SKINNY-64-192, where R10
to R15 denote rm = 6-round middle part, u satisfies DDT[0xa][u] > 0 and DDT[u ⊕
0xd][0x2] > 0, v satisfies DDT[0xa][v] > 0 and DDT[v][0x2] > 0.

Upper differential Lower differential

R0
3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0
d,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0

d,0,0,0,0,0,0,6

R1-R4
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R5
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,a,0,0,0,0,0

R6
0,0,a,0,0,0,a,0,0,0,0,0,0,0,a,0
0,0,6,0,0,0,u,0,0,0,0,0,0,0,v,0

0,0,6,0,0,0,d,0

R7
0,v,0,0,0,0,0,0,0,0,0,u⊕ 0xd,0,0,0,0

0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0
0,0,0,0,2,0,0,0

R8
0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0

0,0,0,0,8,1,0,0

R9
0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0

0,0,0,0,0,0,5,0

R10
0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,5 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
0,0,0,*,0,0,0,0,0,0,0,0,0,0,0,* -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,a,0,0,d,0 0,0,0,0,0,0,0,0
R11-R14 middle part middle part

R15
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,0,*,0,0,0,0,0,0,0,0,0,0,0,0,0
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,0,a,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,f 0,0,a,0,0,0,0,0

R16-R20
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R21
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,a,0,0

38 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Table 18: The differentials of the 19-round distinguisher for Skinny-128-256, where R9 to
R14 denote rm = 6-round middle part, u satisfies DDT[0x10][u] > 0 and DDT[u][0xd4] > 0,
v satisfies DDT[0xd4][v] > 0 and DDT[v ⊕ 0x08][0x98] > 0, w satisfies DDT[0xd4][w] > 0
and DDT[w][0x98] > 0.

Upper differential Lower differential

R0
0,0,0,0,13,0,10,0,0,10,0,0,10,0,0,0

0,0,0,0,f4,0,u,0,0,u,0,0,u,0,0,0
0,0,0,0,f4,0,0,0

R1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,u
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,d4

0,0,d4,0,0,0,0,0

R2
0,0,0,0,0,0,d4,0,0,0,0,0,0,0,d4,0
0,0,0,0,0,0,v,0,0,0,0,0,0,0,w,0

0,0,0,0,0,0,08,0

R3
0,w,0,0,0,0,0,0,0,0,0,v ⊕ 0x08,0,0,0,0

0,98,0,0,0,0,0,0,0,0,0,98,0,0,0,0
0,0,0,0,98,0,0,0

R4
0,0,0,0,0,98,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,f0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,f0,0,0

R5/6
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R7
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,31,0,0

R8
0,0,0,0,0,0,0,0,0,0,31,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,e0,0,0,0,0,0

0,0,0,0,0,0,0,e0

R9
e0,0,0,0,0,0,0,0,0,0,0,0,e0,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
,0,0,0,0,0,0,0,0,0,0,0,,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,52,0,0,0,0 0,0,0,0,0,0,0,0
R10-R13 middle part middle part

R14
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,0,0,*,0,0,0,0,0,0,0,0,0,0,0,0
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,0,0,80,0,0,0,0,0,0,0,0,0,0,0,0

0,0,a2,0,0,0,0,0 0,0,0,80,0,0,0,0

R15/16/17
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R18
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,01,0,0,0,0,0,0

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 39

Table 19: The differentials of the 22-round distinguisher for SKINNY-128-384, where R10
to R15 denote rm = 6-round middle part, u satisfies DDT[0x07][u] > 0 and DDT[u ⊕
0x22][0x8a] > 0, v satisfies DDT[0x07][v] > 0 and DDT[v][0x8a] > 0.

Upper differential Lower differential

R0
81,0,0,0,0,0,0,01,0,0,0,0,0,0,0,0
22,0,0,0,0,0,0,bb,0,0,0,0,0,0,0,0

22,0,0,0,0,0,0,bb

R1-R4
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R5
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,07,0,0,0,0,0

R6
0,0,07,0,0,0,07,0,0,0,0,0,0,0,07,0
0,0,bb,0,0,0,u,0,0,0,0,0,0,0,v,0

0,0,bb,0,0,0,22,0

R7
0,v,0,0,0,0,0,0,0,0,0,u⊕ 0x22,0,0,0,0

0,8a,0,0,0,0,0,0,0,0,0,8a,0,0,0,0
0,0,0,0,8a,0,0,0

R8
0,0,0,0,0,8a,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,76,0,0,0,0,0,0,0,0,0,0

0,0,0,0,10,76,0,0

R9
0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,50,0,0,0,0,0,0

0,0,0,0,0,0,50,0

R10
0,0,0,50,0,0,0,0,0,0,0,0,0,0,0,50 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
0,0,0,*,0,0,0,0,0,0,0,0,0,0,0,* -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,56,0,0,28,0 0,0,0,0,0,0,0,0
R11-R14 middle part middle part

R15
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,f0 0,50,0,0,0,0,0,0

R16-R20
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R21
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,50,0,0,0

40 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Table 20: The differentials of the 21-round distinguisher for ForkSkinny-128-256,
where R8 to R11 is rm = 4-round middle part, u satisfies DDT[0xbe][u] > 0 and
DDT[u ⊕ 0xc6][0x2b] > 0, v satisfies DDT[0xbe][v] > 0 and DDT[v][0x2b] > 0, w
satisfies DDT[0x44][w] > 0 and DDT[w][0x78] > 0.

Upper differential Lower differential

R0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,88
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12

0,0,12,0,0,0,0,0

R1
0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0
0,0,0,0,0,0,u,0,0,0,0,0,0,0,v,0

0,0,0,0,0,0,04,0

R2
0,v,0,0,0,0,0,0,0,0,0,u⊕ 0x04,0,0,0,0

0,1c,0,0,0,0,0,0,0,0,0,1c,0,0,0,0
0,0,0,0,1c,0,0,0

R3
0,0,0,0,0,1c,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,f8,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,f8,0,0

R4/5
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R6
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,38,0,0

R7
0,0,0,0,0,0,0,0,0,0,38,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,f0,0,0,0,0,0

0,0,0,0,0,0,0,f0

R8
f0,0,0,0,0,0,0,0,0,0,0,0,f0,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
,0,0,0,0,0,0,0,0,0,0,0,,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,49,0,0,0,0 0,0,0,0,0,0,0,0
R9-R10 middle part middle part

R11
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,0,0,0,0,*,0,*,0,0,*,0,0,*,0,0
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,0,0,0,0,d7,0,01,0,0,01,0,0,01,0,0

d0,0,0,0,0,0,0,0 0,0,0,0,0,d7,0,0

R12
0,0,0,0,0,0,0,0,0,0,0,0,01,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,w,0,0,0

0,0,0,0,0,0,0,0

R13
0,0,0,w,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,9a,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,9a,0,0,0,0

R14-R19
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R20
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,35

Lingyue Qin, Xiaoyang Dong �, Xiaoyun Wang �, Keting Jia and Yunwen Liu 41

Table 24 and Table 25. The experimental results on one computer equipped with one RTX
2080 Ti are listed in Table 21.

Table 21: Experiments on the round-reduced boomerang distinguishers for SKINNY

Version round p̃2q̃2t Probability Complexity Time
64-128 15 2−35.96 2−36.09 240 5h
64-192 15 2−34.73 2−34.69 238 1.9h
128-256 11 2−40.39 2−41 242 16h
128-384 13 2−31.03 2−31.17 235 0.3h

Table 22: The 15-round related-tweakey boomerang distinguisher for SKINNY-64-128
r0 = 5, rm = 6, r1 = 4, p̃ = 2−6, t = 2−23.96, q̃ = 1, p̃2q̃2t = 2−35.96

∆T K1 = 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0
∆T K2 = 0, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0
∆X0 = 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
∇T K1 = 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇T K2 = 0, 0, 0, 0, f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇X15 = 0, 0, d, 0, 0, 0, d, 0, 0, 0, 0, 0, 0, 0, d, 0

Table 23: The 15-round related-tweakey boomerang distinguisher for SKINNY-64-192
r0 = 3, rm = 6, r1 = 6, p̃ = 2−8, t = 2−18.73, q̃ = 1, p̃2q̃2t = 2−34.73

∆T K1 = 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, c, 0, 0, 0, 8, 0
∆T K2 = 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, f, 0, 0, 0, e, 0
∆T K3 = 0, 0, 0, 0, b, 0, 0, 0, 0, 0, 5, 0, 0, 0, b, 0
∆X0 = 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0
∇T K1 = 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇T K2 = 0, 0, 0, d, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇T K3 = 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇X15 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0

42 Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule

Table 24: The 11-round related-tweakey boomerang distinguisher for SKINNY-128-256
r0 = 1, rm = 6, r1 = 4, p̃ = 2−4, t = 2−32.39, q̃ = 1, p̃2q̃2t = 2−40.39

∆T K1 = 00, 00, 00, 00, 00, 00, 00, a0, 00, 00, 00, 00, 00, ef, 00, 00
∆T K2 = 00, 00, 00, 00, 00, 00, 00, 40, 00, 00, 00, 00, 00, de, 00, 00
∆X0 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, e0, 00, 00, 00, 00, 00
∇T K1 = 00, 00, 00, 00, ff, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
∇T K2 = 00, 00, 00, 00, cf, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
∇X11 = 00, 01, 00, 00, 00, 01, 00, 00, 00, 00, 00, 00, 00, 01, 00, 00

Table 25: The 13-round related-tweakey boomerang distinguisher for SKINNY-128-384
r0 = 1, rm = 6, r1 = 6, p̃ = 2−2, t = 2−27.03, q̃ = 1, p̃2q̃2t = 2−31.03

∆T K1 = 00, 00, 00, 00, 00, 00, 56, 00, 00, 00, 00, 00, 1b, 14, 00, 00
∆T K2 = 00, 00, 00, 00, 00, 00, df, 00, 00, 00, 00, 00, 49, 61, 00, 00
∆T K3 = 00, 00, 00, 00, 00, 00, d9, 00, 00, 00, 00, 00, 42, 03, 00, 00
∆X0 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 10, 00, 00, 00, 00, 00, 00
∇T K1 = 00, 00, 00, 00, 00, 8a, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
∇T K2 = 00, 00, 00, 00, 00, 87, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
∇T K3 = 00, 00, 00, 00, 00, 33, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
∇X13 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 50, 00, 00, 00, 00, 00, 00

	Introduction
	Our contributions

	Tradeoff Between Distinguisher and Key-recovery Attack
	The tradeoff in differential cryptanalysis
	The tradeoff in rectangle attack on ciphers with linear key-schedule

	Specification of SKINNY
	Automated Search Oriented to Key Recovery
	Previous automatic modelling of searching boomerang distinguishers on SKINNY
	Our model to determine a distinguisher

	Related-tweakey Rectangle Attacks on Round-reduced SKINNY
	The Key-recovery attack on 30-round SKINNY-64-192
	The Key-recovery attack on 24-round SKINNY-64-128
	The Key-recovery Attack on 30-round SKINNY-128-384
	The Key-recovery Attack on 25-round SKINNY-128-256

	Application to ForkSkinny
	The Attack on 28-round ForkSkinny-128-256 with 256-bit Key
	The Attack on 25-round ForkSkinny-128-256 with 128-bit Key

	Discussion and Conclusion
	Specification of SKINNY
	Tweakey schedule of SKINNY
	The linear layer matrix of SKINNY

	Boomerang Distinguishers of SKINNY and ForkSkinny
	Experiments on round-reduced boomerang Distinguishers of SKINNY and ForkSkinny

